1
|
Baena D, Toor B, van den Berg NH, Ray LB, Fogel SM. Spindle-slow wave coupling and problem-solving skills: impact of age. Sleep 2024; 47:zsae072. [PMID: 38477166 PMCID: PMC11236953 DOI: 10.1093/sleep/zsae072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/06/2024] [Indexed: 03/14/2024] Open
Abstract
We examined how aging affects the role of sleep in the consolidation of newly learned cognitive strategies. Forty healthy young adults (20-35 years) and 30 healthy older adults (60-85 years) were included. Participants were trained on the Tower of Hanoi (ToH) task, then, half of each age group were assigned to either the 90-minute nap condition, or stayed awake, before retesting. The temporal co-occurrence between slow waves (SW) and sleep spindles (SP) during non-rapid eye movement sleep was examined as a function of age in relation to memory consolidation of problem-solving skills. We found that despite intact learning, older adults derived a reduced benefit of sleep for problem-solving skills relative to younger adults. As expected, the percentage of coupled spindles was lower in older compared to younger individuals from control to testing sessions. Furthermore, coupled spindles in young adults were more strongly coupled to the SW upstate compared to older individuals. Coupled spindles in older individuals were lower in amplitude (mean area under the curve; μV) compared to the young group. Lastly, there was a significant relationship between offline gains in accuracy on the ToH and percent change of spindles coupled to the upstate of the slow wave in older, but not younger adults. Multiple regression revealed that age accounted for differences in offline gains in accuracy, as did spindle coupling during the upstate. These results suggest that with aging, spindle-slow wave coupling decreases. However, the degree of the preservation of coupling with age correlates with the extent of problem-solving skill consolidation during sleep.
Collapse
Affiliation(s)
- Daniel Baena
- School of Psychology, University of Ottawa, Ottawa, ON, Canada
- Sleep Unit, The Royal’s Institute of Mental Health Research, University of Ottawa, Ottawa, ON, Canada
| | - Balmeet Toor
- School of Psychology, University of Ottawa, Ottawa, ON, Canada
| | | | - Laura B Ray
- School of Psychology, University of Ottawa, Ottawa, ON, Canada
| | - Stuart M Fogel
- School of Psychology, University of Ottawa, Ottawa, ON, Canada
- Sleep Unit, The Royal’s Institute of Mental Health Research, University of Ottawa, Ottawa, ON, Canada
- University of Ottawa Brain and Mind Institute, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
2
|
Dimulescu C, Donle L, Cakan C, Goerttler T, Khakimova L, Ladenbauer J, Flöel A, Obermayer K. Improving the detection of sleep slow oscillations in electroencephalographic data. Front Neuroinform 2024; 18:1338886. [PMID: 38375447 PMCID: PMC10875054 DOI: 10.3389/fninf.2024.1338886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/19/2024] [Indexed: 02/21/2024] Open
Abstract
Study objectives We aimed to build a tool which facilitates manual labeling of sleep slow oscillations (SOs) and evaluate the performance of traditional sleep SO detection algorithms on such a manually labeled data set. We sought to develop improved methods for SO detection. Method SOs in polysomnographic recordings acquired during nap time from ten older adults were manually labeled using a custom built graphical user interface tool. Three automatic SO detection algorithms previously used in the literature were evaluated on this data set. Additional machine learning and deep learning algorithms were trained on the manually labeled data set. Results Our custom built tool significantly decreased the time needed for manual labeling, allowing us to manually inspect 96,277 potential SO events. The three automatic SO detection algorithms showed relatively low accuracy (max. 61.08%), but results were qualitatively similar, with SO density and amplitude increasing with sleep depth. The machine learning and deep learning algorithms showed higher accuracy (best: 99.20%) while maintaining a low prediction time. Conclusions Accurate detection of SO events is important for investigating their role in memory consolidation. In this context, our tool and proposed methods can provide significant help in identifying these events.
Collapse
Affiliation(s)
- Cristiana Dimulescu
- Department of Software Engineering and Theoretical Computer Science, Technical University Berlin, Berlin, Germany
- Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany
| | - Leonhard Donle
- Department of Software Engineering and Theoretical Computer Science, Technical University Berlin, Berlin, Germany
| | - Caglar Cakan
- Department of Software Engineering and Theoretical Computer Science, Technical University Berlin, Berlin, Germany
- Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany
| | - Thomas Goerttler
- Department of Software Engineering and Theoretical Computer Science, Technical University Berlin, Berlin, Germany
| | - Lilia Khakimova
- Department of Neurology, University Medicine, Greifswald, Germany
| | - Julia Ladenbauer
- Department of Neurology, University Medicine, Greifswald, Germany
| | - Agnes Flöel
- Department of Neurology, University Medicine, Greifswald, Germany
- German Center for Neurodegenerative Diseases, Greifswald, Germany
| | - Klaus Obermayer
- Department of Software Engineering and Theoretical Computer Science, Technical University Berlin, Berlin, Germany
- Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany
| |
Collapse
|
3
|
Xia T, Antony JW, Paller KA, Hu X. Targeted memory reactivation during sleep influences social bias as a function of slow-oscillation phase and delta power. Psychophysiology 2023; 60:e14224. [PMID: 36458473 PMCID: PMC10085833 DOI: 10.1111/psyp.14224] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 08/27/2022] [Accepted: 10/26/2022] [Indexed: 12/04/2022]
Abstract
To understand how memories are reactivated and consolidated during sleep, experimenters have employed the unobtrusive re-presentation of memory cues from a variety of pre-sleep learning tasks. Using this procedure, known as targeted memory reactivation (TMR), we previously found that reactivation of counter-social-bias training during post-training sleep could selectively enhance training effects in reducing unintentional social biases. Here, we describe re-analyses of electroencephalographic (EEG) data from this previous study to characterize neurophysiological correlates of TMR-induced bias reduction. We found that TMR benefits in bias reduction were associated with (a) the timing of memory-related cue presentation relative to the 0.1-1.5 Hz slow-oscillation phase and (b) cue-elicited EEG power within the 1-4 Hz delta range. Although cue delivery was at a fixed rate in this study and not contingent on the slow-oscillation phase, cues were found to be clustered in slow-oscillation upstates for those participants with stronger TMR benefits. Similarly, higher cue-elicited delta power 250-1000 ms after cue onset was also linked with larger TMR benefits. These electrophysiological results substantiate the claim that memory reactivation altered social bias in the original study, while also informing neural explanations of these benefits. Future research should consider these sleep physiology parameters in relation to TMR applications and to memory reactivation in general.
Collapse
Affiliation(s)
- Tao Xia
- Department of Psychology, The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, China
| | - James W. Antony
- Department of Psychology, Center for Mind and Brain, University of California, Davis, USA
- Department of Psychology and Child Development, California Polytechnic State University, San Luis Obispo, USA
| | - Ken A. Paller
- Department of Psychology and Cognitive Neuroscience Program, Northwestern University, USA
| | - Xiaoqing Hu
- Department of Psychology, The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, China
- HKU, Shenzhen Institute of Research and Innovation, Shenzhen, China
| |
Collapse
|
4
|
Abstract
Over the past few decades, the importance of sleep has become increasingly recognized for many physiologic functions, including cognition. Many studies have reported the deleterious effect of sleep loss or sleep disruption on cognitive performance. Beyond ensuring adequate sleep quality and duration, discovering methods to enhance sleep to augment its restorative effects is important to improve learning in many populations, such as the military, students, age-related cognitive decline, and cognitive disorders.
Collapse
Affiliation(s)
- Roneil G Malkani
- Division of Sleep Medicine, Department of Neurology, Center for Circadian and Sleep Medicine, Northwestern University Feinberg School of Medicine, 710 North Lake Shore Drive, Suite 525, Chicago, IL 60611, USA; Jesse Brown Veterans Affairs Medical Center, Chicago, IL 60612, USA.
| | - Phyllis C Zee
- Division of Sleep Medicine, Department of Neurology, Center for Circadian and Sleep Medicine, Northwestern University Feinberg School of Medicine, 710 North Lake Shore Drive, Suite 520, Chicago, IL 60611, USA
| |
Collapse
|
5
|
Petzka M, Chatburn A, Charest I, Balanos GM, Staresina BP. Sleep spindles track cortical learning patterns for memory consolidation. Curr Biol 2022; 32:2349-2356.e4. [PMID: 35561681 DOI: 10.1016/j.cub.2022.04.045] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 03/11/2022] [Accepted: 04/14/2022] [Indexed: 10/18/2022]
Abstract
Memory consolidation-the transformation of labile memory traces into stable long-term representations-is facilitated by post-learning sleep. Computational and biophysical models suggest that sleep spindles may play a key mechanistic role for consolidation, igniting structural changes at cortical sites involved in prior learning. Here, we tested the resulting prediction that spindles are most pronounced over learning-related cortical areas and that the extent of this learning-spindle overlap predicts behavioral measures of memory consolidation. Using high-density scalp electroencephalography (EEG) and polysomnography (PSG) in healthy volunteers, we first identified cortical areas engaged during a temporospatial associative memory task (power decreases in the alpha/beta frequency range, 6-20 Hz). Critically, we found that participant-specific topographies (i.e., spatial distributions) of post-learning sleep spindle amplitude correlated with participant-specific learning topographies. Importantly, the extent to which spindles tracked learning patterns further predicted memory consolidation across participants. Our results provide empirical evidence for a role of post-learning sleep spindles in tracking learning networks, thereby facilitating memory consolidation.
Collapse
Affiliation(s)
- Marit Petzka
- School of Psychology and Centre for Human Brain Health, University of Birmingham, Birmingham, UK; Max Planck Research Group NeuroCode, Max Planck Institute for Human Development, Berlin, Germany
| | - Alex Chatburn
- Cognitive and Systems Neuroscience Research Hub, University of South Australia, Adelaide, SA, Australia
| | - Ian Charest
- Department of Psychology, University of Montreal, Montreal, QC, Canada
| | - George M Balanos
- School of Sport, Exercise and Rehabilitation, University of Birmingham, Birmingham, UK
| | - Bernhard P Staresina
- Department of Experimental Psychology, University of Oxford, Oxford, UK; Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford, UK.
| |
Collapse
|
6
|
Weinhold SL, Lechinger J, Ittel J, Ritzenhoff R, Drews HJ, Junghanns K, Göder R. Dysfunctional Overnight Memory Consolidation in Patients with Schizophrenia in Comparison to Healthy Controls: Disturbed Slow-Wave Sleep as Contributing Factor? Neuropsychobiology 2022; 81:104-115. [PMID: 34433174 DOI: 10.1159/000517858] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 06/14/2021] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Memory deficiency has been shown in schizophrenia patients, but results on the role of sleep parameters in overnight consolidation of associative verbal memory are still missing. Therefore, the aim of our study was to elucidate underlying processes of impaired sleep-related consolidation of associative word pairs in schizophrenia including standard sleep parameters as well as sleep spindle counts and spectral analysis. METHODS Eighteen stably medicated schizophrenia patients and 24 healthy age-matched controls performed an associative declarative memory task before and after polysomnographic recordings. Part of the participants expected verbal associative memory testing in the morning, while the others did not. Furthermore, participants filled in self-rating questionnaires of schizophrenia-typical experiences (Eppendorf Schizophrenia Inventory [ESI] and Psychotic Symptom Rating Scale). RESULTS Schizophrenia patients performed worse in verbal declarative memory in the evening as well as in overnight consolidation (morning compared to evening performance). While duration of slow-wave sleep was nearly comparable between groups, schizophrenia patients showed lower sleep spindle count, reduced delta power during slow-wave sleep, and reduced spindle power during the slow oscillation (SO) up-state. In healthy but not in schizophrenia patients, a linear relationship between overnight memory consolidation and slow-wave sleep duration as well as delta power was evident. No significant effect with respect to the expectation of memory retrieval was evident in our data. Additionally, we observed a negative linear relationship between total number of sleep spindles and ESI score in healthy participants. DISCUSSION/CONCLUSION As expected, schizophrenia patients showed deficient overnight verbal declarative memory consolidation as compared to healthy controls. Reduced sleep spindles, delta power, and spindle power during the SO up-state may link sleep and memory deficiency in schizophrenia. Additionally, the absence of a linear relationship between sleep-related memory consolidation and slow-wave sleep as well as delta power suggests further functional impairments in schizophrenia. Note that this conclusion is based on observational data. Future studies should investigate if stimulation of delta waves during sleep could improve memory performance and thereby quality of life in schizophrenia.
Collapse
Affiliation(s)
- Sara Lena Weinhold
- Department of Psychiatry and Psychotherapy, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Julia Lechinger
- Department of Psychiatry and Psychotherapy, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Jasper Ittel
- Department of Psychiatry and Psychotherapy, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Romina Ritzenhoff
- Department of Psychiatry and Psychotherapy, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Henning Johannes Drews
- Department of Psychiatry and Psychotherapy, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Klaus Junghanns
- Department of Psychiatry and Psychotherapy, Centre for Integrative Psychiatry (ZIP), University Lübeck, Lübeck, Germany
| | - Robert Göder
- Department of Psychiatry and Psychotherapy, Christian-Albrechts-University Kiel, Kiel, Germany
| |
Collapse
|
7
|
Vaseghi S, Arjmandi-Rad S, Eskandari M, Ebrahimnejad M, Kholghi G, Zarrindast MR. Modulating role of serotonergic signaling in sleep and memory. Pharmacol Rep 2021; 74:1-26. [PMID: 34743316 DOI: 10.1007/s43440-021-00339-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 01/02/2023]
Abstract
Serotonin is an important neurotransmitter with various receptors and wide-range effects on physiological processes and cognitive functions including sleep, learning, and memory. In this review study, we aimed to discuss the role of serotonergic receptors in modulating sleep-wake cycle, and learning and memory function. Furthermore, we mentioned to sleep deprivation, its effects on memory function, and the potential interaction with serotonin. Although there are thousands of research articles focusing on the relationship between sleep and serotonin; however, the pattern of serotonergic function in sleep deprivation is inconsistent and it seems that serotonin has not a certain role in the effects of sleep deprivation on memory function. Also, we found that the injection type of serotonergic agents (systemic or local), the doses of these drugs (dose-dependent effects), and up- or down-regulation of serotonergic receptors during training with various memory tasks are important issues that can be involved in the effects of serotonergic signaling on sleep-wake cycle, memory function, and sleep deprivation-induced memory impairments. This comprehensive review was conducted in the PubMed, Scopus, and ScienceDirect databases in June and July 2021, by searching keywords sleep, sleep deprivation, memory, and serotonin.
Collapse
Affiliation(s)
- Salar Vaseghi
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran.
| | - Shirin Arjmandi-Rad
- Institute for Cognitive and Brain Sciences, Shahid Beheshti University, Tehran, Iran
| | - Maliheh Eskandari
- Faculty of Basic Sciences, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Mahshid Ebrahimnejad
- Department of Physiology, Faculty of Veterinary Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Gita Kholghi
- Department of Psychology, Faculty of Human Sciences, Islamic Azad University, Tonekabon Branch, Tonekabon, Iran
| | - Mohammad-Reza Zarrindast
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Bouchard M, Lina JM, Gaudreault PO, Lafrenière A, Dubé J, Gosselin N, Carrier J. Sleeping at the switch. eLife 2021; 10:64337. [PMID: 34448453 PMCID: PMC8452310 DOI: 10.7554/elife.64337] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 08/26/2021] [Indexed: 11/13/2022] Open
Abstract
Sleep slow waves are studied for their role in brain plasticity, homeostatic regulation, and their changes during aging. Here, we address the possibility that two types of slow waves co-exist in humans. Thirty young and 29 older adults underwent a night of polysomnographic recordings. Using the transition frequency, slow waves with a slow transition (slow switchers) and those with a fast transition (fast switchers) were discovered. Slow switchers had a high electroencephalography (EEG) connectivity along their depolarization transition while fast switchers had a lower connectivity dynamics and dissipated faster during the night. Aging was associated with lower temporal dissipation of sleep pressure in slow and fast switchers and lower EEG connectivity at the microscale of the oscillations, suggesting a decreased flexibility in the connectivity network of older individuals. Our findings show that two different types of slow waves with possible distinct underlying functions coexist in the slow wave spectrum.
Collapse
Affiliation(s)
- Maude Bouchard
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Montreal, Canada.,Department of Psychology, Université de Montréal, Montreal, Canada
| | - Jean-Marc Lina
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Montreal, Canada.,Department of Electrical Engineering, École de Technologie Supérieure, Montreal, Canada.,Centre de Recherches Mathématiques, Université de Montréal, Montreal, Canada
| | - Pierre-Olivier Gaudreault
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Montreal, Canada
| | - Alexandre Lafrenière
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Montreal, Canada
| | - Jonathan Dubé
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Montreal, Canada.,Department of Psychology, Université de Montréal, Montreal, Canada
| | - Nadia Gosselin
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Montreal, Canada.,Department of Psychology, Université de Montréal, Montreal, Canada
| | - Julie Carrier
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Montreal, Canada.,Department of Psychology, Université de Montréal, Montreal, Canada
| |
Collapse
|
9
|
Durán E, Yang M, Neves R, Logothetis NK, Eschenko O. Modulation of Prefrontal Cortex Slow Oscillations by Phasic Activation of the Locus Coeruleus. Neuroscience 2021; 453:268-279. [PMID: 33419514 DOI: 10.1016/j.neuroscience.2020.11.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 11/10/2020] [Accepted: 11/14/2020] [Indexed: 12/13/2022]
Abstract
Cortical slow rhythmic activity, a hallmark of deep sleep, is observed under urethane anesthesia. Synchronized fluctuations of the membrane excitability of a large neuronal population are reflected in the extracellular Local Field Potential (LFP), as high-amplitude slow (∼1 Hz) oscillations (SO). The SO-phase indicates the presence (Up) or absence (Down) of neuronal spiking. The cortical state is controlled by the input from thalamic and neuromodulatory centers, including the brainstem noradrenergic nucleus Locus Coeruleus (LC). The bidirectional modulation of neuronal excitability by noradrenaline (NA) is well known. We have previously shown that LC phasic activation caused transient excitability increase in the medial prefrontal cortex (mPFC). In the present study, we characterized the effect of LC phasic activation on the prefrontal population dynamics at a temporal scale of a single SO cycle. We applied short (0.2 s) trains of electric pulses (0.02-0.05 mA at 20-50 Hz) to the LC cell bodies and monitored a broadband (0.1 Hz-8 kHz) mPFC LFP in urethane-anesthetized rats. The direct electrical stimulation of LC (LC-DES), applied during the Up-phase, enhanced the firing probability in the mPFC by ∼20% and substantially prolonged Up-states in 56% of trials. The LC-DES applied during Down-phase caused a rapid Down-to-Up transition in 81.5% of trials. The LC-DES was more effective at a higher frequency, but not at a higher current. Our results suggest that transient NA release, coupled to SO, may promote synaptic plasticity and memory consolidation by sustaining a depolarized state in the mPFC neurons.
Collapse
Affiliation(s)
- Ernesto Durán
- Department of Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Tuebingen, Germany
| | - Mingyu Yang
- Department of Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Tuebingen, Germany
| | - Ricardo Neves
- Department of Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Tuebingen, Germany
| | - Nikos K Logothetis
- Department of Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Tuebingen, Germany; Division of Imaging Science and Biomedical Engineering, University of Manchester, M13 9PT Manchester, UK
| | - Oxana Eschenko
- Department of Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Tuebingen, Germany.
| |
Collapse
|
10
|
de Boer M, Nijdam MJ, Jongedijk RA, Bangel KA, Olff M, Hofman WF, Talamini LM. The spectral fingerprint of sleep problems in post-traumatic stress disorder. Sleep 2021; 43:5614711. [PMID: 31702010 PMCID: PMC7157184 DOI: 10.1093/sleep/zsz269] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 08/31/2019] [Indexed: 11/16/2022] Open
Abstract
Study Objectives Sleep problems are a core feature of post-traumatic stress disorder (PTSD). The aim of this study was to find a robust objective measure for the sleep disturbance in patients having PTSD. Methods The current study assessed EEG power across a wide frequency range and multiple scalp locations, in matched trauma-exposed individuals with and without PTSD, during rapid eye movement (REM) and non-REM (NREM) sleep. In addition, a full polysomnographical evaluation was performed, including sleep staging and assessment of respiratory function, limb movements, and heart rate. The occurrence of sleep disorders was also assessed. Results In patients having PTSD, NREM sleep shows a substantial loss of slow oscillation power and increased higher frequency activity compared with controls. The change is most pronounced over right-frontal sensors and correlates with insomnia. PTSD REM sleep shows a large power shift in the opposite direction, with increased slow oscillation power over occipital areas, which is strongly related to nightmare activity and to a lesser extent with insomnia. These pronounced spectral changes occur in the context of severe subjective sleep problems, increased occurrence of various sleep disorders and modest changes in sleep macrostructure. Conclusions This is the first study to show pronounced changes in EEG spectral topologies during both NREM and REM sleep in PTSD. Importantly, the observed power changes reflect the hallmarks of PTSD sleep problems: insomnia and nightmares and may thus be specific for PTSD. A spectral index derived from these data distinguishes patients from controls with high effect size, bearing promise as a candidate biomarker.
Collapse
Affiliation(s)
- M de Boer
- Brain and Cognition, Department of Psychology, University of Amsterdam, Amsterdam, The Netherlands.,UvA-Amsterdam Brain and Cognition, Amsterdam, The Netherlands
| | - M J Nijdam
- Center for Psychological Trauma, Department of Psychiatry, Amsterdam, The Netherlands.,ARQ Centrum'45, Partner in ARQ, Oegstgeest, The Netherlands.,ARQ National Psychotrauma Centre, Diemen, The Netherlands
| | - R A Jongedijk
- ARQ Centrum'45, Partner in ARQ, Oegstgeest, The Netherlands.,ARQ National Psychotrauma Centre, Diemen, The Netherlands
| | - K A Bangel
- Center for Psychological Trauma, Department of Psychiatry, Amsterdam, The Netherlands.,Department of Psychiatry, Amsterdam UMC, Amsterdam, The Netherlands
| | - M Olff
- Center for Psychological Trauma, Department of Psychiatry, Amsterdam, The Netherlands.,ARQ National Psychotrauma Centre, Diemen, The Netherlands
| | - W F Hofman
- Brain and Cognition, Department of Psychology, University of Amsterdam, Amsterdam, The Netherlands
| | - Lucia M Talamini
- Brain and Cognition, Department of Psychology, University of Amsterdam, Amsterdam, The Netherlands.,UvA-Amsterdam Brain and Cognition, Amsterdam, The Netherlands
| |
Collapse
|
11
|
Abstract
Abstract
Purpose of Review
This short review article aims at emphasizing interesting and important new insights about investigating sleep and memory in children aged between 6 and 13 years (middle childhood).
Recent Findings
That sleep in comparison to wakefulness benefits the consolidation of memories is well established—especially for the adult population. However, the underlying theoretical frameworks trying to explain the benefits of sleep for memory still strive for more substantiate findings including biological and physiological correlates.
Summary
Based on the most recent literature about sleep-related memory consolidation and its physiological markers during middle childhood, this article provides a review and highlights recent updates in this field.
Collapse
|
12
|
Muehlroth BE, Werkle-Bergner M. Understanding the interplay of sleep and aging: Methodological challenges. Psychophysiology 2020; 57:e13523. [PMID: 31930523 DOI: 10.1111/psyp.13523] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/21/2019] [Accepted: 12/12/2019] [Indexed: 12/16/2022]
Abstract
In quest of new avenues to explain, predict, and treat pathophysiological conditions during aging, research on sleep and aging has flourished. Despite the great scientific potential to pinpoint mechanistic pathways between sleep, aging, and pathology, only little attention has been paid to the suitability of analytic procedures applied to study these interrelations. On the basis of electrophysiological sleep and structural brain data of healthy younger and older adults, we identify, illustrate, and resolve methodological core challenges in the study of sleep and aging. We demonstrate potential biases in common analytic approaches when applied to older populations. We argue that uncovering age-dependent alterations in the physiology of sleep requires the development of adjusted and individualized analytic procedures that filter out age-independent interindividual differences. Age-adapted methodological approaches are thus required to foster the development of valid and reliable biomarkers of age-associated cognitive pathologies.
Collapse
Affiliation(s)
- Beate E Muehlroth
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | - Markus Werkle-Bergner
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| |
Collapse
|
13
|
Abstract
Given the critical role of sleep, particularly sleep slow oscillations, sleep spindles, and hippocampal sharp wave ripples, in memory consolidation, sleep enhancement represents a key opportunity to improve cognitive performance. Techniques such as transcranial electrical and magnetic stimulation and acoustic stimulation can enhance slow oscillations and sleep spindles and potentially improve memory. Targeted memory reactivation in sleep may enhance or stabilize memory consolidation. Each technique has technical considerations that may limit its broader clinical application. Therefore, neurostimulation to enhance sleep quality, in particular sleep slow oscillations, has the potential for improving sleep-related memory consolidation in healthy and clinical populations.
Collapse
Affiliation(s)
- Roneil G Malkani
- Division of Sleep Medicine, Department of Neurology, Center for Circadian and Sleep Medicine, Northwestern University Feinberg School of Medicine. 710 North Lake Shore Drive, Suite 525, Chicago, IL 60611, USA.
| | - Phyllis C Zee
- Division of Sleep Medicine, Department of Neurology, Center for Circadian and Sleep Medicine, Northwestern University Feinberg School of Medicine. 710 North Lake Shore Drive, Suite 520, Chicago, IL 60611, USA
| |
Collapse
|
14
|
Cerasuolo M, Conte F, Giganti F, Ficca G. Sleep changes following intensive cognitive activity. Sleep Med 2019; 66:148-158. [PMID: 31877506 DOI: 10.1016/j.sleep.2019.08.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 08/28/2019] [Accepted: 08/28/2019] [Indexed: 12/17/2022]
Abstract
Studies over the last 40 years have mainly investigated sleep structure changes as a result of wake duration, in the frame of the classical sleep regulation theories. However, wake intervals of the same duration can profoundly differ in their intensity, which actually reflects the degree of cognitive and physical activity. Data on how sleep can be modified by wake intensity changes (initially sparse and of little consistence) have become much more substantial, especially in the frame of the intense research debate on sleep-memory relationships. Our aim is to examine the vast repertoire of sleep modifications that depend on waking cognitive manipulations, highlighting the sleep features that appear most affected. By systematically addressing this issue, we want to set the basis for future research exploring both the specific nature of the mechanisms involved and the applicative psychosocial and clinical fall-outs, in terms of possible behavioural interventions for sleep quality improvement.
Collapse
Affiliation(s)
- Mariangela Cerasuolo
- Department of Psychology, University of Campania "L. Vanvitelli", Caserta, Italy
| | - Francesca Conte
- Department of Psychology, University of Campania "L. Vanvitelli", Caserta, Italy
| | - Fiorenza Giganti
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | - Gianluca Ficca
- Department of Psychology, University of Campania "L. Vanvitelli", Caserta, Italy.
| |
Collapse
|
15
|
Puentes-Mestril C, Roach J, Niethard N, Zochowski M, Aton SJ. How rhythms of the sleeping brain tune memory and synaptic plasticity. Sleep 2019; 42:zsz095. [PMID: 31100149 PMCID: PMC6612670 DOI: 10.1093/sleep/zsz095] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 03/14/2019] [Indexed: 11/14/2022] Open
Abstract
Decades of neurobehavioral research has linked sleep-associated rhythms in various brain areas to improvements in cognitive performance. However, it remains unclear what synaptic changes might underlie sleep-dependent declarative memory consolidation and procedural task improvement, and why these same changes appear not to occur across a similar interval of wake. Here we describe recent research on how one specific feature of sleep-network rhythms characteristic of rapid eye movement and non-rapid eye movement-could drive synaptic strengthening or weakening in specific brain circuits. We provide an overview of how these rhythms could affect synaptic plasticity individually and in concert. We also present an overarching hypothesis for how all network rhythms occurring across the sleeping brain could aid in encoding new information in neural circuits.
Collapse
Affiliation(s)
| | - James Roach
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI
| | - Niels Niethard
- Institute of Medical Psychology and Behavioural Neurobiology, University of Tuebingen, Tuebingen, Germany
| | - Michal Zochowski
- Department of Physics, Biophysics Program, University of Michigan, Ann Arbor, MI
| | - Sara J Aton
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI
| |
Collapse
|
16
|
Langille JJ. Remembering to Forget: A Dual Role for Sleep Oscillations in Memory Consolidation and Forgetting. Front Cell Neurosci 2019; 13:71. [PMID: 30930746 PMCID: PMC6425990 DOI: 10.3389/fncel.2019.00071] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 02/13/2019] [Indexed: 12/20/2022] Open
Abstract
It has been known since the time of patient H. M. and Karl Lashley's equipotentiality studies that the hippocampus and cortex serve mnestic functions. Current memory models maintain that these two brain structures accomplish unique, but interactive, memory functions. Specifically, most modeling suggests that memories are rapidly acquired during waking experience by the hippocampus, before being later consolidated into the cortex for long-term storage. Sleep has been shown to be critical for the transfer and consolidation of memories in the cortex. Like memory consolidation, a role for sleep in adaptive forgetting has both historical precedent, as Francis Crick suggested in 1983 that sleep was for "reverse-learning," and recent empirical support. In this article I review the evidence indicating that the same brain activity involved in sleep replay associated memory consolidation is responsible for sleep-dependent forgetting. In reviewing the literature, it became clear that both a cellular mechanism for systems consolidation and an agreed upon general, as well as cellular, mechanism for sleep-dependent forgetting is seldom discussed or is lacking. I advocate here for a candidate cellular systems consolidation mechanism wherein changes in calcium kinetics and the activation of consolidative signaling cascades arise from the triple phase locking of non-rapid eye movement sleep (NREMS) slow oscillation, sleep spindle and sharp-wave ripple rhythms. I go on to speculatively consider several sleep stage specific forgetting mechanisms and conclude by discussing a notional function of NREM-rapid eye movement sleep (REMS) cycling. The discussed model argues that the cyclical organization of sleep functions to first lay down and edit and then stabilize and integrate engrams. All things considered, it is increasingly clear that hallmark sleep stage rhythms, including several NREMS oscillations and the REMS hippocampal theta rhythm, serve the dual function of enabling simultaneous memory consolidation and adaptive forgetting. Specifically, the same sleep rhythms that consolidate new memories, in the cortex and hippocampus, simultaneously organize the adaptive forgetting of older memories in these brain regions.
Collapse
Affiliation(s)
- Jesse J Langille
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| |
Collapse
|
17
|
Léger D, Debellemaniere E, Rabat A, Bayon V, Benchenane K, Chennaoui M. Slow-wave sleep: From the cell to the clinic. Sleep Med Rev 2018; 41:113-132. [DOI: 10.1016/j.smrv.2018.01.008] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 01/02/2018] [Accepted: 01/22/2018] [Indexed: 10/18/2022]
|
18
|
Blume C, del Giudice R, Wislowska M, Heib DP, Schabus M. Standing sentinel during human sleep: Continued evaluation of environmental stimuli in the absence of consciousness. Neuroimage 2018; 178:638-648. [DOI: 10.1016/j.neuroimage.2018.05.056] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 04/25/2018] [Accepted: 05/24/2018] [Indexed: 10/14/2022] Open
|
19
|
Abstract
Rocking movements appear to affect human sleep. Recent research suggested a facilitated transition from wake to sleep and a boosting of slow oscillations and sleep spindles due to lateral rocking movements during an afternoon nap. This study aimed at investigating the effect of vestibular stimulation on sleep onset, nocturnal sleep and its potential to increase sleep spindles and slow waves, which could influence memory performance. Polysomnography was recorded in 18 males (age: 20–28 years) during three nights: movement until sleep onset (C1), movement for 2 hours (C2), and one baseline (B) without motion. Sleep dependent changes in memory performance were assessed with a word-pair learning task. Although subjects preferred nights with vestibular stimulation, a facilitated sleep onset or a boost in slow oscillations was not observed. N2 sleep and the total number of sleep spindles increased during the 2 h with vestibular stimulation (C2) but not over the entire night. Memory performance increased over night but did not differ between conditions. The lack of an effect might be due to the already high sleep efficiency (96%) and sleep quality of our subjects during baseline. Nocturnal sleep in good sleepers might not benefit from the potential facilitating effects of vestibular stimulation.
Collapse
|
20
|
van Schalkwijk FJ, Sauter C, Hoedlmoser K, Heib DPJ, Klösch G, Moser D, Gruber G, Anderer P, Zeitlhofer J, Schabus M. The effect of daytime napping and full-night sleep on the consolidation of declarative and procedural information. J Sleep Res 2017; 28:e12649. [PMID: 29271015 PMCID: PMC6378597 DOI: 10.1111/jsr.12649] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Accepted: 11/13/2017] [Indexed: 02/05/2023]
Abstract
Many studies investigating sleep and memory consolidation have evaluated full-night sleep rather than alternative sleep periods such as daytime naps. This multi-centre study followed up on, and was compared with, an earlier full-night study (Schabus et al., 2004) investigating the relevance of daytime naps for the consolidation of declarative and procedural memory. Seventy-six participants were randomly assigned to a nap or wake group, and performed a declarative word-pair association or procedural mirror-tracing task. Performance changes from before to after a 90-min retention interval filled with sleep or quiet wakefulness were evaluated between groups. Associations between performance changes, sleep architecture, spindles, and slow oscillations were investigated. For the declarative task we observed a trend towards stronger forgetting across a wake period compared with a nap period, and a trend towards memory increase over the full-night. For the procedural task, accuracy was significantly decreased following daytime wakefulness, showed a trend to increase with a daytime nap, and significantly increased across full-night sleep. For the nap protocol, neither sleep stages, spindles, nor slow oscillations predicted performance changes. A direct comparison of day and nighttime sleep revealed that daytime naps are characterized by significantly lower spindle density, but higher spindle activity and amplitude compared with full-night sleep. In summary, data indicate that daytime naps protect procedural memories from deterioration, whereas full-night sleep improves performance. Given behavioural and physiological differences between day and nighttime sleep, future studies should try to characterize potential differential effects of full-night and daytime sleep with regard to sleep-dependent memory consolidation.
Collapse
Affiliation(s)
- Frank J van Schalkwijk
- Laboratory for Sleep, Cognition and Consciousness Research, Centre for Cognitive Neuroscience (CCNS), University of Salzburg, Salzburg, Austria
| | - Cornelia Sauter
- Department of Neurology, Medical University of Vienna, Vienna, Austria.,Competence Center of Sleep Medicine, Charité - University Medicine, Berlin, Germany
| | - Kerstin Hoedlmoser
- Laboratory for Sleep, Cognition and Consciousness Research, Centre for Cognitive Neuroscience (CCNS), University of Salzburg, Salzburg, Austria
| | - Dominik P J Heib
- Laboratory for Sleep, Cognition and Consciousness Research, Centre for Cognitive Neuroscience (CCNS), University of Salzburg, Salzburg, Austria
| | - Gerhard Klösch
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Doris Moser
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Georg Gruber
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Peter Anderer
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Josef Zeitlhofer
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Manuel Schabus
- Laboratory for Sleep, Cognition and Consciousness Research, Centre for Cognitive Neuroscience (CCNS), University of Salzburg, Salzburg, Austria
| |
Collapse
|
21
|
Wislowska M, Heib DPJ, Griessenberger H, Hoedlmoser K, Schabus M. Individual baseline memory performance and its significance for sleep-dependent memory consolidation. ACTA ACUST UNITED AC 2017. [DOI: 10.1556/2053.1.2016.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Malgorzata Wislowska
- Centre for Cognitive Neuroscience (CCNS), University of Salzburg, Salzburg, Austria
- Laboratory for Sleep, Cognition and Consciousness Research, Department of Psychology, University of Salzburg, Salzburg, Austria
| | - Dominik P. J. Heib
- Centre for Cognitive Neuroscience (CCNS), University of Salzburg, Salzburg, Austria
- Laboratory for Sleep, Cognition and Consciousness Research, Department of Psychology, University of Salzburg, Salzburg, Austria
| | - Hermann Griessenberger
- Laboratory for Sleep, Cognition and Consciousness Research, Department of Psychology, University of Salzburg, Salzburg, Austria
| | - Kerstin Hoedlmoser
- Centre for Cognitive Neuroscience (CCNS), University of Salzburg, Salzburg, Austria
- Laboratory for Sleep, Cognition and Consciousness Research, Department of Psychology, University of Salzburg, Salzburg, Austria
| | - Manuel Schabus
- Centre for Cognitive Neuroscience (CCNS), University of Salzburg, Salzburg, Austria
- Laboratory for Sleep, Cognition and Consciousness Research, Department of Psychology, University of Salzburg, Salzburg, Austria
| |
Collapse
|
22
|
Dolleman-van der Weel MJ, Lopes da Silva FH, Witter MP. Interaction of nucleus reuniens and entorhinal cortex projections in hippocampal field CA1 of the rat. Brain Struct Funct 2016; 222:2421-2438. [PMID: 28008472 DOI: 10.1007/s00429-016-1350-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 12/14/2016] [Indexed: 02/03/2023]
Abstract
The nucleus reuniens (RE) and entorhinal cortex (EC) provide monosynaptic excitatory inputs to the apical dendrites of pyramidal cells and to interneurons with dendrites in stratum lacunosum moleculare (LM) of hippocampal field CA1. However, whether the RE and EC inputs interact at the cellular level is unknown. In this electrophysiological in vivo study, low-frequency stimulation was used to selectively activate each projection at its origin; field excitatory postsynaptic potentials (fEPSPs) were recorded in CA1. We applied (1) paired pulses to RE or EC, (2) combined paired pulses to RE and EC, and (3) simultaneously paired pulses to RE/EC. The main findings are that: (a) stimulation of either RE- or EC-evoked subthreshold fEPSPs, displaying paired pulse facilitation (PPF), (b) subthreshold fEPSPs evoked by combined stimulation did not display heterosynaptic PPF, and (c) simultaneous stimulation of RE/EC resulted in enhanced subthreshold fEPSPs in proximal LM displaying a nonlinear interaction. CSD analyses of RE/EC-evoked depth profiles revealed a nonlinear enlargement of the 'LM sink-radiatum source' configuration and the appearance of an additional small sink-source pair close to stratum pyramidale, likely reflecting (peri)somatic inhibition. The nonlinear interaction between both inputs indicates that RE and EC axons form synapses, at least partly, onto the same dendritic compartments of CA1 pyramidal cells. We propose that low-frequency activation of the RE-CA1 input facilitates the entorhinal-hippocampal dialogue, and may synchronize the neocortical-hippocampal slow oscillation which is relevant for hippocampal-dependent memory consolidation.
Collapse
Affiliation(s)
- M J Dolleman-van der Weel
- Department of Anatomy and Neurosciences, VU University Medical Center, 1081 BT, Amsterdam, The Netherlands
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH, Amsterdam, The Netherlands
| | - F H Lopes da Silva
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH, Amsterdam, The Netherlands
- Department of Bioengineering, Instituto Superior Técnico, Lisbon Technical University, 1049-001, Lisbon, Portugal
| | - M P Witter
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, MTFS, Norwegian University of Science and Technology (NTNU), Postboks 8905, 7491, Trondheim, Norway.
| |
Collapse
|
23
|
Ujma PP, Bódizs R, Gombos F, Stintzing J, Konrad BN, Genzel L, Steiger A, Dresler M. Nap sleep spindle correlates of intelligence. Sci Rep 2015; 5:17159. [PMID: 26607963 PMCID: PMC4660428 DOI: 10.1038/srep17159] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 10/26/2015] [Indexed: 11/09/2022] Open
Abstract
Sleep spindles are thalamocortical oscillations in non-rapid eye movement (NREM) sleep, that play an important role in sleep-related neuroplasticity and offline information processing. Several studies with full-night sleep recordings have reported a positive association between sleep spindles and fluid intelligence scores, however more recently it has been shown that only few sleep spindle measures correlate with intelligence in females, and none in males. Sleep spindle regulation underlies a circadian rhythm, however the association between spindles and intelligence has not been investigated in daytime nap sleep so far. In a sample of 86 healthy male human subjects, we investigated the correlation between fluid intelligence and sleep spindle parameters in an afternoon nap of 100 minutes. Mean sleep spindle length, amplitude and density were computed for each subject and for each derivation for both slow and fast spindles. A positive association was found between intelligence and slow spindle duration, but not any other sleep spindle parameter. As a positive correlation between intelligence and slow sleep spindle duration in full-night polysomnography has only been reported in females but not males, our results suggest that the association between intelligence and sleep spindles is more complex than previously assumed.
Collapse
Affiliation(s)
- Péter P Ujma
- Institute of Behavioural Sciences, Semmelweis University, H-1089 Budapest, Hungary.,National Institute of Clinical Neuroscience, Epilepsy Centrum, Department of Neurology, H-1145 Budapest, Hungary
| | - Róbert Bódizs
- Institute of Behavioural Sciences, Semmelweis University, H-1089 Budapest, Hungary.,Department of General Psychology, Pázmány Péter Catholic University, H-1088 Budapest, Hungary
| | - Ferenc Gombos
- Department of General Psychology, Pázmány Péter Catholic University, H-1088 Budapest, Hungary
| | | | - Boris N Konrad
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, 6525 EN Nijmegen, The Netherlands
| | - Lisa Genzel
- Centre for Cognitive and Neural Systems, University of Edinburgh, EH8 9JZ Edinburgh, UK
| | - Axel Steiger
- Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Martin Dresler
- Max Planck Institute of Psychiatry, 80804 Munich, Germany.,Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, 6525 EN Nijmegen, The Netherlands
| |
Collapse
|
24
|
Hutchison IC, Rathore S. The role of REM sleep theta activity in emotional memory. Front Psychol 2015; 6:1439. [PMID: 26483709 PMCID: PMC4589642 DOI: 10.3389/fpsyg.2015.01439] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Accepted: 09/09/2015] [Indexed: 01/18/2023] Open
Abstract
While non-REM (NREM) sleep has been strongly implicated in the reactivation and consolidation of memory traces, the role of rapid-eye movement (REM) sleep remains unclear. A growing body of research on humans and animals provide behavioral evidence for a role of REM sleep in the strengthening and modulation of emotional memories. Theta activity-which describes low frequency oscillations in the local field potential within the hippocampus, amygdala and neocortex-is a prominent feature of both wake and REM sleep in humans and rodents. Theta coherence between the hippocampus and amygdala drives large-scale pontine-geniculo-occipital (PGO) waves, the density of which predicts increases in plasticity-related gene expression. This could potentially facilitate the processing of emotional memory traces within the hippocampus during REM sleep. Further, the timing of hippocampal activity in relation to theta phase is vital in determining subsequent potentiation of neuronal activity. This could allow the emotionally modulated strengthening of novel and gradual weakening of consolidated hippocampal memory traces during REM sleep. Hippocampal theta activity is also correlated with REM sleep levels of achetylcholine - which is thought to reduce hippocampal inputs in the neocortex. The additional low levels of noradrenaline during REM sleep, which facilitate feedback within the neocortex, could allow the integration of novel memory traces previously consolidated during NREM sleep. We therefore propose that REM sleep mediates the prioritized processing of emotional memories within the hippocampus, the integration of previously consolidated memory traces within the neocortex, as well as the disengagement of consolidated neocortical memory traces from the hippocampus.
Collapse
Affiliation(s)
- Isabel C Hutchison
- School of Psychological Sciences, Faculty of Medical and Human Sciences, University of Manchester , Manchester, UK
| | - Shailendra Rathore
- Neuroscience, Physiology and Pharmacology, University College London , London, UK ; Centre of Mathematics and Physics in the Life Sciences and Experimental Biology, University College London , London, UK
| |
Collapse
|
25
|
Abstract
Sleep spindles are thalamocortical oscillations in nonrapid eye movement sleep, which play an important role in sleep-related neuroplasticity and offline information processing. Sleep spindle features are stable within and vary between individuals, with, for example, females having a higher number of spindles and higher spindle density than males. Sleep spindles have been associated with learning potential and intelligence; however, the details of this relationship have not been fully clarified yet. In a sample of 160 adult human subjects with a broad IQ range, we investigated the relationship between sleep spindle parameters and intelligence. In females, we found a positive age-corrected association between intelligence and fast sleep spindle amplitude in central and frontal derivations and a positive association between intelligence and slow sleep spindle duration in all except one derivation. In males, a negative association between intelligence and fast spindle density in posterior regions was found. Effects were continuous over the entire IQ range. Our results demonstrate that, although there is an association between sleep spindle parameters and intellectual performance, these effects are more modest than previously reported and mainly present in females. This supports the view that intelligence does not rely on a single neural framework, and stronger neural connectivity manifesting in increased thalamocortical oscillations in sleep is one particular mechanism typical for females but not males.
Collapse
|
26
|
|
27
|
Astill RG, Piantoni G, Raymann RJEM, Vis JC, Coppens JE, Walker MP, Stickgold R, Van Der Werf YD, Van Someren EJW. Sleep spindle and slow wave frequency reflect motor skill performance in primary school-age children. Front Hum Neurosci 2014; 8:910. [PMID: 25426055 PMCID: PMC4227520 DOI: 10.3389/fnhum.2014.00910] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Accepted: 10/23/2014] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND AND AIM The role of sleep in the enhancement of motor skills has been studied extensively in adults. We aimed to determine involvement of sleep and characteristics of spindles and slow waves in a motor skill in children. HYPOTHESIS We hypothesized sleep-dependence of skill enhancement and an association of interindividual differences in skill and sleep characteristics. METHODS 30 children (19 females, 10.7 ± 0.8 years of age; mean ± SD) performed finger sequence tapping tasks in a repeated-measures design spanning 4 days including 1 polysomnography (PSG) night. Initial and delayed performance were assessed over 12 h of wake; 12 h with sleep; and 24 h with wake and sleep. For the 12 h with sleep, children were assigned to one of three conditions: modulation of slow waves and spindles was attempted using acoustic perturbation, and compared to yoked and no-sound control conditions. ANALYSES Mixed effect regression models evaluated the association of sleep, its macrostructure and spindles and slow wave parameters with initial and delayed speed and accuracy. RESULTS AND CONCLUSIONS Children enhance their accuracy only over an interval with sleep. Unlike previously reported in adults, children enhance their speed independent of sleep, a capacity that may to be lost in adulthood. Individual differences in the dominant frequency of spindles and slow waves were predictive for performance: children performed better if they had less slow spindles, more fast spindles and faster slow waves. On the other hand, overnight enhancement of accuracy was most pronounced in children with more slow spindles and slower slow waves, i.e., the ones with an initial lower performance. Associations of spindle and slow wave characteristics with initial performance may confound interpretation of their involvement in overnight enhancement. Slower frequencies of characteristic sleep events may mark slower learning and immaturity of networks involved in motor skills.
Collapse
Affiliation(s)
- Rebecca G Astill
- Department of Sleep and Cognition, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences Amsterdam, Netherlands ; Department of Clinical Neurophysiology, Amsterdam Sleep Centre, Slotervaartziekenhuis Amsterdam, Netherlands
| | - Giovanni Piantoni
- Department of Sleep and Cognition, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences Amsterdam, Netherlands ; Department of Neurology, Massachusetts General Hospital Boston, MA, USA
| | - Roy J E M Raymann
- Department of Sleep and Cognition, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences Amsterdam, Netherlands
| | - Jose C Vis
- Department of Sleep and Cognition, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences Amsterdam, Netherlands ; Sleepvision, Berg en Dal Netherlands
| | - Joris E Coppens
- Department of Technology and Software Development, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences Amsterdam, Netherlands
| | - Matthew P Walker
- Sleep and Neuroimaging Laboratory, Department of Psychology, University of California Berkeley, CA, USA
| | - Robert Stickgold
- Department of Psychiatry, Beth Israel Deaconess Medical Center and Harvard Medical School Boston, MA, USA
| | - Ysbrand D Van Der Werf
- Department of Emotion and Cognition, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences Amsterdam, Netherlands ; Department of Anatomy and Neurosciences, VU University and Medical Center Amsterdam, Netherlands
| | - Eus J W Van Someren
- Department of Sleep and Cognition, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences Amsterdam, Netherlands ; Departments of Integrative Neurophysiology and Medical Psychology, Center for Neurogenomics and Cognitive Research (CNCR), Neuroscience Campus Amsterdam, VU University and Medical Center Amsterdam, Netherlands
| |
Collapse
|