1
|
Zidar N, Onali A, Peršolja P, Benedetto Tiz D, Dernovšek J, Skok Ž, Durcik M, Cotman AE, Hrast Rambaher M, Cruz CD, Tammela P, Senerovic L, Jovanovic M, Szili PÉ, Czikkely MS, Pál C, Zega A, Peterlin Mašič L, Ilaš J, Tomašič T, Kikelj D. Improved N-phenylpyrrolamide inhibitors of DNA gyrase as antibacterial agents for high-priority bacterial strains. Eur J Med Chem 2024; 278:116823. [PMID: 39236496 DOI: 10.1016/j.ejmech.2024.116823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/07/2024]
Abstract
In this work, we describe an improved series of N-phenylpyrrolamide inhibitors that exhibit potent activity against DNA gyrase and are highly effective against high-priority gram-positive bacteria. The most potent compounds show low nanomolar IC50 values against Escherichia coli DNA gyrase, and in addition, compound 7c also inhibits E. coli topoisomerase IV in the nanomolar concentration range, making it a promising candidate for the development of potent dual inhibitors for these enzymes. All tested compounds show high selectivity towards the human isoform DNA topoisomerase IIα. Compounds 6a, 6d, 6e and 6f show MIC values between 0.031 and 0.0625 μg/mL against vancomycin-intermediate S. aureus (VISA) and Enterococcus faecalis strains. Compound 6g shows an inhibitory effect against the methicillin-resistant S. aureus strain (MRSA) with a MIC of 0.0625 μg/mL and against the E. faecalis strain with a MIC of 0.125 μg/mL. In a time-kill assay, compound 6d showed a dose-dependent bactericidal effect on the MRSA strain and achieved bactericidal activity at 8 × MIC after 8 h. The duration of the post-antibiotic effect (PAE) on the MRSA strain for compound 6d was 2 h, which corresponds to the PAE duration for ciprofloxacin. The compounds were not cytotoxic at effective concentrations, as determined in an MTS assay on the MCF-7 breast cancer cell line.
Collapse
Affiliation(s)
- Nace Zidar
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000, Ljubljana, Slovenia.
| | - Alessia Onali
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000, Ljubljana, Slovenia
| | - Peter Peršolja
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000, Ljubljana, Slovenia
| | - Davide Benedetto Tiz
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000, Ljubljana, Slovenia
| | - Jaka Dernovšek
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000, Ljubljana, Slovenia
| | - Žiga Skok
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000, Ljubljana, Slovenia
| | - Martina Durcik
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000, Ljubljana, Slovenia
| | - Andrej Emanuel Cotman
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000, Ljubljana, Slovenia
| | - Martina Hrast Rambaher
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000, Ljubljana, Slovenia
| | - Cristina D Cruz
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, Viikinkaari 5E, Helsinki, 00014, Finland
| | - Päivi Tammela
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, Viikinkaari 5E, Helsinki, 00014, Finland
| | - Lidija Senerovic
- Laboratory for Microbial Molecular Genetics and Ecology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11 042, Belgrade, Serbia
| | - Milija Jovanovic
- Laboratory for Microbial Molecular Genetics and Ecology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11 042, Belgrade, Serbia
| | - Petra Éva Szili
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, H-6726, Hungary
| | - Márton Simon Czikkely
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, H-6726, Hungary; Doctoral School of Multidisciplinary Medical Sciences, University of Szeged, Szeged, HU-6722, Hungary; Department of Forensic Medicine, Albert-Szent-Györgyi Medical School, University of Szeged, Szeged, HU-6722, Hungary
| | - Csaba Pál
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, H-6726, Hungary
| | - Anamarija Zega
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000, Ljubljana, Slovenia
| | - Lucija Peterlin Mašič
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000, Ljubljana, Slovenia
| | - Janez Ilaš
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000, Ljubljana, Slovenia
| | - Tihomir Tomašič
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000, Ljubljana, Slovenia
| | - Danijel Kikelj
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000, Ljubljana, Slovenia
| |
Collapse
|
2
|
Cotman AE, Fulgheri F, Piga M, Peršolja P, Tiz DB, Skok Ž, Durcik M, Sterle M, Dernovšek J, Cruz CD, Tammela P, Szili PÉ, Daruka L, Pál C, Zega A, Mašič LP, Ilaš J, Tomašič T, Kikelj D, Zidar N. New N-phenylpyrrolamide inhibitors of DNA gyrase with improved antibacterial activity. RSC Adv 2024; 14:28423-28454. [PMID: 39247510 PMCID: PMC11378028 DOI: 10.1039/d4ra04802d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 08/30/2024] [Indexed: 09/10/2024] Open
Abstract
This study presents the discovery of a new series of N-phenylpyrrolamide inhibitors of bacterial DNA gyrase with improved antibacterial activity. The most potent inhibitors had low nanomolar IC50 values against Escherichia coli DNA gyrase (IC50; 2-20 nM) and E. coli topoisomerase IV (22i, IC50 = 143 nM). Importantly, none of the compounds showed activity against human DNA topoisomerase IIα, indicating selectivity for bacterial targets. Among the tested compounds, 22e emerged as the most effective against Gram-positive bacteria with minimum inhibitory concentration (MIC) values of 0.25 μg mL-1 against Staphylococcus aureus ATCC 29213 and MRSA, and 0.125 μg mL-1 against Enterococcus faecalis ATCC 29212. For Gram-negative bacteria, compounds 23b and 23c showed the greatest efficacy with MIC values ranging from 4 to 32 μg mL-1 against E. coli ATCC 25922, Pseudomonas aeruginosa ATCC 27853, Acinetobacter baumannii ATCC 17978 and A. baumannii ATCC 19606. Notably, compound 23b showed promising activity against the clinically relevant Gram-negative pathogen Klebsiella pneumoniae ATCC 10031, with an MIC of 0.0625 μg mL-1. Furthermore, compounds 23a and 23c exhibited significantly lower susceptibility to resistance development compared to novobiocin in S. aureus ATCC 29213 and K. pneumoniae ATCC 10031. Overall, the most promising compounds of this series showed excellent on-target potency, marking a significant improvement over previous N-phenylpyrrolamide inhibitors.
Collapse
Affiliation(s)
- Andrej Emanuel Cotman
- University of Ljubljana, Faculty of Pharmacy Aškerčeva cesta 7 1000 Ljubljana Slovenia
| | - Federica Fulgheri
- University of Ljubljana, Faculty of Pharmacy Aškerčeva cesta 7 1000 Ljubljana Slovenia
| | - Martina Piga
- University of Ljubljana, Faculty of Pharmacy Aškerčeva cesta 7 1000 Ljubljana Slovenia
| | - Peter Peršolja
- University of Ljubljana, Faculty of Pharmacy Aškerčeva cesta 7 1000 Ljubljana Slovenia
| | - Davide Benedetto Tiz
- University of Ljubljana, Faculty of Pharmacy Aškerčeva cesta 7 1000 Ljubljana Slovenia
| | - Žiga Skok
- University of Ljubljana, Faculty of Pharmacy Aškerčeva cesta 7 1000 Ljubljana Slovenia
| | - Martina Durcik
- University of Ljubljana, Faculty of Pharmacy Aškerčeva cesta 7 1000 Ljubljana Slovenia
| | - Maša Sterle
- University of Ljubljana, Faculty of Pharmacy Aškerčeva cesta 7 1000 Ljubljana Slovenia
| | - Jaka Dernovšek
- University of Ljubljana, Faculty of Pharmacy Aškerčeva cesta 7 1000 Ljubljana Slovenia
| | - Cristina D Cruz
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki P.O. Box 56, Viikinkaari 5E Helsinki 00014 Finland
| | - Päivi Tammela
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki P.O. Box 56, Viikinkaari 5E Helsinki 00014 Finland
| | - Petra Éva Szili
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences Szeged H-6726 Hungary
| | - Lejla Daruka
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences Szeged H-6726 Hungary
| | - Csaba Pál
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences Szeged H-6726 Hungary
| | - Anamarija Zega
- University of Ljubljana, Faculty of Pharmacy Aškerčeva cesta 7 1000 Ljubljana Slovenia
| | - Lucija Peterlin Mašič
- University of Ljubljana, Faculty of Pharmacy Aškerčeva cesta 7 1000 Ljubljana Slovenia
| | - Janez Ilaš
- University of Ljubljana, Faculty of Pharmacy Aškerčeva cesta 7 1000 Ljubljana Slovenia
| | - Tihomir Tomašič
- University of Ljubljana, Faculty of Pharmacy Aškerčeva cesta 7 1000 Ljubljana Slovenia
| | - Danijel Kikelj
- University of Ljubljana, Faculty of Pharmacy Aškerčeva cesta 7 1000 Ljubljana Slovenia
| | - Nace Zidar
- University of Ljubljana, Faculty of Pharmacy Aškerčeva cesta 7 1000 Ljubljana Slovenia
| |
Collapse
|
3
|
Li T, Zhou Y, Fu X, Yang L, Liu H, Zhou X, Liu L, Wu Z, Yang S. Identification of novel 4-substituted 7H-pyrrolo[2,3-d]pyrimidine derivatives as new FtsZ inhibitors: Bioactivity evaluation and computational simulation. Bioorg Chem 2024; 150:107534. [PMID: 38896935 DOI: 10.1016/j.bioorg.2024.107534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/02/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024]
Abstract
Bacterial infections and the consequent outburst of bactericide-resistance issues are fatal menace to both global health and agricultural produce. Hence, it is crucial to explore candidate bactericides with new mechanisms of action. The filamenting temperature-sensitive mutant Z (FtsZ) protein has been recognized as a new promising and effective target for new bactericide discovery. Hence, using a scaffold-hopping strategy, we designed new 7H-pyrrolo[2,3-d]pyrimidine derivatives, evaluated their antibacterial activities, and investigated their structure-activity relationships. Among them, compound B6 exhibited the optimal in vitro bioactivity (EC50 = 4.65 µg/mL) against Xanthomonas oryzae pv. oryzae (Xoo), which was superior to the references (bismerthiazol [BT], EC50 = 48.67 µg/mL; thiodiazole copper [TC], EC50 = 98.57 µg/mL]. Furthermore, the potency of compound B6 in targeting FtsZ was validated by GTPase activity assay, FtsZ self-assembly observation, fluorescence titration, Fourier-transform infrared spectroscopy (FT-IR) assay, molecular dynamics simulations, and morphological observation. The GTPase activity assay showed that the final IC50 value of compound B6 against XooFtsZ was 235.0 μM. Interestingly, the GTPase activity results indicated that the B6-XooFtsZ complex has an excellent binding constant (KA = 103.24 M-1). Overall, the antibacterial behavior suggests that B6 can interact with XooFtsZ and inhibit its GTPase activity, leading to bacterial cell elongation and even death. In addition, compound B6 showed acceptable anti-Xoo activity in vivo and low toxicity, and also demonstrated a favorable pharmacokinetic profile predicted by ADMET analysis. Our findings provide new chemotypes for the development of FtsZ inhibitors as well as insights into their underlying mechanisms of action.
Collapse
Affiliation(s)
- Ting Li
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Ya Zhou
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Xichun Fu
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Linli Yang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Hongwu Liu
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Xiang Zhou
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China.
| | - Liwei Liu
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Zhibing Wu
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Song Yang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China.
| |
Collapse
|
4
|
Gutierrez L, Peršolja P, Tosso R, Zidar N, Kikelj D, Enriz RD. New ATP-competitive inhibitors of E. coli GyrB obtained from the mapping of the hydrophobic floor at the binding site: synthesis and biological evaluation. RSC Med Chem 2024:d4md00498a. [PMID: 39290385 PMCID: PMC11403825 DOI: 10.1039/d4md00498a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 08/21/2024] [Indexed: 09/19/2024] Open
Abstract
We mapped the hydrophobic floor, an interesting subsite at the active site of DNA gyrase B (GyrB) from E. coli. We synthesized three new compounds with pendant groups targeting the hydrophobic floor and evaluated their inhibitory activities on DNA gyrase. A new benzothiazole derivative with a benzyl substituent at position 3 of the benzothiazole ring exhibited strong inhibitory activity against E. coli DNA gyrase (IC50 = 19 ± 3 nM). An exhaustive conformational study using potential energy surfaces (PESs) allowed us to map the new subsite evaluating all critical points on the surface and conformational interconversion pathways. We analyzed the molecular interactions using QTAIM calculations. Our data provide insights into the mechanism of action of these new ligands at the molecular level. Theoretical and experimental data suggest that new ligand optimization strategies should focus on strengthening interactions at the hydrophobic floor while preserving the binding mode of the main scaffold.
Collapse
Affiliation(s)
- Lucas Gutierrez
- Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO-SL) Ejercito de los Andes 950 5700 San Luis Argentina
| | - Peter Peršolja
- Faculty of Pharmacy, University of Ljubljana Aškerčeva cesta 7 1000 Ljubljana Slovenia
| | - Rodrigo Tosso
- Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO-SL) Ejercito de los Andes 950 5700 San Luis Argentina
| | - Nace Zidar
- Faculty of Pharmacy, University of Ljubljana Aškerčeva cesta 7 1000 Ljubljana Slovenia
| | - Danijel Kikelj
- Faculty of Pharmacy, University of Ljubljana Aškerčeva cesta 7 1000 Ljubljana Slovenia
| | - Ricardo D Enriz
- Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO-SL) Ejercito de los Andes 950 5700 San Luis Argentina
| |
Collapse
|
5
|
Leyn SA, Kent JE, Zlamal JE, Elane ML, Vercruysse M, Osterman AL. Two Classes of DNA Gyrase Inhibitors Elicit Distinct Evolutionary Trajectories Toward Resistance in Gram-Negative Pathogens. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.26.546596. [PMID: 37425702 PMCID: PMC10327078 DOI: 10.1101/2023.06.26.546596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Comprehensive knowledge of mechanisms driving the acquisition of antimicrobial resistance is essential for the development of new drugs with minimized resistibility. To gain this knowledge, we combine experimental evolution in a continuous culturing device, the morbidostat, with whole genome sequencing of evolving cultures followed by characterization of drug-resistant isolates. Here, this approach was used to assess evolutionary dynamics of resistance acquisition against DNA gyrase/topoisomerase TriBE inhibitor GP6 in Escherichia coli and Acinetobacter baumannii. The evolution of GP6 resistance in both species was driven by a combination of two classes of mutational events: (i) amino acid substitutions near the ATP-binding site of the GyrB subunit of the DNA gyrase target; and (ii) various mutations and genomic rearrangements leading to upregulation of efflux pumps, species-specific (AcrAB/TolC in E. coli and AdeIJK in A. baumannii) and shared by both species (MdtK). A comparison with the experimental evolution of resistance to ciprofloxacin (CIP), previously performed using the same workflow and strains, revealed fundamental differences between these two distinct classes of compounds. Most notable were non-overlapping spectra of target mutations and distinct evolutionary trajectories that, in the case of GP6, were dominated by upregulation of efflux machinery prior to (or even in lieu) of target modification. Most of efflux-driven GP6-resistant isolates of both species displayed a robust cross-resistance to CIP, while CIP-resistant clones showed no appreciable increase in GP6-resistance.
Collapse
Affiliation(s)
- Semen A. Leyn
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - James E. Kent
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Jaime E. Zlamal
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Marinela L. Elane
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Maarten Vercruysse
- Roche Pharma Research and Early Development, Immunology, Inflammation, and Infectious Diseases, Basel, Switzerland
| | - Andrei L. Osterman
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| |
Collapse
|
6
|
Breijyeh Z, Karaman R. Design and Synthesis of Novel Antimicrobial Agents. Antibiotics (Basel) 2023; 12:628. [PMID: 36978495 PMCID: PMC10045396 DOI: 10.3390/antibiotics12030628] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/19/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
The necessity for the discovery of innovative antimicrobials to treat life-threatening diseases has increased as multidrug-resistant bacteria has spread. Due to antibiotics' availability over the counter in many nations, antibiotic resistance is linked to overuse, abuse, and misuse of these drugs. The World Health Organization (WHO) recognized 12 families of bacteria that present the greatest harm to human health, where options of antibiotic therapy are extremely limited. Therefore, this paper reviews possible new ways for the development of novel classes of antibiotics for which there is no pre-existing resistance in human bacterial pathogens. By utilizing research and technology such as nanotechnology and computational methods (such as in silico and Fragment-based drug design (FBDD)), there has been an improvement in antimicrobial actions and selectivity with target sites. Moreover, there are antibiotic alternatives, such as antimicrobial peptides, essential oils, anti-Quorum sensing agents, darobactins, vitamin B6, bacteriophages, odilorhabdins, 18β-glycyrrhetinic acid, and cannabinoids. Additionally, drug repurposing (such as with ticagrelor, mitomycin C, auranofin, pentamidine, and zidovudine) and synthesis of novel antibacterial agents (including lactones, piperidinol, sugar-based bactericides, isoxazole, carbazole, pyrimidine, and pyrazole derivatives) represent novel approaches to treating infectious diseases. Nonetheless, prodrugs (e.g., siderophores) have recently shown to be an excellent platform to design a new generation of antimicrobial agents with better efficacy against multidrug-resistant bacteria. Ultimately, to combat resistant bacteria and to stop the spread of resistant illnesses, regulations and public education regarding the use of antibiotics in hospitals and the agricultural sector should be combined with research and technological advancements.
Collapse
Affiliation(s)
- Zeinab Breijyeh
- Pharmaceutical Sciences Department, Faculty of Pharmacy, Al-Quds University, Jerusalem P.O. Box 20002, Palestine
| | - Rafik Karaman
- Pharmaceutical Sciences Department, Faculty of Pharmacy, Al-Quds University, Jerusalem P.O. Box 20002, Palestine
- Department of Sciences, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy
| |
Collapse
|
7
|
Grossman S, Fishwick CWG, McPhillie MJ. Developments in Non-Intercalating Bacterial Topoisomerase Inhibitors: Allosteric and ATPase Inhibitors of DNA Gyrase and Topoisomerase IV. Pharmaceuticals (Basel) 2023; 16:261. [PMID: 37259406 PMCID: PMC9964621 DOI: 10.3390/ph16020261] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 10/15/2023] Open
Abstract
Increases in antibiotic usage and antimicrobial resistance occurrence have caused a dramatic reduction in the effectiveness of many frontline antimicrobial treatments. Topoisomerase inhibitors including fluoroquinolones are broad-spectrum antibiotics used to treat a range of infections, which stabilise a topoisomerase-DNA cleavage complex via intercalation of the bound DNA. However, these are subject to bacterial resistance, predominantly in the form of single-nucleotide polymorphisms in the active site. Significant research has been undertaken searching for novel bioactive molecules capable of inhibiting bacterial topoisomerases at sites distal to the fluoroquinolone binding site. Notably, researchers have undertaken searches for anti-infective agents that can inhibit topoisomerases through alternate mechanisms. This review summarises work looking at the inhibition of topoisomerases predominantly through non-intercalating agents, including those acting at a novel allosteric site, ATPase domain inhibitors, and those offering unique binding modes and mechanisms of action.
Collapse
Affiliation(s)
- Scott Grossman
- School of Chemistry, University of Leeds, Leeds LS2 9JT, UK
| | | | | |
Collapse
|
8
|
An In-Silico Evaluation of Anthraquinones as Potential Inhibitors of DNA Gyrase B of Mycobacterium tuberculosis. Microorganisms 2022; 10:microorganisms10122434. [PMID: 36557686 PMCID: PMC9783175 DOI: 10.3390/microorganisms10122434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/14/2022] [Accepted: 11/17/2022] [Indexed: 12/13/2022] Open
Abstract
The World Health Organization reported that tuberculosis remains on the list of the top ten threats to public health worldwide. Among the main causes is the limited effectiveness of treatments due to the emergence of resistant strains of Mycobacterium tuberculosis. One of the main drug targets studied to combat M. tuberculosis is DNA gyrase, the only enzyme responsible for regulating DNA topology in this specie and considered essential in all bacteria. In this context, the present work tested the ability of 2824 anthraquinones retrieved from the PubChem database to act as competitive inhibitors through interaction with the ATP-binding pocket of DNA gyrase B of M. tuberculosis. Virtual screening results based on molecular docking identified 7122772 (N-(2-hydroxyethyl)-9,10-dioxoanthracene-2-sulfonamide) as the best-scored ligand. From this anthraquinone, a new derivative was designed harbouring an aminotriazole moiety, which exhibited higher binding energy calculated by molecular docking scoring and free energy calculation from molecular dynamics simulations. In addition, in these last analyses, this ligand showed to be stable in complex with the enzyme and further predictions indicated a low probability of cytotoxic and off-target effects, as well as an acceptable pharmacokinetic profile. Taken together, the presented results show a new synthetically accessible anthraquinone with promising potential to inhibit the GyrB of M. tuberculosis.
Collapse
|
9
|
Why Matter Matters: Fast-Tracking Mycobacterium abscessus Drug Discovery. Molecules 2022; 27:molecules27206948. [PMID: 36296540 PMCID: PMC9608607 DOI: 10.3390/molecules27206948] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 11/17/2022] Open
Abstract
Unlike Tuberculosis (TB), Mycobacterium abscessus lung disease is a highly drug-resistant bacterial infection with no reliable treatment options. De novo M. abscessus drug discovery is urgently needed but is hampered by the bacterium's extreme drug resistance profile, leaving the current drug pipeline underpopulated. One proposed strategy to accelerate de novo M. abscessus drug discovery is to prioritize screening of advanced TB-active compounds for anti-M. abscessus activity. This approach would take advantage of the greater chance of homologous drug targets between mycobacterial species, increasing hit rates. Furthermore, the screening of compound series with established structure-activity-relationship, pharmacokinetic, and tolerability properties should fast-track the development of in vitro anti-M. abscessus hits into lead compounds with in vivo efficacy. In this review, we evaluated the effectiveness of this strategy by examining the literature. We found several examples where the screening of advanced TB chemical matter resulted in the identification of anti-M. abscessus compounds with in vivo proof-of-concept, effectively populating the M. abscessus drug pipeline with promising new candidates. These reports validate the screening of advanced TB chemical matter as an effective means of fast-tracking M. abscessus drug discovery.
Collapse
|
10
|
Meanwell NA, Loiseleur O. Applications of Isosteres of Piperazine in the Design of Biologically Active Compounds: Part 2. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:10972-11004. [PMID: 35675052 DOI: 10.1021/acs.jafc.2c00729] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Applications of piperazine and homopiperazine in drug design are well-established, and these heterocycles have found use as both scaffolding and terminal elements and also as a means of introducing a water-solubilizing element into a molecule. In the accompanying review (10.1021/acs.jafc.2c00726), we summarized applications of piperazine and homopiperazine and their fused ring homologues in bioactive compound design along with illustrations of the use of 4-substituted piperidines and a sulfoximine-based mimetic. In this review, we discuss applications of pyrrolidine- and fused-pyrrolidine-based mimetics of piperazine and homopiperazine and illustrate derivatives of azetidine that include stretched and spirocyclic motifs, along with applications of a series of diaminocycloalkanes.
Collapse
Affiliation(s)
- Nicholas A Meanwell
- Small Molecule Drug Discovery, Bristol Myers Squibb Research and Early Development, Post Office Box 4000, Princeton, New Jersey 08543, United States
| | - Olivier Loiseleur
- Syngenta Crop Protection Research, Schaffhauserstrasse, CH-4332 Stein, Switzerland
| |
Collapse
|
11
|
Activity of Tricyclic Pyrrolopyrimidine Gyrase B Inhibitor against Mycobacterium abscessus. Antimicrob Agents Chemother 2022; 66:e0066922. [PMID: 36005813 PMCID: PMC9487482 DOI: 10.1128/aac.00669-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Tricyclic pyrrolopyrimidines (TPPs) are a new class of antibacterials inhibiting the ATPase of DNA gyrase. TPP8, a representative of this class, is active against Mycobacterium abscessus in vitro. Spontaneous TPP8 resistance mutations mapped to the ATPase domain of M. abscessus DNA gyrase, and the compound inhibited DNA supercoiling activity of recombinant M. abscessus enzyme. Further profiling of TPP8 in macrophage and mouse infection studies demonstrated proof-of-concept activity against M. abscessus ex vivo and in vivo.
Collapse
|
12
|
A Novel Oral GyrB/ParE Dual Binding Inhibitor Effective against Multidrug-Resistant Neisseria gonorrhoeae and Other High-Threat Pathogens. Antimicrob Agents Chemother 2022; 66:e0041422. [PMID: 35972242 PMCID: PMC9487510 DOI: 10.1128/aac.00414-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Drug-resistant Neisseria gonorrhoeae is a serious global health concern. New drugs are needed that can overcome existing drug resistance and limit the development of new resistances. Here, we describe the small molecule tricyclic pyrimidoindole JSF-2414 [8-(6-fluoro-8-(methylamino)-2-((2-methylpyrimidin-5-yl)oxy)-9H-pyrimido[4,5-b]indol-4-yl)-2-oxa-8-azaspiro[4.5]decan-3-yl)methanol], which was developed to target both ATP-binding regions of DNA gyrase (GyrB) and topoisomerase (ParE). JSF-2414 displays potent activity against N. gonorrhoeae, including drug-resistant strains. A phosphate pro-drug, JSF-2659, was developed to facilitate oral dosing. In two different animal models of Neisseria gonorrhoeae vaginal infection, JSF-2659 was highly efficacious in reducing microbial burdens to the limit of detection. The parent molecule also showed potent in vitro activity against high-threat Gram-positive organisms, and JSF-2659 was shown in a deep tissue model of vancomycin-resistant Staphylococcus aureus (VRSA) and a model of Clostridioides difficile-induced colitis to be highly efficacious and protective. JSF-2659 is a novel preclinical drug candidate against high-threat multidrug resistant organisms with low potential to develop new resistance.
Collapse
|
13
|
Ortega S, Rodríguez C, Drummond H. Seasonal weather effects on offspring survival differ between reproductive stages in a long-lived neotropical seabird. Oecologia 2022; 199:611-623. [PMID: 35829792 DOI: 10.1007/s00442-022-05219-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 06/30/2022] [Indexed: 11/24/2022]
Abstract
Weather conditions can profoundly affect avian reproduction. It is known that weather conditions prior to and after the onset of reproduction can affect the breeding success of birds. However, little is known about how seasonal weather variability can affect birds' breeding performance, particularly for species with a slow pace of life. Long-term studies are key to understanding how weather variability can affect a population's dynamics, especially when extreme weather events are expected to increase with climate change. Using a 32-year population study of the Blue-footed booby (Sula nebouxii) in Mexico, we show that seasonal variation in weather conditions, predominantly during the incubation stage, affects offspring survival and body condition at independence. During most of the incubation period, warm sea surface temperatures were correlated with low hatching success, while rainfall in the middle of the incubation stage was correlated with high fledging success. In addition, chicks from nests that experienced warm sea surface temperatures from the pre-laying stage to near-fledging had lower body condition at 70 days of age. Finally, we show that variable annual SST conditions before and during the incubation stage can impair breeding performance. Our results provide insight into how seasonal and interannual weather variation during key reproductive stages can affect hatching success, fledging success, and fledgling body condition in a long-lived neotropical seabird.
Collapse
Affiliation(s)
- Santiago Ortega
- Instituto de Ecología, Universidad Nacional Autónoma de México, 04500, Mexico City, México. .,Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, 04510, Mexico City, México.
| | - Cristina Rodríguez
- Instituto de Ecología, Universidad Nacional Autónoma de México, 04500, Mexico City, México
| | - Hugh Drummond
- Instituto de Ecología, Universidad Nacional Autónoma de México, 04500, Mexico City, México
| |
Collapse
|
14
|
Blindheim FH, Malme AT, Dalhus B, Sundby E, Hoff BH. Synthesis and Evaluation of Fused Pyrimidines
as E. coli
Thymidylate Monophosphate Kinase Inhibitors. ChemistrySelect 2021. [DOI: 10.1002/slct.202103796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Fredrik Heen Blindheim
- Department of Chemistry Norwegian University of Science and Technology (NTNU) Høgskoleringen 5 NO-7491 Trondheim Norway
| | - Ane Thoresen Malme
- Department of Chemistry Norwegian University of Science and Technology (NTNU) Høgskoleringen 5 NO-7491 Trondheim Norway
- BASF AS Framnesveien 41 3222 Sandefjord Norway
| | - Bjørn Dalhus
- Department of Medical Biochemistry University of Oslo and Department for Microbiology Oslo University Hospital Rikshospitalet, Postbox 4950, Nydalen 0424 Oslo Norway
| | - Eirik Sundby
- Department of Material Science Norwegian University of Science and Technology (NTNU) Høgskoleringen 5 NO-7491 Trondheim Norway
| | - Bård Helge Hoff
- Department of Chemistry Norwegian University of Science and Technology (NTNU) Høgskoleringen 5 NO-7491 Trondheim Norway
| |
Collapse
|
15
|
Tomašič T, Zubrienė A, Skok Ž, Martini R, Pajk S, Sosič I, Ilaš J, Matulis D, Bryant SD. Selective DNA Gyrase Inhibitors: Multi-Target in Silico Profiling with 3D-Pharmacophores. Pharmaceuticals (Basel) 2021; 14:ph14080789. [PMID: 34451886 PMCID: PMC8400042 DOI: 10.3390/ph14080789] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/02/2021] [Accepted: 08/09/2021] [Indexed: 11/17/2022] Open
Abstract
DNA gyrase is an important target for the development of novel antibiotics. Although ATP-competitive DNA gyrase (GyrB) inhibitors are a well-studied class of antibacterial agents, there is currently no representative used in therapy, largely due to unwanted off-target activities. Selectivity of GyrB inhibitors against closely related human ATP-binding enzymes should be evaluated early in development to avoid off-target binding to homologous binding domains. To address this challenge, we developed selective 3D-pharmacophore models for GyrB, human topoisomerase IIα (TopoII), and the Hsp90 N-terminal domain (NTD) to be used in in silico activity profiling paradigms to identify molecules selective for GyrB over TopoII and Hsp90, as starting points for hit expansion and lead optimization. The models were used to profile highly active GyrB, TopoII, and Hsp90 inhibitors. Selected compounds were tested in in vitro assays. GyrB inhibitors 1 and 2 were inactive against TopoII and Hsp90, while 3 and 4, potent Hsp90 inhibitors, displayed no inhibition of GyrB and TopoII, and TopoII inhibitors 5 and 6 were inactive at GyrB and Hsp90. The results provide a proof of concept for the use of target activity profiling methods to identify selective starting points for hit and lead identification.
Collapse
Affiliation(s)
- Tihomir Tomašič
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia; (Ž.S.); (S.P.); (I.S.); (J.I.)
- Correspondence: ; Tel.: +386-1-4769-556
| | - Asta Zubrienė
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Vilnius University, Saulėtekio 7, LT-10257 Vilnius, Lithuania; (A.Z.); (D.M.)
| | - Žiga Skok
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia; (Ž.S.); (S.P.); (I.S.); (J.I.)
| | - Riccardo Martini
- Inte:Ligand Softwareentwicklungs- und Consulting GmbH, Mariahilferstrasse 74B, 1070 Vienna, Austria; (R.M.); (S.D.B.)
- Discngine S.A.S., 79 Avenue Ledru Rollin, 75012 Paris, France
| | - Stane Pajk
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia; (Ž.S.); (S.P.); (I.S.); (J.I.)
| | - Izidor Sosič
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia; (Ž.S.); (S.P.); (I.S.); (J.I.)
| | - Janez Ilaš
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia; (Ž.S.); (S.P.); (I.S.); (J.I.)
| | - Daumantas Matulis
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Vilnius University, Saulėtekio 7, LT-10257 Vilnius, Lithuania; (A.Z.); (D.M.)
| | - Sharon D. Bryant
- Inte:Ligand Softwareentwicklungs- und Consulting GmbH, Mariahilferstrasse 74B, 1070 Vienna, Austria; (R.M.); (S.D.B.)
| |
Collapse
|
16
|
Hirsch J, Klostermeier D. What makes a type IIA topoisomerase a gyrase or a Topo IV? Nucleic Acids Res 2021; 49:6027-6042. [PMID: 33905522 PMCID: PMC8216471 DOI: 10.1093/nar/gkab270] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/26/2021] [Accepted: 04/01/2021] [Indexed: 12/14/2022] Open
Abstract
Type IIA topoisomerases catalyze a variety of different reactions: eukaryotic topoisomerase II relaxes DNA in an ATP-dependent reaction, whereas the bacterial representatives gyrase and topoisomerase IV (Topo IV) preferentially introduce negative supercoils into DNA (gyrase) or decatenate DNA (Topo IV). Gyrase and Topo IV perform separate, dedicated tasks during replication: gyrase removes positive supercoils in front, Topo IV removes pre-catenanes behind the replication fork. Despite their well-separated cellular functions, gyrase and Topo IV have an overlapping activity spectrum: gyrase is also able to catalyze DNA decatenation, although less efficiently than Topo IV. The balance between supercoiling and decatenation activities is different for gyrases from different organisms. Both enzymes consist of a conserved topoisomerase core and structurally divergent C-terminal domains (CTDs). Deletion of the entire CTD, mutation of a conserved motif and even by just a single point mutation within the CTD converts gyrase into a Topo IV-like enzyme, implicating the CTDs as the major determinant for function. Here, we summarize the structural and mechanistic features that make a type IIA topoisomerase a gyrase or a Topo IV, and discuss the implications for type IIA topoisomerase evolution.
Collapse
Affiliation(s)
- Jana Hirsch
- University of Muenster, Institute for Physical Chemistry, Corrensstrasse 30, 48149 Muenster, Germany
| | - Dagmar Klostermeier
- University of Muenster, Institute for Physical Chemistry, Corrensstrasse 30, 48149 Muenster, Germany
| |
Collapse
|
17
|
Kong Q, Pan W, Xu H, Xue Y, Guo B, Meng X, Luo C, Wang T, Zhang S, Yang Y. Design, Synthesis, and Biological Evaluation of Novel Pyrimido[4,5- b]indole Derivatives Against Gram-Negative Multidrug-Resistant Pathogens. J Med Chem 2021; 64:8644-8665. [PMID: 34080858 DOI: 10.1021/acs.jmedchem.1c00621] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Due to the poor permeability across Gram-negative bacterial membranes and the troublesome bacterial efflux mechanism, only a few GyrB/ParE inhibitors with potent activity against Gram-negative pathogens have been reported. Among them, pyrimido[4,5-b]indole derivatives represented by GP-1 demonstrated excellent broad-spectrum antibacterial activity against both Gram-positive and Gram-negative bacteria but were limited by hERG inhibition and poor pharmacokinetics profile. To improve their drug-like properties, we designed a series of novel pyrimido[4,5-b]indole derivatives based on the tricyclic scaffold of GP-1 and the C-7 moiety of acorafloxacin. These efforts have culminated in the discovery of a promising compound 18r with reduced hERG liability and an improved PK profile. Compound 18r exhibited superior broad-spectrum in vitro antibacterial activity compared to GP-1, including a variety of clinical multidrug G- pathogens, especially Acinetobacter baumannii, and the in vivo efficacy was also demonstrated in a neutropenic mouse thigh model of infection with multidrug-resistant A. baumannii.
Collapse
Affiliation(s)
- Qidi Kong
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Wei Pan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Heng Xu
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Yaru Xue
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Bin Guo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xin Meng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Cheng Luo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Ting Wang
- Department of Microbiology, Sichuan Primed Bio-Tech Group Company, Limited, Chengdu 610041, Sichuan Province, China
| | - Shuhua Zhang
- Department of Microbiology, Sichuan Primed Bio-Tech Group Company, Limited, Chengdu 610041, Sichuan Province, China
| | - Yushe Yang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| |
Collapse
|
18
|
Myers AG, Clark RB. Discovery of Macrolide Antibiotics Effective against Multi-Drug Resistant Gram-Negative Pathogens. Acc Chem Res 2021; 54:1635-1645. [PMID: 33691070 DOI: 10.1021/acs.accounts.1c00020] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Macrolides are among the most widely prescribed antibiotics, particularly for bacterial lung infections, due to their favorable safety, oral bioavailability, and spectrum of activity against Gram-positive pathogens such as Streptococcus pneumoniae, the most common cause of bacterial pneumonia. Their utility against Gram-negative bacteria is extremely limited and does not include the Enterobacteriaceae or other ESKAPE pathogens. With the increasing development of resistance to current therapies and the lack of safe, oral options to treat Gram-negative infections, extended-spectrum macrolides have the potential to provide valuable treatment options. While the bacterial ribosome, the target of macrolides, is highly conserved across Gram-positive and Gram-negative bacteria, traditional macrolides do not possess the proper physicochemical properties to cross the polar Gram-negative outer membrane and are highly susceptible to efflux. As with most natural product-derived compounds, macrolides are generally prepared through semisynthesis, which is limited in scope and lacks the ability to make the drastic physicochemical property changes necessary to overcome these hurdles.By using a fully synthetic platform technology to greatly expand structural diversity, novel macrolides were prepared with a focus on lowering the MW and increasing the polarity to achieve a physicochemical property profile more similar to that of traditional Gram-negative drug classes. In addition to the removal of lipophilic groups, a critical structural feature for obtaining Gram-negative activity in the macrolide class proved to be the introduction of small secondary or tertiary amines to yield polycationic species potentially capable of self-promoted uptake. Within the azithromycin-like 15-membered azalides, potent activity was seen when small alkyl amines were introduced at the 6'-position of desosamine. The biggest gains, however, were made by replacing the entire C10-C13 fragment of the macrolactone ring with commercially available or readily synthesized 1,2-aminoalcohols, leading to 13-membered azalides. The introduction of a tethered basic amine at the C10-position and systematic optimization of substitution and tether length and flexibility ultimately provided new macrolides that for the first time exhibit clinically relevant antibacterial activity against multi-drug resistant Gram-negative bacteria. A retrospective computational analysis of >1800 fully synthetic macrolides prepared during this effort identified key drivers and optimum ranges for improving permeability and avoiding efflux. In contrast to standard Gram-negative drugs which generally have MWs below 600 and clogD7.4 values below 0, we found that the ideal ranges for Gram-negative macrolides were MW between 600 and 720 and cLogD7.4 between -1 and 3. A total charge of between 2.5 and 3 was also required to provide optimal permeability and efflux avoidance. Thus, Gram-negative macrolides occupy a unique physicochemical property space that lies between traditional Gram-negative drug classes and Gram-positive macrolides.
Collapse
Affiliation(s)
- Andrew G. Myers
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Roger B. Clark
- Zikani Therapeutics, 480 Arsenal Way, Watertown, Massachusetts 02472, United States
| |
Collapse
|
19
|
Aroso RT, Guedes RC, Pereira MM. Synthesis of Computationally Designed 2,5(6)-Benzimidazole Derivatives via Pd-Catalyzed Reactions for Potential E. coli DNA Gyrase B Inhibition. Molecules 2021; 26:molecules26051326. [PMID: 33801316 PMCID: PMC7958342 DOI: 10.3390/molecules26051326] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/22/2021] [Accepted: 02/25/2021] [Indexed: 11/16/2022] Open
Abstract
A pharmacophore model for inhibitors of Escherichia coli’s DNA Gyrase B was developed, using computer-aided drug design. Subsequently, docking studies showed that 2,5(6)-substituted benzimidazole derivatives are promising molecules, as they possess key hydrogen bond donor/acceptor groups for an efficient interaction with this bacterial target. Furthermore, 5(6)-bromo-2-(2-nitrophenyl)-1H-benzimidazole, selected as a core molecule, was prepared on a multi-gram scale through condensation of 4-bromo-1,2-diaminobenzene with 2-nitrobenzaldehyde using a sustainable approach. The challenging functionalization of the 5(6)-position was carried out via palladium-catalyzed Suzuki–Miyaura and Buchwald-Hartwig amination cross-coupling reactions between N-protected-5-bromo-2-nitrophenyl-benzimidazole and aryl boronic acids or sulfonylanilines, with yields up to 81%. The final designed molecules (2-(aminophen-2-yl)-5(6)-substituted-1H-benzimidazoles), which encompass the appropriate functional groups in the 5(6)-position according to the pharmacophore model, were obtained in yields up to 91% after acid-mediated N-boc deprotection followed by Pd-catalyzed hydrogenation. These groups are predicted to favor interactions with DNA gyrase B residues Asn46, Asp73, and Asp173, aiming to promote an inhibitory effect.
Collapse
Affiliation(s)
- Rafael T. Aroso
- Coimbra Chemistry Centre, Department of Chemistry, University of Coimbra, Rua Larga, 3004-535 Coimbra, Portugal;
| | - Rita C. Guedes
- Faculty of Pharmacy, Research Institute for Medicines (iMed.ULisboa), University of Lisbon, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
- Correspondence: (R.C.G.); (M.M.P.)
| | - Mariette M. Pereira
- Coimbra Chemistry Centre, Department of Chemistry, University of Coimbra, Rua Larga, 3004-535 Coimbra, Portugal;
- Correspondence: (R.C.G.); (M.M.P.)
| |
Collapse
|
20
|
Skok Ž, Barančoková M, Benek O, Cruz CD, Tammela P, Tomašič T, Zidar N, Mašič LP, Zega A, Stevenson CEM, Mundy JEA, Lawson DM, Maxwell A, Kikelj D, Ilaš J. Exploring the Chemical Space of Benzothiazole-Based DNA Gyrase B Inhibitors. ACS Med Chem Lett 2020; 11:2433-2440. [PMID: 33329764 PMCID: PMC7734788 DOI: 10.1021/acsmedchemlett.0c00416] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/13/2020] [Indexed: 12/22/2022] Open
Abstract
![]()
We
designed and synthesized a series of inhibitors of the bacterial
enzymes DNA gyrase and DNA topoisomerase IV, based on our recently
published benzothiazole-based inhibitor bearing an oxalyl moiety.
To improve the antibacterial activity and retain potent enzymatic
activity, we systematically explored the chemical space. Several strategies
of modification were followed: varying substituents on the pyrrole
carboxamide moiety, alteration of the central scaffold, including
variation of substitution position and, most importantly, modification
of the oxalyl moiety. Compounds with acidic, basic, and neutral properties
were synthesized. To understand the mechanism of action and binding
mode, we have obtained a crystal structure of compound 16a, bearing a primary amino group, in complex with the N-terminal domain
of E. coli gyrase B (24 kDa) (PDB: 6YD9). Compound 15a, with a low molecular weight of 383
Da, potent inhibitory activity on E. coli gyrase
(IC50 = 9.5 nM), potent antibacterial activity on E. faecalis (MIC = 3.13 μM), and efflux impaired E. coli strain (MIC = 0.78 μM), is an important contribution
for the development of novel gyrase and topoisomerase IV inhibitors
in Gram-negative bacteria.
Collapse
Affiliation(s)
- Žiga Skok
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Michaela Barančoková
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Ondřej Benek
- University of Hradec Králové, Faculty of Science, Department of Chemistry, Rokitanského 62, 500 03 Hradec Králové, Czech Republic
| | - Cristina Durante Cruz
- Centre for Drug Research, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, P.O. Box 56 (Viikinkaari 5 E), Helsinki FI-00014, Finland
| | - Päivi Tammela
- Centre for Drug Research, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, P.O. Box 56 (Viikinkaari 5 E), Helsinki FI-00014, Finland
| | - Tihomir Tomašič
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Nace Zidar
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Lucija Peterlin Mašič
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Anamarija Zega
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Clare E. M. Stevenson
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, U.K
| | - Julia E. A. Mundy
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, U.K
| | - David M. Lawson
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, U.K
| | - Anthony Maxwell
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, U.K
| | - Danijel Kikelj
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Janez Ilaš
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| |
Collapse
|
21
|
Veselovská L, Pohl R, Tloušt′ová E, Gurská S, Džubák P, Hajdúch M, Hocek M. Pyrido-Fused Deazapurine Bases: Synthesis and Glycosylation of 4-Substituted 9 H-Pyrido[2',3':4,5]- and Pyrido[4',3':4,5]pyrrolo[2,3- d]pyrimidines. ACS OMEGA 2020; 5:26278-26286. [PMID: 33073155 PMCID: PMC7557996 DOI: 10.1021/acsomega.0c04302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 09/24/2020] [Indexed: 06/11/2023]
Abstract
Two isomeric sets of 4-substituted pyridopyrrolopyrimidine nucleobases were prepared through nucleophilic substitutions or cross-coupling reactions of 4-chloropyridopyrrolopyrimidines. The corresponding 4-amino-pyridopyrrolopyrimidines were glycosylated with 5-O-tritylribose using the modified Mitsunobu protocol. Several examples of the title heterocycles showed blue or green fluorescence. Testing of the pyridopyrrolopyrimidine nucleobases for the cytotoxic effect revealed micromolar activity of 4-benzofuryl derivatives in both series, preferentially in multidrug-resistant cancers.
Collapse
Affiliation(s)
- Lucia Veselovská
- Institute
of Organic Chemistry and Biochemistry, Czech
Academy of Sciences, Flemingovo nam. 2, CZ-16610 Prague 6, Czech Republic
| | - Radek Pohl
- Institute
of Organic Chemistry and Biochemistry, Czech
Academy of Sciences, Flemingovo nam. 2, CZ-16610 Prague 6, Czech Republic
| | - Eva Tloušt′ová
- Institute
of Organic Chemistry and Biochemistry, Czech
Academy of Sciences, Flemingovo nam. 2, CZ-16610 Prague 6, Czech Republic
| | - Soňa Gurská
- Institute
of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University and University Hospital in Olomouc, Hnìvotínská
5, CZ-77515 Olomouc, Czech Republic
| | - Petr Džubák
- Institute
of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University and University Hospital in Olomouc, Hnìvotínská
5, CZ-77515 Olomouc, Czech Republic
| | - Marián Hajdúch
- Institute
of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University and University Hospital in Olomouc, Hnìvotínská
5, CZ-77515 Olomouc, Czech Republic
| | - Michal Hocek
- Institute
of Organic Chemistry and Biochemistry, Czech
Academy of Sciences, Flemingovo nam. 2, CZ-16610 Prague 6, Czech Republic
- Department
of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, CZ-12843 Prague 2, Czech Republic
| |
Collapse
|
22
|
Nyerges A, Tomašič T, Durcik M, Revesz T, Szili P, Draskovits G, Bogar F, Skok Ž, Zidar N, Ilaš J, Zega A, Kikelj D, Daruka L, Kintses B, Vasarhelyi B, Foldesi I, Kata D, Welin M, Kimbung R, Focht D, Mašič LP, Pal C. Rational design of balanced dual-targeting antibiotics with limited resistance. PLoS Biol 2020; 18:e3000819. [PMID: 33017402 PMCID: PMC7561186 DOI: 10.1371/journal.pbio.3000819] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 10/15/2020] [Accepted: 08/26/2020] [Indexed: 12/02/2022] Open
Abstract
Antibiotics that inhibit multiple bacterial targets offer a promising therapeutic strategy against resistance evolution, but developing such antibiotics is challenging. Here we demonstrate that a rational design of balanced multitargeting antibiotics is feasible by using a medicinal chemistry workflow. The resultant lead compounds, ULD1 and ULD2, belonging to a novel chemical class, almost equipotently inhibit bacterial DNA gyrase and topoisomerase IV complexes and interact with multiple evolutionary conserved amino acids in the ATP-binding pockets of their target proteins. ULD1 and ULD2 are excellently potent against a broad range of gram-positive bacteria. Notably, the efficacy of these compounds was tested against a broad panel of multidrug-resistant Staphylococcus aureus clinical strains. Antibiotics with clinical relevance against staphylococcal infections fail to inhibit a significant fraction of these isolates, whereas both ULD1 and ULD2 inhibit all of them (minimum inhibitory concentration [MIC] ≤1 μg/mL). Resistance mutations against these compounds are rare, have limited impact on compound susceptibility, and substantially reduce bacterial growth. Based on their efficacy and lack of toxicity demonstrated in murine infection models, these compounds could translate into new therapies against multidrug-resistant bacterial infections.
Collapse
Affiliation(s)
- Akos Nyerges
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, Hungary
| | - Tihomir Tomašič
- University of Ljubljana, Faculty of Pharmacy, Ljubljana, Slovenia
| | - Martina Durcik
- University of Ljubljana, Faculty of Pharmacy, Ljubljana, Slovenia
| | - Tamas Revesz
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, Hungary
- Doctoral School of Theoretical Medicine, University of Szeged, Szeged, Hungary
| | - Petra Szili
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, Hungary
- Doctoral School of Multidisciplinary Medical Sciences, University of Szeged, Szeged, Hungary
| | - Gabor Draskovits
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, Hungary
| | - Ferenc Bogar
- MTA-SZTE Biomimetic Systems Research Group, Department of Medical Chemistry, University of Szeged, Hungary
| | - Žiga Skok
- University of Ljubljana, Faculty of Pharmacy, Ljubljana, Slovenia
| | - Nace Zidar
- University of Ljubljana, Faculty of Pharmacy, Ljubljana, Slovenia
| | - Janez Ilaš
- University of Ljubljana, Faculty of Pharmacy, Ljubljana, Slovenia
| | - Anamarija Zega
- University of Ljubljana, Faculty of Pharmacy, Ljubljana, Slovenia
| | - Danijel Kikelj
- University of Ljubljana, Faculty of Pharmacy, Ljubljana, Slovenia
| | - Lejla Daruka
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, Hungary
- Doctoral School of Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Balint Kintses
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, Hungary
- HCEMM-BRC Translational Microbiology Lab, Szeged, Hungary
| | - Balint Vasarhelyi
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, Hungary
| | - Imre Foldesi
- Department of Laboratory Medicine, University of Szeged, Szeged, Hungary
| | - Diána Kata
- Department of Laboratory Medicine, University of Szeged, Szeged, Hungary
| | - Martin Welin
- SARomics Biostructures, Medicon Village, Lund, Sweden
| | | | - Dorota Focht
- SARomics Biostructures, Medicon Village, Lund, Sweden
| | | | - Csaba Pal
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, Hungary
| |
Collapse
|
23
|
Henderson SR, Stevenson CEM, Malone B, Zholnerovych Y, Mitchenall LA, Pichowicz M, McGarry DH, Cooper IR, Charrier C, Salisbury AM, Lawson DM, Maxwell A. Structural and mechanistic analysis of ATPase inhibitors targeting mycobacterial DNA gyrase. J Antimicrob Chemother 2020; 75:2835-2842. [PMID: 32728686 PMCID: PMC7556816 DOI: 10.1093/jac/dkaa286] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/28/2020] [Accepted: 05/30/2020] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVES To evaluate the efficacy of two novel compounds against mycobacteria and determine the molecular basis of their action on DNA gyrase using structural and mechanistic approaches. METHODS Redx03863 and Redx04739 were tested in antibacterial assays, and also against their target, DNA gyrase, using DNA supercoiling and ATPase assays. X-ray crystallography was used to determine the structure of the gyrase B protein ATPase sub-domain from Mycobacterium smegmatis complexed with the aminocoumarin drug novobiocin, and structures of the same domain from Mycobacterium thermoresistibile complexed with novobiocin, and also with Redx03863. RESULTS Both compounds, Redx03863 and Redx04739, were active against selected Gram-positive and Gram-negative species, with Redx03863 being the more potent, and Redx04739 showing selectivity against M. smegmatis. Both compounds were potent inhibitors of the supercoiling and ATPase reactions of DNA gyrase, but did not appreciably affect the ATP-independent relaxation reaction. The structure of Redx03863 bound to the gyrase B protein ATPase sub-domain from M. thermoresistibile shows that it binds at a site adjacent to the ATP- and novobiocin-binding sites. We found that most of the mutations that we made in the Redx03863-binding pocket, based on the structure, rendered gyrase inactive. CONCLUSIONS Redx03863 and Redx04739 inhibit gyrase by preventing the binding of ATP. The fact that the Redx03863-binding pocket is distinct from that of novobiocin, coupled with the lack of activity of resistant mutants, suggests that such compounds could have potential to be further exploited as antibiotics.
Collapse
Affiliation(s)
- Sara R Henderson
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
- Norwich Medical School, University of East Anglia, Norwich NR4 7UQ, UK
| | - Clare E M Stevenson
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Brandon Malone
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
- Laboratory of Molecular Biophysics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Yelyzaveta Zholnerovych
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Lesley A Mitchenall
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Mark Pichowicz
- Redx Pharma PLC, Mereside, Alderley Park, Alderley Edge SK10 4TG, UK
- Sygnature Discovery, The Discovery Building, Biocity, Pennyfoot Street, Nottingham NG1 1GR, UK
| | - David H McGarry
- Redx Pharma PLC, Mereside, Alderley Park, Alderley Edge SK10 4TG, UK
- Globachem Discovery Ltd, Mereside, Alderley Park SK10 4TG, UK
| | - Ian R Cooper
- Redx Pharma PLC, Mereside, Alderley Park, Alderley Edge SK10 4TG, UK
- AMR Centre Ltd, Mereside, Alderley Park SK10 4TG, UK
| | - Cedric Charrier
- Redx Pharma PLC, Mereside, Alderley Park, Alderley Edge SK10 4TG, UK
- IHMA Europe Sàrl, Rte. de I’lle-au-Bois 1A, 1870 Monthey/VS, Switzerland
| | - Anne-Marie Salisbury
- Redx Pharma PLC, Mereside, Alderley Park, Alderley Edge SK10 4TG, UK
- 5D Health Protection Group Ltd, William Henry Duncan Building, West Derby Street, Liverpool L7 8TX, UK
| | - David M Lawson
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Anthony Maxwell
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| |
Collapse
|
24
|
Ushiyama F, Amada H, Mihara Y, Takeuchi T, Tanaka-Yamamoto N, Mima M, Kamitani M, Wada R, Tamura Y, Endo M, Masuko A, Takata I, Hitaka K, Sugiyama H, Ohtake N. Lead optimization of 8-(methylamino)-2-oxo-1,2-dihydroquinolines as bacterial type II topoisomerase inhibitors. Bioorg Med Chem 2020; 28:115776. [PMID: 33032189 DOI: 10.1016/j.bmc.2020.115776] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/13/2020] [Accepted: 09/15/2020] [Indexed: 11/28/2022]
Abstract
The global increase in multidrug-resistant pathogens has caused severe problems in the treatment of infections. To overcome these difficulties, the advent of a new chemical class of antibacterial drug is eagerly desired. We aimed at creating novel antibacterial agents against bacterial type II topoisomerases, which are well-validated targets. TP0480066 (compound 32) has been identified by using structure-based optimization originated from lead compound 1, which was obtained as a result of our previous lead identification studies. The MIC90 values of TP0480066 against methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Enterococci (VRE), and genotype penicillin-resistant Streptococcus pneumoniae (gPRSP) were 0.25, 0.015, and 0.06 μg/mL, respectively. Hence, TP0480066 can be regarded as a promising antibacterial drug candidate of this chemical class.
Collapse
Affiliation(s)
- Fumihito Ushiyama
- Taisho Pharmaceutical Co., Ltd, 1-403 Yoshino-Cho, Kita-Ku, Saitama 331-9530, Japan.
| | - Hideaki Amada
- Taisho Pharmaceutical Co., Ltd, 1-403 Yoshino-Cho, Kita-Ku, Saitama 331-9530, Japan
| | - Yasuhiro Mihara
- Taisho Pharmaceutical Co., Ltd, 1-403 Yoshino-Cho, Kita-Ku, Saitama 331-9530, Japan
| | - Tomoki Takeuchi
- Taisho Pharmaceutical Co., Ltd, 1-403 Yoshino-Cho, Kita-Ku, Saitama 331-9530, Japan
| | | | - Masashi Mima
- Taisho Pharmaceutical Co., Ltd, 1-403 Yoshino-Cho, Kita-Ku, Saitama 331-9530, Japan
| | - Masafumi Kamitani
- Taisho Pharmaceutical Co., Ltd, 1-403 Yoshino-Cho, Kita-Ku, Saitama 331-9530, Japan
| | - Reiko Wada
- Taisho Pharmaceutical Co., Ltd, 1-403 Yoshino-Cho, Kita-Ku, Saitama 331-9530, Japan
| | - Yunoshin Tamura
- Taisho Pharmaceutical Co., Ltd, 1-403 Yoshino-Cho, Kita-Ku, Saitama 331-9530, Japan
| | - Mayumi Endo
- Taisho Pharmaceutical Co., Ltd, 1-403 Yoshino-Cho, Kita-Ku, Saitama 331-9530, Japan
| | - Aiko Masuko
- Taisho Pharmaceutical Co., Ltd, 1-403 Yoshino-Cho, Kita-Ku, Saitama 331-9530, Japan
| | - Iichiro Takata
- Taisho Pharmaceutical Co., Ltd, 1-403 Yoshino-Cho, Kita-Ku, Saitama 331-9530, Japan
| | - Kosuke Hitaka
- Taisho Pharmaceutical Co., Ltd, 1-403 Yoshino-Cho, Kita-Ku, Saitama 331-9530, Japan
| | - Hiroyuki Sugiyama
- Taisho Pharmaceutical Co., Ltd, 1-403 Yoshino-Cho, Kita-Ku, Saitama 331-9530, Japan
| | - Norikazu Ohtake
- Taisho Pharmaceutical Co., Ltd, 1-403 Yoshino-Cho, Kita-Ku, Saitama 331-9530, Japan
| |
Collapse
|
25
|
Yele V, Mohammed AA, Wadhwani AD. Synthesis and Evaluation of Aryl/Heteroaryl Benzohydrazide and Phenylacetamide Derivatives as Broad‐Spectrum Antibacterial Agents. ChemistrySelect 2020. [DOI: 10.1002/slct.202002178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Vidyasrilekha Yele
- Department of Pharmaceutical Chemistry JSS College of Pharmacy JSS Academy of Higher Education & Research Ooty 643001, Tamil Nadu India
| | - Afzal Azam Mohammed
- Department of Pharmaceutical Chemistry JSS College of Pharmacy JSS Academy of Higher Education & Research Ooty 643001, Tamil Nadu India
| | - Ashish D. Wadhwani
- Department of Pharmaceutical Biotechnology JSS College of Pharmacy JSS Academy of Higher Education & Research Ooty 643001, Tamil Nadu India
| |
Collapse
|
26
|
Hu Y, Shi H, Zhou M, Ren Q, Zhu W, Zhang W, Zhang Z, Zhou C, Liu Y, Ding X, Shen HC, Yan SF, Dey F, Wu W, Zhai G, Zhou Z, Xu Z, Ji Y, Lv H, Jiang T, Wang W, Xu Y, Vercruysse M, Yao X, Mao Y, Yu X, Bradley K, Tan X. Discovery of Pyrido[2,3- b]indole Derivatives with Gram-Negative Activity Targeting Both DNA Gyrase and Topoisomerase IV. J Med Chem 2020; 63:9623-9649. [PMID: 32787097 DOI: 10.1021/acs.jmedchem.0c00768] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The rise of multidrug resistant (MDR) Gram-negative (GN) pathogens and the decline of available antibiotics that can effectively treat these severe infections are a major threat to modern medicine. Developing novel antibiotics against MDR GN pathogens is particularly difficult as compounds have to permeate the GN double membrane, which has very different physicochemical properties, and have to circumvent a plethora of resistance mechanisms such as multiple efflux pumps and target modifications. The bacterial type II topoisomerases DNA gyrase (GyrA2B2) and Topoisomerase IV (ParC2E2) are highly conserved targets across all bacterial species and validated in the clinic by the fluoroquinolones. Dual inhibitors targeting the ATPase domains (GyrB/ParE) of type II topoisomerases can overcome target-based fluoroquinolone resistance. However, few ATPase inhibitors are active against GN pathogens. In this study, we demonstrated a successful strategy to convert a 2-carboxamide substituted azaindole chemical scaffold with only Gram-positive (GP) activity into a novel series with also potent activity against a range of MDR GN pathogens. By systematically fine-tuning the many physicochemical properties, we identified lead compounds such as 17r with a balanced profile showing potent GN activity, high aqueous solubility, and desirable PK features. Moreover, we showed the bactericidal efficacy of 17r using a neutropenic mouse thigh infection model.
Collapse
Affiliation(s)
| | | | | | - Qingcheng Ren
- WuXi AppTec (Wuhan) Co., Ltd., No. 666 Gaoxin Road, Wuhan East Lake High-tech Development Zone, Hubei 430075, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Wen Wang
- MicuRx Pharmaceuticals, Inc. (Shanghai), Floor 3, Building B, 1976 Middle Gaoke Road, Shanghai 201210, China
| | - Yunhua Xu
- MicuRx Pharmaceuticals, Inc. (Shanghai), Floor 3, Building B, 1976 Middle Gaoke Road, Shanghai 201210, China
| | | | | | | | | | | | | |
Collapse
|
27
|
Khalil HH, Khattab SN, Toughan MM, El‐Saghier AMM, El‐Wakil MH. Identification of a Novel DNA Gyrase Inhibitor via Design and Synthesis of New Antibacterial Pyrido[1′,2′:1,2]pyrimido[4,5‐
e
][1,3,4]thiadiazin‐5‐ol Derivatives. ChemistrySelect 2020. [DOI: 10.1002/slct.202000886] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Hosam H. Khalil
- Department of ChemistryFaculty of ScienceAlexandria University Alexandria 21321 Egypt
| | - Sherine N. Khattab
- Department of ChemistryFaculty of ScienceAlexandria University Alexandria 21321 Egypt
- Cancer Nanotechnology Research Laboratory (CNRL)Faculty of PharmacyAlexandria University Alexandria 21521 Egypt
| | - Mayada M. Toughan
- Department of ChemistryFaculty of ScienceAlexandria University Alexandria 21321 Egypt
| | | | - Marwa H. El‐Wakil
- Department of Pharmaceutical ChemistryFaculty of PharmacyAlexandria University Alexandria 21521 Egypt
| |
Collapse
|
28
|
Stokes SS, Vemula R, Pucci MJ. Advancement of GyrB Inhibitors for Treatment of Infections Caused by Mycobacterium tuberculosis and Non-tuberculous Mycobacteria. ACS Infect Dis 2020; 6:1323-1331. [PMID: 32183511 DOI: 10.1021/acsinfecdis.0c00025] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The prospect of ever increasing antibiotic resistance eroding currently available treatment options for bacterial infections underscores the need to continue to identify new antibiotics, preferably those that act on novel targets or with novel mechanisms of action. Bacterial gyrase B subunit (GyrB), an essential component of bacterial gyrase required for successful DNA replication, represents such a target. We describe recent examples of GyrB inhibitors and point out their potential utility for treatment of mycobacterial diseases caused by Mycobacterium tuberculosis (TB) and non-tuberculous mycobacteria (NTM). Current therapeutic options for these diseases are often suboptimal due to resistance to current standard of care antibiotics. A future GyrB inhibitor-based antibiotic could offer a new and effective addition to the armamentarium for treatment of mycobacterial diseases and possibly for infections caused by other bacterial pathogens. One GyrB inhibitor, SPR720, has recently completed a first-in-human clinical trial and is in clinical development for the treatment of NTM and TB infections.
Collapse
Affiliation(s)
- Suzanne S. Stokes
- Spero Therapeutics, 675 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Rajender Vemula
- Spero Therapeutics, 675 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Michael J. Pucci
- Spero Therapeutics, 675 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
29
|
Ushiyama F, Amada H, Takeuchi T, Tanaka-Yamamoto N, Kanazawa H, Nakano K, Mima M, Masuko A, Takata I, Hitaka K, Iwamoto K, Sugiyama H, Ohtake N. Lead Identification of 8-(Methylamino)-2-oxo-1,2-dihydroquinoline Derivatives as DNA Gyrase Inhibitors: Hit-to-Lead Generation Involving Thermodynamic Evaluation. ACS OMEGA 2020; 5:10145-10159. [PMID: 32391502 PMCID: PMC7203957 DOI: 10.1021/acsomega.0c00865] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 04/09/2020] [Indexed: 05/26/2023]
Abstract
DNA gyrase and topoisomerase IV are well-validated pharmacological targets, and quinolone antibacterial drugs are marketed as their representative inhibitors. However, in recent years, resistance to these existing drugs has become a problem, and new chemical classes of antibiotics that can combat resistant strains of bacteria are strongly needed. In this study, we applied our hit-to-lead (H2L) chemistry for the identification of a new chemical class of GyrB/ParE inhibitors by efficient use of thermodynamic parameters. Investigation of the core fragments obtained by fragmentation of high-throughput screening hit compounds and subsequent expansion of the hit fragment was performed using isothermal titration calorimetry (ITC). The 8-(methylamino)-2-oxo-1,2-dihydroquinoline derivative 13e showed potent activity against Escherichia coli DNA gyrase with an IC50 value of 0.0017 μM. In this study, we demonstrated the use of ITC for primary fragment screening, followed by structural optimization to obtain lead compounds, which advanced into further optimization for creating novel antibacterial agents.
Collapse
Affiliation(s)
- Fumihito Ushiyama
- Chemistry
Laboratories, Taisho Pharmaceutical Company
Ltd., 1-403, Yoshino-Cho, Kita-Ku, Saitama, Saitama 331-9530, Japan
| | - Hideaki Amada
- Chemistry
Laboratories, Taisho Pharmaceutical Company
Ltd., 1-403, Yoshino-Cho, Kita-Ku, Saitama, Saitama 331-9530, Japan
| | - Tomoki Takeuchi
- Chemistry
Laboratories, Taisho Pharmaceutical Company
Ltd., 1-403, Yoshino-Cho, Kita-Ku, Saitama, Saitama 331-9530, Japan
| | - Nozomi Tanaka-Yamamoto
- Chemistry
Laboratories, Taisho Pharmaceutical Company
Ltd., 1-403, Yoshino-Cho, Kita-Ku, Saitama, Saitama 331-9530, Japan
| | - Harumi Kanazawa
- Chemistry
Laboratories, Taisho Pharmaceutical Company
Ltd., 1-403, Yoshino-Cho, Kita-Ku, Saitama, Saitama 331-9530, Japan
| | - Koichiro Nakano
- Pharmacology
Laboratories, Taisho Pharmaceutical Company
Ltd., 1-403, Yoshino-Cho, Kita-Ku, Saitama, Saitama 331-9530, Japan
| | - Masashi Mima
- Pharmacology
Laboratories, Taisho Pharmaceutical Company
Ltd., 1-403, Yoshino-Cho, Kita-Ku, Saitama, Saitama 331-9530, Japan
| | - Aiko Masuko
- Pharmacology
Laboratories, Taisho Pharmaceutical Company
Ltd., 1-403, Yoshino-Cho, Kita-Ku, Saitama, Saitama 331-9530, Japan
| | - Iichiro Takata
- Pharmacology
Laboratories, Taisho Pharmaceutical Company
Ltd., 1-403, Yoshino-Cho, Kita-Ku, Saitama, Saitama 331-9530, Japan
| | - Kosuke Hitaka
- Pharmacology
Laboratories, Taisho Pharmaceutical Company
Ltd., 1-403, Yoshino-Cho, Kita-Ku, Saitama, Saitama 331-9530, Japan
| | - Kunihiko Iwamoto
- Pharmacology
Laboratories, Taisho Pharmaceutical Company
Ltd., 1-403, Yoshino-Cho, Kita-Ku, Saitama, Saitama 331-9530, Japan
| | - Hiroyuki Sugiyama
- Pharmacology
Laboratories, Taisho Pharmaceutical Company
Ltd., 1-403, Yoshino-Cho, Kita-Ku, Saitama, Saitama 331-9530, Japan
| | - Norikazu Ohtake
- Chemistry
Laboratories, Taisho Pharmaceutical Company
Ltd., 1-403, Yoshino-Cho, Kita-Ku, Saitama, Saitama 331-9530, Japan
| |
Collapse
|
30
|
Second-generation 4,5,6,7-tetrahydrobenzo[ d]thiazoles as novel DNA gyrase inhibitors. Future Med Chem 2020; 12:277-297. [PMID: 32043377 DOI: 10.4155/fmc-2019-0127] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Aim: DNA gyrase and topoisomerase IV are essential bacterial enzymes, and in the fight against bacterial resistance, they are important targets for the development of novel antibacterial drugs. Results: Building from our first generation of 4,5,6,7-tetrahydrobenzo[d]thiazole-based DNA gyrase inhibitors, we designed and prepared an optimized series of analogs that show improved inhibition of DNA gyrase and topoisomerase IV from Staphylococcus aureus and Escherichia coli, with IC50 values in the nanomolar range. Importantly, these inhibitors also show improved antibacterial activity against Gram-positive strains. Conclusion: The most promising inhibitor, 29, is active against Enterococcus faecalis, Enterococcus faecium and S. aureus wild-type and resistant strains, with minimum inhibitory concentrations between 4 and 8 μg/ml, which represents good starting point for development of novel antibacterials.
Collapse
|
31
|
Azam MA, Thathan J, Jupudi S. Pharmacophore modeling, atom based 3D-QSAR, molecular docking and molecular dynamics studies on Escherichia coli ParE inhibitors. Comput Biol Chem 2019; 84:107197. [PMID: 31901788 DOI: 10.1016/j.compbiolchem.2019.107197] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 12/20/2019] [Accepted: 12/22/2019] [Indexed: 10/25/2022]
Abstract
ATP dependent ParE enzyme is as an attractive target for the development of antibacterial agents. Atom based 3D-QSAR model AADHR.187 was developed based on the thirty eight Escherichia coli ParE inhibitors. The generated model showed statistically significant coefficient of determinations for the training (R2 = 0.985) and test (R2 = 0.86) sets. The cross-validated correlation coefficient (q2) was 0.976. The utility of the generated model was validated by the enrichment study. The model was also validated with structurally diverse external test set of ten compounds. Contour plot analysis of the generated model unveiled the chemical features necessary for the E. coli ParE enzyme inhibition. Extra-precision docking result revealed that hydrogen bonding and ionic interactions play a major role in ParE protein-ligand binding. Binding free energy was computed for the data set inhibitors to validate the binding affinity. A 30-ns molecular dynamics simulation showed high stability and effective binding of inhibitor 34 within the active site of ParE enzyme. Using the best fitted model AADHR.187, pharmacophore-based high-throughput virtual screening was performed to identify virtual hits. Based on the above studies three new molecules are proposed as E. coli ParE inhibitors with high binding affinity and favourable ADME properties.
Collapse
Affiliation(s)
- Mohammed Afzal Azam
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, Ooty, 643001, Tamil Nadu, India(1).
| | - Janarthanan Thathan
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, Ooty, 643001, Tamil Nadu, India(1)
| | - Srikanth Jupudi
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, Ooty, 643001, Tamil Nadu, India(1)
| |
Collapse
|
32
|
Rapid Evolution of Reduced Susceptibility against a Balanced Dual-Targeting Antibiotic through Stepping-Stone Mutations. Antimicrob Agents Chemother 2019; 63:AAC.00207-19. [PMID: 31235632 DOI: 10.1128/aac.00207-19] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 06/14/2019] [Indexed: 11/20/2022] Open
Abstract
Multitargeting antibiotics, i.e., single compounds capable of inhibiting two or more bacterial targets, are generally considered to be a promising therapeutic strategy against resistance evolution. The rationale for this theory is that multitargeting antibiotics demand the simultaneous acquisition of multiple mutations at their respective target genes to achieve significant resistance. The theory presumes that individual mutations provide little or no benefit to the bacterial host. Here, we propose that such individual stepping-stone mutations can be prevalent in clinical bacterial isolates, as they provide significant resistance to other antimicrobial agents. To test this possibility, we focused on gepotidacin, an antibiotic candidate that selectively inhibits both bacterial DNA gyrase and topoisomerase IV. In a susceptible organism, Klebsiella pneumoniae, a combination of two specific mutations in these target proteins provide an >2,000-fold reduction in susceptibility, while individually, none of these mutations affect resistance significantly. Alarmingly, strains with decreased susceptibility against gepotidacin are found to be as virulent as the wild-type Klebsiella pneumoniae strain in a murine model. Moreover, numerous pathogenic isolates carry mutations which could promote the evolution of clinically significant reduction of susceptibility against gepotidacin in the future. As might be expected, prolonged exposure to ciprofloxacin, a clinically widely employed gyrase inhibitor, coselected for reduced susceptibility against gepotidacin. We conclude that extensive antibiotic usage could select for mutations that serve as stepping-stones toward resistance against antimicrobial compounds still under development. Our research indicates that even balanced multitargeting antibiotics are prone to resistance evolution.
Collapse
|
33
|
Zidar N, Macut H, Tomašič T, Peterlin Mašič L, Ilaš J, Zega A, Tammela P, Kikelj D. New N-phenyl-4,5-dibromopyrrolamides as DNA gyrase B inhibitors. MEDCHEMCOMM 2019; 10:1007-1017. [PMID: 31303999 DOI: 10.1039/c9md00224c] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 05/18/2019] [Indexed: 11/21/2022]
Abstract
Due to the rapid development of antimicrobial resistance, the discovery of new antibacterials is essential in the fight against potentially lethal infections. The DNA gyrase B (GyrB) subunit of bacterial DNA gyrase is an excellent target for the design of antibacterials, as it has been clinically validated by novobiocin. However, there are currently no drugs in clinical use that target GyrB. We prepared a new series of N-phenyl-4,5-dibromopyrrolamides and evaluated them against DNA gyrase and against the structurally and functionally similar enzyme, topoisomerase IV. The most active compound, 28, had an IC50 of 20 nM against Escherichia coli DNA gyrase. The IC50 values of 28 against Staphylococcus aureus DNA gyrase, and E. coli and S. aureus topoisomerase IV were in the low micromolar range. However, the compounds evaluated did not show significant antibacterial activities against selected Gram-positive and Gram-negative bacteria. Our results indicate that for potent inhibition of DNA gyrase, a combination of polar groups on the carboxylic end of the molecule and substituents that reach into the 'lipophilic floor' of the enzyme is required.
Collapse
Affiliation(s)
- Nace Zidar
- University of Ljubljana , Faculty of Pharmacy , Aškerčeva cesta 7 , 1000 Ljubljana , Slovenia . ; ; Tel: +386 1 4769578
| | - Helena Macut
- University of Ljubljana , Faculty of Pharmacy , Aškerčeva cesta 7 , 1000 Ljubljana , Slovenia . ; ; Tel: +386 1 4769578
| | - Tihomir Tomašič
- University of Ljubljana , Faculty of Pharmacy , Aškerčeva cesta 7 , 1000 Ljubljana , Slovenia . ; ; Tel: +386 1 4769578
| | - Lucija Peterlin Mašič
- University of Ljubljana , Faculty of Pharmacy , Aškerčeva cesta 7 , 1000 Ljubljana , Slovenia . ; ; Tel: +386 1 4769578
| | - Janez Ilaš
- University of Ljubljana , Faculty of Pharmacy , Aškerčeva cesta 7 , 1000 Ljubljana , Slovenia . ; ; Tel: +386 1 4769578
| | - Anamarija Zega
- University of Ljubljana , Faculty of Pharmacy , Aškerčeva cesta 7 , 1000 Ljubljana , Slovenia . ; ; Tel: +386 1 4769578
| | - Päivi Tammela
- Drug Research Program , Division of Pharmaceutical Biosciences , Faculty of Pharmacy , University of Helsinki , P.O. Box 56 (Viikinkaari 5 E) , Helsinki FI-00014 , Finland
| | - Danijel Kikelj
- University of Ljubljana , Faculty of Pharmacy , Aškerčeva cesta 7 , 1000 Ljubljana , Slovenia . ; ; Tel: +386 1 4769578
| |
Collapse
|
34
|
Machine learning-powered antibiotics phenotypic drug discovery. Sci Rep 2019; 9:5013. [PMID: 30899034 PMCID: PMC6428806 DOI: 10.1038/s41598-019-39387-9] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 01/14/2019] [Indexed: 01/23/2023] Open
Abstract
Identification of novel antibiotics remains a major challenge for drug discovery. The present study explores use of phenotypic readouts beyond classical antibacterial growth inhibition adopting a combined multiparametric high content screening and genomic approach. Deployment of the semi-automated bacterial phenotypic fingerprint (BPF) profiling platform in conjunction with a machine learning-powered dataset analysis, effectively allowed us to narrow down, compare and predict compound mode of action (MoA). The method identifies weak antibacterial hits allowing full exploitation of low potency hits frequently discovered by routine antibacterial screening. We demonstrate that BPF classification tool can be successfully used to guide chemical structure activity relationship optimization, enabling antibiotic development and that this approach can be fruitfully applied across species. The BPF classification tool could be potentially applied in primary screening, effectively enabling identification of novel antibacterial compound hits and differentiating their MoA, hence widening the known antibacterial chemical space of existing pharmaceutical compound libraries. More generally, beyond the specific objective of the present work, the proposed approach could be profitably applied to a broader range of diseases amenable to phenotypic drug discovery.
Collapse
|
35
|
Tiz DB, Skok Ž, Durcik M, Tomašič T, Mašič LP, Ilaš J, Zega A, Draskovits G, Révész T, Nyerges Á, Pál C, Cruz CD, Tammela P, Žigon D, Kikelj D, Zidar N. An optimised series of substituted N-phenylpyrrolamides as DNA gyrase B inhibitors. Eur J Med Chem 2019; 167:269-290. [PMID: 30776691 DOI: 10.1016/j.ejmech.2019.02.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 01/18/2019] [Accepted: 02/01/2019] [Indexed: 10/27/2022]
Abstract
ATP competitive inhibitors of DNA gyrase and topoisomerase IV have great therapeutic potential, but none of the described synthetic compounds has so far reached the market. To optimise the activities and physicochemical properties of our previously reported N-phenylpyrrolamide inhibitors, we have synthesized an improved, chemically variegated selection of compounds and evaluated them against DNA gyrase and topoisomerase IV enzymes, and against selected Gram-positive and Gram-negative bacteria. The most potent compound displayed IC50 values of 6.9 nM against Escherichia coli DNA gyrase and 960 nM against Staphylococcus aureus topoisomerase IV. Several compounds displayed minimum inhibitory concentrations (MICs) against Gram-positive strains in the 1-50 μM range, one of which inhibited the growth of Enterococcus faecalis, Enterococcus faecium, S. aureus and Streptococcus pyogenes with MIC values of 1.56 μM, 1.56 μM, 0.78 μM and 0.72 μM, respectively. This compound has been investigated further on methicillin-resistant S. aureus (MRSA) and on ciprofloxacin non-susceptible and extremely drug resistant strain of S. aureus (MRSA VISA). It exhibited the MIC value of 2.5 μM on both strains, and MIC value of 32 μM against MRSA in the presence of inactivated human blood serum. Further studies are needed to confirm its mode of action.
Collapse
Affiliation(s)
- Davide Benedetto Tiz
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000, Ljubljana, Slovenia
| | - Žiga Skok
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000, Ljubljana, Slovenia
| | - Martina Durcik
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000, Ljubljana, Slovenia
| | - Tihomir Tomašič
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000, Ljubljana, Slovenia
| | - Lucija Peterlin Mašič
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000, Ljubljana, Slovenia
| | - Janez Ilaš
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000, Ljubljana, Slovenia
| | - Anamarija Zega
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000, Ljubljana, Slovenia
| | - Gábor Draskovits
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, H-6726, Hungary
| | - Tamás Révész
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, H-6726, Hungary
| | - Ákos Nyerges
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, H-6726, Hungary
| | - Csaba Pál
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, P.O. Box 56 (Viikinkaari 5 E), Helsinki, FI-00014, Finland
| | - Cristina D Cruz
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, P.O. Box 56 (Viikinkaari 5 E), Helsinki, FI-00014, Finland
| | - Päivi Tammela
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, P.O. Box 56 (Viikinkaari 5 E), Helsinki, FI-00014, Finland
| | - Dušan Žigon
- Jožef Stefan Institute, Department of Environmental Science, Jamova cesta 39, 1000, Ljubljana, Slovenia
| | - Danijel Kikelj
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000, Ljubljana, Slovenia
| | - Nace Zidar
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000, Ljubljana, Slovenia.
| |
Collapse
|
36
|
Discovery of dual GyrB/ParE inhibitors active against Gram-negative bacteria. Eur J Med Chem 2018; 157:610-621. [DOI: 10.1016/j.ejmech.2018.08.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 08/03/2018] [Accepted: 08/10/2018] [Indexed: 11/18/2022]
|
37
|
Tichý M, Smoleń S, Deingruber T, Džubák P, Pohl R, Slavětínská LP, Hajdúch M, Hocek M. Thienopyrrolo[2, 3- d
]pyrimidines, New Tricyclic Nucleobase Analogues: Synthesis and Biological Activities. ChemistrySelect 2018. [DOI: 10.1002/slct.201802190] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Michal Tichý
- Institute of Organic Chemistry and Biochemistry; Czech Academy of Sciences, Flemingovo nam. 2; CZ-16610 Prague 6 Czech Republic
| | - Sabina Smoleń
- Institute of Organic Chemistry and Biochemistry; Czech Academy of Sciences, Flemingovo nam. 2; CZ-16610 Prague 6 Czech Republic
| | - Tomáš Deingruber
- Institute of Organic Chemistry and Biochemistry; Czech Academy of Sciences, Flemingovo nam. 2; CZ-16610 Prague 6 Czech Republic
| | - Petr Džubák
- Institute of Molecular and Translational Medicine; Faculty of Medicine and Dentistry; Palacky University and University Hospital in Olomouc, Hněvotínská 5; CZ-775 15 Olomouc Czech Republic
| | - Radek Pohl
- Institute of Organic Chemistry and Biochemistry; Czech Academy of Sciences, Flemingovo nam. 2; CZ-16610 Prague 6 Czech Republic
| | - Lenka Poštová Slavětínská
- Institute of Organic Chemistry and Biochemistry; Czech Academy of Sciences, Flemingovo nam. 2; CZ-16610 Prague 6 Czech Republic
| | - Marián Hajdúch
- Institute of Molecular and Translational Medicine; Faculty of Medicine and Dentistry; Palacky University and University Hospital in Olomouc, Hněvotínská 5; CZ-775 15 Olomouc Czech Republic
| | - Michal Hocek
- Institute of Organic Chemistry and Biochemistry; Czech Academy of Sciences, Flemingovo nam. 2; CZ-16610 Prague 6 Czech Republic
- Department of Organic Chemistry; Faculty of Science; Charles University in Prague, Hlavova 8; CZ-12843 Prague 2 Czech Republic
| |
Collapse
|
38
|
McGarry DH, Cooper IR, Walker R, Warrilow CE, Pichowicz M, Ratcliffe AJ, Salisbury AM, Savage VJ, Moyo E, Maclean J, Smith A, Charrier C, Stokes NR, Lindsay DM, Kerr WJ. Design, synthesis and antibacterial properties of pyrimido[4,5-b]indol-8-amine inhibitors of DNA gyrase. Bioorg Med Chem Lett 2018; 28:2998-3003. [PMID: 30122228 DOI: 10.1016/j.bmcl.2018.05.049] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 05/24/2018] [Accepted: 05/26/2018] [Indexed: 01/12/2023]
Abstract
According to the World Health Organization (WHO), approximately 1.7 million deaths per year are caused by tuberculosis infections. Furthermore, it has been predicted that, by 2050, antibacterial resistance will be the cause of approximately 10 million deaths annually if the issue is not tackled. As a result, novel approaches to treating broad-spectrum bacterial infections are of vital importance. During the course of our wider efforts to discover unique methods of targeting multidrug-resistant (MDR) pathogens, we identified a novel series of amide-linked pyrimido[4,5-b]indol-8-amine inhibitors of bacterial type II topoisomerases. Compounds from the series were highly potent against gram-positive bacteria and mycobacteria, with excellent potency being retained against a panel of relevant Mycobacterium tuberculosis drug-resistant clinical isolates.
Collapse
Affiliation(s)
- David H McGarry
- Redx Pharma, Alderley Park, Cheshire SK10 4TG, United Kingdom.
| | - Ian R Cooper
- Redx Pharma, Alderley Park, Cheshire SK10 4TG, United Kingdom
| | - Rolf Walker
- Redx Pharma, Alderley Park, Cheshire SK10 4TG, United Kingdom
| | | | - Mark Pichowicz
- Redx Pharma, Alderley Park, Cheshire SK10 4TG, United Kingdom
| | | | | | | | - Emmanuel Moyo
- Redx Pharma, Alderley Park, Cheshire SK10 4TG, United Kingdom
| | - John Maclean
- Redx Pharma, Alderley Park, Cheshire SK10 4TG, United Kingdom
| | - Andrew Smith
- Redx Pharma, Alderley Park, Cheshire SK10 4TG, United Kingdom
| | - Cédric Charrier
- Redx Pharma, Alderley Park, Cheshire SK10 4TG, United Kingdom
| | - Neil R Stokes
- Redx Pharma, Alderley Park, Cheshire SK10 4TG, United Kingdom
| | - David M Lindsay
- Department of Pure and Applied Chemistry, University of Strathclyde, WestCHEM, Thomas Graham Building, 295 Cathedral Street, Glasgow G1 1XL, United Kingdom
| | - William J Kerr
- Department of Pure and Applied Chemistry, University of Strathclyde, WestCHEM, Thomas Graham Building, 295 Cathedral Street, Glasgow G1 1XL, United Kingdom
| |
Collapse
|
39
|
In Vitro and In Vivo Activities of DS-2969b, a Novel GyrB Inhibitor, and Its Water-Soluble Prodrug, DS11960558, against Methicillin-Resistant Staphylococcus aureus. Antimicrob Agents Chemother 2018; 62:AAC.02556-17. [PMID: 29610202 DOI: 10.1128/aac.02556-17] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 03/27/2018] [Indexed: 01/04/2023] Open
Abstract
DS-2969b is a novel GyrB inhibitor under clinical development. In this study, the in vitro activity of DS-2969b and the in vivo activities of DS-2969b and its water-soluble prodrug, DS11960558, against methicillin-resistant Staphylococcus aureus (MRSA) were evaluated. DS-2969b inhibited the supercoiling activity of S. aureus DNA gyrase and the decatenation activity of its topoisomerase IV. DS-2969b showed antibacterial activity against Gram-positive aerobes but not against Gram-negative aerobes, except for Moraxella catarrhalis and Haemophilus influenzae DS-2969b was active against MRSA with an MIC90 of 0.25 μg/ml, which was 8-fold lower than that of linezolid. The presence of a pulmonary surfactant did not affect the MIC of DS-2969b. DS-2969b showed time-dependent slow killing against MRSA. The frequency of spontaneous resistance development was less than 6.2 × 10-10 in all four S. aureus isolates at 4× MIC of DS-2969b. In a neutropenic MRSA-induced murine muscle infection model, DS-2969b was more efficacious than linezolid by both the subcutaneous and oral routes. DS-2969b and DS11960558 showed efficacy in a neutropenic murine MRSA lung infection model. The pharmacokinetics and pharmacodynamics of DS-2969b and DS11960558 against MRSA were characterized in a neutropenic murine thigh infection model; the percentage of time during the dosing period in which the free drug concentration exceeded the MIC (fTMIC) correlated best with in vivo efficacy, and the static percent fTMIC was 43 to 49%. A sufficient fTMIC was observed in a phase 1 multiple-ascending-dose study of DS-2969b given orally at 400 mg once a day. These results suggest that DS11960558 and DS-2969b have potential for use as intravenous-to-oral step-down therapy for treating MRSA infections with a higher efficacy than linezolid.
Collapse
|
40
|
Corpas J, Ponce A, Adrio J, Carretero JC. CuI-Catalyzed Asymmetric [3 + 2] Cycloaddition of Azomethine Ylides with Cyclobutenones. Org Lett 2018; 20:3179-3182. [DOI: 10.1021/acs.orglett.8b00936] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Javier Corpas
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Alberto Ponce
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Javier Adrio
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Juan C. Carretero
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
41
|
New N-phenylpyrrolamide DNA gyrase B inhibitors: Optimization of efficacy and antibacterial activity. Eur J Med Chem 2018; 154:117-132. [PMID: 29778894 DOI: 10.1016/j.ejmech.2018.05.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 03/27/2018] [Accepted: 05/07/2018] [Indexed: 01/04/2023]
Abstract
The ATP binding site located on the subunit B of DNA gyrase is an attractive target for the development of new antibacterial agents. In recent decades, several small-molecule inhibitor classes have been discovered but none has so far reached the market. We present here the discovery of a promising new series of N-phenylpyrrolamides with low nanomolar IC50 values against DNA gyrase, and submicromolar IC50 values against topoisomerase IV from Escherichia coli and Staphylococcus aureus. The most potent compound in the series has an IC50 value of 13 nM against E. coli gyrase. Minimum inhibitory concentrations (MICs) against Gram-positive bacteria are in the low micromolar range. The oxadiazolone derivative 11a, with an IC50 value of 85 nM against E. coli DNA gyrase displays the most potent antibacterial activity, with MIC values of 1.56 μM against Enterococcus faecalis, and 3.13 μM against wild type S. aureus, methicillin-resistant S. aureus (MRSA) and vancomycin-resistant Enterococcus (VRE). The activity against wild type E. coli in the presence of efflux pump inhibitor phenylalanine-arginine β-naphthylamide (PAβN) is 4.6 μM.
Collapse
|
42
|
Badshah SL, Ullah A. New developments in non-quinolone-based antibiotics for the inhibiton of bacterial gyrase and topoisomerase IV. Eur J Med Chem 2018; 152:393-400. [DOI: 10.1016/j.ejmech.2018.04.059] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 04/23/2018] [Accepted: 04/29/2018] [Indexed: 01/06/2023]
|
43
|
Richter MF, Hergenrother PJ. The challenge of converting Gram-positive-only compounds into broad-spectrum antibiotics. Ann N Y Acad Sci 2018; 1435:18-38. [PMID: 29446459 DOI: 10.1111/nyas.13598] [Citation(s) in RCA: 148] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 12/07/2017] [Accepted: 12/14/2017] [Indexed: 12/14/2022]
Abstract
Multidrug resistant Gram-negative bacterial infections are on the rise, and there is a lack of new classes of drugs to treat these pathogens. This drug shortage is largely due to the challenge of finding antibiotics that can permeate and persist inside Gram-negative species. Efforts to understand the molecular properties that enable certain compounds to accumulate in Gram-negative bacteria based on retrospective studies of known antibiotics have not been generally actionable in the development of new antibiotics. A recent assessment of the ability of >180 diverse small molecules to accumulate in Escherichia coli led to predictive guidelines for compound accumulation in E. coli. These "eNTRy rules" state that compounds are most likely to accumulate if they contain a nonsterically encumbered ionizable Nitrogen (primary amines are the best), have low Three-dimensionality (globularity ≤ 0.25), and are relatively Rigid (rotatable bonds ≤ 5). In this review, we look back through 50+ years of antibacterial research and 1000s of derivatives and assess this historical data set through the lens of these predictive guidelines. The results are consistent with the eNTRy rules, suggesting that the eNTRy rules may provide an actionable and general roadmap for the conversion of Gram-positive-only compounds into broad-spectrum antibiotics.
Collapse
Affiliation(s)
- Michelle F Richter
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Paul J Hergenrother
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois
| |
Collapse
|
44
|
Durcik M, Tammela P, Barančoková M, Tomašič T, Ilaš J, Kikelj D, Zidar N. Synthesis and Evaluation of N-Phenylpyrrolamides as DNA Gyrase B Inhibitors. ChemMedChem 2018; 13:186-198. [PMID: 29206345 DOI: 10.1002/cmdc.201700549] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 12/01/2017] [Indexed: 01/05/2023]
Abstract
ATP-competitive inhibitors of DNA gyrase and topoisomerase IV are among the most interesting classes of antibacterial drugs that are unrepresented in the antibacterial pipeline. We developed 32 new N-phenylpyrrolamides and evaluated them against DNA gyrase and topoisomerase IV from E. coli and Staphylococcus aureus. Antibacterial activities were studied against Gram-positive and Gram-negative bacterial strains. The most potent compound displayed an IC50 of 47 nm against E. coli DNA gyrase, and a minimum inhibitory concentration (MIC) of 12.5 μm against the Gram-positive Enterococcus faecalis. Some compounds displayed good antibacterial activities against an efflux-pump-deficient E. coli strain (MIC=6.25 μm) and against wild-type E. coli in the presence of efflux pump inhibitor PAβN (MIC=3.13 μm). Here we describe new findings regarding the structure-activity relationships of N-phenylpyrrolamide DNA gyrase B inhibitors and investigate the factors that are important for the antibacterial activity of this class of compounds.
Collapse
Affiliation(s)
- Martina Durcik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000, Ljubljana, Slovenia
| | - Päivi Tammela
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, Viikinkaari 5E, Helsinki, 00014, Finland
| | - Michaela Barančoková
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000, Ljubljana, Slovenia
| | - Tihomir Tomašič
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000, Ljubljana, Slovenia
| | - Janez Ilaš
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000, Ljubljana, Slovenia
| | - Danijel Kikelj
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000, Ljubljana, Slovenia
| | - Nace Zidar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000, Ljubljana, Slovenia
| |
Collapse
|
45
|
Tomašič T, Barančoková M, Zidar N, Ilaš J, Tammela P, Kikelj D. Design, synthesis, and biological evaluation of 1-ethyl-3-(thiazol-2-yl)urea derivatives as Escherichia coli
DNA gyrase inhibitors. Arch Pharm (Weinheim) 2017; 351. [DOI: 10.1002/ardp.201700333] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 11/22/2017] [Accepted: 11/24/2017] [Indexed: 12/20/2022]
Affiliation(s)
- Tihomir Tomašič
- Faculty of Pharmacy; University of Ljubljana; Ljubljana Slovenia
| | | | - Nace Zidar
- Faculty of Pharmacy; University of Ljubljana; Ljubljana Slovenia
| | - Janez Ilaš
- Faculty of Pharmacy; University of Ljubljana; Ljubljana Slovenia
| | - Päivi Tammela
- Division of Pharmaceutical Biosciences; Faculty of Pharmacy; University of Helsinki; Helsinki Finland
| | - Danijel Kikelj
- Faculty of Pharmacy; University of Ljubljana; Ljubljana Slovenia
| |
Collapse
|
46
|
Reiche MA, Warner DF, Mizrahi V. Targeting DNA Replication and Repair for the Development of Novel Therapeutics against Tuberculosis. Front Mol Biosci 2017; 4:75. [PMID: 29184888 PMCID: PMC5694481 DOI: 10.3389/fmolb.2017.00075] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 10/31/2017] [Indexed: 12/11/2022] Open
Abstract
Mycobacterium tuberculosis is the etiological agent of tuberculosis (TB), an infectious disease which results in approximately 10 million incident cases and 1.4 million deaths globally each year, making it the leading cause of mortality from infection. An effective frontline combination chemotherapy exists for TB; however, this regimen requires the administration of four drugs in a 2 month long intensive phase followed by a continuation phase of a further 4 months with two of the original drugs, and is only effective for the treatment of drug-sensitive TB. The emergence and global spread of multidrug-resistant (MDR) as well as extensively drug-resistant (XDR) strains of M. tuberculosis, and the complications posed by co-infection with the human immunodeficiency virus (HIV) and other co-morbidities such as diabetes, have prompted urgent efforts to develop shorter regimens comprising new compounds with novel mechanisms of action. This demands that researchers re-visit cellular pathways and functions that are essential to M. tuberculosis survival and replication in the host but which are inadequately represented amongst the targets of current anti-mycobacterial agents. Here, we consider the DNA replication and repair machinery as a source of new targets for anti-TB drug development. Like most bacteria, M. tuberculosis encodes a complex array of proteins which ensure faithful and accurate replication and repair of the chromosomal DNA. Many of these are essential; so, too, are enzymes in the ancillary pathways of nucleotide biosynthesis, salvage, and re-cycling, suggesting the potential to inhibit replication and repair functions at multiple stages. To this end, we provide an update on the state of chemotherapeutic inhibition of DNA synthesis and related pathways in M. tuberculosis. Given the established links between genotoxicity and mutagenesis, we also consider the potential implications of targeting DNA metabolic pathways implicated in the development of drug resistance in M. tuberculosis, an organism which is unusual in relying exclusively on de novo mutations and chromosomal rearrangements for evolution, including the acquisition of drug resistance. In that context, we conclude by discussing the feasibility of targeting mutagenic pathways in an ancillary, “anti-evolution” strategy aimed at protecting existing and future TB drugs.
Collapse
Affiliation(s)
- Michael A Reiche
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Digby F Warner
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Valerie Mizrahi
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
47
|
Discovery of substituted oxadiazoles as a novel scaffold for DNA gyrase inhibitors. Eur J Med Chem 2017; 130:171-184. [DOI: 10.1016/j.ejmech.2017.02.046] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 02/13/2017] [Accepted: 02/17/2017] [Indexed: 01/06/2023]
|
48
|
Functional Characterization of the DNA Gyrases in Fluoroquinolone-Resistant Mutants of Francisella novicida. Antimicrob Agents Chemother 2017; 61:AAC.02277-16. [PMID: 28167561 DOI: 10.1128/aac.02277-16] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 01/20/2017] [Indexed: 11/20/2022] Open
Abstract
Fluoroquinolone (FQ) resistance is a major health concern in the treatment of tularemia. Because DNA gyrase has been described as the main target of these compounds, our aim was to clarify the contributions of both GyrA and GyrB mutations found in Francisella novicida clones highly resistant to FQs. Wild-type and mutated GyrA and GyrB subunits were overexpressed so that the in vitro FQ sensitivity of functional reconstituted complexes could be evaluated. The data obtained were compared to the MICs of FQs against bacterial clones harboring the same mutations and were further validated through complementation experiments and structural modeling. Whole-genome sequencing of highly FQ-resistant lineages was also done. Supercoiling and DNA cleavage assays demonstrated that GyrA D87 is a hot spot FQ resistance target in F. novicida and pointed out the role of the GyrA P43H substitution in resistance acquisition. An unusual feature of FQ resistance acquisition in F. novicida is that the first-step mutation occurs in GyrB, with direct or indirect consequences for FQ sensitivity. Insertion of P466 into GyrB leads to a 50% inhibitory concentration (IC50) comparable to that observed for a mutant gyrase carrying the GyrA D87Y substitution, while the D487E-ΔK488 mutation, while not active on its own, contributes to the high level of resistance that occurs following acquisition of the GyrA D87G substitution in double GyrA/GyrB mutants. The involvement of other putative targets is discussed, including that of a ParE mutation that was found to arise in the very late stage of antibiotic exposure. This study provides the first characterization of the molecular mechanisms responsible for FQ resistance in Francisella.
Collapse
|
49
|
Molecular insights on analogs of imidazo[1,2-a]pyridine, azaindole, and pyridylurea towards ParE using pharmacophore modeling, molecular docking, and dynamic simulation. Struct Chem 2017. [DOI: 10.1007/s11224-017-0919-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
50
|
Tomašič T, Mirt M, Barančoková M, Ilaš J, Zidar N, Tammela P, Kikelj D. Design, synthesis and biological evaluation of 4,5-dibromo-N-(thiazol-2-yl)-1H-pyrrole-2-carboxamide derivatives as novel DNA gyrase inhibitors. Bioorg Med Chem 2017; 25:338-349. [DOI: 10.1016/j.bmc.2016.10.038] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 10/27/2016] [Accepted: 10/29/2016] [Indexed: 11/25/2022]
|