1
|
Bagchi A, Ghosh P, Ghosh A, Chatterjee M. Role of oxidative stress in induction of trans-differentiation of neutrophils in patients with rheumatoid arthritis. Free Radic Res 2022; 56:290-302. [PMID: 35730185 DOI: 10.1080/10715762.2022.2089567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Rheumatoid arthritis (RA) is an autoimmune disorder whose etiopathology involves an interplay between genetic and environmental factors, with oxidative stress being a key contributory factor. This study aimed to establish the impact, if any, of an oxidative, pro-inflammatory milieu upon trans-differentiation of neutrophils and disease progression. In the synovial fluid (SF) and peripheral blood sourced from patients with RA (n = 40) along with healthy controls (n = 25), the proportion of neutrophil-dendritic (N-DC) cell hybrids, i.e. CD66b+/CD83+ was characterized in terms of their antigen presentation (HLA-DR, CD80, andCD86) and cell adhesion and migration (ICAM-1, VCAM-1, and CD62L) properties, along with their ability to generate reactive oxygen species (ROS). In the SF of RA cases, the raised levels of circulating and intra-neutrophilic pro-inflammatory cytokines/chemokines were accompanied by an enhanced proportion of CD66b+ neutrophils, that co-expressed features of antigen presenting cells (APCs) namely CD83, HLA-DR, CD80, CD86, ICAM-1, VCAM-1, and decreased CD62L. These N-DCs as compared to canonical neutrophils demonstrated a higher generation of ROS, and their frequency positively correlated with disease activity score (DAS28). An ex-vivo functional assay validated that oxidative stress supported trans-differentiation and could be attenuated by a free radical scavenger. Taken together, the pro-inflammatory microenvironment in the SF of patients with RA coupled with a higher generation of ROS promoted the trans-differentiation of neutrophils into N-DCs, suggesting the inclusion of anti-oxidants as an add-on therapeutic strategy to limit trans-differentiation.
Collapse
Affiliation(s)
- Aniruddha Bagchi
- Department of Pharmacology, Institute of Post Graduate Medical Education and Research, Kolkata, India
| | - Parasar Ghosh
- Rheumatology and Clinical Immunology, Institute of Post Graduate Medical Education and Research, Kolkata, India
| | - Alakendu Ghosh
- Rheumatology and Clinical Immunology, Institute of Post Graduate Medical Education and Research, Kolkata, India
| | - Mitali Chatterjee
- Department of Pharmacology, Institute of Post Graduate Medical Education and Research, Kolkata, India
| |
Collapse
|
2
|
Hussain SRA, Rohlfing M, Resiliac J, Santoro J, Peeples ME, Garcin D, Grayson MH. Atopic Neutrophils Prevent Postviral Airway Disease. THE JOURNAL OF IMMUNOLOGY 2021; 207:2589-2597. [PMID: 34625522 DOI: 10.4049/jimmunol.2100766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 09/13/2021] [Indexed: 11/19/2022]
Abstract
Respiratory syncytial virus (RSV) infection in infancy is associated with increased risk of asthma, except in those with allergic disease at the time of infection. Using house dust mite allergen, we examined the effect of pre-existing atopy on postviral airway disease using Sendai virus in mice, which models RSV infection in humans. Sendai virus drives postviral airway disease in nonatopic mice; however, pre-existing atopy protected against the development of airway disease. This protection depended upon neutrophils, as depletion of neutrophils at the time of infection restored the susceptibility of atopic mice to postviral airway disease. Associated with development of atopy was an increase in polymorphonuclear neutrophil-dendritic cell hybrid cells that develop in Th2 conditions and demonstrated increased viral uptake. Systemic inhibition of IL-4 reversed atopic protection against postviral airway disease, suggesting that increased virus uptake by neutrophils was IL-4 dependent. Finally, human neutrophils from atopic donors were able to reduce RSV infection of human airway epithelial cells in vitro, suggesting these findings could apply to the human. Collectively our data support the idea that pre-existing atopy derives a protective neutrophil response via potential interaction with IL-4, preventing development of postviral airway disease.
Collapse
Affiliation(s)
- Syed-Rehan A Hussain
- Division of Allergy and Immunology, Nationwide Children's Hospital and The Ohio State University College of Medicine, Columbus, OH; .,Center for Clinical and Translational Research, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH
| | - Michelle Rohlfing
- Division of Allergy and Immunology, Nationwide Children's Hospital and The Ohio State University College of Medicine, Columbus, OH.,Center for Clinical and Translational Research, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH
| | - Jenny Resiliac
- Division of Allergy and Immunology, Nationwide Children's Hospital and The Ohio State University College of Medicine, Columbus, OH.,Center for Clinical and Translational Research, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH.,Biomedical Sciences Graduate Program, The Ohio State University College of Medicine, Columbus, OH
| | - Jennifer Santoro
- Division of Allergy and Immunology, Nationwide Children's Hospital and The Ohio State University College of Medicine, Columbus, OH.,Center for Clinical and Translational Research, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH
| | - Mark E Peeples
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH.,Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH; and
| | - Dominique Garcin
- Department of Microbiology and Molecular Medicine, University Medical Center, Geneva, Switzerland
| | - Mitchell H Grayson
- Division of Allergy and Immunology, Nationwide Children's Hospital and The Ohio State University College of Medicine, Columbus, OH; .,Center for Clinical and Translational Research, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH.,Biomedical Sciences Graduate Program, The Ohio State University College of Medicine, Columbus, OH.,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH
| |
Collapse
|
3
|
Lok LSC, Clatworthy MR. Neutrophils in secondary lymphoid organs. Immunology 2021; 164:677-688. [PMID: 34411302 PMCID: PMC8561103 DOI: 10.1111/imm.13406] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/02/2021] [Accepted: 08/16/2021] [Indexed: 12/15/2022] Open
Abstract
Neutrophils are traditionally considered short‐lived, circulating innate immune cells that are rapidly recruited to sites of inflammation in response to infectious and inflammatory stimuli. Neutrophils efficiently internalize, kill or entrap pathogens, but their effector molecules may cause collateral tissue damage. More recently, it has been appreciated that neutrophils can also influence adaptive immunity. Lymph nodes (LNs) are immune cell‐rich secondary lymphoid organs that provide an ideal platform for cellular interaction and the integration of immunological information collected from local tissues. A variety of peripheral stimuli promote neutrophil migration to draining LNs via blood or lymphatics, utilizing differing molecular cues depending on the site of entry. Within LNs, neutrophils interact with other innate and adaptive cells. Crosstalk with subcapsular sinus macrophages contributes to the control of pathogen spread beyond the LN. Neutrophils can influence antigen presentation indirectly by interacting with DCs or directly by expressing major histocompatibility complex (MHC) and costimulatory molecules for antigen presentation. Interactions between neutrophils and adaptive lymphocytes can alter B‐cell antibody responses. Studies have shown conflicting results on whether neutrophils exert stimulatory or inhibitory effects on other LN immune cells, with stimulus‐specific and temporal differences in the outcome of these interactions. Furthermore, neutrophils have also been shown to traffick to LNs in homeostasis, with a potential role in immune surveillance, antigen capture and in shaping early adaptive responses in LNs. Understanding the mechanisms underpinning the effects of neutrophils on LN immune cells and adaptive immunity could facilitate the development of neutrophil‐targeted therapies in inflammatory diseases.
Collapse
Affiliation(s)
- Laurence S C Lok
- Molecular Immunity Unit, MRC Laboratory of Molecular Biology, University of Cambridge Department of Medicine, Cambridge, UK.,Cambridge Institute for Therapeutic Immunology and Infectious Diseases, University of Cambridge, Cambridge, UK.,Department of Immunology and Cell Biology, Graduate School of Medicine, Osaka University, Osaka, Japan.,Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Menna R Clatworthy
- Molecular Immunity Unit, MRC Laboratory of Molecular Biology, University of Cambridge Department of Medicine, Cambridge, UK.,Cambridge Institute for Therapeutic Immunology and Infectious Diseases, University of Cambridge, Cambridge, UK.,Cellular Genetics, Wellcome Sanger Institute, Hinxton, UK
| |
Collapse
|
4
|
Vlkova M, Chovancova Z, Nechvatalova J, Connelly AN, Davis MD, Slanina P, Travnickova L, Litzman M, Grymova T, Soucek P, Freiberger T, Litzman J, Hel Z. Neutrophil and Granulocytic Myeloid-Derived Suppressor Cell-Mediated T Cell Suppression Significantly Contributes to Immune Dysregulation in Common Variable Immunodeficiency Disorders. THE JOURNAL OF IMMUNOLOGY 2018; 202:93-104. [PMID: 30487174 DOI: 10.4049/jimmunol.1800102] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 10/26/2018] [Indexed: 12/11/2022]
Abstract
Common variable immunodeficiency disorders (CVID) represent a group of primary immunodeficiency diseases characterized by hypogammaglobulinemia and impaired specific Ab response, resulting in recurrent infections due to dysfunctional immune response. The specific mechanisms mediating immune deficiency in CVID remain to be determined. Previous studies indicated that immune dysregulation in CVID patients is associated with chronic microbial translocation, systemic immune activation, and altered homeostasis of lymphocytic and myeloid lineages. A detailed phenotypic, functional characterization of plasma markers and immune cell populations was performed in 46 CVID patients and 44 healthy donors. CVID patients displayed significantly elevated plasma levels of a marker of neutrophil activation neutrophil gelatinase-associated lipocalin. Neutrophils from CVID patients exhibited elevated surface levels of CD11b and PD-L1 and decreased levels of CD62L, CD16, and CD80, consistent with a phenotype of activated neutrophils with suppressive properties. Neutrophils from CVID patients actively suppressed T cell activation and release of IFN-γ via the production of reactive oxygen species. Furthermore, CVID was associated with an increased frequency of low-density neutrophils (LDNs)/granulocytic myeloid-derived suppressor cells. LDN/granulocytic myeloid-derived suppressor cell frequency in CVID patients correlated with reduced T cell responsiveness. Exogenous stimulation of whole blood with bacterial LPS emulated some but not all of the phenotypic changes observed on neutrophils from CVID patients and induced neutrophil population with LDN phenotype. The presented data demonstrate that neutrophils in the blood of CVID patients acquire an activated phenotype and exert potent T cell suppressive activity. Specific targeting of myeloid cell-derived suppressor activity represents a novel potential therapeutic strategy for CVID.
Collapse
Affiliation(s)
- Marcela Vlkova
- Department of Clinical Immunology and Allergology, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic; .,St. Anne's University Hospital, 656 91 Brno, Czech Republic
| | - Zita Chovancova
- Department of Clinical Immunology and Allergology, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic.,St. Anne's University Hospital, 656 91 Brno, Czech Republic
| | - Jana Nechvatalova
- Department of Clinical Immunology and Allergology, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic.,St. Anne's University Hospital, 656 91 Brno, Czech Republic
| | - Ashley Nicole Connelly
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35249.,Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Marcus Darrell Davis
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35249.,Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Peter Slanina
- Department of Clinical Immunology and Allergology, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic.,St. Anne's University Hospital, 656 91 Brno, Czech Republic
| | - Lucie Travnickova
- Department of Clinical Immunology and Allergology, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic
| | - Marek Litzman
- Department of Economics, Faculty of Business and Economics, Mendel University in Brno, 613 00 Brno, Czech Republic
| | - Tereza Grymova
- Central European Institute of Technology, Masaryk University, 601 77 Brno, Czech Republic; and.,Centre for Cardiovascular Surgery and Transplantation, 656 91 Brno, Czech Republic
| | - Premysl Soucek
- Central European Institute of Technology, Masaryk University, 601 77 Brno, Czech Republic; and.,Centre for Cardiovascular Surgery and Transplantation, 656 91 Brno, Czech Republic
| | - Tomas Freiberger
- Department of Clinical Immunology and Allergology, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic.,Central European Institute of Technology, Masaryk University, 601 77 Brno, Czech Republic; and.,Centre for Cardiovascular Surgery and Transplantation, 656 91 Brno, Czech Republic
| | - Jiri Litzman
- Department of Clinical Immunology and Allergology, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic.,St. Anne's University Hospital, 656 91 Brno, Czech Republic
| | - Zdenek Hel
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35249.,Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294
| |
Collapse
|
5
|
Mortaz E, Alipoor SD, Adcock IM, Mumby S, Koenderman L. Update on Neutrophil Function in Severe Inflammation. Front Immunol 2018; 9:2171. [PMID: 30356867 PMCID: PMC6190891 DOI: 10.3389/fimmu.2018.02171] [Citation(s) in RCA: 245] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 09/03/2018] [Indexed: 12/17/2022] Open
Abstract
Neutrophils are main players in the effector phase of the host defense against micro-organisms and have a major role in the innate immune response. Neutrophils show phenotypic heterogeneity and functional flexibility, which highlight their importance in regulation of immune function. However, neutrophils can play a dual role and besides their antimicrobial function, deregulation of neutrophils and their hyperactivity can lead to tissue damage in severe inflammation or trauma. Neutrophils also have an important role in the modulation of the immune system in response to severe injury and trauma. In this review we will provide an overview of the current understanding of neutrophil subpopulations and their function during and post-infection and discuss the possible mechanisms of immune modulation by neutrophils in severe inflammation.
Collapse
Affiliation(s)
- Esmaeil Mortaz
- Department of Immunology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shamila D Alipoor
- Molecular Medicine Department, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Ian M Adcock
- Priority Research Centre for Asthma and Respiratory Disease, Hunter Medical Research Institute, University of Newcastle, Newcastle, NSW, Australia.,Airways Disease Section, Faculty of Medicine, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Sharon Mumby
- Airways Disease Section, Faculty of Medicine, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Leo Koenderman
- Laboratory of Translational Immunology, Department of Respiratory Medicine, University Medical Centre Utrecht, Utrecht, Netherlands
| |
Collapse
|
6
|
Fites JS, Gui M, Kernien JF, Negoro P, Dagher Z, Sykes DB, Nett JE, Mansour MK, Klein BS. An unappreciated role for neutrophil-DC hybrids in immunity to invasive fungal infections. PLoS Pathog 2018; 14:e1007073. [PMID: 29782541 PMCID: PMC5983859 DOI: 10.1371/journal.ppat.1007073] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 06/01/2018] [Accepted: 05/03/2018] [Indexed: 12/15/2022] Open
Abstract
Neutrophils are classically defined as terminally differentiated, short-lived cells; however, neutrophils can be long-lived with phenotypic plasticity. During inflammation, a subset of neutrophils transdifferentiate into a population called neutrophil-DC hybrids (PMN-DCs) having properties of both neutrophils and dendritic cells. While these cells ubiquitously appear during inflammation, the role of PMN-DCs in disease remains poorly understood. We observed the differentiation of PMN-DCs in pre-clinical murine models of fungal infection: blastomycosis, aspergillosis and candidiasis. Using reporter strains of fungal viability, we found that PMN-DCs associate with fungal cells and kill them more efficiently than undifferentiated canonical neutrophils. During pulmonary blastomycosis, PMN-DCs comprised less than 1% of leukocytes yet contributed up to 15% of the fungal killing. PMN-DCs displayed higher expression of pattern recognition receptors, greater phagocytosis, and heightened production of reactive oxygen species compared to canonical neutrophils. PMN-DCs also displayed prominent NETosis. To further study PMN-DC function, we exploited a granulocyte/macrophage progenitor (GMP) cell line, generated PMN-DCs to over 90% purity, and used them for adoptive transfer and antigen presentation studies. Adoptively transferred PMN-DCs from the GMP line enhanced protection against systemic infection in vivo. PMN-DCs pulsed with antigen activated fungal calnexin-specific transgenic T cells in vitro and in vivo, promoting the production of interferon-γ and interleukin-17 in these CD4+ T cells. Through direct fungal killing and induction of adaptive immunity, PMN-DCs are potent effectors of antifungal immunity and thereby represent innovative cell therapeutic targets in treating life-threatening fungal infections.
Collapse
Affiliation(s)
- J. Scott Fites
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Michael Gui
- Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - John F. Kernien
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Paige Negoro
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Zeina Dagher
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - David B. Sykes
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jeniel E. Nett
- Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Michael K. Mansour
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Bruce S. Klein
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
- Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| |
Collapse
|
7
|
Neutrophil programming dynamics and its disease relevance. SCIENCE CHINA-LIFE SCIENCES 2017; 60:1168-1177. [PMID: 28971361 DOI: 10.1007/s11427-017-9145-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 07/21/2017] [Indexed: 12/27/2022]
Abstract
Neutrophils are traditionally considered as first responders to infection and provide antimicrobial host defense. However, recent advances indicate that neutrophils are also critically involved in the modulation of host immune environments by dynamically adopting distinct functional states. Functionally diverse neutrophil subsets are increasingly recognized as critical components mediating host pathophysiology. Despite its emerging significance, molecular mechanisms as well as functional relevance of dynamically programmed neutrophils remain to be better defined. The increasing complexity of neutrophil functions may require integrative studies that address programming dynamics of neutrophils and their pathophysiological relevance. This review aims to provide an update on the emerging topics of neutrophil programming dynamics as well as their functional relevance in diseases.
Collapse
|
8
|
Davis RE, Sharma S, Conceição J, Carneiro P, Novais F, Scott P, Sundar S, Bacellar O, Carvalho EM, Wilson ME. Phenotypic and functional characteristics of HLA-DR + neutrophils in Brazilians with cutaneous leishmaniasis. J Leukoc Biol 2016; 101:739-749. [PMID: 28076241 DOI: 10.1189/jlb.4a0915-442rr] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Revised: 09/08/2016] [Accepted: 09/25/2016] [Indexed: 11/24/2022] Open
Abstract
The protozoan Leishmania braziliensis causes cutaneous leishmaniasis (CL) in endemic regions. In murine models, neutrophils (PMNs) are recruited to the site of infection soon after parasite inoculation. However, the roles of neutrophils during chronic infection and in human disease remain undefined. We hypothesized that neutrophils help maintain a systemic inflammatory state in subjects with CL. Lesion biopsies from all patients with CL tested contained neutrophils expressing HLA-DR, a molecule thought to be restricted to professional antigen-presenting cells. Although CL is a localized disease, a subset of patients with CL also had circulating neutrophils expressing HLA-DR and the costimulatory molecules CD80, CD86, and CD40. PMNs isolated from a low-density leukocyte blood fraction (LD-PMNs) contained a higher percentage of HLA-DR+ PMNs than did normal-density PMNs. In vitro coculture experiments suggested LD-PMNs do not suppress T cell responses, differentiating them from MDSCs. Flow-sorted HLA-DR+ PMNs morphologically resembled conventional PMNs, and they exhibited functional properties of PMNs. Compared with conventional PMNs, HLA-DR+ PMNs showed increased activation, degranulation, DHR123 oxidation, and phagocytic capacity. A few HLA-DR+ PMNs were observed in healthy subjects, and that proportion could be increased by incubation in either inflammatory cytokines or in plasma from a patient with CL. This was accompanied by an increase in PMN hladrb1 mRNA, suggesting a possible connection between neutrophil "priming" and up-regulation of HLA-DR. These data suggest that PMNs that are primed for activation and that also express surface markers of antigen-presenting cells emerge in the circulation and infected tissue lesions of patients with CL.
Collapse
Affiliation(s)
- Richard E Davis
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, Iowa, USA
| | - Smriti Sharma
- Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Jacilara Conceição
- Serviço de Imunologia, Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, Bahia, Brazil.,Instituto Nacional de Ciência e Tecnologia de Doenças Tropicais, INCT-DT (CNPq/MCT), Salvador, Bahia, Brazil
| | - Pedro Carneiro
- Serviço de Imunologia, Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, Bahia, Brazil.,Instituto Nacional de Ciência e Tecnologia de Doenças Tropicais, INCT-DT (CNPq/MCT), Salvador, Bahia, Brazil
| | - Fernanda Novais
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Phillip Scott
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Shyam Sundar
- Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Olivia Bacellar
- Serviço de Imunologia, Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, Bahia, Brazil.,Instituto Nacional de Ciência e Tecnologia de Doenças Tropicais, INCT-DT (CNPq/MCT), Salvador, Bahia, Brazil
| | - Edgar M Carvalho
- Serviço de Imunologia, Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, Bahia, Brazil.,Instituto Nacional de Ciência e Tecnologia de Doenças Tropicais, INCT-DT (CNPq/MCT), Salvador, Bahia, Brazil.,Fundação Gonçalo Muniz, Fiocruz-Bahia, Salvador, Bahia Brazil
| | - Mary E Wilson
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, Iowa, USA; .,Departments of Internal Medicine and Microbiology, University of Iowa, Iowa City, Iowa, USA; and.,Research Service, Iowa City Veterans' Affairs Medical Center, Iowa City, Iowa, USA
| |
Collapse
|
9
|
Dyugovskaya L, Berger S, Polyakov A, Lavie P, Lavie L. Intermittent Hypoxia Affects the Spontaneous Differentiation In Vitro of Human Neutrophils into Long-Lived Giant Phagocytes. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2016:9636937. [PMID: 26635914 PMCID: PMC4655297 DOI: 10.1155/2016/9636937] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 07/01/2015] [Indexed: 11/17/2022]
Abstract
Previously we identified, for the first time, a new small-size subset of neutrophil-derived giant phagocytes (Gϕ) which spontaneously develop in vitro without additional growth factors or cytokines. Gϕ are CD66b(+)/CD63(+)/MPO(+)/LC3B(+) and are characterized by extended lifespan, large phagolysosomes, active phagocytosis, and reactive oxygen species (ROS) production, and autophagy largely controls their formation. Hypoxia, and particularly hypoxia/reoxygenation, is a prominent feature of many pathological processes. Herein we investigated Gϕ formation by applying various hypoxic conditions. Chronic intermittent hypoxia (IH) (29 cycles/day for 5 days) completely abolished Gϕ formation, while acute IH had dose-dependent effects. Exposure to 24 h (56 IH cycles) decreased their size, yield, phagocytic ability, autophagy, mitophagy, and gp91-phox/p22-phox expression, whereas under 24 h sustained hypoxia (SH) the size and expression of LC3B and gp91-phox/p22-phox resembled Gϕ formed in normoxia. Diphenyl iodide (DPI), a NADPH oxidase inhibitor, as well as the PI3K/Akt and autophagy inhibitor LY294002 abolished Gϕ formation at all oxygen conditions. However, the potent antioxidant, N-acetylcysteine (NAC) abrogated the effects of IH by inducing large CD66b(+)/LC3B(+) Gϕ and increased both NADPH oxidase expression and phagocytosis. These findings suggest that NADPH oxidase, autophagy, and the PI3K/Akt pathway are involved in Gϕ development.
Collapse
Affiliation(s)
- Larissa Dyugovskaya
- The Lloyd Rigler Sleep Apnea Research Laboratory, Unit of Anatomy and Cell Biology, The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, 31096 Haifa, Israel
| | - Slava Berger
- The Lloyd Rigler Sleep Apnea Research Laboratory, Unit of Anatomy and Cell Biology, The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, 31096 Haifa, Israel
| | - Andrey Polyakov
- The Lloyd Rigler Sleep Apnea Research Laboratory, Unit of Anatomy and Cell Biology, The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, 31096 Haifa, Israel
| | - Peretz Lavie
- The Lloyd Rigler Sleep Apnea Research Laboratory, Unit of Anatomy and Cell Biology, The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, 31096 Haifa, Israel
| | - Lena Lavie
- The Lloyd Rigler Sleep Apnea Research Laboratory, Unit of Anatomy and Cell Biology, The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, 31096 Haifa, Israel
| |
Collapse
|
10
|
Yao Y, Matsushima H, Ohtola JA, Geng S, Lu R, Takashima A. Neutrophil priming occurs in a sequential manner and can be visualized in living animals by monitoring IL-1β promoter activation. THE JOURNAL OF IMMUNOLOGY 2014; 194:1211-24. [PMID: 25527787 DOI: 10.4049/jimmunol.1402018] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Rapid enhancement of phagocyte functionality is a hallmark of neutrophil priming. GeneChip analyses unveiled elevated CD54, dectin-2, and IL-1β mRNA expression by neutrophils isolated from inflammatory sites. In fact, CD54 and dectin-2 protein expression was detected on neutrophils recovered from skin, peritoneal, and lung inflammation lesions but not on those in bone marrow or peripheral blood. Neutrophils increased CD54 and dectin-2 mRNA during migration in Boyden chambers and acquired CD54 and dectin-2 surface expression after subsequent exposure to GM-CSF. Neutrophils purified from IL-1β promoter-driven DsRed-transgenic mice acquired DsRed signals during cell migration or exposure to GM-CSF. CD54 and dectin-2 were expressed by DsRed(+) (but not DsRed(-)) neutrophils in GM-CSF-supplemented cultures, and neutrophils recovered from inflammatory sites exhibited strong DsRed signals. The dynamic process of neutrophil priming was studied in chemically induced inflammatory skin lesions by monitoring DsRed expression using confocal microscopy. A majority (>80%) of Ly6G(+) neutrophils expressed DsRed, and those DsRed(+)/Ly6G(+) cells exhibited crawling motion with a higher velocity compared with their DsRed(-)/Ly6G(+) counterparts. This report unveils motile behaviors of primed neutrophils in living animals. We propose that neutrophil priming occurs in a sequential manner with rapid enhancement of phagocyte functionality, followed by CD54 and dectin-2 mRNA and protein expression, IL-1β promoter activation, and accelerated motility. Not only do these findings provide a new conceptual framework for our understanding of the process of neutrophil priming, they also unveil new insights into the pathophysiology of many inflammatory disorders that are characterized by neutrophil infiltration.
Collapse
Affiliation(s)
- Yi Yao
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine, Toledo, OH 43614
| | - Hironori Matsushima
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine, Toledo, OH 43614
| | - Jennifer A Ohtola
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine, Toledo, OH 43614
| | - Shuo Geng
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine, Toledo, OH 43614
| | - Ran Lu
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine, Toledo, OH 43614
| | - Akira Takashima
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine, Toledo, OH 43614
| |
Collapse
|