1
|
Wamsley EJ, Trost T, Tucker M. Memory updating in dreams. SLEEP ADVANCES : A JOURNAL OF THE SLEEP RESEARCH SOCIETY 2024; 5:zpae096. [PMID: 39749230 PMCID: PMC11694696 DOI: 10.1093/sleepadvances/zpae096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 11/09/2024] [Indexed: 01/04/2025]
Abstract
Robert Stickgold's research was among the earliest to rigorously quantify the effect of learning on dream content. As a result, we learned that dreaming is influenced by the activation of newly formed memory traces in the sleeping brain. Exactly how this happens is an ongoing area of investigation. Here, we test the hypothesis that participants are especially likely to dream of recent experiences, which overlap with well-established semantic networks. We created an artificial situation in which participants encountered new information about a person with which they have extensive past experience-a favorite celebrity. We tracked the effect of novel information about a favorite celebrity on participants' dream content across 3 consecutive nights and queried participants about other recent and remote memory sources of their dreams. While the celebrity manipulation failed to affect dream content, this dataset provides rich descriptive information about how recent and remote memory fragments are incorporated into dreams, and how multiple memory sources combine to create bizarre, imaginative scenarios. We discuss these observations in light of the proposed "memory updating" function of sleep-dependent memory consolidation, as well as Stickgold and Zadra's NEXTUP (Network Exploration to Understand Possibilities) model of dreaming. This paper is part of the Festschrift in honor of Dr Robert Stickgold.
Collapse
Affiliation(s)
- Erin J Wamsley
- Department of Psychology and Program in Neuroscience, Furman University, Greenville, SC, USA
| | - Tempest Trost
- Department of Psychology and Program in Neuroscience, Furman University, Greenville, SC, USA
| | - Matthew Tucker
- Department of Psychology and Program in Neuroscience, Furman University, Greenville, SC, USA
| |
Collapse
|
2
|
Lutz ND, Martínez-Albert E, Friedrich H, Born J, Besedovsky L. Sleep shapes the associative structure underlying pattern completion in multielement event memory. Proc Natl Acad Sci U S A 2024; 121:e2314423121. [PMID: 38377208 PMCID: PMC10907255 DOI: 10.1073/pnas.2314423121] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 12/28/2023] [Indexed: 02/22/2024] Open
Abstract
Sleep supports the consolidation of episodic memory. It is, however, a matter of ongoing debate how this effect is established, because, so far, it has been demonstrated almost exclusively for simple associations, which lack the complex associative structure of real-life events, typically comprising multiple elements with different association strengths. Because of this associative structure interlinking the individual elements, a partial cue (e.g., a single element) can recover an entire multielement event. This process, referred to as pattern completion, is a fundamental property of episodic memory. Yet, it is currently unknown how sleep affects the associative structure within multielement events and subsequent processes of pattern completion. Here, we investigated the effects of post-encoding sleep, compared with a period of nocturnal wakefulness (followed by a recovery night), on multielement associative structures in healthy humans using a verbal associative learning task including strongly, weakly, and not directly encoded associations. We demonstrate that sleep selectively benefits memory for weakly associated elements as well as for associations that were not directly encoded but not for strongly associated elements within a multielement event structure. Crucially, these effects were accompanied by a beneficial effect of sleep on the ability to recall multiple elements of an event based on a single common cue. In addition, retrieval performance was predicted by sleep spindle activity during post-encoding sleep. Together, these results indicate that sleep plays a fundamental role in shaping associative structures, thereby supporting pattern completion in complex multielement events.
Collapse
Affiliation(s)
- Nicolas D. Lutz
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen72076, Germany
- Institute of Medical Psychology, LMU Munich, Munich80336, Germany
| | - Estefanía Martínez-Albert
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen72076, Germany
- Institute of Medical Psychology, LMU Munich, Munich80336, Germany
| | - Hannah Friedrich
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen72076, Germany
| | - Jan Born
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen72076, Germany
- Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, Tübingen72076, Germany
- German Center for Diabetes Research, Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University Tübingen, Tübingen72076, Germany
| | - Luciana Besedovsky
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen72076, Germany
- Institute of Medical Psychology, LMU Munich, Munich80336, Germany
| |
Collapse
|
3
|
Mak MHC, O'Hagan A, Horner AJ, Gaskell MG. A registered report testing the effect of sleep on Deese-Roediger-McDermott false memory: greater lure and veridical recall but fewer intrusions after sleep. ROYAL SOCIETY OPEN SCIENCE 2023; 10:220595. [PMID: 38077219 PMCID: PMC10698482 DOI: 10.1098/rsos.220595] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 11/14/2023] [Indexed: 12/14/2024]
Abstract
Human memory is known to be supported by sleep. However, less is known about the effect of sleep on false memory, where people incorrectly remember events that never occurred. In the laboratory, false memories are often induced via the Deese-Roediger-McDermott (DRM) paradigm where participants are presented with wordlists comprising semantically related words such as nurse, hospital and sick (studied words). Subsequently, participants are likely to falsely remember that a related lure word such as doctor was presented. Multiple studies have examined whether these false memories are influenced by sleep, with contradictory results. A recent meta-analysis suggests that sleep may increase DRM false memory when short lists are used. We tested this in a registered report (N = 488) with a 2 (Interval: Immediate versus 12 h delay) × 2 (Test Time: 9:00 versus 21:00) between-participant DRM experiment, using short DRM lists (N = 8 words/list) and free recall as the memory test. We found an unexpected time-of-day effect such that completing free recall in the evening led to more intrusions (neither studied nor lure words). Above and beyond this time-of-day effect, the Sleep participants produced fewer intrusions than their Wake counterparts. When this was statistically controlled for, the Sleep participants falsely produced more critical lures. They also correctly recalled more studied words (regardless of intrusions). Exploratory analysis showed that these findings cannot be attributed to differences in output bias, as indexed by the number of total responses. Our overall results cannot be fully captured by existing sleep-specific theories of false memory, but help to define the role of sleep in two more general theories (Fuzzy-Trace and Activation/Monitoring theories) and suggest that sleep may benefit gist abstraction/spreading activation on one hand and memory suppression/source monitoring on the other.
Collapse
Affiliation(s)
- Matthew H. C. Mak
- Department of Psychology, University of York, Heslington, York YO10 5DD, UK
| | - Alice O'Hagan
- Department of Psychology, University of York, Heslington, York YO10 5DD, UK
| | - Aidan J. Horner
- Department of Psychology, University of York, Heslington, York YO10 5DD, UK
| | - M. Gareth Gaskell
- Department of Psychology, University of York, Heslington, York YO10 5DD, UK
| |
Collapse
|
4
|
Ferrara M, D’Atri A, Salfi F. Novel insights into the role of eye movements during REM sleep in memory consolidation. Sleep 2023; 46:zsad178. [PMID: 37432046 PMCID: PMC10566246 DOI: 10.1093/sleep/zsad178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Indexed: 07/12/2023] Open
Affiliation(s)
- Michele Ferrara
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy
| | - Aurora D’Atri
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy
| | - Federico Salfi
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy
| |
Collapse
|
5
|
Talamini LM, van Moorselaar D, Bakker R, Bulath M, Szegedi S, Sinichi M, De Boer M. No evidence for a preferential role of sleep in episodic memory abstraction. Front Neurosci 2022; 16:871188. [PMID: 36570837 PMCID: PMC9780604 DOI: 10.3389/fnins.2022.871188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 11/21/2022] [Indexed: 12/13/2022] Open
Abstract
Substantial evidence suggests that sleep has a role in declarative memory consolidation. An influential notion holds that such sleep-related memory consolidation is associated with a process of abstraction. The neural underpinnings of this putative process are thought to involve a hippocampo-neocortical dialogue. Specifically, the idea is that, during sleep, the statistical contingencies across episodes are re-coded to a less hippocampus-dependent format, while at the same time losing configural information. Two previous studies from our lab, however, failed to show a preferential role of sleep in either episodic memory decontextualisation or the formation of abstract knowledge across episodic exemplars. Rather these processes occurred over sleep and wake time alike. Here, we present two experiments that replicate and extend these previous studies and exclude some alternative interpretations. The combined data show that sleep has no preferential function in this respect. Rather, hippocampus-dependent memories are generalised to an equal extent across both wake and sleep time. The one point on which sleep outperforms wake is actually the preservation of episodic detail of memories stored prior to sleep.
Collapse
Affiliation(s)
- Lucia M. Talamini
- Brain and Cognition, Department of Psychology, University of Amsterdam, Amsterdam, Netherlands
- University of Amsterdam—Amsterdam Brain and Cognition, Amsterdam, Netherlands
| | - Dirk van Moorselaar
- Brain and Cognition, Department of Psychology, University of Amsterdam, Amsterdam, Netherlands
| | - Richard Bakker
- Brain and Cognition, Department of Psychology, University of Amsterdam, Amsterdam, Netherlands
| | - Máté Bulath
- Brain and Cognition, Department of Psychology, University of Amsterdam, Amsterdam, Netherlands
| | - Steffie Szegedi
- Brain and Cognition, Department of Psychology, University of Amsterdam, Amsterdam, Netherlands
| | - Mohammadamin Sinichi
- Brain and Cognition, Department of Psychology, University of Amsterdam, Amsterdam, Netherlands
| | - Marieke De Boer
- Brain and Cognition, Department of Psychology, University of Amsterdam, Amsterdam, Netherlands
- University of Amsterdam—Amsterdam Brain and Cognition, Amsterdam, Netherlands
| |
Collapse
|
6
|
Kemp C, Pienaar PR, Rosslee DT, Lipinska G, Roden LC, Rae DE. Sleep in Habitual Adult Video Gamers: A Systematic Review. Front Neurosci 2021; 15:781351. [PMID: 35095395 PMCID: PMC8797142 DOI: 10.3389/fnins.2021.781351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/24/2021] [Indexed: 11/13/2022] Open
Abstract
Video gaming is a popular, globally recognized phenomenon, played recreationally or competitively as esports. Gaming is a typically sedentary nighttime activity; therefore, the potential to impact sleep and health is high. Furthermore, there are limited studies on adult gamers, who represent the majority demographic in esports. This review examines evidence describing sleep in habitual adult gamers to understand the associated risk for cardiometabolic disease or the benefits to gaming performance. Three electronic databases (PubMed, Scopus, ISI Web of Science) were searched for peer-reviewed articles published between January 2000 - April 2020. Twelve studies reporting on sleep in habitual adult gamers were included. A narrative synthesis was employed to report results, owing to high levels of heterogeneity across the included studies. Gamers with higher gaming addiction scores were more likely to have shorter, poorer quality sleep and greater daytime sleepiness and insomnia scores than gamers with lower gaming addiction scores and non-gamers. In addition, high-volume gamers were more likely to have worsened sleep quantity and quality, with delayed sleep timing and increased prevalence of insomnia. Despite limitations in the design of the included studies, excessive gaming is broadly associated with worsened sleep parameters. Noteworthy is the lack of studies investigating cardiometabolic health in gamers. Future work should explore the relative contribution and associated risk that various games, genres, and timing of gaming activities have on sleep, physical and mental health, particularly in vulnerable gaming cohorts engaged with contemporary forms of gaming and esports.
Collapse
Affiliation(s)
- Chadley Kemp
- Health Through Physical Activity, Lifestyle and Sport Research Centre & Division of Physiological Sciences, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Paula R. Pienaar
- Health Through Physical Activity, Lifestyle and Sport Research Centre & Division of Physiological Sciences, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Department of Public and Occupational Health, Amsterdam UMC, Amsterdam Public Health Research Institute, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Dominique T. Rosslee
- Health Through Physical Activity, Lifestyle and Sport Research Centre & Division of Physiological Sciences, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Gosia Lipinska
- Clinical Neuropsychology and Sleep Sciences, Department of Psychology, Faculty of Humanities, University of Cape Town, Cape Town, South Africa
| | - Laura C. Roden
- Health Through Physical Activity, Lifestyle and Sport Research Centre & Division of Physiological Sciences, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Centre for Sport, Exercise and Life Sciences, Faculty of Health and Life Sciences, School of Life Sciences, Coventry University, Coventry, United Kingdom
| | - Dale E. Rae
- Health Through Physical Activity, Lifestyle and Sport Research Centre & Division of Physiological Sciences, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
7
|
Sanders KEG, Beeman M. Sleep and incubation: Using problem reactivation during sleep to study forgetting fixation and unconscious processing during sleep incubation. JOURNAL OF COGNITIVE PSYCHOLOGY 2021; 33:738-756. [PMID: 34737850 DOI: 10.1080/20445911.2021.1912050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
When people are stuck on a problem, they sometimes benefit from an incubation period -a break from working on the problem. Anecdotes and empirical evidence suggest that sleeping during incubation is useful, but the mechanisms remain poorly understood. We examined how targeted memory reactivation during sleep, which boosts next-day solving, relates to forgetting fixation, a well-supported explanation of awake incubation. In evening sessions, participants attempted puzzles, while a unique sound cue played during each puzzle. Half the time, puzzles included fixating information reinforcing an incorrect representation. Later, during deep sleep, sounds associated with half of participants' previously unsolved puzzles were presented. The sounds should strengthen puzzle memories and reduce forgetting of the fixating information. In morning solving, overnight cueing reliably interacted with fixating information: participants solved numerically more cued than uncued puzzles, but only when puzzles included fixating information. These results suggest that additional processing occurred beyond simple fixation forgetting.
Collapse
Affiliation(s)
| | - Mark Beeman
- Psychology Department, Northwestern University
| |
Collapse
|
8
|
den Berg van NH, Pozzobon A, Fang Z, Al-Kuwatli J, Toor B, Ray LB, Fogel SM. Sleep Enhances Consolidation of Memory Traces for Complex Problem-Solving Skills. Cereb Cortex 2021; 32:653-667. [PMID: 34383034 DOI: 10.1093/cercor/bhab216] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 05/13/2021] [Accepted: 06/09/2021] [Indexed: 11/12/2022] Open
Abstract
Sleep consolidates memory for procedural motor skills, reflected by sleep-dependent changes in the hippocampal-striatal-cortical network. Other forms of procedural skills require the acquisition of a novel strategy to solve a problem, which recruit overlapping brain regions and specialized areas including the caudate and prefrontal cortex. Sleep preferentially benefits strategy and problem-solving skills over the accompanying motor execution movements. However, it is unclear how acquiring new strategies benefit from sleep. Here, participants performed a task requiring the execution of a sequence of movements to learn a novel cognitive strategy. Participants performed this task while undergoing fMRI before and after an interval of either a full night sleep, a daytime nap, or wakefulness. Participants also performed a motor control task, which precluded the opportunity to learn the strategy. In this way, we subtracted motor execution-related brain activations from activations specific to the strategy. The sleep and nap groups experienced greater behavioral performance improvements compared to the wake group on the strategy-based task. Following sleep, we observed enhanced activation of the caudate in addition to other regions in the hippocampal-striatal-cortical network, compared to wakefulness. This study demonstrates that sleep is a privileged time to enhance newly acquired cognitive strategies needed to solve problems.
Collapse
Affiliation(s)
- N H den Berg van
- School of Psychology, University of Ottawa, Ottawa K1N 6N5, Canada
| | - A Pozzobon
- School of Psychology, University of Ottawa, Ottawa K1N 6N5, Canada
| | - Z Fang
- School of Psychology, University of Ottawa, Ottawa K1N 6N5, Canada.,Sleep Unit, University of Ottawa Institute of Mental Health Research at The Royal, Ottawa, Ottawa K1Z 7K4, Canada.,University of Ottawa Brain and Mind Research Institute, University of Ottawa, Ottawa K1H 8M5, Canada
| | - J Al-Kuwatli
- School of Psychology, University of Ottawa, Ottawa K1N 6N5, Canada
| | - B Toor
- School of Psychology, University of Ottawa, Ottawa K1N 6N5, Canada
| | - L B Ray
- School of Psychology, University of Ottawa, Ottawa K1N 6N5, Canada
| | - S M Fogel
- School of Psychology, University of Ottawa, Ottawa K1N 6N5, Canada.,Sleep Unit, University of Ottawa Institute of Mental Health Research at The Royal, Ottawa, Ottawa K1Z 7K4, Canada.,University of Ottawa Brain and Mind Research Institute, University of Ottawa, Ottawa K1H 8M5, Canada
| |
Collapse
|
9
|
Witkowski S, Noh S, Lee V, Grimaldi D, Preston AR, Paller KA. Does memory reactivation during sleep support generalization at the cost of memory specifics? Neurobiol Learn Mem 2021; 182:107442. [PMID: 33892076 PMCID: PMC8187329 DOI: 10.1016/j.nlm.2021.107442] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 03/11/2021] [Accepted: 04/18/2021] [Indexed: 10/21/2022]
Abstract
Sleep is important for memory, but does it favor consolidation of specific details or extraction of generalized information? Both may occur together when memories are reactivated during sleep, or a loss of certain memory details may facilitate generalization. To examine these issues, we tested memory in participants who viewed landscape paintings by six artists. Paintings were cropped to show only a section of the scene. During a learning phase, each painting section was presented with the artist's name and with a nonverbal sound that had been uniquely associated with that artist. In a test of memory for specifics, participants were shown arrays of six painting sections, all by the same artist. Participants attempted to select the one that was seen in the learning phase. Generalization was tested by asking participants to view new paintings and, for each one, decide which of the six artists created it. After this testing, participants had a 90-minute sleep opportunity with polysomnographic monitoring. When slow-wave sleep was detected, three of the sound cues associated with the artists were repeatedly presented without waking the participants. After sleep, participants were again tested for memory specifics and generalization. Memory reactivation during sleep due to the sound cues led to a relative decline in accuracy on the specifics test, which could indicate the transition to a loss of detail that facilitates generalization, particularly details such as the borders. Generalization performance showed very little change after sleep and was unaffected by the sound cues. Although results tentatively implicate sleep in memory transformation, further research is needed to examine memory change across longer time periods.
Collapse
Affiliation(s)
- Sarah Witkowski
- Department of Psychology, Northwestern University, Evanston, IL, United States.
| | - Sharon Noh
- Department of Psychology, University of Texas at Austin, Austin, TX, United States; Center for Learning and Memory, University of Texas at Austin, Austin, TX, United States
| | - Victoria Lee
- Department of Psychology, Northwestern University, Evanston, IL, United States
| | - Daniela Grimaldi
- Department of Neurology, Northwestern University, Feinberg School of Medicine, Chicago, IL, United States
| | - Alison R Preston
- Department of Psychology, University of Texas at Austin, Austin, TX, United States; Center for Learning and Memory, University of Texas at Austin, Austin, TX, United States; Department of Neuroscience, University of Texas at Austin, Austin, TX, United States
| | - Ken A Paller
- Department of Psychology, Northwestern University, Evanston, IL, United States
| |
Collapse
|
10
|
Wang SY, Baker KC, Culbreth JL, Tracy O, Arora M, Liu T, Morris S, Collins MB, Wamsley EJ. 'Sleep-dependent' memory consolidation? Brief periods of post-training rest and sleep provide an equivalent benefit for both declarative and procedural memory. ACTA ACUST UNITED AC 2021; 28:195-203. [PMID: 34011516 PMCID: PMC8139635 DOI: 10.1101/lm.053330.120] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 04/19/2021] [Indexed: 11/30/2022]
Abstract
Sleep following learning facilitates the consolidation of memories. This effect has often been attributed to sleep-specific factors, such as the presence of sleep spindles or slow waves in the electroencephalogram (EEG). However, recent studies suggest that simply resting quietly while awake could confer a similar memory benefit. In the current study, we examined the effects of sleep, quiet rest, and active wakefulness on the consolidation of declarative and procedural memory. We hypothesized that sleep and eyes-closed quiet rest would both benefit memory compared with a period of active wakefulness. After completing a declarative and a procedural memory task, participants began a 30-min retention period with PSG (polysomnographic) monitoring, in which they either slept (n = 24), quietly rested with their eyes closed (n = 22), or completed a distractor task (n = 29). Following the retention period, participants were again tested on their memory for the two learning tasks. As hypothesized, sleep and quiet rest both led to better performance on the declarative and procedural memory tasks than did the distractor task. Moreover, the performance advantages conferred by rest were indistinguishable from those of sleep. These data suggest that neurobiology specific to sleep might not be necessary to induce the consolidation of memory, at least across very short retention intervals. Instead, offline memory consolidation may function opportunistically, occurring during either sleep or stimulus-free rest, provided a favorable neurobiological milieu and sufficient reduction of new encoding.
Collapse
Affiliation(s)
- Serene Y Wang
- Department of Psychology, Furman University, Greenville, South Carolina 29609, USA
| | - Kirsten C Baker
- Department of Psychology, Furman University, Greenville, South Carolina 29609, USA
| | - Jessica L Culbreth
- Department of Psychology, Furman University, Greenville, South Carolina 29609, USA
| | - Olivia Tracy
- Department of Psychology, Furman University, Greenville, South Carolina 29609, USA
| | - Madison Arora
- Department of Psychology, Furman University, Greenville, South Carolina 29609, USA
| | - Tingtong Liu
- Department of Psychology, Furman University, Greenville, South Carolina 29609, USA
| | - Sydney Morris
- Department of Psychology, Furman University, Greenville, South Carolina 29609, USA
| | - Megan B Collins
- Department of Psychology, Furman University, Greenville, South Carolina 29609, USA
| | - Erin J Wamsley
- Department of Psychology, Furman University, Greenville, South Carolina 29609, USA
| |
Collapse
|
11
|
Beijamini F, Valentin A, Jäger R, Born J, Diekelmann S. Sleep Facilitates Problem Solving With No Additional Gain Through Targeted Memory Reactivation. Front Behav Neurosci 2021; 15:645110. [PMID: 33746720 PMCID: PMC7965947 DOI: 10.3389/fnbeh.2021.645110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 02/08/2021] [Indexed: 11/13/2022] Open
Abstract
According to the active systems consolidation theory, memories undergo reactivation during sleep that can give rise to qualitative changes of the representations. These changes may generate new knowledge such as gaining insight into solutions for problem solving. targeted memory reactivation (TMR) uses learning-associated cues, such as sounds or odors, which have been shown to improve memory consolidation when re-applied during sleep. Here we tested whether TMR during slow wave sleep (SWS) and/or rapid eye movement (REM) sleep increases problem solving. Young healthy volunteers participated in one of two experiments. Experiment 1 tested the effect of natural sleep on problem solving. Subjects were trained in a video game-based problem solving task until being presented with a non-solved challenge. Followed by a ~10-h incubation interval filled with nocturnal sleep or daytime wakefulness, subjects were tested on the problem solving challenge again. Experiment 2 tested the effect of TMR on problem solving, with subjects receiving auditory TMR either during SWS (SWSstim), REM sleep (REMstim), or wakefulness (Wakestim). In Experiment 1, sleep improved problem solving, with 62% of subjects from the Sleep group solving the problem compared to 24% of the Wake group. Subjects with higher amounts of SWS in the Sleep group had a higher chance to solve the problem. In Experiment 2, TMR did not change the sleep effect on problem solving: 56 and 58% of subjects from the SWSstim and REMstim groups solved the problem compared to 57% from the Wakestim group. These findings indicate that sleep, and particularly SWS, facilitates problem solving, whereas this effect is not further increased by TMR.
Collapse
Affiliation(s)
- Felipe Beijamini
- Federal University of Fronteira Sul, Realeza, Brazil.,Institute of Medical Psychology and Behavioural Neurobiology, University of Tübingen, Tübingen, Germany
| | - Anthony Valentin
- Institute of Medical Psychology and Behavioural Neurobiology, University of Tübingen, Tübingen, Germany
| | - Roland Jäger
- Institute of Medical Psychology and Behavioural Neurobiology, University of Tübingen, Tübingen, Germany
| | - Jan Born
- Institute of Medical Psychology and Behavioural Neurobiology, University of Tübingen, Tübingen, Germany.,Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
| | - Susanne Diekelmann
- Institute of Medical Psychology and Behavioural Neurobiology, University of Tübingen, Tübingen, Germany.,Department of Psychiatry and Psychotherapy, University Hospital Tübingen, Tübingen, Germany
| |
Collapse
|
12
|
Durrant SJ, Johnson JM. Sleep’s Role in Schema Learning and Creative Insights. CURRENT SLEEP MEDICINE REPORTS 2021. [DOI: 10.1007/s40675-021-00202-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Abstract
Purpose of Review
A recent resurgence of interest in schema theory has influenced research on sleep-dependent memory consolidation and led to a new understanding of how schemata might be activated during sleep and play a role in the reorganisation of memories. This review is aimed at synthesising recent findings into a coherent narrative and draw overall conclusions.
Recent Findings
Rapid consolidation of schematic memories has been shown to benefit from an interval containing sleep. These memories have shown reduced reliance on the hippocampus following consolidation in both humans and rodents. Using a variety of methodologies, notably including the DRM paradigm, it has been shown that activation of a schema can increase the rate of false memory as a result of activation of semantic associates during slow wave sleep (SWS). Memories making use of a schema have shown increased activity in the medial prefrontal cortex, which may reflect both the schematic activation itself and a cognitive control component selecting an appropriate schema to use. SWS seems to be involved in assimilation of new memories within existing semantic frameworks and in making memories more explicit, while REM sleep may be more associated with creating entirely novel associations while keeping memories implicit.
Summary
Sleep plays an important role in schematic memory consolidation, with more rapid consolidation, reduced hippocampal involvement, and increased prefrontal involvement as the key characteristics. Both SWS and REM sleep may have a role to play.
Collapse
|
13
|
Examining sleep’s role in memory generalization and specificity through the lens of targeted memory reactivation. Curr Opin Behav Sci 2020. [DOI: 10.1016/j.cobeha.2020.01.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
14
|
Hołda M, Głodek A, Dankiewicz-Berger M, Skrzypińska D, Szmigielska B. Ill-Defined Problem Solving Does Not Benefit From Daytime Napping. Front Psychol 2020; 11:559. [PMID: 32328010 PMCID: PMC7161088 DOI: 10.3389/fpsyg.2020.00559] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 03/09/2020] [Indexed: 12/11/2022] Open
Abstract
The main goal of the present study was to explore the role of sleep in the process of ill-defined problem solving. The results of previous studies indicate that various cognitive processes are largely dependent on the quality and quantity of sleep. However, while sleep-related memory consolidation seems to be well-grounded, with regard to the impact of sleep on problem solving, existing research yields mixed and rather inconclusive results. Moreover, this effect has been mainly tested using simple and well-defined, common laboratory problems, such as the remote associate test (RAT), crossword and anagram puzzles, numeric and logic problems, etc. What is lacking is research on the effect of sleep on solving more complex and more real-life oriented ill-defined problems. In the present study, we hypothesized that sleep can improve performance in solving this kind of problems. The study involved 40 participants, randomly assigned to two experimental conditions: sleep group and waking group. The experimental protocol comprised three stages: problem presentation, retention interval, and testing stage. The problem was presented to the participants in the form of an interactive computer game concerning a complex, elaborate crime story. During the retention interval, the participants—depending on the condition—took a nap or stayed awake; sleeping participants underwent polysomnography recording, while waking participants performed activities not related to the experimental problem. In the testing stage, participants tried to solve the presented problem. The solutions generated were assessed both for quality (reasonableness, consistency, and story recall) and creativity (fluency, flexibility, originality, and elaboration). Contrary to expectations, we found no effect of sleep on ill-defined problem solving. Neither quality nor creativity of the solutions generated by the participants was higher in the nap group than in the waking group. There were also no performance improvements with regard to any sleep stage or incidence of dreams. Our study adds to a growing body of evidence that sleep probably might provide an incubation gap, but not a facilitating environment serving the purpose of problem solving, at least with regard to ill-defined problems.
Collapse
Affiliation(s)
- Małgorzata Hołda
- Section of Sleep Psychology, Institute of Psychology, Jagiellonian University, Cracow, Poland
| | - Anna Głodek
- Section of Sleep Psychology, Institute of Psychology, Jagiellonian University, Cracow, Poland
| | - Malwina Dankiewicz-Berger
- Department of Educational Psychology, Institute of Psychology, Pedagogical University of Cracow, Cracow, Poland
| | - Dagna Skrzypińska
- Section of Sleep Psychology, Institute of Psychology, Jagiellonian University, Cracow, Poland
| | - Barbara Szmigielska
- Section of Sleep Psychology, Institute of Psychology, Jagiellonian University, Cracow, Poland
| |
Collapse
|
15
|
Conte F, Cerasuolo M, Giganti F, Ficca G. Sleep enhances strategic thinking at the expense of basic procedural skills consolidation. J Sleep Res 2020; 29:e13034. [DOI: 10.1111/jsr.13034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 03/02/2020] [Accepted: 03/03/2020] [Indexed: 11/28/2022]
Affiliation(s)
- Francesca Conte
- Department of Psychology University of Campania “L. Vanvitelli” Caserta Italy
| | | | | | - Gianluca Ficca
- Department of Psychology University of Campania “L. Vanvitelli” Caserta Italy
| |
Collapse
|
16
|
Brodt S, Pöhlchen D, Täumer E, Gais S, Schönauer M. Incubation, not sleep, aids problem-solving. Sleep 2019; 41:5065174. [PMID: 30113673 DOI: 10.1093/sleep/zsy155] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Indexed: 01/16/2023] Open
Abstract
Solving a novel problem and finding innovative solutions requires a flexible and creative recombination of prior knowledge. It is thought that setting a problem aside before giving it another try aids problem-solving. The underlying mechanisms of such an incubation period could include unconscious processing that fosters spreading activation along associated networks and the restructuring of problem representations. Recently, it has been suggested that sleep may also support problem-solving by supporting the transformation and restructuring of memory elements. Since the effect of sleep on problem-solving has been mainly tested using the Remote Associates Test, we chose three different tasks-classical riddles, visual change detection, and anagrams-to examine various aspects of problem-solving and to pinpoint task-specific prerequisites for effects of sleep or incubation to emerge. Sixty-two participants were given two attempts to solve the problems. Both attempts either occurred consecutively or were spaced apart by a 3-hour incubation interval that was spent awake or asleep. We found that a period of incubation positively affected solutions rates in classical riddles, but not in visual change detection or anagram solving. Contrary to our hypothesis, spending the incubation period asleep, did not yield any additional benefit. Our study thus supports the notion that a period of letting a problem rest is beneficial for its solution and confines the role of sleep to memory transformations that do not directly impact on problem-solving ability.
Collapse
Affiliation(s)
- Svenja Brodt
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| | - Dorothee Pöhlchen
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany.,Department of Psychology, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Esther Täumer
- Department of Psychology, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Steffen Gais
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| | - Monika Schönauer
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| |
Collapse
|
17
|
Lerner I, Gluck MA. Sleep and the extraction of hidden regularities: A systematic review and the importance of temporal rules. Sleep Med Rev 2019; 47:39-50. [PMID: 31252335 DOI: 10.1016/j.smrv.2019.05.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 05/01/2019] [Accepted: 05/27/2019] [Indexed: 10/26/2022]
Abstract
As part of its role in memory consolidation, sleep has been repeatedly identified as critical for the extraction of regularities from wake experiences. However, many null results have been published as well, with no clear consensus emerging regarding the conditions that yield this sleep effect. Here, we systematically review the role of sleep in the extraction of hidden regularities, specifically those involving associative relations embedded in newly learned information. We found that the specific behavioral task used in a study had far more impact on whether a sleep effect was discovered than either the category of the cognitive processes targeted, or the particular experimental design employed. One emerging pattern, however, was that the explicit detection of hidden rules is more likely to happen when the rules are of a temporal nature (i.e., event A at time t predicts a later event B) than when they are non-temporal. We discuss this temporal rule sensitivity in reference to the compressed memory replay occurring in the hippocampus during slow-wave-sleep, and compare this effect to what happens when the extraction of regularities depends on prior knowledge and relies on structures other than the hippocampus.
Collapse
Affiliation(s)
- Itamar Lerner
- Center for Molecular and Behavioral Neuroscience, Rutgers University, 197 University Avenue, Newark, NJ 07102, USA.
| | - Mark A Gluck
- Center for Molecular and Behavioral Neuroscience, Rutgers University, 197 University Avenue, Newark, NJ 07102, USA
| |
Collapse
|
18
|
Lewis PA, Knoblich G, Poe G. How Memory Replay in Sleep Boosts Creative Problem-Solving. Trends Cogn Sci 2019; 22:491-503. [PMID: 29776467 DOI: 10.1016/j.tics.2018.03.009] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 03/04/2018] [Accepted: 03/20/2018] [Indexed: 11/15/2022]
Abstract
Creative thought relies on the reorganisation of existing knowledge. Sleep is known to be important for creative thinking, but there is a debate about which sleep stage is most relevant, and why. We address this issue by proposing that rapid eye movement sleep, or 'REM', and non-REM sleep facilitate creativity in different ways. Memory replay mechanisms in non-REM can abstract rules from corpuses of learned information, while replay in REM may promote novel associations. We propose that the iterative interleaving of REM and non-REM across a night boosts the formation of complex knowledge frameworks, and allows these frameworks to be restructured, thus facilitating creative thought. We outline a hypothetical computational model which will allow explicit testing of these hypotheses.
Collapse
Affiliation(s)
| | - Günther Knoblich
- Department of Cognitive Science, Central European University, Budapest, Hungary
| | - Gina Poe
- Department of Integrative Biology and Physiology, UCLA, LA, USA
| |
Collapse
|
19
|
Dresler M, Sandberg A, Bublitz C, Ohla K, Trenado C, Mroczko-Wąsowicz A, Kühn S, Repantis D. Hacking the Brain: Dimensions of Cognitive Enhancement. ACS Chem Neurosci 2019; 10:1137-1148. [PMID: 30550256 PMCID: PMC6429408 DOI: 10.1021/acschemneuro.8b00571] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 12/14/2018] [Indexed: 12/11/2022] Open
Abstract
In an increasingly complex information society, demands for cognitive functioning are growing steadily. In recent years, numerous strategies to augment brain function have been proposed. Evidence for their efficacy (or lack thereof) and side effects has prompted discussions about ethical, societal, and medical implications. In the public debate, cognitive enhancement is often seen as a monolithic phenomenon. On a closer look, however, cognitive enhancement turns out to be a multifaceted concept: There is not one cognitive enhancer that augments brain function per se, but a great variety of interventions that can be clustered into biochemical, physical, and behavioral enhancement strategies. These cognitive enhancers differ in their mode of action, the cognitive domain they target, the time scale they work on, their availability and side effects, and how they differentially affect different groups of subjects. Here we disentangle the dimensions of cognitive enhancement, review prominent examples of cognitive enhancers that differ across these dimensions, and thereby provide a framework for both theoretical discussions and empirical research.
Collapse
Affiliation(s)
- Martin Dresler
- Donders Institute for Brain, Cognition and Behaviour , Radboud University Medical Centre , Nijmegen 6525 EN , The Netherlands
| | - Anders Sandberg
- Future of Humanity Institute , Oxford University , Oxford OX1 1PT , United Kingdom
| | | | - Kathrin Ohla
- Institute of Neuroscience and Medicine, Cognitive Neuroscience (INM3) , Forschungszentrum Jülich , Jülich 52428 , Germany
| | - Carlos Trenado
- Institute of Clinical Neuroscience and Medical Psychology , Heinrich Heine University Düsseldorf , Düsseldorf 40225 , Germany
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors , TU Dortmund , Dortmund 44139 , Germany
| | | | - Simone Kühn
- Max Planck Institute for Human Development , Berlin 14195 , Germany
- Department of Psychiatry and Psychotherapy , University Clinic Hamburg Eppendorf , Hamburg 20246 , Germany
| | - Dimitris Repantis
- Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin 12203 , Germany
| |
Collapse
|
20
|
Barner C, Altgassen M, Born J, Diekelmann S. Effects of sleep on the realization of complex plans. J Sleep Res 2019; 28:e12655. [DOI: 10.1111/jsr.12655] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 11/29/2017] [Accepted: 12/04/2017] [Indexed: 02/03/2023]
Affiliation(s)
- Christine Barner
- Institute of Medical Psychology and Behavioral Neurobiology University of Tübingen Tübingen Germany
| | - Mareike Altgassen
- Donders Institute for Brain Cognition and Behaviour Radboud University Nijmegen the Netherlands
| | - Jan Born
- Institute of Medical Psychology and Behavioral Neurobiology University of Tübingen Tübingen Germany
- Center for Integrative Neuroscience (CIN) University of Tübingen Tübingen Germany
| | - Susanne Diekelmann
- Institute of Medical Psychology and Behavioral Neurobiology University of Tübingen Tübingen Germany
| |
Collapse
|
21
|
Bazil CW. Seizure modulation by sleep and sleep state. Brain Res 2019; 1703:13-17. [DOI: 10.1016/j.brainres.2018.05.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 03/29/2018] [Accepted: 05/01/2018] [Indexed: 11/26/2022]
|
22
|
Shaikh N, Coulthard E. Nap-mediated benefit to implicit information processing across age using an affective priming paradigm. J Sleep Res 2018; 28:e12728. [PMID: 30033579 PMCID: PMC7140178 DOI: 10.1111/jsr.12728] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 04/23/2018] [Accepted: 06/06/2018] [Indexed: 12/27/2022]
Abstract
Understanding how sleep‐related information processing affects behaviour may allow targeted cognitive enhancement to improve quality of life. Previous evidence demonstrates that implicitly‐presented cues are processed during subsequent sleep, resulting in enhanced cognition upon waking. We used a masked priming task to investigate this further. To assess sleep‐mediated effects on reactions to implicitly presented primes, participants performed an Affective Priming Task pre‐and‐post 90 min of sleep, compared with an equal period of wakefulness. The Choice Reaction Time Task—a similar binary choice task but without the implicit aspect—was used as a control. Sixteen healthy participants across a range of ages were tested and sleep monitored using electroencephalogram. In stark contrast to the control task, in the Affective Priming Task reaction times significantly improved across all prime types after sleep, but not an equal period of wake. There was no significant change in reaction times on Choice Reaction Time Task after wakefulness or sleep. Rather than a general suppression of all primes, the data are more in keeping with specific strategic optimisation of prime processing during sleep. We plan future work to probe the mechanisms and neuroanatomical substrate of sleep‐mediated prime processing.
Collapse
Affiliation(s)
- Netasha Shaikh
- ReMemBr Group, Institute for Clinical Neurosciences, University of Bristol, Bristol, UK.,North Bristol NHS Trust, Bristol, UK
| | - Elizabeth Coulthard
- ReMemBr Group, Institute for Clinical Neurosciences, University of Bristol, Bristol, UK.,North Bristol NHS Trust, Bristol, UK
| |
Collapse
|
23
|
Schönauer M, Brodt S, Pöhlchen D, Breßmer A, Danek AH, Gais S. Sleep Does Not Promote Solving Classical Insight Problems and Magic Tricks. Front Hum Neurosci 2018; 12:72. [PMID: 29535620 PMCID: PMC5834438 DOI: 10.3389/fnhum.2018.00072] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 02/09/2018] [Indexed: 11/13/2022] Open
Abstract
During creative problem solving, initial solution attempts often fail because of self-imposed constraints that prevent us from thinking out of the box. In order to solve a problem successfully, the problem representation has to be restructured by combining elements of available knowledge in novel and creative ways. It has been suggested that sleep supports the reorganization of memory representations, ultimately aiding problem solving. In this study, we systematically tested the effect of sleep and time on problem solving, using classical insight tasks and magic tricks. Solving these tasks explicitly requires a restructuring of the problem representation and may be accompanied by a subjective feeling of insight. In two sessions, 77 participants had to solve classical insight problems and magic tricks. The two sessions either occurred consecutively or were spaced 3 h apart, with the time in between spent either sleeping or awake. We found that sleep affected neither general solution rates nor the number of solutions accompanied by sudden subjective insight. Our study thus adds to accumulating evidence that sleep does not provide an environment that facilitates the qualitative restructuring of memory representations and enables problem solving.
Collapse
Affiliation(s)
- Monika Schönauer
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| | - Svenja Brodt
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| | - Dorothee Pöhlchen
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
- Department of Psychology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Anja Breßmer
- Department of Psychology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Amory H. Danek
- Division of Neurobiology, Department Biology II, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Steffen Gais
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| |
Collapse
|
24
|
Schouten DI, Pereira SI, Tops M, Louzada FM. State of the art on targeted memory reactivation: Sleep your way to enhanced cognition. Sleep Med Rev 2017; 32:123-131. [PMID: 27296303 DOI: 10.1016/j.smrv.2016.04.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Revised: 03/19/2016] [Accepted: 04/13/2016] [Indexed: 01/05/2023]
|
25
|
|
26
|
Abstract
In this paper, we review in brief the development of ideas that over time have tried to explain why some individuals are more creative than others and what may be the neurobiological links underlying artistic creativity. We note associations with another unique human idea, that of genius. In particular, we discuss frontotemporal dementia and bipolar, cyclothymic mood disorder as clinical conditions that are helping to unravel the underlying neuroanatomy and neurochemistry of human creativity. This article is part of a Special Issue entitled "Epilepsy, Art, and Creativity".
Collapse
|
27
|
Backhaus W, Braaß H, Renné T, Krüger C, Gerloff C, Hummel FC. Daytime sleep has no effect on the time course of motor sequence and visuomotor adaptation learning. Neurobiol Learn Mem 2016; 131:147-54. [PMID: 27021017 DOI: 10.1016/j.nlm.2016.03.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 03/17/2016] [Accepted: 03/25/2016] [Indexed: 11/26/2022]
Abstract
Sleep has previously been claimed to be essential for the continued learning processes of declarative information as well as procedural learning. This study was conducted to examine the importance of sleep, especially the effects of midday naps, on motor sequence and visuomotor adaptation learning. Thirty-five (27 females) healthy, young adults aged between 18 and 30years of age participated in the current study. Addressing potential differences in explicit sequence and motor adaptation learning participants were asked to learn both, a nine-element explicit sequence and a motor adaptation task, in a crossover fashion on two consecutive days. Both tasks were performed with their non-dominant left hand. Prior to learning, each participant was randomized to one of three interventions; (1) power nap: 10-20min sleep, (2) long nap: 50-80min sleep or (3) a 45-min wake-condition. Performance of the motor learning task took place prior to and after a midday rest period, as well as after a night of sleep. Both sleep conditions were dominated by Stage N2 sleep with embedded sleep spindles, which have been described to be associated with enhancement of motor performance. Significant performance changes were observed in both tasks across all interventions (sleep and wake) confirming that learning took place. In the present setup, the magnitude of motor learning was not sleep-dependent in young adults - no differences between the intervention groups (short nap, long nap, no nap) could be found. The effect of the following night of sleep was not influenced by the previous midday rest or sleep period. This finding may be related to the selectiveness of the human brain enhancing especially memory being thought of as important in the future. Previous findings on motor learning enhancing effects of sleep, especially of daytime sleep, are challenged.
Collapse
Affiliation(s)
- Winifried Backhaus
- BrainImaging and NeuroStimulation (BINS) Laboratory, Department of Neurology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Hanna Braaß
- BrainImaging and NeuroStimulation (BINS) Laboratory, Department of Neurology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Thomas Renné
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany; Clinical Chemistry, Department of Molecular Medicine and Surgery, Karolinska Institutet, Solna, SE-171 76 Stockholm, Sweden
| | - Christian Krüger
- University Sleep Medicine Center Hamburg, A Cooperation of the University Medical Center Hamburg-Eppendorf and the Agaplesion Hospital, Falkenried 88, 20251 Hamburg, Germany
| | - Christian Gerloff
- BrainImaging and NeuroStimulation (BINS) Laboratory, Department of Neurology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Friedhelm C Hummel
- BrainImaging and NeuroStimulation (BINS) Laboratory, Department of Neurology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany; University Sleep Medicine Center Hamburg, A Cooperation of the University Medical Center Hamburg-Eppendorf and the Agaplesion Hospital, Falkenried 88, 20251 Hamburg, Germany.
| |
Collapse
|
28
|
Kirov R, Kolev V, Verleger R, Yordanova J. Labile sleep promotes awareness of abstract knowledge in a serial reaction time task. Front Psychol 2015; 6:1354. [PMID: 26441730 PMCID: PMC4561346 DOI: 10.3389/fpsyg.2015.01354] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 08/24/2015] [Indexed: 11/13/2022] Open
Abstract
Sleep has been identified as a critical brain state enhancing the probability of gaining insight into covert task regularities. Both non-rapid eye movement (NREM) and rapid eye movement (REM) sleep have been implicated with offline re-activation and reorganization of memories supporting explicit knowledge generation. According to two-stage models of sleep function, offline processing of information during sleep is sequential requiring multiple cycles of NREM and REM sleep stages. However, the role of overnight dynamic sleep macrostructure for insightfulness has not been studied so far. In the present study, we test the hypothesis that the frequency of interactions between NREM and REM sleep stages might be critical for awareness after sleep. For that aim, the rate of sleep stage transitions was evaluated in 53 participants who learned implicitly a serial reaction time task (SRTT) in which a determined sequence was inserted. The amount of explicit knowledge about the sequence was established by verbal recall after a night of sleep following SRTT learning. Polysomnography was recorded in this night and in a control night before and was analyzed to compare the rate of sleep-stage transitions between participants who did or did not gain awareness of task regularity after sleep. Indeed, individual ability of explicit knowledge generation was strongly associated with increased rate of transitions between NREM and REM sleep stages and between light sleep stages and slow wave sleep. However, the rate of NREM-REM transitions specifically predicted the amount of explicit knowledge after sleep in a trait-dependent way. These results demonstrate that enhanced lability of sleep goes along with individual ability of knowledge awareness. Observations suggest that facilitated dynamic interactions between sleep stages, particularly between NREM and REM sleep stages play a role for offline processing which promotes rule extraction and awareness.
Collapse
Affiliation(s)
- Roumen Kirov
- Cognitive Psychophysiology, Institute of Neurobiology, Bulgarian Academy of SciencesSofia, Bulgaria
| | - Vasil Kolev
- Cognitive Psychophysiology, Institute of Neurobiology, Bulgarian Academy of SciencesSofia, Bulgaria
- Department of Neurology, University of LübeckLübeck, Germany
| | - Rolf Verleger
- Department of Neurology, University of LübeckLübeck, Germany
- Institute of Psychology II, University of LübeckLübeck, Germany
| | - Juliana Yordanova
- Cognitive Psychophysiology, Institute of Neurobiology, Bulgarian Academy of SciencesSofia, Bulgaria
- Department of Neurology, University of LübeckLübeck, Germany
| |
Collapse
|
29
|
Sleep promotes analogical transfer in problem solving. Cognition 2015; 143:25-30. [PMID: 26113445 DOI: 10.1016/j.cognition.2015.06.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 06/14/2015] [Accepted: 06/15/2015] [Indexed: 11/20/2022]
Abstract
Analogical problem solving requires using a known solution from one problem to apply to a related problem. Sleep is known to have profound effects on memory and information restructuring, and so we tested whether sleep promoted such analogical transfer, determining whether improvement was due to subjective memory for problems, subjective recognition of similarity across related problems, or by abstract generalisation of structure. In Experiment 1, participants were exposed to a set of source problems. Then, after a 12-h period involving sleep or wake, they attempted target problems structurally related to the source problems but with different surface features. Experiment 2 controlled for time of day effects by testing participants either in the morning or the evening. Sleep improved analogical transfer, but effects were not due to improvements in subjective memory or similarity recognition, but rather effects of structural generalisation across problems.
Collapse
|
30
|
The role of rapid eye movement sleep for amygdala-related memory processing. Neurobiol Learn Mem 2015; 122:110-21. [PMID: 25638277 DOI: 10.1016/j.nlm.2015.01.008] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 12/19/2014] [Accepted: 01/19/2015] [Indexed: 01/01/2023]
Abstract
Over the years, rapid eye movement (REM) sleep has been associated with general memory consolidation, specific consolidation of perceptual, procedural, emotional and fear memories, brain maturation and preparation of waking consciousness. More recently, some of these associations (e.g., general and procedural memory consolidation) have been shown to be unlikely, while others (e.g., brain maturation and consciousness) remain inconclusive. In this review, we argue that both behavioral and neurophysiological evidence supports a role of REM sleep for amygdala-related memory processing: the amygdala-hippocampus-medial prefrontal cortex network involved in emotional processing, fear memory and valence consolidation shows strongest activity during REM sleep, in contrast to the hippocampus-medial prefrontal cortex only network which is more active during non-REM sleep. However, more research is needed to fully understand the mechanisms.
Collapse
|
31
|
Chatburn A, Lushington K, Kohler MJ. Complex associative memory processing and sleep: A systematic review and meta-analysis of behavioural evidence and underlying EEG mechanisms. Neurosci Biobehav Rev 2014; 47:646-55. [DOI: 10.1016/j.neubiorev.2014.10.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 09/26/2014] [Accepted: 10/20/2014] [Indexed: 10/24/2022]
|