1
|
Pasquale EB. Eph receptor signaling complexes in the plasma membrane. Trends Biochem Sci 2024; 49:1079-1096. [PMID: 39537538 DOI: 10.1016/j.tibs.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 09/24/2024] [Accepted: 10/04/2024] [Indexed: 11/16/2024]
Abstract
Eph receptor tyrosine kinases, together with their cell surface-anchored ephrin ligands, constitute an important cell-cell communication system that regulates physiological and pathological processes in most cell types. This review focuses on the multiple mechanisms by which Eph receptors initiate signaling via the formation of protein complexes in the plasma membrane. Upon ephrin binding, Eph receptors assemble into oligomers that can further aggregate into large complexes. Eph receptors also mediate ephrin-independent signaling through interplay with intracellular kinases or other cell-surface receptors. The distinct characteristics of Eph receptor family members, as well as their conserved domain structure, provide a framework for understanding their functional differences and redundancies. Possible areas of interest for future investigations of Eph receptor signaling complexes are also highlighted.
Collapse
Affiliation(s)
- Elena B Pasquale
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA.
| |
Collapse
|
2
|
Guo X, Yang Y, Tang J, Xiang J. Ephs in cancer progression: complexity and context-dependent nature in signaling, angiogenesis and immunity. Cell Commun Signal 2024; 22:299. [PMID: 38811954 PMCID: PMC11137953 DOI: 10.1186/s12964-024-01580-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 03/23/2024] [Indexed: 05/31/2024] Open
Abstract
Eph receptors constitute the largest family of receptor tyrosine kinases, comprising 14 distinct members classified into two subgroups: EphAs and EphBs.. Despite their essential functions in normal physiological processes, accumulating evidence suggests that the involvement of the Eph family in cancer is characterized by a dual and often contradictory nature. Research indicates that Eph/ephrin bidirectional signaling influences cell-cell communication, subsequently regulating cell migration, adhesion, differentiation and proliferation. The contradictory functionalities may arise from the diversity of Eph signaling pathways and the heterogeneity of different cancer microenvironment. In this review, we aim to discuss the dual role of the Eph receptors in tumor development, attempting to elucidate the paradoxical functionality through an exploration of Eph receptor signaling pathways, angiogenesis, immune responses, and more. Our objective is to provide a comprehensive understanding of the molecular mechanisms underlying tumor development. Additionally, we will explore the evolving landscape of utilizing Eph receptors as potential targets for tumor therapy and diagnostic tools.
Collapse
Affiliation(s)
- Xiaoting Guo
- Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, the Second Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- NHC Key Laboratory of Carcinogenesis and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yanyi Yang
- Health Management Center, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jingqun Tang
- Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, the Second Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China.
- Department of Thoracic Surgery, the Second Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China.
| | - Juanjuan Xiang
- Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, the Second Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China.
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China.
- NHC Key Laboratory of Carcinogenesis and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
3
|
Nehal M, Khatoon J, Akhtar S, Khan MKA. Exploring the potential of EphA2 receptor signaling pathway: a comprehensive review in cancer treatment. Mol Biol Rep 2024; 51:337. [PMID: 38393520 DOI: 10.1007/s11033-024-09298-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 01/29/2024] [Indexed: 02/25/2024]
Abstract
The protein encoded by the ephrin type-A receptor 2 (EphA2) gene is a member of the ephrin receptor subfamily of the receptor tyrosine kinase family (RTKs). Eph receptors play a significant role in various biological processes, particularly cancer progression, development, and pathogenesis. They have been observed to regulate cancer cell growth, migration, invasion, tumor development, invasiveness, angiogenesis, and metastasis. To target EphA2 activity, various molecular, genetic, biochemical, and pharmacological strategies have been extensively tested in laboratory cultures and animal models. Notably, drugs, such as dasatinib, initially designed to target the kinase family, have demonstrated an additional capability to target EphA2 activity. Additionally, a novel monoclonal antibody named EA5 has emerged as a promising option to counteract the effects of EphA2 overexpression and restore tamoxifen sensitivity in EphA2-transfected MCF-7 cells during in vitro experiments. This antibody mimicked the binding of Ephrin A to EphA2. These methods offer potential avenues for inhibiting EphA2 activity, which could significantly decelerate breast cancer progression and restore sensitivity to certain drugs. This review article comprehensively covers EphA2's involvement in multiple malignancies, including ovarian, colorectal, breast, lung, glioma, and melanoma. Furthermore, we discuss the structure of EphA2, the Eph-Ephrin signaling pathway, various EphA2 inhibitors, and the mechanisms of EphA2 degradation. This article provides an extensive overview of EphA2's vital role in different types of cancers and outlines potential therapeutic approaches to target EphA2, shedding light on the underlying molecular mechanisms that make it an attractive target for cancer treatment.
Collapse
Affiliation(s)
- Mohd Nehal
- Department of Biosciences, Integral University, Lucknow, Uttar Pradesh, 226026, India
| | - Jahanarah Khatoon
- Department of Biosciences, Integral University, Lucknow, Uttar Pradesh, 226026, India
| | - Salman Akhtar
- Department of Bioengineering, Integral University, Lucknow, Uttar Pradesh, 226026, India
| | | |
Collapse
|
4
|
Abstract
Evidence implicating Eph receptor tyrosine kinases and their ephrin ligands (that together make up the 'Eph system') in cancer development and progression has been accumulating since the discovery of the first Eph receptor approximately 35 years ago. Advances in the past decade and a half have considerably increased the understanding of Eph receptor-ephrin signalling mechanisms in cancer and have uncovered intriguing new roles in cancer progression and drug resistance. This Review focuses mainly on these more recent developments. I provide an update on the different mechanisms of Eph receptor-ephrin-mediated cell-cell communication and cell autonomous signalling, as well as on the interplay of the Eph system with other signalling systems. I further discuss recent advances in elucidating how the Eph system controls tumour expansion, invasiveness and metastasis, supports cancer stem cells, and drives therapy resistance. In addition to functioning within cancer cells, the Eph system also mediates the reciprocal communication between cancer cells and cells of the tumour microenvironment. The involvement of the Eph system in tumour angiogenesis is well established, but recent findings also demonstrate roles in immune cells, cancer-associated fibroblasts and the extracellular matrix. Lastly, I discuss strategies under evaluation for therapeutic targeting of Eph receptors-ephrins in cancer and conclude with an outlook on promising future research directions.
Collapse
Affiliation(s)
- Elena B Pasquale
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA.
| |
Collapse
|
5
|
Lau A, Le N, Nguyen C, Kandpal RP. Signals transduced by Eph receptors and ephrin ligands converge on MAP kinase and AKT pathways in human cancers. Cell Signal 2023; 104:110579. [PMID: 36572189 DOI: 10.1016/j.cellsig.2022.110579] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022]
Abstract
Eph receptors, the largest known family of receptor tyrosine kinases, and ephrin ligands have been implicated in a variety of human cancers. The novel bidirectional signaling events initiated by binding of Eph receptors to their cognate ephrin ligands modulate many cellular processes such as proliferation, metastasis, angiogenesis, invasion, and apoptosis. The relationships between the abundance of a unique subset of Eph receptors and ephrin ligands with associated cellular processes indicate a key role of these molecules in tumorigenesis. The combinatorial expression of these molecules converges on MAP kinase and/or AKT/mTOR signaling pathways. The intracellular target proteins of the initial signal may, however, vary in some cancers. Furthermore, we have also described the commonality of up- and down-regulation of individual receptors and ligands in various cancers. The current state of research in Eph receptors illustrates MAP kinase and mTOR pathways as plausible targets for therapeutic interventions in various cancers.
Collapse
Affiliation(s)
- Andreas Lau
- Department of Basic Medical Sciences, Western University of Health Sciences, Pomona, CA 91766, United States of America
| | - Nghia Le
- Department of Basic Medical Sciences, Western University of Health Sciences, Pomona, CA 91766, United States of America
| | - Claudia Nguyen
- Department of Basic Medical Sciences, Western University of Health Sciences, Pomona, CA 91766, United States of America
| | - Raj P Kandpal
- Department of Basic Medical Sciences, Western University of Health Sciences, Pomona, CA 91766, United States of America.
| |
Collapse
|
6
|
Arthur A, Gronthos S. Eph-Ephrin Signaling Mediates Cross-Talk Within the Bone Microenvironment. Front Cell Dev Biol 2021; 9:598612. [PMID: 33634116 PMCID: PMC7902060 DOI: 10.3389/fcell.2021.598612] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 01/15/2021] [Indexed: 12/18/2022] Open
Abstract
Skeletal integrity is maintained through the tightly regulated bone remodeling process that occurs continuously throughout postnatal life to replace old bone and to repair skeletal damage. This is maintained primarily through complex interactions between bone resorbing osteoclasts and bone forming osteoblasts. Other elements within the bone microenvironment, including stromal, osteogenic, hematopoietic, endothelial and neural cells, also contribute to maintaining skeletal integrity. Disruption of the dynamic interactions between these diverse cellular systems can lead to poor bone health and an increased susceptibility to skeletal diseases including osteopenia, osteoporosis, osteoarthritis, osteomalacia, and major fractures. Recent reports have implicated a direct role for the Eph tyrosine kinase receptors and their ephrin ligands during bone development, homeostasis and skeletal repair. These membrane-bound molecules mediate contact-dependent signaling through both the Eph receptors, termed forward signaling, and through the ephrin ligands, referred to as reverse signaling. This review will focus on Eph/ ephrin cross-talk as mediators of hematopoietic and stromal cell communication, and how these interactions contribute to blood/ bone marrow function and skeletal integrity during normal steady state or pathological conditions.
Collapse
Affiliation(s)
- Agnieszka Arthur
- Mesenchymal Stem Cell Laboratory, Faculty of Health and Medical Sciences, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia.,Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Stan Gronthos
- Mesenchymal Stem Cell Laboratory, Faculty of Health and Medical Sciences, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia.,Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| |
Collapse
|
7
|
Cioce M, Fazio VM. EphA2 and EGFR: Friends in Life, Partners in Crime. Can EphA2 Be a Predictive Biomarker of Response to Anti-EGFR Agents? Cancers (Basel) 2021; 13:cancers13040700. [PMID: 33572284 PMCID: PMC7915460 DOI: 10.3390/cancers13040700] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 02/03/2021] [Accepted: 02/04/2021] [Indexed: 12/14/2022] Open
Abstract
The Eph receptors represent the largest group among Receptor Tyrosine kinase (RTK) families. The Eph/ephrin signaling axis plays center stage during development, and the deep perturbation of signaling consequent to its dysregulation in cancer reveals the multiplicity and complexity underlying its function. In the last decades, they have emerged as key players in solid tumors, including colorectal cancer (CRC); however, what causes EphA2 to switch between tumor-suppressive and tumor-promoting function is still an active theater of investigation. This review summarizes the recent advances in understanding EphA2 function in cancer, with detail on the molecular determinants of the oncogene-tumor suppressor switch function of EphA2. We describe tumor context-specific examples of EphA2 signaling and the emerging role EphA2 plays in supporting cancer-stem-cell-like populations and overcoming therapy-induced stress. In such a frame, we detail the interaction of the EphA2 and EGFR pathway in solid tumors, including colorectal cancer. We discuss the contribution of the EphA2 oncogenic signaling to the resistance to EGFR blocking agents, including cetuximab and TKIs.
Collapse
Affiliation(s)
- Mario Cioce
- Laboratory of Molecular Medicine and Biotechnology, Department of Medicine, University Campus Bio-Medico of Rome, 00128 Rome, Italy
- Correspondence: (M.C.); (V.M.F.)
| | - Vito Michele Fazio
- Laboratory of Molecular Medicine and Biotechnology, Department of Medicine, University Campus Bio-Medico of Rome, 00128 Rome, Italy
- Laboratory of Oncology, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy
- Institute of Translational Pharmacology, National Research Council of Italy (CNR), 00133 Rome, Italy
- Correspondence: (M.C.); (V.M.F.)
| |
Collapse
|
8
|
Cell surface thermal proteome profiling tracks perturbations and drug targets on the plasma membrane. Nat Methods 2021; 18:84-91. [PMID: 33398190 DOI: 10.1038/s41592-020-01022-1] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 11/17/2020] [Indexed: 01/28/2023]
Abstract
Numerous drugs and endogenous ligands bind to cell surface receptors leading to modulation of downstream signaling cascades and frequently to adaptation of the plasma membrane proteome. In-depth analysis of dynamic processes at the cell surface is challenging due to biochemical properties and low abundances of plasma membrane proteins. Here we introduce cell surface thermal proteome profiling for the comprehensive characterization of ligand-induced changes in protein abundances and thermal stabilities at the plasma membrane. We demonstrate drug binding to extracellular receptors and transporters, discover stimulation-dependent remodeling of T cell receptor complexes and describe a competition-based approach to measure target engagement of G-protein-coupled receptor antagonists. Remodeling of the plasma membrane proteome in response to treatment with the TGFB receptor inhibitor SB431542 leads to partial internalization of the monocarboxylate transporters MCT1/3 explaining the antimetastatic effects of the drug.
Collapse
|
9
|
Chatterjee D, Chowdhury UF, Shohan MUS, Mohasin M, Kabir Y. In-silico predictions of deleterious SNPs in human ephrin type-A receptor 3 (EPHA3) gene. INFORMATICS IN MEDICINE UNLOCKED 2021. [DOI: 10.1016/j.imu.2021.100728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
10
|
Wang L, Peng Q, Sai B, Zheng L, Xu J, Yin N, Feng X, Xiang J. Ligand-independent EphB1 signaling mediates TGF-β-activated CDH2 and promotes lung cancer cell invasion and migration. J Cancer 2020; 11:4123-4131. [PMID: 32368295 PMCID: PMC7196256 DOI: 10.7150/jca.44576] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 03/10/2020] [Indexed: 12/19/2022] Open
Abstract
Purpose: The initial step of cancer metastasis is that cancer cells acquire the capability to migrate and invade. Eph receptors comprise the largest family of receptor tyrosine and display dual role in tumor progression due to unique ephrin cis- or trans- signaling. The roles of EphB1 and its phosphorylation signaling in lung cancer remain to be elucidated. Patients and Methods: We analyzed the expression of EphB1 in both publicly available database and 60 cases of NSCLC patients with or without metastasis. The migration and invasion of lung cancer cells were assessed by a transwell assay. The activation of EphB1 signaling was assessed by western blot and real-time PCR. The EphB1 mutant was used to evaluate the effect of phosphorylation of EphB1. Results: Here, we showed that increased expression of EphB1 was detected in Non-Small-Cell Lung Cancer (NSCLC) biopies compared to non-cancer controls. Significant higher expression of EphB1 in lung biopsies were found in patients with metastasis compared to non-metastatic NSCLC patients. Higher EphB1 expression was correlated with poor patient survival in lung cancer. Overexpression of EphB1 promoted the migration and invasion of lung cancer cells. On the contrast, Ephrin-B2, a transmembrane ligand for EphB1 forward signaling, inhibited migration and invasion of lung cancer cells. TGF-β-activated Smad2 transcriptionally upregulated the endogenous expression of EphB1. Ligand-independent EphB1 promoted Epithelial-mesenchymal transition (EMT) through upregulating CDH2. Conclusion: Our results showed that the effect of EphB1 on the migration and invasion was context-specific and was dependent on EphB1 phosphorylation.
Collapse
Affiliation(s)
- Lujuan Wang
- Hunan Cancer Hospital, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, PR China.,Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China.,NHC Key Laboratory of Carcinogenesis and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, Hunan, 410013, China
| | - Qiu Peng
- Hunan Cancer Hospital, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, PR China.,Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China.,NHC Key Laboratory of Carcinogenesis and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, Hunan, 410013, China
| | - Buqing Sai
- Hunan Cancer Hospital, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, PR China.,Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China.,NHC Key Laboratory of Carcinogenesis and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, Hunan, 410013, China
| | - Leliang Zheng
- Hunan Cancer Hospital, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, PR China.,Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China.,NHC Key Laboratory of Carcinogenesis and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, Hunan, 410013, China
| | - Jiaqi Xu
- Hunan Cancer Hospital, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, PR China.,Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China.,NHC Key Laboratory of Carcinogenesis and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, Hunan, 410013, China
| | - Na Yin
- Hunan Cancer Hospital, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, PR China.,Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China.,NHC Key Laboratory of Carcinogenesis and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, Hunan, 410013, China
| | - Xiang Feng
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China.,Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Juanjuan Xiang
- Hunan Cancer Hospital, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, PR China.,Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China.,NHC Key Laboratory of Carcinogenesis and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, Hunan, 410013, China
| |
Collapse
|
11
|
Giorgio C, Zanotti I, Lodola A, Tognolini M. Ephrin or not? Six tough questions on Eph targeting. Expert Opin Ther Targets 2020; 24:403-415. [PMID: 32197575 DOI: 10.1080/14728222.2020.1745187] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Introduction: The Eph-ephrin is a cell-cell communication system generating a forward signal in cell expressing Eph receptors and a reverse signal in ephrin-ligand expressing cells. While clearly involved in the insurgence and progression of cancer, the understanding of the molecular mechanisms regulated by this system needs development; this is a hurdle to the development of therapeutic strategies that can target the Eph receptors and/or their ephrin ligands.Areas covered: We have taken the opportunity to share some key questions on the most effective strategies to target the Eph-ephrin system. This article is based on our experience of the field and therefore is a Perspective and not comprehensive examination of the literature.Expert opinion: Targeting of the Eph-ephrin system has emerged as a potentially valuable approach for cancer therapy. Pharmacological tools have been reported in the last 15 years and these include forward signaling blockers such as kinases inhibitors and antagonists of forward and reverse signaling. Also, biologics including antibodies and recombinant proteins have been developed and some have reached early clinical stages. Data deem the Eph-ephrin system as a signaling axis that is an elusive target. A better understanding of the basic pharmacology behind the activity of available agents and a comprehensive knowledge of the ephrin biology are necessary. We are looking forward to knowing the opinion of the readers.
Collapse
Affiliation(s)
- Carmine Giorgio
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università di Parma, Parma, Italy
| | - Ilaria Zanotti
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università di Parma, Parma, Italy
| | - Alessio Lodola
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università di Parma, Parma, Italy
| | | |
Collapse
|
12
|
Whole genome re-sequencing of crested traits and expression analysis of key candidate genes in duck. Gene 2019; 729:144282. [PMID: 31838250 DOI: 10.1016/j.gene.2019.144282] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 12/04/2019] [Accepted: 12/05/2019] [Indexed: 02/01/2023]
Abstract
The crested duck was a duck breed which features a topknot of feathers on the back of their head. In order to explain the reason of crest, we anatomy the head of some crested ducks. The anatomical structures showed that there was a fat body in the head and a hole in the skull. To determine the reason for the formation of the crest, we used whole genome re-sequencing to detect SNPs and InDels in three crested duck and three normal crested duck (without crest). There were 785,202 unique SNPs and 105,596 unique InDels include in crested duck. There were 14,591 SNPs containing genes and 13,784 InDels continuing genes were mapped on BGI_duck_1.0 by BWA 0.7.16a software. We use KEGG and GO to classification the SNP and InDel containing genes function. The PPI network of SNP containing genes and InDels containing genes was constructed by STRING. The result of PPI and KEGG analysis shown that the formation of crest might include feather development, fatty acid deposition, and skull hypoplasia. To determine the regulated of SNP containing genes and InDels containing genes, which related the different trait, of miRNA we used mirmap to predicted target miRNA of those genes. The miRNA-genes network constructed by Cytoscape. In conclusion, the formation of the crest was a complex process. The fatty acid metabolism block, feather growth and skull hypoplasia might lead crest formation. The tissue expression of four candidate genes showed that they were closely related to the formation of the trait, and could be used as important candidate genes to further elaborate the molecular mechanism of their function.
Collapse
|
13
|
Magic Z, Sandström J, Perez-Tenorio G. Ephrin‑B2 inhibits cell proliferation and motility in vitro and predicts longer metastasis‑free survival in breast cancer. Int J Oncol 2019; 55:1275-1286. [PMID: 31638179 PMCID: PMC6831205 DOI: 10.3892/ijo.2019.4892] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 09/12/2019] [Indexed: 12/14/2022] Open
Abstract
The tyrosine kinase receptor EphB4 and its ligand ephrin‑B2 interact through cell‑to‑cell contacts. Upon interaction, EphB4 transmits bidirectional signals. A forward signal inside EphB4‑expressing cells is believed to suppress tumor growth, while inside the ephrin‑expressing cells, an oncogenic reverse signal arises. In breast cancer cells with a high EphB4 receptor expression the forward signal is low, in part due to the low expression of the ligand ephrin‑B2. Therefore, we hypothesized that by re‑introducing the ligand in EphB4‑positive cells, tumor suppression could be induced by the stimulation of the forward signal. This question was addressed in vitro by the stable lentiviral infection of breast cancer cells with either wild‑type EFNB2 or with a mutant EFNB2‑5F, unable to transmit reverse signaling. Furthermore, we investigated ephrin‑B and EphB4 protein expression in 216 paraffin‑embedded tumors using immunohistochemistry. The in vitro results indicated that ephrin‑B2 expression was associated with a lower cell proliferation, migration and motility compared with the control cells. These effects were more pronounced when the cells lacked the ability to transmit the reverse signal (B2‑5F). In clinical material, ephrin‑B protein expression was associated with a positive estrogen receptor (ER) status, a low HER‑2 expression and was negatively associated with Nottingham histologic grade (NHG) III. Ephrin‑B expression indicated a good prognosis, whereas EphB4 expression was associated with a shorter metastasis‑free survival in univariate and multivariate analysis. Furthermore, the prognostic value of EFNB2 and EPHB4 was confirmed at the gene expression level in public datasets. Thus, on the whole, the findings of this study suggest that ephrin‑B2 expression is associated with less proliferation and lower motility of breast cancer cells and with a longer patient survival in breast cancer.
Collapse
Affiliation(s)
- Zeljana Magic
- Department of Clinical and Experimental Medicine and Department of Oncology, Linköping University, SE‑58185 Linköping, Sweden
| | - Josefine Sandström
- Department of Clinical and Experimental Medicine and Department of Oncology, Linköping University, SE‑58185 Linköping, Sweden
| | - Gizeh Perez-Tenorio
- Department of Clinical and Experimental Medicine and Department of Oncology, Linköping University, SE‑58185 Linköping, Sweden
| |
Collapse
|
14
|
Niethamer TK, Bush JO. Getting direction(s): The Eph/ephrin signaling system in cell positioning. Dev Biol 2019; 447:42-57. [PMID: 29360434 PMCID: PMC6066467 DOI: 10.1016/j.ydbio.2018.01.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 12/21/2017] [Accepted: 01/18/2018] [Indexed: 12/16/2022]
Abstract
In vertebrates, the Eph/ephrin family of signaling molecules is a large group of membrane-bound proteins that signal through a myriad of mechanisms and effectors to play diverse roles in almost every tissue and organ system. Though Eph/ephrin signaling has functions in diverse biological processes, one core developmental function is in the regulation of cell position and tissue morphology by regulating cell migration and guidance, cell segregation, and boundary formation. Often, the role of Eph/ephrin signaling is to translate patterning information into physical movement of cells and changes in morphology that define tissue and organ systems. In this review, we focus on recent advances in the regulation of these processes, and our evolving understanding of the in vivo signaling mechanisms utilized in distinct developmental contexts.
Collapse
Affiliation(s)
- Terren K Niethamer
- Department of Cell and Tissue Biology, Program in Craniofacial Biology, and Institute of Human Genetics, University of California at San Francisco, San Francisco, CA 94143, USA
| | - Jeffrey O Bush
- Department of Cell and Tissue Biology, Program in Craniofacial Biology, and Institute of Human Genetics, University of California at San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
15
|
Möser C, Lorenz JS, Sajfutdinow M, Smith DM. Pinpointed Stimulation of EphA2 Receptors via DNA-Templated Oligovalence. Int J Mol Sci 2018; 19:ijms19113482. [PMID: 30404153 PMCID: PMC6274923 DOI: 10.3390/ijms19113482] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 11/02/2018] [Indexed: 11/20/2022] Open
Abstract
DNA nanostructures enable the attachment of functional molecules to nearly any unique location on their underlying structure. Due to their single-base-pair structural resolution, several ligands can be spatially arranged and closely controlled according to the geometry of their desired target, resulting in optimized binding and/or signaling interactions. Here, the efficacy of SWL, an ephrin-mimicking peptide that binds specifically to EphrinA2 (EphA2) receptors, increased by presenting up to three of these peptides on small DNA nanostructures in an oligovalent manner. Ephrin signaling pathways play crucial roles in tumor development and progression. Moreover, Eph receptors are potential targets in cancer diagnosis and treatment. Here, the quantitative impact of SWL valency on binding, phosphorylation (key player for activation) and phenotype regulation in EphA2-expressing prostate cancer cells was demonstrated. EphA2 phosphorylation was significantly increased by DNA trimers carrying three SWL peptides compared to monovalent SWL. In comparison to one of EphA2’s natural ligands ephrin-A1, which is known to bind promiscuously to multiple receptors, pinpointed targeting of EphA2 by oligovalent DNA-SWL constructs showed enhanced cell retraction. Overall, we show that DNA scaffolds can increase the potency of weak signaling peptides through oligovalent presentation and serve as potential tools for examination of complex signaling pathways.
Collapse
Affiliation(s)
- Christin Möser
- DNA Nanodevices Unit, Department Diagnostics, Fraunhofer Institute for Cell Therapy and Immunology IZI, 04103 Leipzig, Germany.
- Institute of Biochemistry and Biology, Faculty of Science, University of Potsdam, 14476 Potsdam, Germany.
| | - Jessica S Lorenz
- DNA Nanodevices Unit, Department Diagnostics, Fraunhofer Institute for Cell Therapy and Immunology IZI, 04103 Leipzig, Germany.
- Peter Debye Institute for Soft Matter Physics, Faculty of Physics and Earth Sciences, University of Leipzig, 04103 Leipzig, Germany.
| | - Martin Sajfutdinow
- DNA Nanodevices Unit, Department Diagnostics, Fraunhofer Institute for Cell Therapy and Immunology IZI, 04103 Leipzig, Germany.
- Fraunhofer Project Center "Microelectronic and Optical Systems for Biomedicine" (MEOS), 99099 Erfurt, Germany.
| | - David M Smith
- DNA Nanodevices Unit, Department Diagnostics, Fraunhofer Institute for Cell Therapy and Immunology IZI, 04103 Leipzig, Germany.
- Peter Debye Institute for Soft Matter Physics, Faculty of Physics and Earth Sciences, University of Leipzig, 04103 Leipzig, Germany.
| |
Collapse
|
16
|
Li S, Zhai J, Liu J, Di F, Sun Y, Li W, Chen ZJ, Du Y. Erythropoietin-producing hepatocellular A7 triggering ovulation indicates a potential beneficial role for polycystic ovary syndrome. EBioMedicine 2018; 36:539-552. [PMID: 30292674 PMCID: PMC6197718 DOI: 10.1016/j.ebiom.2018.09.046] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 09/25/2018] [Accepted: 09/25/2018] [Indexed: 02/06/2023] Open
Abstract
Background The ovulatory dysfunction mechanisms underlying polycystic ovary syndrome (PCOS) are not completely understood. And the roles of EPHA7 and EPHA7-regulated pathway factors in the pathogenesis of anovulation remain to be elucidated. Methods We used human granulosa cells (hGCs) of PCOS and non-PCOS patients to measure EPHA7 and other target gene expressions. We performed in vitro experiments in KGN cells to verify the molecular mechanisms. Additionally, we conducted in vivo loss- and gain-of-function studies using EPHA7 shRNA lentivirus and recombinant EPHA7-Fc protein injection to identify the ovulation effects of EPHA7. Findings EPHA7 functions as a critically positive upstream factor for the expression of ERK1/2-mediated C/EBPβ. This protein, in turn, induced the expression of KLF4 and then ADAMTS1. Moreover, decreased abundance of EPHA7 was positively correlated with that of its downstream factors in hGCs of PCOS patients. Additionally, a 1-week functional EPHA7 shRNA lentivirus in rat ovaries contributed to decreased numbers of retrieved oocytes, and a 3-week functional lentivirus led to menstrual disorders and morphological polycystic changes in rat ovaries. More importantly, we found that EPHA7 triggered ovulation in rats, and it improved polycystic ovarian changes induced by DHEA in PCOS rats. Interpretation Our findings demonstrate a new role of EPHA7 in PCOS, suggesting that EPHA7 is an effective target for the development of innovative medicines to induce ovulation. Fund National Key Research and Development Program of China, National Natural Science Foundation, Shanghai Municipal Education Commission--Gaofeng Clinical Medicine, and Shanghai Commission of Science and Technology.
Collapse
Affiliation(s)
- Shang Li
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, China
| | - Junyu Zhai
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, China
| | - Jiansheng Liu
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, China
| | - Fangfang Di
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, China
| | - Yun Sun
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, China
| | - Weiping Li
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, China
| | - Zi-Jiang Chen
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, The Key Laboratory for Reproductive Endocrinology of Ministry of Education, Shandong Provincial Key Laboratory of Reproductive Medicine, Center for Reproductive Medicine, Shandong Provincial Hospital, Shandong University, Jinan 250021, China
| | - Yanzhi Du
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, China.
| |
Collapse
|
17
|
Viewing the Eph receptors with a focus on breast cancer heterogeneity. Cancer Lett 2018; 434:160-171. [PMID: 30055288 DOI: 10.1016/j.canlet.2018.07.030] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 07/18/2018] [Accepted: 07/23/2018] [Indexed: 02/07/2023]
Abstract
Aberrant expression of different family members of the Eph/ephrin system, which comprises the Eph receptors (Ephs) and their ligands (ephrins), has been implicated in various malignancies including breast cancer. The latter presents as a heterogeneous disease with diverse molecular, morphologic and clinical behavior signatures. This review reflects the existing Eph/ephrin literature while focusing on breast cancer heterogeneity. Hormone positive, HER2 positive and triple negative breast cancer (TNBC) cell lines, xenografts/mutant animal models and patient samples are examined separately as, in humans, they represent entities with differences in prognosis and treatment. EphA2, EphB4 and EphB6 are the members most extensively studied in breast cancer. Existing research points to the potential use of various Eph/ephrin members as biomarkers for assessing prognosis and selecting the most suitable therapeutic strategies in variable clinical scenarios, also for overcoming drug resistance, in the era of breast cancer heterogeneity.
Collapse
|
18
|
Ventrella R, Kaplan N, Hoover P, Perez White BE, Lavker RM, Getsios S. EphA2 Transmembrane Domain Is Uniquely Required for Keratinocyte Migration by Regulating Ephrin-A1 Levels. J Invest Dermatol 2018; 138:2133-2143. [PMID: 29705292 DOI: 10.1016/j.jid.2018.04.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 04/11/2018] [Accepted: 04/12/2018] [Indexed: 12/19/2022]
Abstract
EphA2 receptor tyrosine kinase is activated by ephrin-A1 ligand, which harbors a glycosylphosphatidylinositol anchor that enhances lipid raft localization. Although EphA2 and ephrin-A1 modulate keratinocyte migration and differentiation, the ability of this cell-cell communication complex to localize to different membrane regions in keratinocytes remains unknown. Using a combination of biochemical and imaging approaches, we provide evidence that ephrin-A1 and a ligand-activated form of EphA2 partition outside of lipid raft domains in response to calcium-mediated cell-cell contact stabilization in normal human epidermal keratinocytes. EphA2 transmembrane domain swapping with a shorter and molecularly distinct transmembrane domain of EphA1 resulted in decreased localization of this receptor tyrosine kinase at cell-cell junctions and increased expression of ephrin-A1, which is a negative regulator of keratinocyte migration. Accordingly, altered EphA2 membrane distribution at cell-cell contacts limited the ability of keratinocytes to seal linear scratch wounds in vitro in an ephrin-A1-dependent manner. Collectively, these studies highlight a key role for the EphA2 transmembrane domain in receptor-ligand membrane distribution at cell-cell contacts that modulates ephrin-A1 levels to allow for efficient keratinocyte migration with relevance for cutaneous wound healing.
Collapse
Affiliation(s)
- Rosa Ventrella
- Department of Dermatology, 303 East Chicago Avenue, Ward 9, Northwestern University, Chicago, Illinois, USA
| | - Nihal Kaplan
- Department of Dermatology, 303 East Chicago Avenue, Ward 9, Northwestern University, Chicago, Illinois, USA
| | - Paul Hoover
- Department of Dermatology, 303 East Chicago Avenue, Ward 9, Northwestern University, Chicago, Illinois, USA
| | - Bethany E Perez White
- Department of Dermatology, 303 East Chicago Avenue, Ward 9, Northwestern University, Chicago, Illinois, USA
| | - Robert M Lavker
- Department of Dermatology, 303 East Chicago Avenue, Ward 9, Northwestern University, Chicago, Illinois, USA
| | - Spiro Getsios
- Department of Dermatology, 303 East Chicago Avenue, Ward 9, Northwestern University, Chicago, Illinois, USA.
| |
Collapse
|
19
|
Salgia R, Kulkarni P, Gill PS. EphB4: A promising target for upper aerodigestive malignancies. Biochim Biophys Acta Rev Cancer 2018; 1869:128-137. [PMID: 29369779 PMCID: PMC5955724 DOI: 10.1016/j.bbcan.2018.01.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 01/11/2018] [Accepted: 01/11/2018] [Indexed: 12/14/2022]
Abstract
The erythropoietin-producing hepatocellular carcinoma (Eph) receptors are the largest family of receptor tyrosine kinases (RTKs) that include two major subclasses, EphA and EphB. They form an important cell communication system with critical and diverse roles in a variety of biological processes during embryonic development. However, dysregulation of the Eph/ephrin interactions is implicated in cancer contributing to tumour growth, metastasis, and angiogenesis. Here, we focus on EphB4 and review recent developments in elucidating its role in upper aerodigestive malignancies to include lung cancer, head and neck cancer, and mesothelioma. In particular, we summarize information regarding EphB4 structure/function and role in disease pathobiology. We also review the data supporting EphB4 as a potential pharmacological and immunotherapy target and finally, progress in the development of new therapeutic strategies including small molecule inhibitors of its activity is discussed. The emerging picture suggests that EphB4 is a valuable and attractive therapeutic target for upper aerodigestive malignancies.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/therapeutic use
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Carcinoma, Squamous Cell/drug therapy
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/metabolism
- Carcinoma, Squamous Cell/pathology
- Gene Expression Regulation, Neoplastic
- Head and Neck Neoplasms/drug therapy
- Head and Neck Neoplasms/genetics
- Head and Neck Neoplasms/metabolism
- Head and Neck Neoplasms/pathology
- Humans
- Lung Neoplasms/drug therapy
- Lung Neoplasms/genetics
- Lung Neoplasms/metabolism
- Lung Neoplasms/pathology
- Mesothelioma/drug therapy
- Mesothelioma/genetics
- Mesothelioma/metabolism
- Mesothelioma/pathology
- Mesothelioma, Malignant
- Molecular Targeted Therapy
- Receptor, EphB4/antagonists & inhibitors
- Receptor, EphB4/genetics
- Receptor, EphB4/metabolism
- Signal Transduction
- Squamous Cell Carcinoma of Head and Neck
Collapse
Affiliation(s)
- Ravi Salgia
- Department of Medical Oncology & Therapeutics Research, City of Hope National Medical Center, 1500 East Duarte Road, Duarte, CA, United States.
| | - Prakash Kulkarni
- Department of Medical Oncology & Therapeutics Research, City of Hope National Medical Center, 1500 East Duarte Road, Duarte, CA, United States
| | - Prakash S Gill
- Department of Medicine, Division of Medical Oncology, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
20
|
Kou CTJ, Kandpal RP. Differential Expression Patterns of Eph Receptors and Ephrin Ligands in Human Cancers. BIOMED RESEARCH INTERNATIONAL 2018; 2018:7390104. [PMID: 29682554 PMCID: PMC5851329 DOI: 10.1155/2018/7390104] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 01/11/2018] [Accepted: 01/22/2018] [Indexed: 12/20/2022]
Abstract
Eph receptors constitute the largest family of receptor tyrosine kinases, which are activated by ephrin ligands that either are anchored to the membrane or contain a transmembrane domain. These molecules play important roles in the development of multicellular organisms, and the physiological functions of these receptor-ligand pairs have been extensively documented in axon guidance, neuronal development, vascular patterning, and inflammation during tissue injury. The recognition that aberrant regulation and expression of these molecules lead to alterations in proliferative, migratory, and invasive potential of a variety of human cancers has made them potential targets for cancer therapeutics. We present here the involvement of Eph receptors and ephrin ligands in lung carcinoma, breast carcinoma, prostate carcinoma, colorectal carcinoma, glioblastoma, and medulloblastoma. The aberrations in their abundances are described in the context of multiple signaling pathways, and differential expression is suggested as the mechanism underlying tumorigenesis.
Collapse
Affiliation(s)
- Chung-Ting Jimmy Kou
- Department of Basic Medical Sciences, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Raj P. Kandpal
- Department of Basic Medical Sciences, Western University of Health Sciences, Pomona, CA 91766, USA
| |
Collapse
|
21
|
Efazat G, Novak M, Kaminskyy VO, De Petris L, Kanter L, Juntti T, Bergman P, Zhivotovsky B, Lewensohn R, Hååg P, Viktorsson K. Ephrin B3 interacts with multiple EphA receptors and drives migration and invasion in non-small cell lung cancer. Oncotarget 2018; 7:60332-60347. [PMID: 27533087 PMCID: PMC5312387 DOI: 10.18632/oncotarget.11219] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 07/16/2016] [Indexed: 02/07/2023] Open
Abstract
Ephrin receptors (Ephs) are reported to control metastatic signaling of non-small cell lung cancer (NSCLC) and other tumors. Here we show for the first time that blocking expression of the Eph ligand Ephrin B3 inhibits NSCLC cell migration and invasion. We demonstrate that Ephrin B3 directly binds the EphAs EphA2, EphA3, EphA4, and EphA5. EphA2 Ser897 was previously shown to drive migration propensity of tumor cells and our study reveals that EphA2 stays phosphorylated on Ser897 in the Ephrin B3/EphA2 complex in NSCLC cells of different histology. Moreover, we report that within such Ephrin B3/EphA2 complex both Akt Ser 129 and p38MAPK are found indicating a potential to drive migration/proliferation. We also found the EMT marker E-cadherin expression to be maintained or increased upon Ephrin B3 blockade in NSCLC cells. Expression of Ephrin B3 was furthermore analyzed in a cohort of NSCLC stage IA-IB cases (n=200) alongside EphA2 and Ephrin A1. We found that Ephrin B3 was concomitantly expressed with EphA2 and Ephrin A1 with higher Ephrin B3 levels found in non-squamous than in squamous tumors, whereas EphA2 was higher expressed in well-differentiated than in low-differentiated tumors. In the entire NSCLC cohort, Ephrin B3 expression was not linked to patient survival, whereas a high EphA2 expression was associated with improved survival (p=0.03). In conclusion, we show that blocking Ephrin B3 expression inhibits NSCLC proliferation-, migration- and invasion capacity which calls for further studies on interference with Ephrin B3 as a possible therapeutic avenue in this tumor malignancy.
Collapse
Affiliation(s)
- Ghazal Efazat
- Karolinska Biomics Center, Department of Oncology-Pathology, Karolinska Institutet, SE-171 76 Stockholm, Sweden
| | - Metka Novak
- Karolinska Biomics Center, Department of Oncology-Pathology, Karolinska Institutet, SE-171 76 Stockholm, Sweden
| | - Vitaliy O Kaminskyy
- Institute of Environmental Medicine, Division of Toxicology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Luigi De Petris
- Karolinska Biomics Center, Department of Oncology-Pathology, Karolinska Institutet, SE-171 76 Stockholm, Sweden
| | - Lena Kanter
- Karolinska Biomics Center, Department of Oncology-Pathology, Karolinska Institutet, SE-171 76 Stockholm, Sweden
| | - Therese Juntti
- Karolinska Biomics Center, Department of Oncology-Pathology, Karolinska Institutet, SE-171 76 Stockholm, Sweden
| | - Per Bergman
- Department of Molecular Medicine and Surgery (MMK), Thoracic Surgery, Karolinska Institutet, SE-171 76 Stockholm, Sweden
| | - Boris Zhivotovsky
- Institute of Environmental Medicine, Division of Toxicology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Rolf Lewensohn
- Karolinska Biomics Center, Department of Oncology-Pathology, Karolinska Institutet, SE-171 76 Stockholm, Sweden
| | - Petra Hååg
- Karolinska Biomics Center, Department of Oncology-Pathology, Karolinska Institutet, SE-171 76 Stockholm, Sweden
| | - Kristina Viktorsson
- Karolinska Biomics Center, Department of Oncology-Pathology, Karolinska Institutet, SE-171 76 Stockholm, Sweden
| |
Collapse
|
22
|
Nogo-A interacts with TrkA to alter nerve growth factor signaling in Nogo-A-overexpressing PC12 cells. Cell Signal 2018; 44:20-27. [PMID: 29325876 DOI: 10.1016/j.cellsig.2018.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 12/11/2017] [Accepted: 01/07/2018] [Indexed: 10/18/2022]
Abstract
The Nogo-A protein, originally discovered as a potent myelin-associated inhibitor of neurite outgrowth, is also expressed by certain neurons, especially during development and after injury, but its role in neuronal function is not completely known. In this report, we overexpressed Nogo-A in PC12 cells to use as a model to identify potential neuronal signaling pathways affected by endogenously expressed Nogo-A. Unexpectedly, our results show that viability of Nogo-A-overexpressing cells was reduced progressively due to apoptotic cell death following NGF treatment, but only after 24 h. Inhibitors of neutral sphingomyelinase prevented this loss of viability, suggesting that NGF induced the activation of a ceramide-dependent cell death pathway. Nogo-A over-expression also changed NGF-induced phosphorylation of TrkA at tyrosines 490 and 674/675 from sustained to transient, and prevented the regulated intramembrane proteolysis of p75NTR, indicating that Nogo-A was altering the function of the two neurotrophin receptors. Co-immunoprecipitation studies revealed that there was a physical association between TrkA and Nogo-A which appeared to be dependent on interactions in the Nogo-A-specific region of the protein. Taken together, our results indicate that Nogo-A influences NGF-mediated mechanisms involving the activation of TrkA and its interaction with p75NTR.
Collapse
|
23
|
Javaherian S, D'Arcangelo E, Slater B, Londono C, Xu B, McGuigan AP. Modulation of cellular polarization and migration by ephrin/Eph signal-mediated boundary formation. Integr Biol (Camb) 2017; 9:934-946. [PMID: 29120470 DOI: 10.1039/c7ib00176b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Compartment boundaries are essential for ensuring proper cell organization during embryo development and in adult tissues, yet the mechanisms underlying boundary establishment are not completely understood. A number of mechanisms, including (i) differential adhesion, (ii) differential tension, and (iii) cell signaling-mediated cell repulsion, are known to contribute and likely a context-dependent balance of each of these dictates boundary implementation. The ephrin/Eph signaling pathway is known to impact boundary formation in higher animals. In different contexts, ephrin/Eph signaling is known to modulate adhesive properties and migratory behavior of cells. Furthermore it has been proposed that ephrin/Eph signaling may modulate cellular tensile properties, leading to boundary implementation. It remains unclear however, whether, in different contexts, ephrin/Eph act through distinct dominant action modes (e.g. differential adhesion vs. cell repulsion), or whether ephrin/Eph signaling elicits multiple cellular changes simultaneously. Here, using micropatterning of cells over-expressing either EphB3 or ephrinB1, we assess the contribution of each these factors in one model. We show that in this system ephrinB1/EphB3-mediated boundaries are accompanied by modulation of tissue-level architecture and polarization of cell migration. These changes are associated with changes in cell shape and cytoskeletal organization also suggestive of altered cellular tension.
Collapse
Affiliation(s)
- Sahar Javaherian
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College St., Toronto, ON M5S 3E5, Canada.
| | | | | | | | | | | |
Collapse
|
24
|
ADAM10-mediated ephrin-B2 shedding promotes myofibroblast activation and organ fibrosis. Nat Med 2017; 23:1405-1415. [PMID: 29058717 PMCID: PMC5720906 DOI: 10.1038/nm.4419] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 09/11/2017] [Indexed: 12/13/2022]
Abstract
Maladaptive wound healing responses to chronic tissue injury result in organ fibrosis. Fibrosis, which entails excessive extracellular matrix (ECM) deposition and tissue remodeling by activated myofibroblasts, leads to loss of proper tissue architecture and organ function; however, the molecular mediators of myofibroblast activation have yet to be fully identified. Here we identify soluble ephrin-B2 (sEphrin-B2) as a new profibrotic mediator in lung and skin fibrosis. We provide molecular, functional and translational evidence that the ectodomain of membrane-bound ephrin-B2 is shed from fibroblasts into the alveolar airspace after lung injury. Shedding of sEphrin-B2 promotes fibroblast chemotaxis and activation via EphB3 and/or EphB4 receptor signaling. We found that mice lacking ephrin-B2 in fibroblasts are protected from skin and lung fibrosis and that a disintegrin and metalloproteinase 10 (ADAM10) is the major ephrin-B2 sheddase in fibroblasts. ADAM10 expression is increased by transforming growth factor (TGF)-β1, and ADAM10-mediated sEphrin-B2 generation is required for TGF-β1-induced myofibroblast activation. Pharmacological inhibition of ADAM10 reduces sEphrin-B2 levels in bronchoalveolar lavage and prevents lung fibrosis in mice. Consistent with the mouse data, ADAM10-sEphrin-B2 signaling is upregulated in fibroblasts from human subjects with idiopathic pulmonary fibrosis. These results uncover a new molecular mechanism of tissue fibrogenesis and identify sEphrin-B2, its receptors EphB3 and EphB4 and ADAM10 as potential therapeutic targets in the treatment of fibrotic diseases.
Collapse
|
25
|
Ventrella R, Kaplan N, Getsios S. Asymmetry at cell-cell interfaces direct cell sorting, boundary formation, and tissue morphogenesis. Exp Cell Res 2017; 358:58-64. [PMID: 28322822 PMCID: PMC5544567 DOI: 10.1016/j.yexcr.2017.03.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 03/13/2017] [Indexed: 01/22/2023]
Abstract
During development, cells of seemingly homogenous character sort themselves out into distinct compartments in order to generate cell types with specialized features that support tissue morphogenesis and function. This process is often driven by receptors at the cell membrane that probe the extracellular microenvironment for specific ligands and alter downstream signaling pathways impacting transcription, cytoskeletal organization, and cell adhesion to regulate cell sorting and subsequent boundary formation. This review will focus on two of these receptor families, Eph and Notch, both of which are intrinsically non-adhesive and are activated by a unique set of ligands that are asymmetrically distributed from their receptor on neighboring cells. Understanding the requirement of asymmetric ligand-receptor signaling at the membrane under homeostatic conditions gives insight into how misregulation of these pathways contributes to boundary disruption in diseases like cancer.
Collapse
Affiliation(s)
- Rosa Ventrella
- Department of Dermatology, Northwestern University, 303 E. Chicago Ave, Chicago, IL 60611, USA
| | - Nihal Kaplan
- Department of Dermatology, Northwestern University, 303 E. Chicago Ave, Chicago, IL 60611, USA
| | - Spiro Getsios
- Department of Dermatology, Northwestern University, 303 E. Chicago Ave, Chicago, IL 60611, USA.
| |
Collapse
|
26
|
Abstract
Epithelial cells expressing oncogenic Ras (RasV12) are detected by normal neighbors and are often extruded from tissues. We recently demonstrated that differential EphA2 signaling drives the segregation of mutant cells from normal monolayers via cell repulsion and increased RasV12 cell contractility. EphA2 signaling on RasV12 cells is triggered by ephrin-A ligands presented by normal cells. Here, we show that normal epithelial cells trigger the repulsion and enhanced contractility of Ras-transformed epithelial cells at the single cell level. We also reveal that ephrin-A ligands expressed on RasV12 cells are not required to drive RasV12 cell segregation following interaction with normal cells. Thus, normal-RasV12 cell-cell interaction triggers EphA2 forward signaling in RasV12 cells to drive repulsion and segregation of the transformed cells.
Collapse
Affiliation(s)
- William Hill
- a European Cancer Stem Cell Research Institute, School of Biosciences , Cardiff University , Cardiff , UK
| | - Catherine Hogan
- a European Cancer Stem Cell Research Institute, School of Biosciences , Cardiff University , Cardiff , UK
| |
Collapse
|
27
|
Savier E, Eglen SJ, Bathélémy A, Perraut M, Pfrieger FW, Lemke G, Reber M. A molecular mechanism for the topographic alignment of convergent neural maps. eLife 2017; 6. [PMID: 28322188 PMCID: PMC5360444 DOI: 10.7554/elife.20470] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 02/26/2017] [Indexed: 12/01/2022] Open
Abstract
Sensory processing requires proper alignment of neural maps throughout the brain. In the superficial layers of the superior colliculus of the midbrain, converging projections from retinal ganglion cells and neurons in visual cortex must be aligned to form a visuotopic map, but the basic mechanisms mediating this alignment remain elusive. In a new mouse model, ectopic expression of ephrin-A3 (Efna3) in a subset of retinal ganglion cells, quantitatively altering the retinal EFNAs gradient, disrupts cortico-collicular map alignment onto the retino-collicular map, creating a visuotopic mismatch. Genetic inactivation of ectopic EFNA3 restores a wild-type cortico-collicular map. Theoretical analyses using a new mapping algorithm model both map formation and alignment, and recapitulate our experimental observations. The algorithm is based on an initial sensory map, the retino-collicular map, which carries intrinsic topographic information, the retinal EFNAs, to the superior colliculus. These EFNAs subsequently topographically align ingrowing visual cortical axons to the retino-collicular map. DOI:http://dx.doi.org/10.7554/eLife.20470.001
Collapse
Affiliation(s)
- Elise Savier
- CNRS UPR3212 - Institute of Cellular and Integrative Neuroscience, University of Strasbourg, Strasbourg, France
| | - Stephen J Eglen
- Department of Applied Mathematics and Theoretical Physics, Cambridge Computational Biology Institute, University of Cambridge, Cambridge, United Kingdom.,University of Strasbourg Institute of Advanced Study, Strasbourg, France
| | - Amélie Bathélémy
- CNRS UPR3212 - Institute of Cellular and Integrative Neuroscience, University of Strasbourg, Strasbourg, France
| | - Martine Perraut
- CNRS UPR3212 - Institute of Cellular and Integrative Neuroscience, University of Strasbourg, Strasbourg, France
| | - Frank W Pfrieger
- CNRS UPR3212 - Institute of Cellular and Integrative Neuroscience, University of Strasbourg, Strasbourg, France
| | - Greg Lemke
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, San Diego, United States
| | - Michael Reber
- CNRS UPR3212 - Institute of Cellular and Integrative Neuroscience, University of Strasbourg, Strasbourg, France.,University of Strasbourg Institute of Advanced Study, Strasbourg, France
| |
Collapse
|
28
|
EphA4 Regulates Neuroblast and Astrocyte Organization in a Neurogenic Niche. J Neurosci 2017; 37:3331-3341. [PMID: 28258169 DOI: 10.1523/jneurosci.3738-16.2017] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 02/10/2017] [Accepted: 02/13/2017] [Indexed: 11/21/2022] Open
Abstract
Significant migration cues are required to guide and contain newly generated rodent subventricular zone (SVZ) neuroblasts as they transit along the lateral ventricles and then through the anterior forebrain to their ultimate site of differentiation in the olfactory bulbs (OBs). These cues enforce strict neuroblast spatial boundaries within the dense astroglial meshwork of the SVZ and rostral migratory stream (RMS), yet are permissive to large-scale neuroblast migration. Therefore, the molecular mechanisms that define these cues and control dynamic interactions between migratory neuroblasts and surrounding astrocytes are of particular interest. We found that deletion of EphA4 and specifically ablation of EphA4 kinase activity resulted in misaligned neuroblasts and disorganized astrocytes in the RMS/SVZ, linking EphA4 forward signaling to SVZ and RMS spatial organization, orientation, and regulation. In addition, within a 3 week period, there was a significant reduction in the number of neuroblasts that reached the OB and integrated into the periglomerular layer, revealing a crucial role for EphA4 in facilitating efficient neuroblast migration to the OB. Single-cell analysis revealed that EPHA4 and its EFN binding partners are expressed by subpopulations of neuroblasts and astrocytes within the SVZ/RMS/OB system resulting in a cell-specific mosaic, suggesting complex EphA4 signaling involving both homotypic and heterotypic cell-cell interactions. Together, our studies reveal a novel molecular mechanism involving EphA4 signaling that functions in stem cell niche organization and ultimately neuroblast migration in the anterior forebrain.SIGNIFICANCE STATEMENT The subventricular zone neurogenic stem cell niche generates highly migratory neuroblasts that transit the anterior forebrain along a defined pathway to the olfactory bulb. Postnatal and adult brain organization dictates strict adherence to a narrow migration corridor. Subventricular zone neuroblasts are aligned in tightly bundled chains within a meshwork of astrocytes; however, the cell-cell cues that organize this unique, cell-dense migration pathway are largely unknown. Our studies show that forward signaling through the EphA4 tyrosine kinase receptor, mediated by ephrins expressed by subpopulations of neuroblasts and astrocytes, is required for compact, directional organization of neuroblasts and astrocytes within the pathway and efficient transit of neuroblasts through the anterior forebrain to the olfactory bulb.
Collapse
|
29
|
Porazinski S, de Navascués J, Yako Y, Hill W, Jones MR, Maddison R, Fujita Y, Hogan C. EphA2 Drives the Segregation of Ras-Transformed Epithelial Cells from Normal Neighbors. Curr Biol 2016; 26:3220-3229. [DOI: 10.1016/j.cub.2016.09.037] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 07/15/2016] [Accepted: 09/21/2016] [Indexed: 11/28/2022]
|
30
|
Foo CH, Rootes CL, Cowley K, Marsh GA, Gould CM, Deffrasnes C, Cowled CJ, Klein R, Riddell SJ, Middleton D, Simpson KJ, Wang LF, Bean AGD, Stewart CR. Dual microRNA Screens Reveal That the Immune-Responsive miR-181 Promotes Henipavirus Entry and Cell-Cell Fusion. PLoS Pathog 2016; 12:e1005974. [PMID: 27783670 PMCID: PMC5082662 DOI: 10.1371/journal.ppat.1005974] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Accepted: 10/03/2016] [Indexed: 12/24/2022] Open
Abstract
Hendra and Nipah viruses (family Paramyxoviridae, genus Henipavirus) are bat-borne viruses that cause fatal disease in humans and a range of other mammalian species. Gaining a deeper understanding of host pathways exploited by henipaviruses for infection may identify targets for new anti-viral therapies. Here we have performed genome-wide high-throughput agonist and antagonist screens at biosafety level 4 to identify host-encoded microRNAs (miRNAs) impacting henipavirus infection in human cells. Members of the miR-181 and miR-17~93 families strongly promoted Hendra virus infection. miR-181 also promoted Nipah virus infection, but did not affect infection by paramyxoviruses from other genera, indicating specificity in the virus-host interaction. Infection promotion was primarily mediated via the ability of miR-181 to significantly enhance henipavirus-induced membrane fusion. Cell signalling receptors of ephrins, namely EphA5 and EphA7, were identified as novel negative regulators of henipavirus fusion. The expression of these receptors, as well as EphB4, were suppressed by miR-181 overexpression, suggesting that simultaneous inhibition of several Ephs by the miRNA contributes to enhanced infection and fusion. Immune-responsive miR-181 levels was also up-regulated in the biofluids of ferrets and horses infected with Hendra virus, suggesting that the host innate immune response may promote henipavirus spread and exacerbate disease severity. This study is the first genome-wide screen of miRNAs influencing infection by a clinically significant mononegavirus and nominates select miRNAs as targets for future anti-viral therapy development.
Collapse
Affiliation(s)
- Chwan Hong Foo
- CSIRO Health and Biosecurity, Australian Animal Health Laboratory, Geelong, Victoria, Australia
| | - Christina L. Rootes
- CSIRO Health and Biosecurity, Australian Animal Health Laboratory, Geelong, Victoria, Australia
| | - Karla Cowley
- CSIRO Health and Biosecurity, Australian Animal Health Laboratory, Geelong, Victoria, Australia
| | - Glenn A. Marsh
- CSIRO Health and Biosecurity, Australian Animal Health Laboratory, Geelong, Victoria, Australia
| | - Cathryn M. Gould
- Victorian Centre for Functional Genomics, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Celine Deffrasnes
- CSIRO Health and Biosecurity, Australian Animal Health Laboratory, Geelong, Victoria, Australia
| | - Christopher J. Cowled
- CSIRO Health and Biosecurity, Australian Animal Health Laboratory, Geelong, Victoria, Australia
| | - Reuben Klein
- CSIRO Health and Biosecurity, Australian Animal Health Laboratory, Geelong, Victoria, Australia
| | - Sarah J. Riddell
- CSIRO Health and Biosecurity, Australian Animal Health Laboratory, Geelong, Victoria, Australia
| | - Deborah Middleton
- CSIRO Health and Biosecurity, Australian Animal Health Laboratory, Geelong, Victoria, Australia
| | - Kaylene J. Simpson
- Victorian Centre for Functional Genomics, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
| | - Lin-Fa Wang
- Program in Emerging Infectious Diseases, Duke-NUS Graduate Medical School, Singapore
| | - Andrew G. D. Bean
- CSIRO Health and Biosecurity, Australian Animal Health Laboratory, Geelong, Victoria, Australia
| | - Cameron R. Stewart
- CSIRO Health and Biosecurity, Australian Animal Health Laboratory, Geelong, Victoria, Australia
- * E-mail:
| |
Collapse
|
31
|
Abstract
Ephrins and Eph receptors enable contact-mediated interactions between cells at every stage of nervous system development. In spite of their broad binding affinities, Eph proteins facilitate specificity in neuronal migration and axon targeting. This review focuses on recent studies that demonstrate how these proteins interact with each other, and with other signaling pathways, to guide specificity in a diverse set of developmental processes.
Collapse
Affiliation(s)
- Karina S Cramer
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, USA
| | - Ilona J Miko
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, USA
| |
Collapse
|
32
|
Glass DS, Jin X, Riedel-Kruse IH. Signaling Delays Preclude Defects in Lateral Inhibition Patterning. PHYSICAL REVIEW LETTERS 2016; 116:128102. [PMID: 27058104 DOI: 10.1103/physrevlett.116.128102] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Indexed: 06/05/2023]
Abstract
Lateral inhibition represents a well-studied example of biology's ability to self-organize multicellular spatial patterns with single-cell precision. Despite established biochemical mechanisms for lateral inhibition (e.g., Delta-Notch), it remains unclear how cell-cell signaling delays inherent to these mechanisms affect patterning outcomes. We investigate a compact model of lateral inhibition highlighting these delays and find, remarkably, that long delays can ensure defect-free patterning. This effect is underscored by an interplay with synchronous oscillations, cis interactions, and signaling strength. Our results suggest that signaling delays, though previously posited as a source of developmental defects, may in fact be a general regulatory knob for tuning developmental robustness.
Collapse
Affiliation(s)
- David S Glass
- Department of Bioengineering, Stanford University, Stanford, California 94305, USA
| | - Xiaofan Jin
- Department of Bioengineering, Stanford University, Stanford, California 94305, USA
| | | |
Collapse
|
33
|
Chavent M, Seiradake E, Jones EY, Sansom MSP. Structures of the EphA2 Receptor at the Membrane: Role of Lipid Interactions. Structure 2016; 24:337-47. [PMID: 26724997 PMCID: PMC4744086 DOI: 10.1016/j.str.2015.11.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 10/19/2015] [Accepted: 11/13/2015] [Indexed: 11/29/2022]
Abstract
Ephs are transmembrane receptors that mediate cell-cell signaling. The N-terminal ectodomain binds ligands and enables receptor clustering, which activates the intracellular kinase. Relatively little is known about the function of the membrane-proximal fibronectin domain 2 (FN2) of the ectodomain. Multiscale molecular dynamics simulations reveal that FN2 interacts with lipid bilayers via a site comprising K441, R443, R465, Q462, S464, S491, W467, F490, and P459-461. FN2 preferentially binds anionic lipids, a preference that is reduced in the mutant K441E + R443E. We confirm these results by measuring the binding of wild-type and mutant FN2 domains to lipid vesicles. In simulations of the complete EphA2 ectodomain plus the transmembrane region, we show that FN2 anchors the otherwise flexible ectodomain at the surface of the bilayer. Altogether, our data suggest that FN2 serves a dual function of interacting with anionic lipids and constraining the structure of the EphA2 ectodomain to adopt membrane-proximal configurations.
Collapse
Affiliation(s)
- Matthieu Chavent
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Elena Seiradake
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK; Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - E Yvonne Jones
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Mark S P Sansom
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK.
| |
Collapse
|
34
|
Abdul-Latif ML, Salazar JAA, Marshak S, Dinh ML, Cramer KS. Ephrin-A2 and ephrin-A5 guide contralateral targeting but not topographic mapping of ventral cochlear nucleus axons. Neural Dev 2015; 10:27. [PMID: 26666565 PMCID: PMC4678660 DOI: 10.1186/s13064-015-0054-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 12/10/2015] [Indexed: 11/23/2022] Open
Abstract
Background In the auditory brainstem, ventral cochlear nucleus (VCN) axons project to the contralateral, but not ipsilateral, medial nucleus of trapezoid body (MNTB), terminating in the calyx of Held. Dorsal VCN neurons, representing high frequencies, synapse with medial MNTB neurons, while low frequency-coding ventral VCN neurons synapse with lateral MNTB neurons, reflecting tonotopic organization. The mechanisms that ensure strictly contralateral targeting and topographic ordering are incompletely understood. Here we examined the roles of ephrin-A signaling in both types of targeting. Results Ephrin-A2 and ephrin-A5 are expressed in VCN cells during late embryonic and early postnatal development. At these ages ephrin-A2 is expressed in axons surrounding MNTB and ephrin-A5 is expressed in MNTB principal neurons. Ephrin-A2/A5 double knockout mice displayed axon targeting errors in which VCN axons project to MNTB on both sides of the brainstem, where they terminate in calyceal endings. Ephrin-A2 and ephrin-A5 single knockout mice showed a similar phenotype. In contrast to effects on contralateral targeting, ephrin-A2/A5 double knockout mice showed no defects in formation of tonotopically ordered projections from VCN to MNTB. Conclusions These findings demonstrate that distinct mechanisms regulate targeting of VCN axons to the contralateral MNTB and targeting to appropriate tonotopic locations. Ephrin-A signaling plays a similar role to ephrin-B signaling in the VCN-MNTB pathway, where both classes normally prevent formation of calyceal projections to ipsilateral MNTB. These classes may rely in part on common signaling pathways.
Collapse
Affiliation(s)
- Mariam L Abdul-Latif
- Division of Neonatology, Department of Pediatrics, University of California, Irvine, 101 The City Drive, Orange, CA, 92868-3298, USA.
| | - Jesus A Ayala Salazar
- Department of Neurobiology and Behavior, University of California, Irvine, 2205 McGaugh Hall, Irvine, CA, 92697-4550, USA.
| | - Sonya Marshak
- Department of Neurobiology and Behavior, University of California, Irvine, 2205 McGaugh Hall, Irvine, CA, 92697-4550, USA.
| | - Minhan L Dinh
- Department of Neurobiology and Behavior, University of California, Irvine, 2205 McGaugh Hall, Irvine, CA, 92697-4550, USA.
| | - Karina S Cramer
- Department of Neurobiology and Behavior, University of California, Irvine, 2205 McGaugh Hall, Irvine, CA, 92697-4550, USA.
| |
Collapse
|
35
|
Singh DR, Cao Q, King C, Salotto M, Ahmed F, Zhou XY, Pasquale EB, Hristova K. Unliganded EphA3 dimerization promoted by the SAM domain. Biochem J 2015; 471:101-9. [PMID: 26232493 PMCID: PMC4692061 DOI: 10.1042/bj20150433] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 07/28/2015] [Accepted: 07/31/2015] [Indexed: 01/03/2023]
Abstract
The erythropoietin-producing hepatocellular carcinoma A3 (EphA3) receptor tyrosine kinase (RTK) regulates morphogenesis during development and is overexpressed and mutated in a variety of cancers. EphA3 activation is believed to follow a 'seeding mechanism' model, in which ligand binding to the monomeric receptor acts as a trigger for signal-productive receptor clustering. We study EphA3 lateral interactions on the surface of live cells and we demonstrate that EphA3 forms dimers in the absence of ligand binding. We further show that these dimers are stabilized by interactions involving the EphA3 sterile α-motif (SAM) domain. The discovery of unliganded EphA3 dimers challenges the current understanding of the chain of EphA3 activation events and suggests that EphA3 may follow the 'pre-formed dimer' model of activation known to be relevant for other receptor tyrosine kinases. The present work also establishes a new role for the SAM domain in promoting Eph receptor lateral interactions and signalling on the cell surface.
Collapse
Affiliation(s)
- Deo R Singh
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21212, U.S.A
| | - QingQing Cao
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21212, U.S.A
| | - Christopher King
- Program in Molecular Biophysics, Johns Hopkins University, Baltimore, MD 21212, U.S.A
| | - Matt Salotto
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21212, U.S.A
| | - Fozia Ahmed
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21212, U.S.A
| | - Xiang Yang Zhou
- Vaccine Center, The Wistar Institute, Philadelphia, PA 19104, U.S.A
| | - Elena B Pasquale
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, U.S.A
| | - Kalina Hristova
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21212, U.S.A. Program in Molecular Biophysics, Johns Hopkins University, Baltimore, MD 21212, U.S.A.
| |
Collapse
|
36
|
Nikolov DB, Xu K, Himanen JP. Homotypic receptor-receptor interactions regulating Eph signaling. Cell Adh Migr 2015; 8:360-5. [PMID: 25530219 DOI: 10.4161/19336918.2014.971684] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The Eph receptor tyrosine kinases and their ephrin ligands direct axon pathfinding and neuronal cell migration, and mediate many other cell-cell communication events. The Ephs and ephrins both localize to the plasma membrane and, upon cell-cell contact, form extensive signaling assemblies at the contact sites. Recent structural, biochemical and cell-biological studies revealed that these assemblies are generated not only via Eph-ephrin interactions, but also via homotypic interactions between neighboring receptor molecules. In addition, Eph-Eph interactions mediate receptor pre-clustering, which ensures fast and efficient activation once ligands come into contact range. Here we summarize the current knowledge about the homotypic Eph-Eph interactions and discuss how they could modulate the initiation of Eph/ephrin signaling.
Collapse
Affiliation(s)
- Dimitar B Nikolov
- a Structural Biology Program; Memorial Sloan-Kettering Cancer Center ; New York , NY USA
| | | | | |
Collapse
|
37
|
Chen P, Rossi N, Priddy S, Pierson CR, Studebaker AW, Johnson RA. EphB2 activation is required for ependymoma development as well as inhibits differentiation and promotes proliferation of the transformed cell. Sci Rep 2015; 5:9248. [PMID: 25801123 PMCID: PMC4371088 DOI: 10.1038/srep09248] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 02/10/2015] [Indexed: 02/06/2023] Open
Abstract
Our intracranial implantation mouse model of ependymoma clearly demonstrates overexpression of the ephrin receptor EphB2 in Ink4a/Arf(−/−) supratentorial embryonic neural stem cells (STeNSCs) to be essential for transformation and disease development; however the requirement for and consequence of receptor activation on transformation and neural stem cell function were not examined. We definitively illustrate the necessity for receptor activation in cellular transformation and the importance of implantation site and microenvironment in directing ependymoma development. In vitro assays of EphB2 overexpressing Ink4a/Arf(−/−) STeNSCs showed no changes in their neural stem cell characteristics (stem cell marker expression and self-renewal) upon receptor activation, but EphB2 driven tumor cells were inhibited significantly in differentiation and exhibited increased tumorsphere formation and cellular proliferation in response to ephrin-B ligand mediated receptor activation. Additionally, we observed substantial differences in the phosphorylation state of several key proteins involved in Ras and p38 MAPK signaling when comparing EphB2 overexpressing Ink4a/Arf(−/−) STeNSCs and tumor cells with relatively little change in total protein levels. We propose that EphB2 mediated ependymoma development is a multifactorial process requiring microenvironment directed receptor activation, resulting in changes in the phosphorylation status of key regulatory proteins, maintenance of a stem-like state and cellular proliferation.
Collapse
Affiliation(s)
- Phylip Chen
- Center For Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital
| | - Nathan Rossi
- Center For Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital
| | - Samuel Priddy
- Center For Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital
| | - Christopher R Pierson
- Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital and Department of Pathology, The Ohio State University College of Medicine
| | - Adam W Studebaker
- Center For Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital
| | - Robert A Johnson
- 1] Center For Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital [2] Department of Pediatrics, The Ohio State University College of Medicine
| |
Collapse
|
38
|
Ma B, Kolb S, Diprima M, Karna M, Tosato G, Yang Q, Huang Q, Nussinov R. Investigation of the interactions between the EphB2 receptor and SNEW peptide variants. Growth Factors 2014; 32:236-46. [PMID: 25410963 PMCID: PMC4627370 DOI: 10.3109/08977194.2014.985786] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
EphB2 interacts with cell surface-bound ephrin ligands to relay bidirectional signals. Overexpression of the EphB2 receptor protein has been linked to different types of cancer. The SNEW (SNEWIQPRLPQH) peptide binds with high selectivity and moderate affinity to EphB2, inhibiting Eph-ephrin interactions by competing with ephrin ligands for the EphB2 high-affinity pocket. We used rigorous free energy perturbation (FEP) calculations to re-evaluate the binding interactions of SNEW peptide with the EphB2 receptor, followed by experimental testing of the computational results. Our results provide insight into dynamic interactions of EphB2 with SNEW peptide. While the first four residues of the SNEW peptide are already highly optimized, change of the C-terminal end of the peptide has the potential to improve SNEW-binding affinity. We identified a PXSPY motif that can be similarly aligned with several other EphB2-binding peptides.
Collapse
Affiliation(s)
- Buyong Ma
- Basic Science Program, Leidos Biomedical Research, Inc. Cancer and Inflammation Program, National Cancer Institute, Frederick, MD 21702, USA
| | - Stephanie Kolb
- Basic Science Program, Leidos Biomedical Research, Inc. Cancer and Inflammation Program, National Cancer Institute, Frederick, MD 21702, USA
| | - Michael Diprima
- Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Molleshree Karna
- Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Giovanna Tosato
- Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Qiqi Yang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Qiang Huang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Ruth Nussinov
- Basic Science Program, Leidos Biomedical Research, Inc. Cancer and Inflammation Program, National Cancer Institute, Frederick, MD 21702, USA
- Sackler Inst. of Molecular Medicine, Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
39
|
Herington AC, Mertens-Walker I, Lisle JE, Maharaj M, Stephenson SA. Inhibiting Eph kinase activity may not be "Eph"ective for cancer treatment. Growth Factors 2014; 32:207-13. [PMID: 25413947 DOI: 10.3109/08977194.2014.985293] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Several Eph receptor tyrosine kinases (RTKs) are commonly over-expressed in epithelial and mesenchymal cancers and are recognized as promising therapeutic targets. Although normal interaction between Eph receptors and their ephrin ligands stimulates kinase activity and is generally tumor suppressive, significant Eph over-expression allows activation of ligand- and/or kinase-independent signaling pathways that promote oncogenesis. Single-agent kinase inhibitors are widely used to target RTK-driven tumors but acquired and de novo resistance to such agents is a major limitation to effective clinical use. Accumulating evidence suggests that Ephs can be inhibited by "leaky" or low-specificity kinase inhibitors targeted at other RTKs. Such off-target effects may therefore inadvertently promote ligand- and/or kinase-independent oncogenic Eph signaling, thereby providing a new mechanism by which resistance to the RTK inhibitors can emerge. We propose that combining specific, non-leaky kinase inhibitors with tumor-suppressive stimulators of Eph signaling may provide more effective treatment options for overcoming treatment-induced resistance and clinical failure.
Collapse
Affiliation(s)
- A C Herington
- Institute of Health and Biomedical Innovation, Queensland University of Technology , Queensland , Australia and
| | | | | | | | | |
Collapse
|
40
|
Abstract
The erythropoietin-producing hepatocellular carcinoma (Eph) receptor tyrosine kinase family plays important roles in developmental processes, adult tissue homeostasis, and various diseases. Interaction with Eph receptor-interacting protein (ephrin) ligands on the surface of neighboring cells triggers Eph receptor kinase-dependent signaling. The ephrins can also transmit signals, leading to bidirectional cell contact-dependent communication. Moreover, Eph receptors and ephrins can function independently of each other through interplay with other signaling systems. Given their involvement in many pathological conditions ranging from neurological disorders to cancer and viral infections, Eph receptors and ephrins are increasingly recognized as attractive therapeutic targets, and various strategies are being explored to modulate their expression and function. Eph receptor/ephrin upregulation in cancer cells, the angiogenic vasculature, and injured or diseased tissues also offer opportunities for Eph/ephrin-based targeted drug delivery and imaging. Thus, despite the challenges presented by the complex biology of the Eph receptor/ephrin system, exciting possibilities exist for therapies exploiting these molecules.
Collapse
Affiliation(s)
- Antonio Barquilla
- Cancer Center, Sanford-Burnham Medical Research Institute, La Jolla, California 92037; ,
| | | |
Collapse
|
41
|
Gucciardo E, Sugiyama N, Lehti K. Eph- and ephrin-dependent mechanisms in tumor and stem cell dynamics. Cell Mol Life Sci 2014; 71:3685-710. [PMID: 24794629 PMCID: PMC11113620 DOI: 10.1007/s00018-014-1633-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Revised: 03/31/2014] [Accepted: 04/17/2014] [Indexed: 01/17/2023]
Abstract
The erythropoietin-producing hepatocellular (Eph) receptors comprise the largest family of receptor tyrosine kinases (RTKs). Initially regarded as axon-guidance and tissue-patterning molecules, Eph receptors have now been attributed with various functions during development, tissue homeostasis, and disease pathogenesis. Their ligands, ephrins, are synthesized as membrane-associated molecules. At least two properties make this signaling system unique: (1) the signal can be simultaneously transduced in the receptor- and the ligand-expressing cell, (2) the signaling outcome through the same molecules can be opposite depending on cellular context. Moreover, shedding of Eph and ephrin ectodomains as well as ligand-dependent and -independent receptor crosstalk with other RTKs, proteases, and adhesion molecules broadens the repertoire of Eph/ephrin functions. These integrated pathways provide plasticity to cell-microenvironment communication in varying tissue contexts. The complex molecular networks and dynamic cellular outcomes connected to the Eph/ephrin signaling in tumor-host communication and stem cell niche are the main focus of this review.
Collapse
Affiliation(s)
- Erika Gucciardo
- Research Programs Unit, Genome-Scale Biology, Biomedicum Helsinki, University of Helsinki, P.O.B. 63, 00014 Helsinki, Finland
| | - Nami Sugiyama
- Research Programs Unit, Genome-Scale Biology, Biomedicum Helsinki, University of Helsinki, P.O.B. 63, 00014 Helsinki, Finland
- Department of Biosystems Science and Bioengineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Kaisa Lehti
- Research Programs Unit, Genome-Scale Biology, Biomedicum Helsinki, University of Helsinki, P.O.B. 63, 00014 Helsinki, Finland
| |
Collapse
|
42
|
Dai D, Huang Q, Nussinov R, Ma B. Promiscuous and specific recognition among ephrins and Eph receptors. BIOCHIMICA ET BIOPHYSICA ACTA 2014; 1844:1729-40. [PMID: 25017878 PMCID: PMC4157952 DOI: 10.1016/j.bbapap.2014.07.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 07/01/2014] [Accepted: 07/02/2014] [Indexed: 01/04/2023]
Abstract
Eph-ephrin interactions control the signal transduction between cells and play an important role in carcinogenesis and other diseases. The interactions between Eph receptors and ephrins of the same subclass are promiscuous; there are cross-interactions between some subclasses, but not all. To understand how Eph-ephrin interactions can be both promiscuous and specific, we investigated sixteen energy landscapes of four Eph receptors (A2, A4, B2, and B4) interacting with four ephrin ligands (A1, A2, A5, and B2). We generated conformational ensembles and recognition energy landscapes starting from separated Eph and ephrin molecules and proceeding up to the formation of Eph-ephrin complexes. Analysis of the Eph-ephrin recognition trajectories and the co-evolution entropy of 400 ligand binding domains of Eph receptor and 241 ephrin ligands identified conserved residues during the recognition process. Our study correctly predicted the promiscuity and specificity of the interactions and provided insights into their recognition. The dynamic conformational changes during Eph-ephrin recognition can be described by progressive conformational selection and population shift events, with two dynamic salt bridges between EphB4 and ephrin-B2 contributing to the specific recognition. EphA3 cancer-related mutations lowered the binding energies. The specificity is not only controlled by the final stage of the interaction across the protein-protein interface, but also has large contributions from binding kinetics with the help of dynamic intermediates along the pathway from the separated Eph and ephrin to the Eph-ephrin complex.
Collapse
Affiliation(s)
- Dandan Dai
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Qiang Huang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200433, China.
| | - Ruth Nussinov
- Basic Science Program, Leidos Biomedical Research, Inc., Cancer and Inflammation Program, National Cancer Institute, Frederick, MD 21702, USA; Sackler Inst. of Molecular Medicine, Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Buyong Ma
- Basic Science Program, Leidos Biomedical Research, Inc., Cancer and Inflammation Program, National Cancer Institute, Frederick, MD 21702, USA.
| |
Collapse
|
43
|
EphA4 receptor shedding regulates spinal motor axon guidance. Curr Biol 2014; 24:2355-65. [PMID: 25264256 DOI: 10.1016/j.cub.2014.08.028] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 07/22/2014] [Accepted: 08/13/2014] [Indexed: 01/08/2023]
Abstract
BACKGROUND Proteolytic processing of axon guidance receptors modulates their expression and functions. Contact repulsion by membrane-associated ephrins and Eph receptors was proposed to be facilitated by ectodomain cleavage, but whether this phenomenon is required for axon guidance in vivo is unknown. RESULTS In support of established models, we find that cleavage of EphA4 promotes cell-cell and growth cone-cell detachment in vitro. Unexpectedly, however, a cleavage resistant isoform of EphA4 is as effective as a wild-type EphA4 in redirecting motor axons in limbs. Mice in which EphA4 cleavage is genetically abolished have motor axon guidance defects, suggesting an important role of EphA4 cleavage in nonneuronal tissues such as the limb mesenchyme target of spinal motor neurons. Indeed, we find that blocking EphA4 cleavage increases expression of full-length EphA4 in limb mesenchyme, which-via cis-attenuation-apparently reduces the effective concentration of ephrinAs capable of triggering EphA4 forward signaling in the motor axons. CONCLUSIONS We propose that EphA4 cleavage is required to establish the concentration differential of active ephrins in the target tissue that is required for proper axon guidance. Our study reveals a novel mechanism to regulate guidance decision at an intermediate target based on the modulation of ligand availability by the proteolytic processing of the receptor.
Collapse
|
44
|
Cramer KS, Gabriele ML. Axon guidance in the auditory system: multiple functions of Eph receptors. Neuroscience 2014; 277:152-62. [PMID: 25010398 DOI: 10.1016/j.neuroscience.2014.06.068] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 06/05/2014] [Accepted: 06/28/2014] [Indexed: 11/29/2022]
Abstract
The neural pathways of the auditory system underlie our ability to detect sounds and to transform amplitude and frequency information into rich and meaningful perception. While it shares some organizational features with other sensory systems, the auditory system has some unique functions that impose special demands on precision in circuit assembly. In particular, the cochlear epithelium creates a frequency map rather than a space map, and specialized pathways extract information on interaural time and intensity differences to permit sound source localization. The assembly of auditory circuitry requires the coordinated function of multiple molecular cues. Eph receptors and their ephrin ligands constitute a large family of axon guidance molecules with developmentally regulated expression throughout the auditory system. Functional studies of Eph/ephrin signaling have revealed important roles at multiple levels of the auditory pathway, from the cochlea to the auditory cortex. These proteins provide graded cues used in establishing tonotopically ordered connections between auditory areas, as well as discrete cues that enable axons to form connections with appropriate postsynaptic partners within a target area. Throughout the auditory system, Eph proteins help to establish patterning in neural pathways during early development. This early targeting, which is further refined with neuronal activity, establishes the precision needed for auditory perception.
Collapse
Affiliation(s)
- K S Cramer
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA 92697, United States.
| | - M L Gabriele
- Department of Biology, James Madison University, Harrisonburg, VA 22807, United States
| |
Collapse
|
45
|
Eph receptor tyrosine kinases in cancer stem cells. Cytokine Growth Factor Rev 2014; 26:1-6. [PMID: 24933439 DOI: 10.1016/j.cytogfr.2014.05.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 05/12/2014] [Indexed: 01/01/2023]
Abstract
Eph receptor tyrosine kinases (RTKs) and their ligands, ephrins, play critical roles in development, tissue homeostasis, and cancer. Because Eph receptors are expressed in most adult stem cell niches and in many types of cancers, it has been long suspected that this family of RTKs may also regulate the function of cancer stem-like cells (CSCs). This review will focus on recent studies to elucidate the contribution of Eph/ephrin molecules in CSC self-renewal and tumorigenicity, as well as describe efforts to target these molecules in cancer. Because CSCs are often resistant to therapeutic intervention and have been shown to depend on Eph RTKs for self-renewal, targeting Eph receptors may hold promise for the treatment of drug-resistant cancers.
Collapse
|