1
|
Sauvage E, Matta J, Dang CT, Fan J, Cruzado G, Cicoira F, Merle G. Electroconductive cardiac patch based on bioactive PEDOT:PSS hydrogels. J Biomed Mater Res A 2024; 112:1817-1826. [PMID: 38689450 DOI: 10.1002/jbm.a.37729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 04/13/2024] [Accepted: 04/22/2024] [Indexed: 05/02/2024]
Abstract
Engineering cardiac implants for treating myocardial infarction (MI) has advanced, but challenges persist in mimicking the structural properties and variability of cardiac tissues using traditional bioconstructs and conventional engineering methods. This study introduces a synthetic patch with a bioactive surface designed to swiftly restore functionality to the damaged myocardium. The patch combines a composite, soft, and conductive hydrogel-based on (3,4-ethylenedioxythiophene):polystyrene-sulfonate (PEDOT:PSS) and polyvinyl alcohol (PVA). This cardiac patch exhibits a reasonably high electrical conductivity (40 S/cm) and a stretchability up to 50% of its original length. Our findings reveal its resilience to 10% cyclic stretching at 1 Hz with no loss of conductivity over time. To mediate a strong cell-scaffold adhesion, we biofunctionalize the hydrogel with a N-cadherin mimic peptide, providing the cardiac patch with a bioactive surface. This modification promote increased adherence and proliferation of cardiac fibroblasts (CFbs) while effectively mitigating the formation of bacterial biofilm, particularly against Staphylococcus aureus, a common pathogen responsible for surgical site infections (SSIs). Our study demonstrates the successful development of a structurally validated cardiac patch possessing the desired mechanical, electrical, and biofunctional attributes for effective cardiac recovery. Consequently, this research holds significant promise in alleviating the burden imposed by myocardial infarctions.
Collapse
Affiliation(s)
- Erwan Sauvage
- Department of Chemical Engineering, Polytechnique Montréal, Montréal, Quebec, Canada
| | - Justin Matta
- Department of Experimental Surgery, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Cat-Thy Dang
- Department of Chemical Engineering, Polytechnique Montréal, Montréal, Quebec, Canada
| | - Jiaxin Fan
- Department of Chemical Engineering, Polytechnique Montréal, Montréal, Quebec, Canada
| | - Graziele Cruzado
- Department of Chemical Engineering, Polytechnique Montréal, Montréal, Quebec, Canada
| | - Fabio Cicoira
- Department of Chemical Engineering, Polytechnique Montréal, Montréal, Quebec, Canada
| | - Géraldine Merle
- Department of Chemical Engineering, Polytechnique Montréal, Montréal, Quebec, Canada
| |
Collapse
|
2
|
Das A, Nikhil A, Shiekh PA, Yadav B, Jagavelu K, Kumar A. Ameliorating impaired cardiac function in myocardial infarction using exosome-loaded gallic-acid-containing polyurethane scaffolds. Bioact Mater 2024; 33:324-340. [PMID: 38076649 PMCID: PMC10701288 DOI: 10.1016/j.bioactmat.2023.11.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 11/06/2023] [Accepted: 11/16/2023] [Indexed: 06/21/2024] Open
Abstract
Myocardial infarction (MI) can be tackled by implanting cardiac patches which provide mechanical support to the heart. However, most tissue-engineered scaffolds face difficulty in attenuating oxidative stress, maintaining mechanical stability, and regenerating damaged cardiomyocytes. Here, we fabricated elastic cryogels using polyurethane modified with antioxidant gallic acid in its backbone (PUGA) and further coated them with decellularized extracellular matrix (dECM) to improve adhesiveness, biocompatibility and hemocompatibility. The scaffold was functionalized with exosomes (EXO) isolated from adipose-derived stem cells having regenerative potential. PUGA-dECM + EXO was tested in a rat model with induced MI where echocardiography after 8 weeks of implantation showed significant recovery in treatment group. Histological analysis revealed a decrease in fibrosis after application of patch and promotion of angiogenesis with reduced oxidative stress was shown by immunostaining. Expression of cardiac tissue contractile function marker was also observed in treatment groups. Thus, the proposed biomaterial has a promising application to be utilized as a patch for cardiac regeneration. More detailed studies with larger animal species are needed for using these observations for specific applications.
Collapse
Affiliation(s)
- Ankita Das
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, 208016, U.P., India
| | - Aman Nikhil
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, 208016, U.P., India
| | - Parvaiz Ahmad Shiekh
- SMART Lab, Centre for Biomedical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Babita Yadav
- Department of Pharmacology, Council of Scientific and Industrial Research (CSIR)-Central Drug Research Institute, Lucknow, 226031, U.P., India
| | - Kumaravelu Jagavelu
- Department of Pharmacology, Council of Scientific and Industrial Research (CSIR)-Central Drug Research Institute, Lucknow, 226031, U.P., India
| | - Ashok Kumar
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, 208016, U.P., India
- Centre for Environmental Sciences and Engineering, Indian Institute of Technology Kanpur, Kanpur, 208016, U.P., India
- Centre of Excellence for Orthopaedics and Prosthetics, Gangwal School of Medical Sciences and Technology, Indian Institute of Technology Kanpur, Kanpur, 208016, U.P., India
- The Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology Kanpur, Kanpur, 208016, U.P., India
| |
Collapse
|
3
|
Xiong Z, An Q, Chen L, Xiang Y, Li L, Zheng Y. Cell or cell derivative-laden hydrogels for myocardial infarction therapy: from the perspective of cell types. J Mater Chem B 2023; 11:9867-9888. [PMID: 37751281 DOI: 10.1039/d3tb01411h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Myocardial infarction (MI) is a global cardiovascular disease with high mortality and morbidity. To treat acute MI, various therapeutic approaches have been developed, including cells, extracellular vesicles, and biomimetic nanoparticles. However, the clinical application of these therapies is limited due to low cell viability, inadequate targetability, and rapid elimination from cardiac sites. Injectable hydrogels, with their three-dimensional porous structure, can maintain the biomechanical stabilization of hearts and the transplantation activity of cells. However, they cannot regenerate cardiomyocytes or repair broken hearts. A better understanding of the collaborative relationship between hydrogel delivery systems and cell or cell-inspired therapy will facilitate advancing innovative therapeutic strategies against MI. Following that, from the perspective of cell types, MI progression and recent studies on using hydrogel to deliver cell or cell-derived preparations for MI treatment are discussed. Finally, current challenges and future prospects of cell or cell derivative-laden hydrogels for MI therapy are proposed.
Collapse
Affiliation(s)
- Ziqing Xiong
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qi An
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Liqiang Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, China.
| | - Yucheng Xiang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, China.
| | - Lian Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, China.
| | - Yaxian Zheng
- Department of Pharmacy, Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu, Sichuan, China.
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, China
| |
Collapse
|
4
|
Wongchadakul P, Datta AK, Rattanadecho P. Tissue poromechanical deformation effects on steam pop likelihood in 3-D radiofrequency cardiac ablation. J Biol Eng 2023; 17:52. [PMID: 37550706 PMCID: PMC10408080 DOI: 10.1186/s13036-023-00365-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 07/05/2023] [Indexed: 08/09/2023] Open
Abstract
Radiofrequency Cardiac Ablation (RFCA) is a common procedure that heats cardiac tissue to destroy abnormal signal pathways to eliminate arrhythmias. The complex multiphysics phenomena during this procedure need to be better understood to improve both procedure and device design. A deformable poromechanical model of cardiac tissue was developed that coupled joule heating from the electrode, heat transfer, and blood flow from normal perfusion and thermally driven natural convection, which mimics the real tissue structure more closely and provides more realistic results compared to previous models. The expansion of tissue from temperature rise reduces blood velocity, leading to increased tissue temperature, thus affecting steam pop occurrence. Detailed temperature velocity, and thermal expansion of the tissue provided a comprehensive picture of the process. Poromechanical expansion of the tissue from temperature rise reduces blood velocity, increasing tissue temperature. Tissue properties influence temperatures, with lower porosity increasing the temperatures slightly, due to lower velocities. Deeper electrode insertion raises temperature due to increased current flow. The results demonstrate that a 5% increase in porosity leads to a considerable 10% increase in maximum tissue temperature. These insights should greatly help in avoiding undesirable heating effects that can lead to steam pop and in designing improved electrodes.
Collapse
Affiliation(s)
| | - Ashim K Datta
- Department of Biological & Environmental Engineering, Cornell University, Ithaca, NY, USA.
| | - Phadungsak Rattanadecho
- Center of Excellence in Electromagnetic Energy Utilization in Engineering (C.E.E.E.), Department of Mechanical Engineering, Faculty of Engineering, Thammasat University, Pathumthani, Thailand
| |
Collapse
|
5
|
Li DS, Mendiola EA, Avazmohammadi R, Sachse FB, Sacks MS. A multi-scale computational model for the passive mechanical behavior of right ventricular myocardium. J Mech Behav Biomed Mater 2023; 142:105788. [PMID: 37060716 PMCID: PMC10357348 DOI: 10.1016/j.jmbbm.2023.105788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 01/13/2023] [Accepted: 03/16/2023] [Indexed: 03/31/2023]
Abstract
We have previously demonstrated the importance of myofiber-collagen mechanical interactions in modeling the passive mechanical behavior of right ventricle free wall (RVFW) myocardium. To gain deeper insights into these coupling mechanisms, we developed a high-fidelity, micro-anatomically realistic 3D finite element model of right ventricle free wall (RVFW) myocardium by combining high-resolution imaging and supercomputer-based simulations. We first developed a representative tissue element (RTE) model at the sub-tissue scale by specializing the hyperelastic anisotropic structurally-based constitutive relations for myofibers and ECM collagen, and equi-biaxial and non-equibiaxial loading conditions were simulated using the open-source software FEniCS to compute the effective stress-strain response of the RTE. To estimate the model parameters of the RTE model, we first fitted a 'top-down' biaxial stress-strain behavior with our previous structurally based (tissue-scale) model, informed by the measured myofiber and collagen fiber composition and orientation distributions. Next, we employed a multi-scale approach to determine the tissue-level (5 x 5 x 0.7 mm specimen size) RVFW biaxial behavior via 'bottom-up' homogenization of the fitted RTE model, recapitulating the histologically measured myofiber and collagen orientation to the biaxial mechanical data. Our homogenization approach successfully reproduced the tissue-level mechanical behavior of our previous studies in all biaxial deformation modes, suggesting that the 3D micro-anatomical arrangement of myofibers and ECM collagen is indeed a primary mechanism driving myofiber-collagen interactions.
Collapse
Affiliation(s)
- David S Li
- James T. Willerson Center for Cardiovascular Modeling and Simulation, Oden Institute for Computational Engineering and Sciences, Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | - Emilio A Mendiola
- James T. Willerson Center for Cardiovascular Modeling and Simulation, Oden Institute for Computational Engineering and Sciences, Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | - Reza Avazmohammadi
- Computational Cardiovascular Bioengineering Lab, Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Frank B Sachse
- Nora Eccles Harrison Cardiovascular Research and Training Institute, Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA
| | - Michael S Sacks
- James T. Willerson Center for Cardiovascular Modeling and Simulation, Oden Institute for Computational Engineering and Sciences, Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
6
|
Bracamonte JH, Saunders SK, Wilson JS, Truong UT, Soares JS. Patient-Specific Inverse Modeling of In Vivo Cardiovascular Mechanics with Medical Image-Derived Kinematics as Input Data: Concepts, Methods, and Applications. APPLIED SCIENCES-BASEL 2022; 12:3954. [PMID: 36911244 PMCID: PMC10004130 DOI: 10.3390/app12083954] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Inverse modeling approaches in cardiovascular medicine are a collection of methodologies that can provide non-invasive patient-specific estimations of tissue properties, mechanical loads, and other mechanics-based risk factors using medical imaging as inputs. Its incorporation into clinical practice has the potential to improve diagnosis and treatment planning with low associated risks and costs. These methods have become available for medical applications mainly due to the continuing development of image-based kinematic techniques, the maturity of the associated theories describing cardiovascular function, and recent progress in computer science, modeling, and simulation engineering. Inverse method applications are multidisciplinary, requiring tailored solutions to the available clinical data, pathology of interest, and available computational resources. Herein, we review biomechanical modeling and simulation principles, methods of solving inverse problems, and techniques for image-based kinematic analysis. In the final section, the major advances in inverse modeling of human cardiovascular mechanics since its early development in the early 2000s are reviewed with emphasis on method-specific descriptions, results, and conclusions. We draw selected studies on healthy and diseased hearts, aortas, and pulmonary arteries achieved through the incorporation of tissue mechanics, hemodynamics, and fluid-structure interaction methods paired with patient-specific data acquired with medical imaging in inverse modeling approaches.
Collapse
Affiliation(s)
- Johane H. Bracamonte
- Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Sarah K. Saunders
- Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - John S. Wilson
- Department of Biomedical Engineering and Pauley Heart Center, Virginia Commonwealth University, Richmond, VA 23219, USA
| | - Uyen T. Truong
- Department of Pediatrics, School of Medicine, Children’s Hospital of Richmond at Virginia Commonwealth University, Richmond, VA 23219, USA
| | - Joao S. Soares
- Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA
- Correspondence:
| |
Collapse
|
7
|
Martonová D, Holz D, Seufert J, Duong MT, Alkassar M, Leyendecker S. Comparison of stress and stress–strain approaches for the active contraction in a rat cardiac cycle model. J Biomech 2022; 134:110980. [DOI: 10.1016/j.jbiomech.2022.110980] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 11/17/2022]
|
8
|
Kumar V, Manduca A, Rao C, Ryu AJ, Gibbons RJ, Gersh BJ, Chandrasekaran K, Asirvatham SJ, Araoz PA, Oh JK, Egbe AC, Behfar A, Borlaug BA, Anavekar NS. An under-recognized phenomenon: Myocardial volume change during the cardiac cycle. Echocardiography 2021; 38:1235-1244. [PMID: 34085722 DOI: 10.1111/echo.15093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/26/2021] [Accepted: 05/01/2021] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Myocardial volume is assumed to be constant over the cardiac cycle in the echocardiographic models used by professional guidelines, despite evidence that suggests otherwise. The aim of this paper is to use literature-derived myocardial strain values from healthy patients to determine if myocardial volume changes during the cardiac cycle. METHODS A systematic review for studies with longitudinal, radial, and circumferential strain from echocardiography in healthy volunteers ultimately yielded 16 studies, corresponding to 2917 patients. Myocardial volume in systole (MVs) and diastole (MVd) was used to calculate MVs/MVd for each study by applying this published strain data to three models: the standard ellipsoid geometric model, a thin-apex geometric model, and a strain-volume ratio. RESULTS MVs/MVd<1 in 14 of the 16 studies, when computed using these three models. A sensitivity analysis of the two geometric models was performed by varying the dimensions of the ellipsoid and calculating MVs/MVd. This demonstrated little variability in MVs/MVd, suggesting that strain values were the primary determinant of MVs/MVd rather than the geometric model used. Another sensitivity analysis using the 97.5th percentile of each orthogonal strain demonstrated that even with extreme values, in the largest two studies of healthy populations, the calculated MVs/MVd was <1. CONCLUSIONS Healthy human myocardium appears to decrease in volume during systole. This is seen in MRI studies and is clinically relevant, but this study demonstrates that this characteristic was also present but unrecognized in the existing echocardiography literature.
Collapse
Affiliation(s)
- Vinayak Kumar
- Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Armando Manduca
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Chaitanya Rao
- Electrical Engineer, self-employed, Melbourne, Australia
| | - Alexander J Ryu
- Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | | | | | | | | | - Philip A Araoz
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Jae K Oh
- Department of Cardiology, Mayo Clinic, Rochester, MN, USA
| | | | - Atta Behfar
- Department of Cardiology, Mayo Clinic, Rochester, MN, USA
| | | | - Nandan S Anavekar
- Department of Cardiology, Mayo Clinic, Rochester, MN, USA.,Department of Radiology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
9
|
Khodaei S, Henstock A, Sadeghi R, Sellers S, Blanke P, Leipsic J, Emadi A, Keshavarz-Motamed Z. Personalized intervention cardiology with transcatheter aortic valve replacement made possible with a non-invasive monitoring and diagnostic framework. Sci Rep 2021; 11:10888. [PMID: 34035325 PMCID: PMC8149684 DOI: 10.1038/s41598-021-85500-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 02/12/2021] [Indexed: 02/04/2023] Open
Abstract
One of the most common acute and chronic cardiovascular disease conditions is aortic stenosis, a disease in which the aortic valve is damaged and can no longer function properly. Moreover, aortic stenosis commonly exists in combination with other conditions causing so many patients suffer from the most general and fundamentally challenging condition: complex valvular, ventricular and vascular disease (C3VD). Transcatheter aortic valve replacement (TAVR) is a new less invasive intervention and is a growing alternative for patients with aortic stenosis. Although blood flow quantification is critical for accurate and early diagnosis of C3VD in both pre and post-TAVR, proper diagnostic methods are still lacking because the fluid-dynamics methods that can be used as engines of new diagnostic tools are not well developed yet. Despite remarkable advances in medical imaging, imaging on its own is not enough to quantify the blood flow effectively. Moreover, understanding of C3VD in both pre and post-TAVR and its progression has been hindered by the absence of a proper non-invasive tool for the assessment of the cardiovascular function. To enable the development of new non-invasive diagnostic methods, we developed an innovative image-based patient-specific computational fluid dynamics framework for patients with C3VD who undergo TAVR to quantify metrics of: (1) global circulatory function; (2) global cardiac function as well as (3) local cardiac fluid dynamics. This framework is based on an innovative non-invasive Doppler-based patient-specific lumped-parameter algorithm and a 3-D strongly-coupled fluid-solid interaction. We validated the framework against clinical cardiac catheterization and Doppler echocardiographic measurements and demonstrated its diagnostic utility by providing novel analyses and interpretations of clinical data in eleven C3VD patients in pre and post-TAVR status. Our findings position this framework as a promising new non-invasive diagnostic tool that can provide blood flow metrics while posing no risk to the patient. The diagnostic information, that the framework can provide, is vitally needed to improve clinical outcomes, to assess patient risk and to plan treatment.
Collapse
Affiliation(s)
- Seyedvahid Khodaei
- grid.25073.330000 0004 1936 8227Department of Mechanical Engineering, McMaster University, Hamilton, ON L8S 4L7 Canada
| | - Alison Henstock
- grid.25073.330000 0004 1936 8227Department of Mechanical Engineering, McMaster University, Hamilton, ON L8S 4L7 Canada
| | - Reza Sadeghi
- grid.25073.330000 0004 1936 8227Department of Mechanical Engineering, McMaster University, Hamilton, ON L8S 4L7 Canada
| | - Stephanie Sellers
- grid.416553.00000 0000 8589 2327St. Paul’s Hospital, Vancouver, BC Canada ,grid.17091.3e0000 0001 2288 9830Department of Radiology, University of British Columbia, Vancouver, BC Canada
| | - Philipp Blanke
- grid.416553.00000 0000 8589 2327St. Paul’s Hospital, Vancouver, BC Canada ,grid.17091.3e0000 0001 2288 9830Department of Radiology, University of British Columbia, Vancouver, BC Canada
| | - Jonathon Leipsic
- grid.416553.00000 0000 8589 2327St. Paul’s Hospital, Vancouver, BC Canada ,grid.17091.3e0000 0001 2288 9830Department of Radiology, University of British Columbia, Vancouver, BC Canada
| | - Ali Emadi
- grid.25073.330000 0004 1936 8227Department of Mechanical Engineering, McMaster University, Hamilton, ON L8S 4L7 Canada ,grid.25073.330000 0004 1936 8227Department of Electrical and Computer Engineering, McMaster University, Hamilton, ON Canada
| | - Zahra Keshavarz-Motamed
- grid.25073.330000 0004 1936 8227Department of Mechanical Engineering, McMaster University, Hamilton, ON L8S 4L7 Canada ,grid.25073.330000 0004 1936 8227School of Biomedical Engineering, McMaster University, Hamilton, ON Canada ,grid.25073.330000 0004 1936 8227School of Computational Science and Engineering, McMaster University, Hamilton, ON Canada
| |
Collapse
|
10
|
Wiputra H, Chan WX, Foo YY, Ho S, Yap CH. Cardiac motion estimation from medical images: a regularisation framework applied on pairwise image registration displacement fields. Sci Rep 2020; 10:18510. [PMID: 33116206 PMCID: PMC7595231 DOI: 10.1038/s41598-020-75525-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 10/06/2020] [Indexed: 11/09/2022] Open
Abstract
Accurate cardiac motion estimation from medical images such as ultrasound is important for clinical evaluation. We present a novel regularisation layer for cardiac motion estimation that will be applied after image registration and demonstrate its effectiveness. The regularisation utilises a spatio-temporal model of motion, b-splines of Fourier, to fit to displacement fields from pairwise image registration. In the process, it enforces spatial and temporal smoothness and consistency, cyclic nature of cardiac motion, and better adherence to the stroke volume of the heart. Flexibility is further given for inclusion of any set of registration displacement fields. The approach gave high accuracy. When applied to human adult Ultrasound data from a Cardiac Motion Analysis Challenge (CMAC), the proposed method is found to have 10% lower tracking error over CMAC participants. Satisfactory cardiac motion estimation is also demonstrated on other data sets, including human fetal echocardiography, chick embryonic heart ultrasound images, and zebrafish embryonic microscope images, with the average Dice coefficient between estimation motion and manual segmentation at 0.82-0.87. The approach of performing regularisation as an add-on layer after the completion of image registration is thus a viable option for cardiac motion estimation that can still have good accuracy. Since motion estimation algorithms are complex, dividing up regularisation and registration can simplify the process and provide flexibility. Further, owing to a large variety of existing registration algorithms, such an approach that is usable on any algorithm may be useful.
Collapse
Affiliation(s)
- Hadi Wiputra
- Department of Biomedical Engineering, National University of Singapore, Singapore, 117583, Singapore
| | - Wei Xuan Chan
- Department of Biomedical Engineering, National University of Singapore, Singapore, 117583, Singapore
| | - Yoke Yin Foo
- Department of Biomedical Engineering, National University of Singapore, Singapore, 117583, Singapore
| | - Sheldon Ho
- Department of Biomedical Engineering, National University of Singapore, Singapore, 117583, Singapore
| | - Choon Hwai Yap
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK.
| |
Collapse
|
11
|
Ramaraju H, Ul-Haque A, Verga AS, Bocks ML, Hollister SJ. Modulating nonlinear elastic behavior of biodegradable shape memory elastomer and small intestinal submucosa(SIS) composites for soft tissue repair. J Mech Behav Biomed Mater 2020; 110:103965. [PMID: 32957256 DOI: 10.1016/j.jmbbm.2020.103965] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 06/17/2020] [Accepted: 06/29/2020] [Indexed: 01/08/2023]
Abstract
Structural repair of soft tissue for regenerative therapies can be advanced by developing biocompatible and bioresorbable materials with mechanical properties similar to the tissue targeted for therapy. Developing new materials modeling soft tissue mechanics can mitigate many limitations of material based therapies, specifically concerning the mechanical stress and deformation the material imposes on surrounding tissue structures. However, many elastomeric materials used in soft tissue repair lack the ability to be delivered through minimally invasive surgical (MIS) or transcatheter routes and require open surgical approaches for placement and application. We have developed a biocompatible and fully biodegradable shape memory elastomer, poly-(glycerol dodecanedioate) (PGD), which fulfills the requirements for hyperelasticity and exhibits shape memory behavior to serve as a novel substrate material for regenerative therapy in minimally invasive clinical procedures. Our previous work demonstrated control over the tangent modulus at 12.5% compressive strain between 1 and 3 MPa by increasing the crosslinking density in the polymer. In order to improve control over a broader range of mechanical properties, nonlinear behavior, and toughness, we 1) varied PGD physical crosslink density, 2) incorporated sheets of porcine small intestinal submucosa (SIS, Cook Biotech, Inc.) with varying thickness, and 3) mixed lyophilized SIS particulates into PGD at different weight percentages. Tensile testing (ASTM D412a) revealed PGD containing SIS sheets of were stiffer than controls (p < 0.01). Incorporating lyophilized SIS particulates into PGD increased the strain to failure (p < 0.001) compared to PGD controls. Test specimens with 1 ply sheets had greater tear strength (ASTM D624c) compared to PGD tear specimens prepared control specimens (p < 0.001). However, incorporating SIS particulates decreased tear strength of PGD-SIS 0.5 wt% particulate composites (p < 0.01) compared to PGD controls. Incorporating 2 ply and 4 ply sheets and 0.5 wt% particulates into PGD decreased the fixity and recovery of composite materials compared to controls (p < 0.01). Nonlinear modeling of stress strain curves under uniaxial tension demonstrated tunability of PGD-SIS composite materials to model various nonlinear soft tissues. These findings support the use of shape memory PGD-SIS composite materials towards the design of implantable devices for a variety of soft tissue regeneration applications by minimally invasive surgery.
Collapse
Affiliation(s)
- Harsha Ramaraju
- Georgia Institute of Technology, Wallace H. Coulter Department of Biomedical Engineering, Atlanta, GA, USA.
| | - Anum Ul-Haque
- Georgia Institute of Technology, Wallace H. Coulter Department of Biomedical Engineering, Atlanta, GA, USA
| | - Adam S Verga
- Georgia Institute of Technology, Wallace H. Coulter Department of Biomedical Engineering, Atlanta, GA, USA
| | - Martin L Bocks
- Case Western Reserve University, School of Medicine, Cleveland, OH, USA
| | - Scott J Hollister
- Georgia Institute of Technology, Wallace H. Coulter Department of Biomedical Engineering, Atlanta, GA, USA
| |
Collapse
|
12
|
Avazmohammadi R, Soares JS, Li DS, Eperjesi T, Pilla J, Gorman RC, Sacks MS. On the in vivo systolic compressibility of left ventricular free wall myocardium in the normal and infarcted heart. J Biomech 2020; 107:109767. [PMID: 32386714 PMCID: PMC7433024 DOI: 10.1016/j.jbiomech.2020.109767] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 03/26/2020] [Indexed: 01/01/2023]
Abstract
Although studied for many years, there remain continued gaps in our fundamental understanding of cardiac kinematics, such as the nature and extent of heart wall volumetric changes that occur over the cardiac cycle. Such knowledge is especially important for accurate in silico simulations of cardiac pathologies and in the development of novel therapies for their treatment. A prime example is myocardial infarction (MI), which induces profound, regionally variant maladaptive remodeling of the left ventricle (LV) wall. To address this problem, we conducted an in vivo fiduciary marker-based study in an established ovine model of MI to generate detailed, time-evolving transmural in vivo volumetric measurements of LV free wall deformations in the normal state, as well as up to 12 h post-MI. This was accomplished using a transmural array of sonomicrometry crystals that acquired fiducial positions at ∼250 Hz with a positional accuracy of ∼0.1 mm, covering the entire infarct, border, and remote zones. A convex-hull method was used to directly calculate the Jacobian J(t)=Δv(t)/ΔVED from sonocrystal positions over the entire cardiac cycle, where ΔV is the volume of each convex polyhedral at end diastole (ED) (typically ∼1 cc). We demonstrated significant in vivo compressibility in normal functioning LV free wall myocardium, with JES=0.85±0.07 at end systole (ES). We also observed substantial regional variations, with the largest reduction in local myocardial tissue volume during systole in the base region accompanied by substantial transmural gradients. These patterns changed profoundly following loss of perfusion post-MI, with the apical region showing the greatest loss of volume reduction at ES. To verify that the sonocrystals did not affect local volumetric measurements, JES measures were also verified by non-invasive magnetic resonance imaging, exhibiting very similar changes in regional volume. We note that while our estimates of regional compressibility were in close agreement with the values previously reported for large animals, ranging from 5% to 20%, the direct, comprehensive measurements of wall compressibility presented herein improved on the limitations of previous reports. These limitations included dependency on the small local volumes used for analysis and often indirect measurement of compressibility. Our novel findings suggest that proper accounting for the myocardial effective compressibility at the ∼1 cc volume scale can improve the accuracy of existing kinematic indices, such as wall thickening and axial shortening, and simulations of LV remodeling following MI.
Collapse
Affiliation(s)
- Reza Avazmohammadi
- James T. Willerson Center for Cardiovascular Modeling and Simulation, Oden Institute for Computational Engineering and Sciences, Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA; Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Joao S Soares
- Department of Mechanical and Nuclear Engineering, Virginia Commonweath University, Richmond VA 23284, USA
| | - David S Li
- James T. Willerson Center for Cardiovascular Modeling and Simulation, Oden Institute for Computational Engineering and Sciences, Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | - Thomas Eperjesi
- Gorman Cardiovascular Research Group, Perelman School of Medicine, Department of Surgery, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - James Pilla
- Gorman Cardiovascular Research Group, Perelman School of Medicine, Department of Surgery, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Robert C Gorman
- Gorman Cardiovascular Research Group, Perelman School of Medicine, Department of Surgery, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael S Sacks
- James T. Willerson Center for Cardiovascular Modeling and Simulation, Oden Institute for Computational Engineering and Sciences, Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
13
|
Wang H, Bennett-Kennett R, Paulsen MJ, Hironaka CE, Thakore AD, Farry JM, Eskandari A, Lucian HJ, Shin HS, Wu MA, Imbrie-Moore AM, Steele AN, Stapleton LM, Zhu Y, Dauskardt RH, Woo YJ. Multiaxial Lenticular Stress-Strain Relationship of Native Myocardium is Preserved by Infarct-Induced Natural Heart Regeneration in Neonatal Mice. Sci Rep 2020; 10:7319. [PMID: 32355240 PMCID: PMC7193551 DOI: 10.1038/s41598-020-63324-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 03/13/2020] [Indexed: 12/16/2022] Open
Abstract
Neonatal mice exhibit natural heart regeneration after myocardial infarction (MI) on postnatal day 1 (P1), but this ability is lost by postnatal day 7 (P7). Cardiac biomechanics intricately affect long-term heart function, but whether regenerated cardiac muscle is biomechanically similar to native myocardium remains unknown. We hypothesized that neonatal heart regeneration preserves native left ventricular (LV) biomechanical properties after MI. C57BL/6J mice underwent sham surgery or left anterior descending coronary artery ligation at age P1 or P7. Echocardiography performed 4 weeks post-MI showed that P1 MI and sham mice (n = 22, each) had similar LV wall thickness, diameter, and ejection fraction (59.6% vs 60.7%, p = 0.6514). Compared to P7 shams (n = 20), P7 MI mice (n = 20) had significant LV wall thinning, chamber enlargement, and depressed ejection fraction (32.6% vs 61.8%, p < 0.0001). Afterward, the LV was explanted and pressurized ex vivo, and the multiaxial lenticular stress-strain relationship was tracked. While LV tissue modulus for P1 MI and sham mice were similar (341.9 kPa vs 363.4 kPa, p = 0.6140), the modulus for P7 MI mice was significantly greater than that for P7 shams (691.6 kPa vs 429.2 kPa, p = 0.0194). We conclude that, in neonatal mice, regenerated LV muscle has similar biomechanical properties as native LV myocardium.
Collapse
Affiliation(s)
- Hanjay Wang
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
| | - Ross Bennett-Kennett
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | - Michael J Paulsen
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
| | - Camille E Hironaka
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
| | - Akshara D Thakore
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
| | - Justin M Farry
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
| | - Anahita Eskandari
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
| | - Haley J Lucian
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
| | - Hye Sook Shin
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
| | - Matthew A Wu
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
| | - Annabel M Imbrie-Moore
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
- Department of Mechanical Engineering, Stanford University, Stanford, CA, USA
| | - Amanda N Steele
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Lyndsay M Stapleton
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Yuanjia Zhu
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Reinhold H Dauskardt
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | - Y Joseph Woo
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA.
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA.
- Department of Bioengineering, Stanford University, Stanford, CA, USA.
| |
Collapse
|
14
|
Benson AP, Stevenson-Cocks HJ, Whittaker DG, White E, Colman MA. Multi-scale approaches for the simulation of cardiac electrophysiology: II - Tissue-level structure and function. Methods 2020; 185:60-81. [PMID: 31988002 DOI: 10.1016/j.ymeth.2020.01.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 11/15/2019] [Accepted: 01/14/2020] [Indexed: 02/06/2023] Open
Abstract
Computational models of the heart, from cell-level models, through one-, two- and three-dimensional tissue-level simplifications, to biophysically-detailed three-dimensional models of the ventricles, atria or whole heart, allow the simulation of excitation and propagation of this excitation, and have provided remarkable insight into the normal and pathological functioning of the heart. In this article we present equations for modelling cellular excitation (i.e. the cell action potential) from both a phenomenological and a biophysical perspective. Hodgkin-Huxley formalism is discussed, along with the current generation of biophysically-detailed cardiac cell models. Alternative Markovian formulations for modelling ionic currents are also presented. Equations describing propagation of this cellular excitation, through one-, two- and three-dimensional idealised or realistic tissues, are then presented. For all types of model, from cell to tissue, methods for discretisation and integration of the underlying equations are discussed. The article finishes with a discussion of two tissue-level experimental imaging techniques - diffusion tensor magnetic resonance imaging and optical imaging - that can be used to provide data for parameterisation and validation of cell- and tissue-level cardiac models.
Collapse
Affiliation(s)
- Alan P Benson
- School of Biomedical Sciences University of Leeds, Leeds LS2 9JT, UK.
| | | | - Dominic G Whittaker
- School of Biomedical Sciences University of Leeds, Leeds LS2 9JT, UK; School of Mathematical Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| | - Ed White
- School of Biomedical Sciences University of Leeds, Leeds LS2 9JT, UK
| | - Michael A Colman
- School of Biomedical Sciences University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
15
|
Liu W, Wang Z. Current Understanding of the Biomechanics of Ventricular Tissues in Heart Failure. Bioengineering (Basel) 2019; 7:E2. [PMID: 31861916 PMCID: PMC7175293 DOI: 10.3390/bioengineering7010002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/17/2019] [Accepted: 12/18/2019] [Indexed: 12/17/2022] Open
Abstract
Heart failure is the leading cause of death worldwide, and the most common cause of heart failure is ventricular dysfunction. It is well known that the ventricles are anisotropic and viscoelastic tissues and their mechanical properties change in diseased states. The tissue mechanical behavior is an important determinant of the function of ventricles. The aim of this paper is to review the current understanding of the biomechanics of ventricular tissues as well as the clinical significance. We present the common methods of the mechanical measurement of ventricles, the known ventricular mechanical properties including the viscoelasticity of the tissue, the existing computational models, and the clinical relevance of the ventricular mechanical properties. Lastly, we suggest some future research directions to elucidate the roles of the ventricular biomechanics in the ventricular dysfunction to inspire new therapies for heart failure patients.
Collapse
Affiliation(s)
- Wenqiang Liu
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO 80523, USA;
| | - Zhijie Wang
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO 80523, USA;
- Department of Mechanical Engineering, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
16
|
Du'o'ng MT, Holz D, Alkassar M, Dittrich S, Leyendecker S. Interaction of the Mechano-Electrical Feedback With Passive Mechanical Models on a 3D Rat Left Ventricle: A Computational Study. Front Physiol 2019; 10:1041. [PMID: 31607936 PMCID: PMC6769123 DOI: 10.3389/fphys.2019.01041] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 07/30/2019] [Indexed: 01/28/2023] Open
Abstract
In this paper, we are investigating the interaction between different passive material models and the mechano-electrical feedback (MEF) in cardiac modeling. Various types of passive mechanical laws (nearly incompressible/compressible, polynomial/exponential-type, transversally isotropic/orthotropic material models) are integrated in a fully coupled electromechanical model in order to study their specific influence on the overall MEF behavior. Our computational model is based on a three-dimensional (3D) geometry of a healthy rat left ventricle reconstructed from magnetic resonance imaging (MRI). The electromechanically coupled problem is solved using a fully implicit finite element-based approach. The effects of different passive material models on the MEF are studied with the help of numerical examples. It turns out that there is a significant difference between the behavior of the MEF for compressible and incompressible material models. Numerical results for the incompressible models exhibit that a change in the electrophysiology can be observed such that the transmembrane potential (TP) is unable to reach the resting state in the repolarization phase, and this leads to non-zero relaxation deformations. The most significant and strongest effects of the MEF on the rat cardiac muscle response are observed for the exponential passive material law.
Collapse
Affiliation(s)
- Minh Tuấn Du'o'ng
- Chair of Applied Dynamics, University of Erlangen-Nuremberg, Erlangen, Germany
- School of Mechanical Engineering, Hanoi University of Science and Technology, Hanoi, Vietnam
| | - David Holz
- Chair of Applied Dynamics, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Muhannad Alkassar
- Pediatric Cardiology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Sven Dittrich
- Pediatric Cardiology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Sigrid Leyendecker
- Chair of Applied Dynamics, University of Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
17
|
A viscoelastic adhesive epicardial patch for treating myocardial infarction. Nat Biomed Eng 2019; 3:632-643. [PMID: 30988471 DOI: 10.1038/s41551-019-0380-9] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 03/05/2019] [Indexed: 01/10/2023]
Abstract
Acellular epicardial patches that treat myocardial infarction by increasing the mechanical integrity of damaged left ventricular tissues exhibit widely scattered therapeutic efficacy. Here, we introduce a viscoelastic adhesive patch, made of an ionically crosslinked transparent hydrogel, that accommodates the cyclic deformation of the myocardium and outperforms most existing acellular epicardial patches in reversing left ventricular remodelling and restoring heart function after both acute and subacute myocardial infarction in rats. The superior performance of the patch results from its relatively low dynamic modulus, designed at the so-called 'gel point' via finite-element simulations of left ventricular remodelling so as to balance the fluid and solid properties of the material.
Collapse
|
18
|
Roche ET, Horvath MA, Wamala I, Alazmani A, Song SE, Whyte W, Machaidze Z, Payne CJ, Weaver JC, Fishbein G, Kuebler J, Vasilyev NV, Mooney DJ, Pigula FA, Walsh CJ. Soft robotic sleeve supports heart function. Sci Transl Med 2018; 9:9/373/eaaf3925. [PMID: 28100834 DOI: 10.1126/scitranslmed.aaf3925] [Citation(s) in RCA: 177] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 12/23/2016] [Indexed: 12/19/2022]
Abstract
There is much interest in form-fitting, low-modulus, implantable devices or soft robots that can mimic or assist in complex biological functions such as the contraction of heart muscle. We present a soft robotic sleeve that is implanted around the heart and actively compresses and twists to act as a cardiac ventricular assist device. The sleeve does not contact blood, obviating the need for anticoagulation therapy or blood thinners, and reduces complications with current ventricular assist devices, such as clotting and infection. Our approach used a biologically inspired design to orient individual contracting elements or actuators in a layered helical and circumferential fashion, mimicking the orientation of the outer two muscle layers of the mammalian heart. The resulting implantable soft robot mimicked the form and function of the native heart, with a stiffness value of the same order of magnitude as that of the heart tissue. We demonstrated feasibility of this soft sleeve device for supporting heart function in a porcine model of acute heart failure. The soft robotic sleeve can be customized to patient-specific needs and may have the potential to act as a bridge to transplant for patients with heart failure.
Collapse
Affiliation(s)
- Ellen T Roche
- School of Engineering and Applied Sciences, Harvard University, 29 Oxford Street, Cambridge, MA 02138, USA.,Wyss Institute for Biologically Inspired Engineering, 3 Blackfan Circle, Longwood, Boston, MA 02115, USA.,Discipline of Biomedical Engineering, College of Engineering and Informatics, National University of Ireland, Galway, Ireland
| | - Markus A Horvath
- School of Engineering and Applied Sciences, Harvard University, 29 Oxford Street, Cambridge, MA 02138, USA.,Wyss Institute for Biologically Inspired Engineering, 3 Blackfan Circle, Longwood, Boston, MA 02115, USA.,Technische Universität München, Boltzmannstraße 15, 85748 Garching, Germany
| | - Isaac Wamala
- Department of Cardiac Surgery, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Ali Alazmani
- School of Engineering and Applied Sciences, Harvard University, 29 Oxford Street, Cambridge, MA 02138, USA.,Wyss Institute for Biologically Inspired Engineering, 3 Blackfan Circle, Longwood, Boston, MA 02115, USA.,Department of Cardiac Surgery, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA.,School of Mechanical Engineering, University of Leeds, Leeds LS2 9JT, U.K
| | - Sang-Eun Song
- School of Engineering and Applied Sciences, Harvard University, 29 Oxford Street, Cambridge, MA 02138, USA.,Wyss Institute for Biologically Inspired Engineering, 3 Blackfan Circle, Longwood, Boston, MA 02115, USA.,Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL 32816, USA
| | - William Whyte
- School of Engineering and Applied Sciences, Harvard University, 29 Oxford Street, Cambridge, MA 02138, USA.,Wyss Institute for Biologically Inspired Engineering, 3 Blackfan Circle, Longwood, Boston, MA 02115, USA.,Advanced Materials and Bioengineering Research Centre, Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, Ireland
| | - Zurab Machaidze
- Department of Cardiac Surgery, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Christopher J Payne
- School of Engineering and Applied Sciences, Harvard University, 29 Oxford Street, Cambridge, MA 02138, USA.,Wyss Institute for Biologically Inspired Engineering, 3 Blackfan Circle, Longwood, Boston, MA 02115, USA
| | - James C Weaver
- Wyss Institute for Biologically Inspired Engineering, 3 Blackfan Circle, Longwood, Boston, MA 02115, USA
| | - Gregory Fishbein
- Department of Anatomic and Clinical Pathology, Ronald Reagan UCLA (University of California, Los Angeles) Medical Center, Los Angeles, CA 90095, USA
| | - Joseph Kuebler
- Department of Cardiology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Nikolay V Vasilyev
- Department of Cardiac Surgery, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA
| | - David J Mooney
- School of Engineering and Applied Sciences, Harvard University, 29 Oxford Street, Cambridge, MA 02138, USA.,Wyss Institute for Biologically Inspired Engineering, 3 Blackfan Circle, Longwood, Boston, MA 02115, USA
| | - Frank A Pigula
- Department of Cardiac Surgery, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA. .,Cardiovascular Surgery, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Conor J Walsh
- School of Engineering and Applied Sciences, Harvard University, 29 Oxford Street, Cambridge, MA 02138, USA. .,Wyss Institute for Biologically Inspired Engineering, 3 Blackfan Circle, Longwood, Boston, MA 02115, USA
| |
Collapse
|
19
|
Haddad SMH, Samani A. A finite element model of myocardial infarction using a composite material approach. Comput Methods Biomech Biomed Engin 2017; 21:33-46. [PMID: 29252005 DOI: 10.1080/10255842.2017.1416355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Computational models are effective tools to study cardiac mechanics under normal and pathological conditions. They can be used to gain insight into the physiology of the heart under these conditions while they are adaptable to computer assisted patient-specific clinical diagnosis and therapeutic procedures. Realistic cardiac mechanics models incorporate tissue active/passive response in conjunction with hyperelasticity and anisotropy. Conventional formulation of such models leads to mathematically-complex problems usually solved by custom-developed non-linear finite element (FE) codes. With a few exceptions, such codes are not available to the research community. This article describes a computational cardiac mechanics model developed such that it can be implemented using off-the-shelf FE solvers while tissue pathologies can be introduced in the model in a straight-forward manner. The model takes into account myocardial hyperelasticity, anisotropy, and active contraction forces. It follows a composite tissue modeling approach where the cardiac tissue is decomposed into two major parts: background and myofibers. The latter is modelled as rebars under initial stresses mimicking the contraction forces. The model was applied in silico to study the mechanics of infarcted left ventricle (LV) of a canine. End-systolic strain components, ejection fraction, and stress distribution attained using this LV model were compared quantitatively and qualitatively to corresponding data obtained from measurements as well as to other corresponding LV mechanics models. This comparison showed very good agreement.
Collapse
Affiliation(s)
- Seyyed M H Haddad
- a Graduate Program in Biomedical Engineering, Western University , London, Ontario , Canada
| | - Abbas Samani
- a Graduate Program in Biomedical Engineering, Western University , London, Ontario , Canada.,b Department of Medical Biophysics , Western University , London, Ontario , Canada.,c Department of Electrical and Computer Engineering , Western University , London, Ontario , Canada.,d Imaging Research Laboratories , Robarts Research Institute (RRI) , London, Ontario , Canada
| |
Collapse
|
20
|
Maganaris CN, Chatzistergos P, Reeves ND, Narici MV. Quantification of Internal Stress-Strain Fields in Human Tendon: Unraveling the Mechanisms that Underlie Regional Tendon Adaptations and Mal-Adaptations to Mechanical Loading and the Effectiveness of Therapeutic Eccentric Exercise. Front Physiol 2017; 8:91. [PMID: 28293194 PMCID: PMC5328946 DOI: 10.3389/fphys.2017.00091] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 02/02/2017] [Indexed: 12/23/2022] Open
Abstract
By virtue of their anatomical location between muscles and bones, tendons make it possible to transform contractile force to joint rotation and locomotion. However, tendons do not behave as rigid links, but exhibit viscoelastic tensile properties, thereby affecting the length and contractile force in the in-series muscle, but also storing and releasing elastic stain energy as some tendons are stretched and recoiled in a cyclic manner during locomotion. In the late 90s, advancements were made in the application of ultrasound scanning that allowed quantifying the tensile deformability and mechanical properties of human tendons in vivo. Since then, the main principles of the ultrasound-based method have been applied by numerous research groups throughout the world and showed that tendons increase their tensile stiffness in response to exercise training and chronic mechanical loading, in general, by increasing their size and improving their intrinsic material. It is often assumed that these changes occur homogenously, in the entire body of the tendon, but recent findings indicate that the adaptations may in fact take place in some but not all tendon regions. The present review focuses on these regional adaptability features and highlights two paradigms where they are particularly evident: (a) Chronic mechanical loading in healthy tendons, and (b) tendinopathy. In the former loading paradigm, local tendon adaptations indicate that certain regions may “see,” and therefore adapt to, increased levels of stress. In the latter paradigm, local pathological features indicate that certain tendon regions may be “stress-shielded” and degenerate over time. Eccentric exercise protocols have successfully been used in the management of tendinopathy, without much sound understanding of the mechanisms underpinning their effectiveness. For insertional tendinopathy, in particular, it is possible that the effectiveness of a loading/rehabilitation protocol depends on the topography of the stress created by the exercise and is not only reliant upon the type of muscle contraction performed. To better understand the micromechanical behavior and regional adaptability/mal-adaptability of tendon tissue it is important to estimate its internal stress-strain fields. Recent relevant advancements in numerical techniques related to tendon loading are discussed.
Collapse
Affiliation(s)
| | | | - Neil D Reeves
- School of Healthcare Science, Manchester Metropolitan University Manchester, UK
| | - Marco V Narici
- Faculty of Medicine and Health Sciences, School of Medicine, University of Nottingham Derby, UK
| |
Collapse
|
21
|
Zhang Q, Gao B, Chang Y. Computational Analysis of Intra-Ventricular Flow Pattern Under Partial and Full Support of BJUT-II VAD. Med Sci Monit 2017; 23:1043-1054. [PMID: 28239142 PMCID: PMC5341908 DOI: 10.12659/msm.900481] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Background Partial support, as a novel support mode, has been widely applied in clinical practice and widely studied. However, the precise mechanism of partial support of LVAD in the intra-ventricular flow pattern is unclear. Material/Methods In this study, a patient-specific left ventricular geometric model was reconstructed based on CT data. The intra-ventricular flow pattern under 3 simulated conditions – “heart failure”, “partial support”, and “full support” – were simulated by using fluid-structure interaction (FSI). The blood flow pattern, wall shear stress (WSS), time-average wall shear stress (TAWSS), oscillatory shear index (OSI), and relative residence time (RRT) were calculated to evaluate the hemodynamic effects. Results The results demonstrate that the intra-ventricular flow pattern is significantly changed by the support level of BJUT-II VAD. The intra-ventricular vortex was enhanced under partial support and was eliminated under full support, and the high OSI and RRT regions changed from the septum wall to the cardiac apex. Conclusions In brief, the support level of the BJUT-II VAD has significant effects on the intra-ventricular flow pattern. The partial support mode of BJUT-II VAD can enhance the intra-ventricular vortex, while the distribution of high OSI and RRT moved from the septum wall to the cardiac apex. Hence, the partial support mode of BJUT-II VAD can provide more benefit for intra-ventricular flow pattern.
Collapse
Affiliation(s)
- Qi Zhang
- School of Life Sciences and BioEngineering, Beijing University of Technology, Beijing, China (mainland)
| | - Bin Gao
- School of Life Science and BioEngineering, Beijing University of Technology, Beijing, China (mainland)
| | - Yu Chang
- School of Life Science and BioEngineering, Beijing University of Technology, Beijing, China (mainland)
| |
Collapse
|
22
|
Navaei A, Saini H, Christenson W, Sullivan RT, Ros R, Nikkhah M. Gold nanorod-incorporated gelatin-based conductive hydrogels for engineering cardiac tissue constructs. Acta Biomater 2016; 41:133-46. [PMID: 27212425 DOI: 10.1016/j.actbio.2016.05.027] [Citation(s) in RCA: 210] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 03/28/2016] [Accepted: 05/18/2016] [Indexed: 10/21/2022]
Abstract
UNLABELLED The development of advanced biomaterials is a crucial step to enhance the efficacy of tissue engineering strategies for treatment of myocardial infarction. Specific characteristics of biomaterials including electrical conductivity, mechanical robustness and structural integrity need to be further enhanced to promote the functionalities of cardiac cells. In this work, we fabricated UV-crosslinkable gold nanorod (GNR)-incorporated gelatin methacrylate (GelMA) hybrid hydrogels with enhanced material and biological properties for cardiac tissue engineering. Embedded GNRs promoted electrical conductivity and mechanical stiffness of the hydrogel matrix. Cardiomyocytes seeded on GelMA-GNR hybrid hydrogels exhibited excellent cell retention, viability, and metabolic activity. The increased cell adhesion resulted in abundance of locally organized F-actin fibers, leading to the formation of an integrated tissue layer on the GNR-embedded hydrogels. Immunostained images of integrin β-1 confirmed improved cell-matrix interaction on the hybrid hydrogels. Notably, homogeneous distribution of cardiac specific markers (sarcomeric α-actinin and connexin 43), were observed on GelMA-GNR hydrogels as a function of GNRs concentration. Furthermore, the GelMA-GNR hybrids supported synchronous tissue-level beating of cardiomyocytes. Similar observations were also noted by, calcium transient assay that demonstrated the rhythmic contraction of the cardiomyocytes on GelMA-GNR hydrogels as compared to pure GelMA. Thus, the findings of this study clearly demonstrated that functional cardiac patches with superior electrical and mechanical properties can be developed using nanoengineered GelMA-GNR hybrid hydrogels. STATEMENT OF SIGNIFICANCE In this work, we developed gold nanorod (GNR) incorporated gelatin-based hydrogels with suitable electrical conductivity and mechanical stiffness for engineering functional cardiac tissue constructs (e.g. cardiac patches). The synthesized conductive hybrid hydrogels properly accommodated cardiac cells and subsequently resulted in excellent cell retention, spreading, homogeneous distribution of cardiac specific markers, cell-cell coupling as well as robust synchronized (tissue-level) beating behavior.
Collapse
|
23
|
Fan L, Yao J, Yang C, Tang D, Xu D. Infarcted Left Ventricles Have Stiffer Material Properties and Lower Stiffness Variation: Three-Dimensional Echo-Based Modeling to Quantify In Vivo Ventricle Material Properties. J Biomech Eng 2015; 137:081005. [PMID: 25994130 DOI: 10.1115/1.4030668] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Indexed: 11/08/2022]
Abstract
Methods to quantify ventricle material properties noninvasively using in vivo data are of great important in clinical applications. An ultrasound echo-based computational modeling approach was proposed to quantify left ventricle (LV) material properties, curvature, and stress/strain conditions and find differences between normal LV and LV with infarct. Echo image data were acquired from five patients with myocardial infarction (I-Group) and five healthy volunteers as control (H-Group). Finite element models were constructed to obtain ventricle stress and strain conditions. Material stiffening and softening were used to model ventricle active contraction and relaxation. Systolic and diastolic material parameter values were obtained by adjusting the models to match echo volume data. Young's modulus (YM) value was obtained for each material stress-strain curve for easy comparison. LV wall thickness, circumferential and longitudinal curvatures (C- and L-curvature), material parameter values, and stress/strain values were recorded for analysis. Using the mean value of H-Group as the base value, at end-diastole, I-Group mean YM value for the fiber direction stress-strain curve was 54% stiffer than that of H-Group (136.24 kPa versus 88.68 kPa). At end-systole, the mean YM values from the two groups were similar (175.84 kPa versus 200.2 kPa). More interestingly, H-Group end-systole mean YM was 126% higher that its end-diastole value, while I-Group end-systole mean YM was only 29% higher that its end-diastole value. This indicated that H-Group had much greater systole-diastole material stiffness variations. At beginning-of-ejection (BE), LV ejection fraction (LVEF) showed positive correlation with C-curvature, stress, and strain, and negative correlation with LV volume, respectively. At beginning-of-filling (BF), LVEF showed positive correlation with C-curvature and strain, but negative correlation with stress and LV volume, respectively. Using averaged values of two groups at BE, I-Group stress, strain, and wall thickness were 32%, 29%, and 18% lower (thinner), respectively, compared to those of H-Group. L-curvature from I-Group was 61% higher than that from H-Group. Difference in C-curvature between the two groups was not statistically significant. Our results indicated that our modeling approach has the potential to determine in vivo ventricle material properties, which in turn could lead to methods to infer presence of infarct from LV contractibility and material stiffness variations. Quantitative differences in LV volume, curvatures, stress, strain, and wall thickness between the two groups were provided.
Collapse
|