1
|
Bychkova VE, Dolgikh DA, Balobanov VA, Finkelstein AV. The Molten Globule State of a Globular Protein in a Cell Is More or Less Frequent Case Rather than an Exception. Molecules 2022; 27:molecules27144361. [PMID: 35889244 PMCID: PMC9319461 DOI: 10.3390/molecules27144361] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/01/2022] [Accepted: 07/03/2022] [Indexed: 02/01/2023] Open
Abstract
Quite a long time ago, Oleg B. Ptitsyn put forward a hypothesis about the possible functional significance of the molten globule (MG) state for the functioning of proteins. MG is an intermediate between the unfolded and the native state of a protein. Its experimental detection and investigation in a cell are extremely difficult. In the last decades, intensive studies have demonstrated that the MG-like state of some globular proteins arises from either their modifications or interactions with protein partners or other cell components. This review summarizes such reports. In many cases, MG was evidenced to be functionally important. Thus, the MG state is quite common for functional cellular proteins. This supports Ptitsyn’s hypothesis that some globular proteins may switch between two active states, rigid (N) and soft (MG), to work in solution or interact with partners.
Collapse
Affiliation(s)
- Valentina E. Bychkova
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia; (V.E.B.); (A.V.F.)
| | - Dmitry A. Dolgikh
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117871 Moscow, Russia;
| | - Vitalii A. Balobanov
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia; (V.E.B.); (A.V.F.)
- Correspondence:
| | - Alexei V. Finkelstein
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia; (V.E.B.); (A.V.F.)
| |
Collapse
|
2
|
Horn KJ, Jaberi Vivar AC, Arenas V, Andani S, Janoff EN, Clark SE. Corynebacterium Species Inhibit Streptococcus pneumoniae Colonization and Infection of the Mouse Airway. Front Microbiol 2022; 12:804935. [PMID: 35082772 PMCID: PMC8784410 DOI: 10.3389/fmicb.2021.804935] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/03/2021] [Indexed: 12/21/2022] Open
Abstract
The stability and composition of the airway microbiome is an important determinant of respiratory health. Some airway bacteria are considered to be beneficial due to their potential to impede the acquisition and persistence of opportunistic bacterial pathogens such as Streptococcus pneumoniae. Among such organisms, the presence of Corynebacterium species correlates with reduced S. pneumoniae in both adults and children, in whom Corynebacterium abundance is predictive of S. pneumoniae infection risk. Previously, Corynebacterium accolens was shown to express a lipase which cleaves host lipids, resulting in the production of fatty acids that inhibit growth of S. pneumoniae in vitro. However, it was unclear whether this mechanism contributes to Corynebacterium-S. pneumoniae interactions in vivo. To address this question, we developed a mouse model for Corynebacterium colonization in which colonization with either C. accolens or another species, Corynebacterium amycolatum, significantly reduced S. pneumoniae acquisition in the upper airway and infection in the lung. Moreover, the lungs of co-infected mice had reduced pro-inflammatory cytokines and inflammatory myeloid cells, indicating resolution of infection-associated inflammation. The inhibitory effect of C. accolens on S. pneumoniae in vivo was mediated by lipase-dependent and independent effects, indicating that both this and other bacterial factors contribute to Corynebacterium-mediated protection in the airway. We also identified a previously uncharacterized bacterial lipase in C. amycolatum that is required for inhibition of S. pneumoniae growth in vitro. Together, these findings demonstrate the protective potential of airway Corynebacterium species and establish a new model for investigating the impact of commensal microbiota, such as Corynebacterium, on maintaining respiratory health.
Collapse
Affiliation(s)
- Kadi J. Horn
- Department of Otolaryngology Head and Neck Surgery, University of Colorado School of Medicine, Aurora, CO, United States
| | - Alexander C. Jaberi Vivar
- Department of Otolaryngology Head and Neck Surgery, University of Colorado School of Medicine, Aurora, CO, United States
- Department of Developmental Biology, Washington University in St. Louis, St. Louis, MO, United States
| | - Vera Arenas
- Department of Otolaryngology Head and Neck Surgery, University of Colorado School of Medicine, Aurora, CO, United States
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Sameer Andani
- Department of Otolaryngology Head and Neck Surgery, University of Colorado School of Medicine, Aurora, CO, United States
| | - Edward N. Janoff
- Division of Infectious Diseases, University of Colorado School of Medicine, Aurora, CO, United States
- Denver Veterans Affairs Medical Center, Aurora, CO, United States
| | - Sarah E. Clark
- Department of Otolaryngology Head and Neck Surgery, University of Colorado School of Medicine, Aurora, CO, United States
| |
Collapse
|
3
|
Ferraboschi P, Ciceri S, Grisenti P. Applications of Lysozyme, an Innate Immune Defense Factor, as an Alternative Antibiotic. Antibiotics (Basel) 2021; 10:1534. [PMID: 34943746 PMCID: PMC8698798 DOI: 10.3390/antibiotics10121534] [Citation(s) in RCA: 151] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/03/2021] [Accepted: 12/08/2021] [Indexed: 12/18/2022] Open
Abstract
Lysozyme is a ~14 kDa protein present in many mucosal secretions (tears, saliva, and mucus) and tissues of animals and plants, and plays an important role in the innate immunity, providing protection against bacteria, viruses, and fungi. Three main different types of lysozymes are known: the c-type (chicken or conventional type), the g-type (goose type), and the i-type (invertebrate type). It has long been the subject of several applications due to its antimicrobial properties. The problem of antibiotic resistance has stimulated the search for new molecules or new applications of known compounds. The use of lysozyme as an alternative antibiotic is the subject of this review, which covers the results published over the past two decades. This review is focused on the applications of lysozyme in medicine, (the treatment of infectious diseases, wound healing, and anti-biofilm), veterinary, feed, food preservation, and crop protection. It is available from a wide range of sources, in addition to the well-known chicken egg white, and its synergism with other compounds, endowed with antimicrobial activity, are also summarized. An overview of the modified lysozyme applications is provided in the form of tables.
Collapse
Affiliation(s)
- Patrizia Ferraboschi
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Via C. Saldini 50, 20133 Milano, Italy;
| | - Samuele Ciceri
- Department of Pharmaceutical Sciences, University of Milan, Via L. Mangiagalli 25, 20133 Milano, Italy;
| | | |
Collapse
|
4
|
Chetta KE, Alcorn JL, Baatz JE, Wagner CL. Cytotoxic Lactalbumin-Oleic Acid Complexes in the Human Milk Diet of Preterm Infants. Nutrients 2021; 13:4336. [PMID: 34959888 PMCID: PMC8707396 DOI: 10.3390/nu13124336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/23/2021] [Accepted: 11/28/2021] [Indexed: 12/13/2022] Open
Abstract
Frozen storage is necessary to preserve expressed human milk for critically ill and very preterm infants. Milk pasteurization is essential for donor milk given to this special population. Due to these storage and processing conditions, subtle changes occur in milk nutrients. These changes may have clinical implications. Potentially, bioactive complexes of unknown significance could be found in human milk given to preterm infants. One such complex, a cytotoxic α-lactalbumin-oleic acid complex named "HAMLET," (Human Alpha-Lactalbumin Made Lethal to Tumor cells) is a folding variant of alpha-lactalbumin that is bound to oleic acid. This complex, isolated from human milk casein, has specific toxicity to both carcinogenic cell lines and immature non-transformed cells. Both HAMLET and free oleic acid trigger similar apoptotic mechanisms in tissue and stimulate inflammation via the NF-κB and MAPK p38 signaling pathways. This protein-lipid complex could potentially trigger various inflammatory pathways with unknown consequences, especially in immature intestinal tissues. The very preterm population is dependent on human milk as a medicinal and broadly bioactive nutriment. Therefore, HAMLET's possible presence and bioactive role in milk should be addressed in neonatal research. Through a pediatric lens, HAMLET's discovery, formation and bioactive benefits will be reviewed.
Collapse
Affiliation(s)
- Katherine E. Chetta
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, Medical University of South Carolina, Shawn Jenkins Children’s Hospital, 10 McClennan Banks Drive, MSC 915, Charleston, SC 29425, USA; (J.E.B.); (C.L.W.)
| | - Joseph L. Alcorn
- Department of Pediatrics, Division of Neonatology and Pediatric Research Center, The University of Texas Health & Science Center at Houston, 6631 Fannin Street MSB 3.252, Houston, TX 77030, USA;
| | - John E. Baatz
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, Medical University of South Carolina, Shawn Jenkins Children’s Hospital, 10 McClennan Banks Drive, MSC 915, Charleston, SC 29425, USA; (J.E.B.); (C.L.W.)
| | - Carol L. Wagner
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, Medical University of South Carolina, Shawn Jenkins Children’s Hospital, 10 McClennan Banks Drive, MSC 915, Charleston, SC 29425, USA; (J.E.B.); (C.L.W.)
| |
Collapse
|
5
|
Milk Proteins-Their Biological Activities and Use in Cosmetics and Dermatology. Molecules 2021; 26:molecules26113253. [PMID: 34071375 PMCID: PMC8197926 DOI: 10.3390/molecules26113253] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 02/06/2023] Open
Abstract
Milk and colostrum have high biological potential, and due to their natural origin and non-toxicity, they have many uses in cosmetics and dermatology. Research is ongoing on their potential application in other fields of medicine, but there are still few results; most of the published ones are included in this review. These natural products are especially rich in proteins, such as casein, β-lactoglobulin, α-lactalbumin, lactoferrin, immunoglobulins, lactoperoxidase, lysozyme, and growth factors, and possess various antibacterial, antifungal, antiviral, anticancer, antioxidant, immunomodulatory properties, etc. This review describes the physico-chemical properties of milk and colostrum proteins and the natural functions they perform in the body and compares their composition between animal species (cows, goats, and sheep). The milk- and colostrum-based products can be used in dietary supplementation and for performing immunomodulatory functions; they can enhance the effects of certain drugs and can have a lethal effect on pathogenic microorganisms. Milk products are widely used in the treatment of dermatological diseases for promoting the healing of chronic wounds, hastening tissue regeneration, and the treatment of acne vulgaris or plaque psoriasis. They are also increasingly regarded as active ingredients that can improve the condition of the skin by reducing the number of acne lesions and blackheads, regulating sebum secretion, ameliorating inflammatory changes as well as bestowing a range of moisturizing, protective, toning, smoothing, anti-irritation, whitening, soothing, and antiaging effects.
Collapse
|
6
|
Pedersen JN, Frislev HKS, Pedersen JS, Otzen D. Structures and mechanisms of formation of liprotides. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1868:140505. [PMID: 32721568 DOI: 10.1016/j.bbapap.2020.140505] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 07/16/2020] [Indexed: 12/11/2022]
Abstract
Many proteins form complexes called liprotides with oleic acid and other cis-fatty acids under conditions where the protein is partially unfolded. The complexes vary in structure depending on the ratio of protein and lipid, but the most common structural organization is the core-shell structure, in which a layer of dynamic, partially unfolded and extended proteins surrounds a micelle-like fatty acid core. This structure, first reported for α-lactalbumin together with OA, resembles complexes formed between proteins and anionic surfactants like SDS. Liprotides first rose to fame through their anti-carcinogenic properties which still remains promising for topical applications though not yet implemented in the clinic. In addition, liprotides show potential in drug delivery thanks to the ability of the micelle core to solubilize and stabilize hydrophobic compounds, though applications are challenged by their sensitivity to acidic pH and dynamic exchange of lipids which makes them easy prey for serum "hoovers" such as albumin. However, liprotides are also of fundamental interest as a generic "protein complex structure", demonstrating the many and varied structural consequences of protein-lipid interactions. Here we provide an overview of the different types of liprotide complexes, ranging from quasi-native complexes via core-shell structures to multi-layer structures, and discuss the many conditions under which they form. Given the many variable types of complexes that can form, rigorous biophysical analysis (stoichiometry, shape and structure of the complexes) remains crucial for a complete understanding of the mechanisms of action of this fascinating group of protein-lipid complexes both in vitro and in vivo.
Collapse
Affiliation(s)
- Jannik Nedergaard Pedersen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
| | - Henriette Kristina Søster Frislev
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark; Novo Nordisk, Hallas Alle 1, DK-4400 Kalundborg, Denmark
| | - Jan Skov Pedersen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark; Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
| | - Daniel Otzen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark; Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10C, 8000 Aarhus C, Denmark.
| |
Collapse
|
7
|
El-Fakharany EM, Redwan EM. Protein-lipid complexes: molecular structure, current scenarios and mechanisms of cytotoxicity. RSC Adv 2019; 9:36890-36906. [PMID: 35539089 PMCID: PMC9075609 DOI: 10.1039/c9ra07127j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 10/21/2019] [Indexed: 02/04/2023] Open
Abstract
Some natural proteins can be complexed with oleic acid (OA) to form an active protein-lipid formulation that can induce tumor-selective apoptosis. The first explored protein was human milk α-lactalbumin (α-LA), called HAMLET when composed with OA in antitumor form. Several groups have prepared active protein-lipid complexes using a variety of approaches, all of which depend on target protein destabilization or direct OA-protein incubation to alter pH to acid or alkaline condition. In addition to performing vital roles in inflammatory processes and immune responses, fatty acids can disturb different metabolic pathways and cellular signals. Therefore, the tumoricidal action of these complexes is related to OA rather than the protein that keeps OA in solution and acts as a vehicle for transferring OA molecules to tumor cells. However, other studies have suggested that the antitumor efficacy of these complexes was exerted by both protein and OA together. The potential is not limited to the anti-tumor activity of protein-lipid complexes but extends to other functions such as bactericidal activity. The protein shell enhances the solubility and stability of the bound fatty acid. These protein-lipid complexes are promising candidates for fighting various cancer types and managing bacterial and viral infections.
Collapse
Affiliation(s)
- Esmail M El-Fakharany
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City for Scientific Research and Technology Applications (SRTA-City) New Borg EL-Arab 21934 Alexandria Egypt
| | - Elrashdy M Redwan
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City for Scientific Research and Technology Applications (SRTA-City) New Borg EL-Arab 21934 Alexandria Egypt
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University P. O. Box 80203 Jeddah Saudi Arabia
| |
Collapse
|
8
|
A Protein Complex from Human Milk Enhances the Activity of Antibiotics and Drugs against Mycobacterium tuberculosis. Antimicrob Agents Chemother 2019; 63:AAC.01846-18. [PMID: 30420480 DOI: 10.1128/aac.01846-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 10/31/2018] [Indexed: 01/06/2023] Open
Abstract
Mycobacterium tuberculosis, the causative agent of human tuberculosis (TB), has surpassed HIV/AIDS as the leading cause of death from a single infectious agent. The increasing occurrence of drug-resistant strains has become a major challenge for health care systems and, in some cases, has rendered TB untreatable. However, the development of new TB drugs has been plagued with high failure rates and costs. Alternative strategies to increase the efficacy of current TB treatment regimens include host-directed therapies or agents that make M. tuberculosis more susceptible to existing TB drugs. In this study, we show that HAMLET, an α-lactalbumin-oleic acid complex derived from human milk, has bactericidal activity against M. tuberculosis HAMLET consists of a micellar oleic acid core surrounded by a shell of partially denatured α-lactalbumin molecules and unloads oleic acid into cells upon contact with lipid membranes. At sublethal concentrations, HAMLET potentiated a remarkably broad array of TB drugs and antibiotics against M. tuberculosis For example, the minimal inhibitory concentrations of rifampin, bedaquiline, delamanid, and clarithromycin were decreased by 8- to 16-fold. HAMLET also killed M. tuberculosis and enhanced the efficacy of TB drugs inside macrophages, a natural habitat of M. tuberculosis Previous studies showed that HAMLET is stable after oral delivery in mice and nontoxic in humans and that it is possible to package hydrophobic compounds in the oleic acid core of HAMLET to increase their solubility and metabolic stability. The potential of HAMLET and other liprotides as drug delivery and sensitization agents in TB chemotherapy is discussed here.
Collapse
|
9
|
Wang WD, Zhang NN, Chanda W, Liu M, Din SRU, Diao YP, Liu L, Cao J, Wang XL, Li XY, Ning AH, Huang M, Zhong MT. Antibacterial and anti-biofilm activity of the lipid extract from Mantidis ootheca on Pseudomonas aeruginosa. J Zhejiang Univ Sci B 2018; 19:364-371. [PMID: 29732747 DOI: 10.1631/jzus.b1700356] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The aim of this study is to assess the antibacterial and anti-biofilm properties of the lipid extract from Mantidis ootheca against the gentamycin resistant Pseudomonas aeruginosa. The chemical composition of the lipid extract and its relative proportion were determined using the technique of gas chromatography coupled with mass spectrometry (GC-MS). Antibacterial susceptibility tests were performed using a disc diffusion assay and the minimum inhibition concentration (MIC) was determined by way of the agar dilution method. The anti-biofilm test was carried out with crystal violet staining and scanning electron microscopy (SEM). There were 16 compounds detected, and the most abundant components were sesquiterpenoids, monoterpenes, and trace aromatic compounds. The MIC for P. aeruginosa was 4 mg/ml and the eradication effect on preformed biofilms was established and compared with a ciprofloxacin control. The results of our study indicated that a lipid extract from M. ootheca could be used as a topical and antibacterial agent with anti-biofilm activity in the future.
Collapse
Affiliation(s)
- Wen-Dong Wang
- Department of Medical Microbiology, Dalian Medical University, Dalian 116044, China
| | - Nan-Nan Zhang
- Department of Otolaryngology, Dalian Central Hospital, Dalian 116033, China
| | - Warren Chanda
- Department of Medical Microbiology, Dalian Medical University, Dalian 116044, China
| | - Min Liu
- Department of Medical Microbiology, Dalian Medical University, Dalian 116044, China
| | - Syed Riaz Ud Din
- Department of Medical Microbiology, Dalian Medical University, Dalian 116044, China
| | - Yun-Peng Diao
- School of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Lei Liu
- Department of Medical Microbiology, Dalian Medical University, Dalian 116044, China
| | - Jing Cao
- Department of Medical Microbiology, Dalian Medical University, Dalian 116044, China
| | - Xiao-Li Wang
- Department of Medical Microbiology, Dalian Medical University, Dalian 116044, China
| | - Xing-Yun Li
- Department of Medical Microbiology, Dalian Medical University, Dalian 116044, China
| | - An-Hong Ning
- Department of Medical Microbiology, Dalian Medical University, Dalian 116044, China
| | - Min Huang
- Department of Medical Microbiology, Dalian Medical University, Dalian 116044, China
| | - Min-Tao Zhong
- Department of Medical Microbiology, Dalian Medical University, Dalian 116044, China
| |
Collapse
|
10
|
Rath EM, Cheng YY, Pinese M, Sarun KH, Hudson AL, Weir C, Wang YD, Håkansson AP, Howell VM, Liu GJ, Reid G, Knott RB, Duff AP, Church WB. BAMLET kills chemotherapy-resistant mesothelioma cells, holding oleic acid in an activated cytotoxic state. PLoS One 2018; 13:e0203003. [PMID: 30157247 PMCID: PMC6114908 DOI: 10.1371/journal.pone.0203003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 08/13/2018] [Indexed: 12/29/2022] Open
Abstract
Malignant pleural mesothelioma is an aggressive cancer with poor prognosis. Here we have investigated in vitro efficacy of BAMLET and BLAGLET complexes (anti-cancer complexes consisting of oleic acid and bovine α-lactalbumin or β-lactoglobulin respectively) in killing mesothelioma cells, determined BAMLET and BLAGLET structures, and investigated possible biological mechanisms. We performed cell viability assays on 16 mesothelioma cell lines. BAMLET and BLAGLET having increasing oleic acid content inhibited human and rat mesothelioma cell line proliferation at decreasing doses. Most of the non-cancer primary human fibroblasts were more resistant to BAMLET than were human mesothelioma cells. BAMLET showed similar cytotoxicity to cisplatin-resistant, pemetrexed-resistant, vinorelbine-resistant, and parental rat mesothelioma cells, indicating the BAMLET anti-cancer mechanism may be different to drugs currently used to treat mesothelioma. Cisplatin, pemetrexed, gemcitabine, vinorelbine, and BAMLET, did not demonstrate a therapeutic window for mesothelioma compared with immortalised non-cancer mesothelial cells. We demonstrated by quantitative PCR that ATP synthase is downregulated in mesothelioma cells in response to regular dosing with BAMLET. We sought structural insight for BAMLET and BLAGLET activity by performing small angle X-ray scattering, circular dichroism, and scanning electron microscopy. Our results indicate the structural mechanism by which BAMLET and BLAGLET achieve increased cytotoxicity by holding increasing amounts of oleic acid in an active cytotoxic state encapsulated in increasingly unfolded protein. Our structural studies revealed similarity in the molecular structure of the protein components of these two complexes and in their encapsulation of the fatty acid, and differences in the microscopic structure and structural stability. BAMLET forms rounded aggregates and BLAGLET forms long fibre-like aggregates whose aggregation is more stable than that of BAMLET due to intermolecular disulphide bonds. The results reported here indicate that BAMLET and BLAGLET may be effective second-line treatment options for mesothelioma.
Collapse
Affiliation(s)
- Emma M. Rath
- Faculty of Pharmacy, University of Sydney, Sydney, NSW, Australia
| | - Yuen Yee Cheng
- Asbestos Diseases Research Institute (ADRI), Concord, NSW, Australia
- University of Sydney, Sydney, NSW, Australia
| | - Mark Pinese
- Kinghorn Cancer Centre and Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Kadir H. Sarun
- Asbestos Diseases Research Institute (ADRI), Concord, NSW, Australia
| | - Amanda L. Hudson
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, University of Sydney, Sydney, NSW, Australia
| | - Christopher Weir
- Northern Blood Research Centre, Kolling Institute, University of Sydney, Sydney, NSW, Australia
| | - Yiwei D. Wang
- Burns Research, ANZAC Research Institute, Concord Hospital, University of Sydney, Concord, NSW, Australia
| | | | - Viive M. Howell
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, University of Sydney, Sydney, NSW, Australia
| | - Guo Jun Liu
- Australian Nuclear Science and Technology Organisation (ANSTO), New Illawarra Rd, Lucas Heights, NSW, Australia
- Brain and Mind Centre and Faculty of Health Sciences, University of Sydney, Sydney, NSW, Australia
| | - Glen Reid
- Asbestos Diseases Research Institute (ADRI), Concord, NSW, Australia
- University of Sydney, Sydney, NSW, Australia
| | - Robert B. Knott
- Australian Nuclear Science and Technology Organisation (ANSTO), New Illawarra Rd, Lucas Heights, NSW, Australia
| | - Anthony P. Duff
- Australian Nuclear Science and Technology Organisation (ANSTO), New Illawarra Rd, Lucas Heights, NSW, Australia
| | - W. Bret Church
- Faculty of Pharmacy, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
11
|
Role of Proteins and of Some Bioactive Peptides on the Nutritional Quality of Donkey Milk and Their Impact on Human Health. BEVERAGES 2017. [DOI: 10.3390/beverages3030034] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
12
|
Fang B, Zhang M, Wu H, Fan X, Ren F. Internalization properties of the anti-tumor α-lactalbumin-oleic acid complex. Int J Biol Macromol 2017; 96:44-51. [DOI: 10.1016/j.ijbiomac.2016.12.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 11/30/2016] [Accepted: 12/12/2016] [Indexed: 10/20/2022]
|
13
|
Endogenous antimicrobial factors in the treatment of infectious diseases. Cent Eur J Immunol 2017; 41:419-425. [PMID: 28450805 PMCID: PMC5382887 DOI: 10.5114/ceji.2016.65141] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 06/27/2016] [Indexed: 11/17/2022] Open
Abstract
Nowadays, a number of antibiotic-resistant bacteria strains is increasing. It is a serious clinical problem and poses a threat to the effectiveness of conventional antibiotic therapy. Thus, scientists are constantly seeking new alternatives for treatment of infectious diseases. There are some natural endogenous factors, which possess antimicrobial activities against a large number of microorganisms, including both Gram-positive and Gram-negative bacteria, viruses and fungi. These factors are present in all eukaryotic organisms and constitute an essential element of their immune system. A large number of in vitro and in vivo models have been used to show the activity of antimicrobial factors, and only few studies have been conducted on people. Results indicate that administration of these molecules is therapeutically beneficial. This review summarizes knowledge of selected endogenous antimicrobial agents, such as cathelicidins, defensins, histatins, lysozyme and lactoferrin. We also discuss potential uses of these factors in the treatment of infectious diseases.
Collapse
|
14
|
Corynebacterium accolens Releases Antipneumococcal Free Fatty Acids from Human Nostril and Skin Surface Triacylglycerols. mBio 2016; 7:e01725-15. [PMID: 26733066 PMCID: PMC4725001 DOI: 10.1128/mbio.01725-15] [Citation(s) in RCA: 181] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
UNLABELLED Bacterial interspecies interactions play clinically important roles in shaping microbial community composition. We observed that Corynebacterium spp. are overrepresented in children free of Streptococcus pneumoniae (pneumococcus), a common pediatric nasal colonizer and an important infectious agent. Corynebacterium accolens, a benign lipid-requiring species, inhibits pneumococcal growth during in vitro cocultivation on medium supplemented with human skin surface triacylglycerols (TAGs) that are likely present in the nostrils. This inhibition depends on LipS1, a TAG lipase necessary for C. accolens growth on TAGs such as triolein. We determined that C. accolens hydrolysis of triolein releases oleic acid, which inhibits pneumococcus, as do other free fatty acids (FFAs) that might be released by LipS1 from human skin surface TAGs. Our results support a model in which C. accolens hydrolyzes skin surface TAGS in vivo releasing antipneumococcal FFAs. These data indicate that C. accolens may play a beneficial role in sculpting the human microbiome. IMPORTANCE Little is known about how harmless Corynebacterium species that colonize the human nose and skin might impact pathogen colonization and proliferation at these sites. We show that Corynebacterium accolens, a common benign nasal bacterium, modifies its local habitat in vitro as it inhibits growth of Streptococcus pneumoniae by releasing antibacterial free fatty acids from host skin surface triacylglycerols. We further identify the primary C. accolens lipase required for this activity. We postulate a model in which higher numbers of C. accolens cells deter/limit S. pneumoniae nostril colonization, which might partly explain why children without S. pneumoniae colonization have higher levels of nasal Corynebacterium. This work narrows the gap between descriptive studies and the needed in-depth understanding of the molecular mechanisms of microbe-microbe interactions that help shape the human microbiome. It also lays the foundation for future in vivo studies to determine whether habitat modification by C. accolens could be promoted to control pathogen colonization.
Collapse
|
15
|
Woods KN, Pfeffer J. Using THz Spectroscopy, Evolutionary Network Analysis Methods, and MD Simulation to Map the Evolution of Allosteric Communication Pathways in c-Type Lysozymes. Mol Biol Evol 2016; 33:40-61. [PMID: 26337549 PMCID: PMC4693973 DOI: 10.1093/molbev/msv178] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
It is now widely accepted that protein function is intimately tied with the navigation of energy landscapes. In this framework, a protein sequence is not described by a distinct structure but rather by an ensemble of conformations. And it is through this ensemble that evolution is able to modify a protein's function by altering its landscape. Hence, the evolution of protein functions involves selective pressures that adjust the sampling of the conformational states. In this work, we focus on elucidating the evolutionary pathway that shaped the function of individual proteins that make-up the mammalian c-type lysozyme subfamily. Using both experimental and computational methods, we map out specific intermolecular interactions that direct the sampling of conformational states and accordingly, also underlie shifts in the landscape that are directly connected with the formation of novel protein functions. By contrasting three representative proteins in the family we identify molecular mechanisms that are associated with the selectivity of enhanced antimicrobial properties and consequently, divergent protein function. Namely, we link the extent of localized fluctuations involving the loop separating helices A and B with shifts in the equilibrium of the ensemble of conformational states that mediate interdomain coupling and concurrently moderate substrate binding affinity. This work reveals unique insights into the molecular level mechanisms that promote the progression of interactions that connect the immune response to infection with the nutritional properties of lactation, while also providing a deeper understanding about how evolving energy landscapes may define present-day protein function.
Collapse
|
16
|
Clementi EA, Marks LR, Roche-Håkansson H, Håkansson AP. Monitoring changes in membrane polarity, membrane integrity, and intracellular ion concentrations in Streptococcus pneumoniae using fluorescent dyes. J Vis Exp 2014:e51008. [PMID: 24637356 DOI: 10.3791/51008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Membrane depolarization and ion fluxes are events that have been studied extensively in biological systems due to their ability to profoundly impact cellular functions, including energetics and signal transductions. While both fluorescent and electrophysiological methods, including electrode usage and patch-clamping, have been well developed for measuring these events in eukaryotic cells, methodology for measuring similar events in microorganisms have proven more challenging to develop given their small size in combination with the more complex outer surface of bacteria shielding the membrane. During our studies of death-initiation in Streptococcus pneumoniae (pneumococcus), we wanted to elucidate the role of membrane events, including changes in polarity, integrity, and intracellular ion concentrations. Searching the literature, we found that very few studies exist. Other investigators had monitored radioisotope uptake or equilibrium to measure ion fluxes and membrane potential and a limited number of studies, mostly in Gram-negative organisms, had seen some success using carbocyanine or oxonol fluorescent dyes to measure membrane potential, or loading bacteria with cell-permeant acetoxymethyl (AM) ester versions of ion-sensitive fluorescent indicator dyes. We therefore established and optimized protocols for measuring membrane potential, rupture, and ion-transport in the Gram-positive organism S. pneumoniae. We developed protocols using the bis-oxonol dye DiBAC4(3) and the cell-impermeant dye propidium iodide to measure membrane depolarization and rupture, respectively, as well as methods to optimally load the pneumococci with the AM esters of the ratiometric dyes Fura-2, PBFI, and BCECF to detect changes in intracellular concentrations of Ca(2+), K(+), and H(+), respectively, using a fluorescence-detection plate reader. These protocols are the first of their kind for the pneumococcus and the majority of these dyes have not been used in any other bacterial species. Though our protocols have been optimized for S. pneumoniae, we believe these approaches should form an excellent starting-point for similar studies in other bacterial species.
Collapse
Affiliation(s)
- Emily A Clementi
- Department of Microbiology and Immunology, University at Buffalo, State University of New York
| | - Laura R Marks
- Department of Microbiology and Immunology, University at Buffalo, State University of New York
| | | | - Anders P Håkansson
- Department of Microbiology and Immunology, University at Buffalo, State University of New York; Witebsky Center for Microbial Pathogenesis and Immunology, University at Buffalo, State University of New York; New York State Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, State University of New York;
| |
Collapse
|