1
|
Kayamba F, Karpoormath R, Obakachi VA, Mahlalela M, Banda D, van Zyl RL, Lala S, Zininga T, Shonhai A, Shaik BB, Pooe OJ. A promising class of antiprotozoal agents, design and synthesis of novel Pyrimidine-Cinnamoyl hybrids. Eur J Med Chem 2025; 281:116944. [PMID: 39549508 DOI: 10.1016/j.ejmech.2024.116944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 09/21/2024] [Accepted: 10/04/2024] [Indexed: 11/18/2024]
Abstract
Malaria, caused by parasitic protozoans of the Plasmodium genus, continues to be one of the greatest global health crises, especially in Africa. The emergence of antimalarial drug resistance continues to be a health problem necessitating an urgent need for alternative and cost-effective antimalarials. Using a molecular hybridization approach, we report the design and synthesis of an efficacious novel class of antiprotozoal agents; (E)-1-(4-(4,6-diphenylpyrimidin-2-yl)piperazin-1-yl)-3-phenyl prop-2-en-1-one derivatives (8a-r). The in vitro inhibitory activity of the synthesized compounds was evaluated against the NF54 chloroquine-sensitive strain of Plasmodium falciparum. From the antiprotozoal screening, three compounds displayed propitious activity with IC50 values (0.18-0.21 μM), using quinine and chloroquine as standard antimalarials. Compounds 8o and 8l emerged as the most potent candidates with IC50 values of 0.18 ± 0.02 μM and 0.21 ± 0.001 μM with an associated good safety index of 18.59 and 16.75 to human kidney epithelial (HEK293) cells, respectively. The synthesized analogues present a new chemical architecture structurally unrelated to the current regime of antimalarial drugs, representing a valid strategy to combat resistance in P. falciparum species to current commercial drugs. We further investigated the binding affinities of the compounds against recombinant forms of two P. falciparum heat shock protein 70 homologues; PfHsp70-1 and PfHsp70-z, both of which are essential and promising druggable candidates. Compound 8l exhibited the highest binding affinity for PfHsp70-1 and PfHsp70-z. Furthermore, molecular docking revealed that compounds 8k, 8l, 8m, and 8o exhibited better fitness to PfHsp70-1, with compounds 8l and 8o showing the highest binding affinity of -10.5 kcal/mol and -10.1 kcal/mol, respectively. Therefore, it can be speculated that PfHsp70-1 may be a possible target of some of the inhibitors tested in this study. The presence of electron-donating groups on the phenyl ring of 4,6-pyrimidine moiety and cinnamoyl group demonstrated a positive correlation between the observed computational data and the biological activity. Taken together, this paper demonstrates the importance of using the molecular hybridization approach in the development of newer cinnamoyl clubbed with 4,6-diphenyl pyrimidine hybrids as potential antiprotozoal agents.
Collapse
Affiliation(s)
- Francis Kayamba
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, 4000, South Africa; Department of Chemistry and Biology, School of Natural and Applied Sciences, Mulungushi University, PO Box, 80415, Kabwe, Zambia
| | - Rajshekhar Karpoormath
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, 4000, South Africa.
| | - Vincent A Obakachi
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, 4000, South Africa
| | - Mavela Mahlalela
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, 4000, South Africa
| | - Danny Banda
- Department of Chemistry and Biology, School of Natural and Applied Sciences, Mulungushi University, PO Box, 80415, Kabwe, Zambia
| | - Robyn L van Zyl
- WITS Research Institute for Malaria (WRIM), Faculty of Health Sciences, University of Witwatersrand, Johannesburg, 2193, South Africa; Pharmacology Division, Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 2193, South Africa
| | - Sahil Lala
- WITS Research Institute for Malaria (WRIM), Faculty of Health Sciences, University of Witwatersrand, Johannesburg, 2193, South Africa; Pharmacology Division, Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 2193, South Africa
| | - Tawanda Zininga
- Department of Biochemistry, Stellenbosch University, Stellenbosch, 7600, South Africa
| | - Addmore Shonhai
- Department of Biochemistry and Microbiology, Faculty of Science, Engineering and Agriculture, University of Venda, Private Bag X5050, Thohoyandou, 0950, South Africa
| | - Baji Baba Shaik
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, 4000, South Africa
| | - Ofentse J Pooe
- Discipline of Biochemistry, School of Life Sciences, University of KwaZulu-Natal, Westville Campus, Durban, 4000, South Africa
| |
Collapse
|
2
|
Charles S, Edgar MP. Geometric Deep learning Prioritization and Validation of Cannabis Phytochemicals as Anti-HCV Non-nucleoside Direct-acting Inhibitors. Biomed Eng Comput Biol 2024; 15:11795972241306881. [PMID: 39678171 PMCID: PMC11638990 DOI: 10.1177/11795972241306881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 11/27/2024] [Indexed: 12/17/2024] Open
Abstract
Introduction The rate of acute hepatitis C increased by 7% between 2020 and 2021, after the number of cases doubled between 2014 and 2020. With the current adoption of pan-genotypic HCV therapy, there is a need for improved availability and accessibility of this therapy. However, double and triple DAA-resistant variants have been identified in genotypes 1 and 5 with resistance-associated amino acid substitutions (RAASs) in NS3/4A, NS5A, and NS5B. The role of this research was to screen for novel potential NS5B inhibitors from the cannabis compound database (CBD) using Deep Learning. Methods Virtual screening of the CBD compounds was performed using a trained Graph Neural Network (GNN) deep learning model. Re-docking and conventional docking were used to validate the results for these ligands since some had rotatable bonds >10. About 31 of the top 67 hits from virtual screening and docking were selected after ADMET screening. To verify their candidacy, 6 random hits were taken for FEP/MD and Molecular Simulation Dynamics to confirm their candidacy. Results The top 200 compounds from the deep learning virtual screening were selected, and the virtual screening results were validated by re-docking and conventional docking. The ADMET profiles were optimal for 31 hits. Simulated complexes indicate that these hits are likely inhibitors with suitable binding affinities and FEP energies. Phytil Diphosphate and glucaric acid were suggested as possible ligands against NS5B.
Collapse
Affiliation(s)
- Ssemuyiga Charles
- PharmaQsar Bioinformatics Firm, Kampala, Uganda
- Department of Microbiology, Kampala International University, School of Natural and Applied Sciences (SONAS), Kansanga, Kampala, Uganda
| | - Mulumba Pius Edgar
- PharmaQsar Bioinformatics Firm, Kampala, Uganda
- Department of Microbiology, Kampala International University, School of Natural and Applied Sciences (SONAS), Kansanga, Kampala, Uganda
| |
Collapse
|
3
|
Alade AA, Ahmed SA, Mujwar S, Kikiowo B, Akinnusi PA, Olubode SO, Olufemi OM, Ohilebo AA. Identification of levomenthol derivatives as potential dipeptidyl peptidase-4 inhibitors: a comparative study with gliptins. J Biomol Struct Dyn 2024; 42:4029-4047. [PMID: 37261796 DOI: 10.1080/07391102.2023.2217927] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/20/2023] [Indexed: 06/02/2023]
Abstract
Dipeptidyl peptidase-4 (DPP4) inhibitors are a potent therapeutic treatment for type 2 diabetes mellitus (T2DM). There is a family of compounds used as DPP4 inhibitors (DPP4Is) called gliptins. They bind tightly to DPP4 to form an inactive protein-ligand complex. However, there remains a need to identify novel DPP4Is that are more efficacious and safer due to the increasing prevalence of T2DM and the undesirable side effects of gliptins. To identify potential DPP4Is, we screened over 1800 novel compounds in a comparative study with gliptins. We performed dual-factor molecular docking to assess the binding affinity of the compounds to DPP4 and found four compounds with a higher binding affinity to DPP4 than currently used gliptins. The newly identified compounds interacted with the dyad glutamate (GLU205 and GLU206) and tyrosine (TYR662 and TYR666) residues in DPP4's active site. We performed molecular dynamics simulations to determine the stability of the protein-ligand complexes formed by the compounds and DPP4. Furthermore, we examined the toxicity and pharmacological profile of the compounds. The compounds are drug-like, easy to synthesize, and relatively less toxic than gliptins. Collectively, our results suggest that the novel compounds are potential DPP4Is and should be considered for further studies to develop novel antidiabetics.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Adebowale A Alade
- Department of Biochemistry, Adekunle Ajasin University, Ondo, Nigeria
| | - Samad A Ahmed
- Department of Biochemistry, Adekunle Ajasin University, Ondo, Nigeria
| | - Somdutt Mujwar
- Chitkara College of Pharmacy, Chitkara University, Punjab, Rajpura, India
| | | | | | - Samuel O Olubode
- Department of Biochemistry, Adekunle Ajasin University, Ondo, Nigeria
| | | | - Abass A Ohilebo
- Department of Biochemistry, Faculty of Life Sciences, Ambrose Ali University Ekpoma, Edo, Nigeria
| |
Collapse
|
4
|
The IQA Energy Partition in a Drug Design Setting: A Hepatitis C Virus RNA-Dependent RNA Polymerase (NS5B) Case Study. Pharmaceuticals (Basel) 2022; 15:ph15101237. [PMID: 36297349 PMCID: PMC9609620 DOI: 10.3390/ph15101237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 09/30/2022] [Accepted: 10/01/2022] [Indexed: 11/05/2022] Open
Abstract
The interaction of the thumb site II of the NS5B protein of hepatitis C virus and a pair of drug candidates was studied using a topological energy decomposition method called interacting quantum atoms (IQA). The atomic energies were then processed by the relative energy gradient (REG) method, which extracts chemical insight by computation based on minimal assumptions. REG reveals the most important IQA energy contributions, by atom and energy type (electrostatics, sterics, and exchange–correlation), that are responsible for the behaviour of the whole system, systematically from a short-range ligand–pocket interaction until a distance of approximately 22 Å. The degree of covalency in various key interatomic interactions can be quantified. No exchange–correlation contribution is responsible for the changes in the energy profile of both pocket–ligand systems investigated in the ligand–pocket distances equal to or greater than that of the global minimum. Regarding the hydrogen bonds in the system, a “neighbour effect” was observed thanks to the REG method, which states that a carbon atom would rather not have its covalent neighbour oxygen form a hydrogen bond. The combination of IQA and REG enables the automatic identification of the pharmacophore in the ligands. The coarser Interacting Quantum Fragments (IQF) enables the determination of which amino acids of the pocket contribute most to the binding and the type of energy of said binding. This work is an example of the contribution topological energy decomposition methods can make to fragment-based drug design.
Collapse
|
5
|
Prasher P, Sharma M. Medicinal chemistry of anthranilic acid derivatives: A mini review. Drug Dev Res 2021; 82:945-958. [PMID: 34117784 DOI: 10.1002/ddr.21842] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/01/2021] [Accepted: 06/03/2021] [Indexed: 01/04/2023]
Abstract
Anthranilic acid and its analogues present a privileged profile as pharmacophores for the rational development of pharmaceuticals deliberated for managing the pathophysiology and pathogenesis of various diseases. The substitution on anthranilic acid scaffold provides large compound libraries, which enable a comprehensive assessment of the structure activity relationship (SAR) analysis for the identification of hits and leads in a typical drug development paradigm. Besides, their widespread applications as anti-inflammatory fenamates, the amide and anilide derivatives of anthranilic acid analogues play a central role in the management of several metabolic disorders. In addition, these derivatives of anthranilic acid exhibit interesting antimicrobial, antiviral and insecticidal properties, whereas the derivatives based on anthranilic diamide scaffold present applications as P-glycoprotein inhibitors for managing the drug resistance in cancer cells. In addition, the anthranilic acid derivatives serve as the inducers of apoptosis, inhibitors of hedgehog signaling pathway, inhibitors of mitogen activated protein kinase pathway, and the inhibitors of aldo-keto reductase enzymes. The antiviral derivatives of anthranilic acid focus on the inhibition of hepatitis C virus NS5B polymerase to manifest considerable antiviral properties. The anthranilic acid derivatives reportedly present neuroprotective applications by downregulating the key pathways responsible for the manifestation of neuropathological features and neurodegeneration. Nevertheless, the transition metal complexes of anthranilic acid derivatives offer therapeutic applications in diabetes mellitus, and obesity by regulating the activity of α-glucosidase. The present review demonstrates a critical analysis of the therapeutic profile of the key derivatives of anthranilic acid and its analogues for the rational development of pharmaceuticals and therapeutic molecules.
Collapse
Affiliation(s)
- Parteek Prasher
- Department of Chemistry, UGC Sponsored Centre for Advanced Studies, Guru Nanak Dev University, Amritsar, Punjab, India.,Department of Chemistry, University of Petroleum & Energy Studies, Dehradun, Uttarakhand, India
| | - Mousmee Sharma
- Department of Chemistry, UGC Sponsored Centre for Advanced Studies, Guru Nanak Dev University, Amritsar, Punjab, India.,Department of Chemistry, Uttaranchal University, Dehradun, Uttarakhand, India
| |
Collapse
|
6
|
Obakachi VA, Kushwaha ND, Kushwaha B, Mahlalela MC, Shinde SR, Kehinde I, Karpoormath R. Design and synthesis of pyrazolone-based compounds as potent blockers of SARS-CoV-2 viral entry into the host cells. J Mol Struct 2021; 1241:130665. [PMID: 34007088 PMCID: PMC8118388 DOI: 10.1016/j.molstruc.2021.130665] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/26/2021] [Accepted: 05/09/2021] [Indexed: 11/24/2022]
Abstract
SARS-CoV-2 are enveloped positive-stranded RNA viruses that replicate in the cytoplasm. It relies on the fusion of their envelope with the host cell membrane to deliver their nucleocapsid into the host cell. The spike glycoprotein (S) mediates virus entry into cells via the human Angiotensin-converting enzyme 2 (hACE2) protein located on many cell types and tissues' outer surface. This study, therefore, aimed to design and synthesize novel pyrazolone-based compounds as potential inhibitors that would interrupt the interaction between the viral spike protein and the host cell receptor to prevent SARS-CoV 2 entrance into the cell. A series of pyrazolone compounds as potential SARS-CoV-2 inhibitors were designed and synthesized. Employing computational techniques, the inhibitory potentials of the designed compounds against both spike protein and hACE2 were evaluated. Results of the binding free energy from the in-silico analysis, showed that three compounds (7i, 7k and 8f) and six compounds (7b, 7h, 7k, 8d, 8g, and 8h) showed higher and better binding high affinity to SARS-CoV-2 Sgp and hACE-2, respectively compared to the standard drugs cefoperazone (CFZ) and MLN-4760. Furthermore, the outcome of the structural analysis of the two proteins upon binding of the inhibitors showed that the two proteins (SARS-CoV-2 Sgp and hACE-2) were stable, and the structural integrity of the proteins was not compromised. This study suggests pyrazolone-based compounds might be potent blockers of the viral entry into the host cells.
Collapse
Affiliation(s)
- Vincent A Obakachi
- Department of Pharmaceutical Chemistry, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
| | - Narva Deshwar Kushwaha
- Department of Pharmaceutical Chemistry, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
| | - Babita Kushwaha
- Department of Pharmaceutical Chemistry, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
| | - Mavela Cleopus Mahlalela
- Department of Pharmaceutical Chemistry, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
| | - Suraj Raosaheb Shinde
- Department of Pharmaceutical Chemistry, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
| | - Idowu Kehinde
- School of Laboratory Medicine and Medical Sciences, College of Health Science, University of KwaZulu-Natal, Durban 4000, South Africa
| | - Rajshekhar Karpoormath
- Department of Pharmaceutical Chemistry, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
| |
Collapse
|
7
|
Kayamba F, Malimabe T, Ademola IK, Pooe OJ, Kushwaha ND, Mahlalela M, van Zyl RL, Gordon M, Mudau PT, Zininga T, Shonhai A, Nyamori VO, Karpoormath R. Design and synthesis of quinoline-pyrimidine inspired hybrids as potential plasmodial inhibitors. Eur J Med Chem 2021; 217:113330. [PMID: 33744688 DOI: 10.1016/j.ejmech.2021.113330] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 02/18/2021] [Accepted: 02/24/2021] [Indexed: 01/16/2023]
Abstract
Presently, artemisinin-based combination therapy (ACT) is the first-line therapy of Plasmodium falciparum malaria. With the emergence of malaria parasites that are resistant to ACT, alternative antimalarial therapies are urgently needed. In line with this, we designed and synthesised a series of novel N-(7-chloroquinolin-4-yl)-N'-(4,6-diphenylpyrimidin-2-yl)alkanediamine hybrids (6a-7c) and evaluated their inhibitory activity against the NF54 chloroquine-susceptible strain as a promising class of antimalarial compounds. The antiplasmodial screening revealed that seven analogues showed promising to good activity with half-maximal inhibitory concentration (IC50) = 0.32 μM-4.30 μM. Compound 7a with 1,4-diamine butyl linker and 4-hydroxyl phenyl on fourth and sixth position of pyrimidine core showed the most prominent activity with an IC50 value of 0.32 ± 0.06 μM, with a favourable safety profile of 9.79 to human kidney epithelial (HEK293) cells. The remaining six analogues showed moderate activity with IC50 values ranging from 7.50 μM to 83.01 μM. We further investigated the binding affinities of the molecules to two essential cytosolic P. falciparum heat shock protein 70 homologues; PfHsp70-1 and PfHsp70-z. Compound 7a exhibited the highest binding affinity for both PfHsp70s with KD in a lower nanomolar range (4.4-11.4 nM). Furthermore, molecular docking revealed that compounds 6, 6k, 7b and 7a exhibited better fitness in PfHsp70-1 with compound 7a showing the highest and lowest binding scores of -9.8 kcal/mol. Therefore, we speculate that PfHsp70-1 is one of the targets of these inhibitors. The bioisoteric replacement of the groups at phenyl ring at the fourth and sixth position of the pyrimidine core had a constructive association with antiplasmodial activity. The promising antiplasmodial activity of the synthesised analogues illustrates how crucial molecular hybridisation is as a strategy in the development of quinoline-pyrimidine hybrids as prospective antiprotozoal agents.
Collapse
Affiliation(s)
- Francis Kayamba
- Department of Pharmaceutical Chemistry, College of Health Sciences, University of KwaZulu-Natal, Durban, 4000, South Africa
| | - Teboho Malimabe
- Pharmacology Division, Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of Witwatersrand, Johannesburg, 2193, South Africa; WITS Research Institute for Malaria (WRIM), Faculty of Health Sciences, University of Witwatersrand, Johannesburg, 2193, South Africa
| | - Idowu Kehinde Ademola
- School of Laboratory Medicine and Medical Sciences, College of Health Science, University of KwaZulu-Natal, Durban, 4000, South Africa
| | - Ofentse Jacob Pooe
- Discipline of Biochemistry, School of Life Sciences, University of KwaZulu-Natal, Durban, 4000, South Africa
| | - Narva Deshwar Kushwaha
- Department of Pharmaceutical Chemistry, College of Health Sciences, University of KwaZulu-Natal, Durban, 4000, South Africa
| | - Mavela Mahlalela
- Department of Pharmaceutical Chemistry, College of Health Sciences, University of KwaZulu-Natal, Durban, 4000, South Africa
| | - Robyn L van Zyl
- Pharmacology Division, Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of Witwatersrand, Johannesburg, 2193, South Africa; WITS Research Institute for Malaria (WRIM), Faculty of Health Sciences, University of Witwatersrand, Johannesburg, 2193, South Africa
| | - Michelle Gordon
- School of Laboratory Medicine and Medical Sciences, College of Health Science, University of KwaZulu-Natal, Durban, 4000, South Africa
| | - Pertunia T Mudau
- Department of Biochemistry University of Venda, School of Mathematical and Natural Sciences, Thohoyandou, 0950, South Africa
| | - Tawanda Zininga
- Department of Biochemistry University of Venda, School of Mathematical and Natural Sciences, Thohoyandou, 0950, South Africa; Department of Biochemistry, Stellenbosch University, Stellenbosch, 7600, South Africa
| | - Addmore Shonhai
- Department of Biochemistry, Stellenbosch University, Stellenbosch, 7600, South Africa
| | - Vincent O Nyamori
- School of Chemistry and Physics, University of KwaZulu-Natal, Westville Campus, Durban, 4000, South Africa
| | - Rajshekhar Karpoormath
- Department of Pharmaceutical Chemistry, College of Health Sciences, University of KwaZulu-Natal, Durban, 4000, South Africa.
| |
Collapse
|
8
|
Kehinde I, Ramharack P, Nlooto M, Gordon M. Molecular dynamic mechanism(s) of inhibition of bioactive antiviral phytochemical compounds targeting cytochrome P450 3A4 and P-glycoprotein. J Biomol Struct Dyn 2020; 40:1037-1047. [PMID: 33063648 DOI: 10.1080/07391102.2020.1821780] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
P-glycoprotein (ABCB1) and cytochrome P450 3A4 (CYP3A4) metabolize almost all known human immunodeficiency virus' protease inhibitor drugs (PIs). Over induction of these proteins' activities has been linked to rapid metabolism of PIs which are then pumped out of the circulatory system, eventually leading to drug-resistance in HIV-positive patients. This study aims to determine, with the use of computational tools, the inhibitory potential of four phytochemical compounds (PCs) (epigallocatechin gallate (EGCG), kaempferol-7-glucoside (K7G), luteolin (LUT) and ellagic acid (EGA)) in inhibiting the activities of these drug-metabolizing proteins. The comparative analysis of the MM/GBSA results revealed that the binding affinity (ΔGbind) of EGCG and K7G for CYP3A4 and ABCB1 are higher than LUT and EGA and fall between the ΔGbind of the inhibitors of CYP3A4 and ABCB1 (Ritonavir (strong inhibitor) and Lopinavir (moderate inhibitor)). The structural analysis (RMSD, RMSF, RoG and protein-ligand interaction plots) also confirmed that EGCG and K7G showed similar inhibitory activities with the inhibitors. The study has shown that EGCG and K7G have inhibitory activities against the two proteins and assumes they could decrease intracellular efflux of PIs, consequently increasing the optimal concentration of PIs in the systemic circulation.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Idowu Kehinde
- KwaZulu-Natal Research, Innovation and Sequencing Platform (KRISP)/Genomics Unit, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Pritika Ramharack
- Discipline of Pharmacy, School of Health Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Manimbulu Nlooto
- Discipline of Pharmacy, School of Health Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa.,Department of Pharmaceutical Sciences, Healthcare Sciences, University of Limpopo, Durban, South Africa
| | - Michelle Gordon
- KwaZulu-Natal Research, Innovation and Sequencing Platform (KRISP)/Genomics Unit, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
9
|
Khalid H, Landry KB, Ijaz B, Ashfaq UA, Ahmed M, Kanwal A, Froeyen M, Mirza MU. Discovery of novel Hepatitis C virus inhibitor targeting multiple allosteric sites of NS5B polymerase. INFECTION GENETICS AND EVOLUTION 2020; 84:104371. [PMID: 32485331 DOI: 10.1016/j.meegid.2020.104371] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 05/13/2020] [Accepted: 05/18/2020] [Indexed: 02/07/2023]
Abstract
HCV is a viral infection posing a severe global threat when left untreated progress to end-stage liver disease, including cirrhosis and HCC. The NS5B polymerase of HCV is the most potent target that harbors four allosteric binding sites that could interfere with the HCV infection. We present the discovery of a novel synthetic compound that harbors the potential of NS5B polymerase inhibition. All eight compounds belonging to the benzothiazine family of heterocycles displayed no cellular cytotoxicity in HepG2 cells at nontoxic dose concentration (200 μM). Subsequently, among eight compounds of the series, merely compound 5b exhibited significant inhibition of the expression of the HCV NS5B gene as compared to DMSO control in semi-quantitative PCR. Based on our western blot result, 5b at the range of 50, 100 and 200 μM induced 20, 40, and 70% inhibition of NS5B protein respectively. To estimate the binding potential, 5b was docked at respective allosteric sites followed by molecular dynamics (MD) simulations for a period of 20 ns. In addition, binding free energy calculation by MM-GB/PBSA method revealed a conserved interaction profile of residues lining the allosteric sites in agreement with the reported NS5B co-crystallized inhibitors. The presented results provide important information about a novel compound 5b which may facilitate the the discovery of novel inhibitors that tends to target multiple sites on NS5B polymerase.
Collapse
Affiliation(s)
- Hina Khalid
- Department of Bioinformatics and Biotechnology, Government College University, 38000 Faisalabad, Pakistan
| | - Koloko Brice Landry
- Center of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Bushra Ijaz
- Center of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Usman Ali Ashfaq
- Department of Bioinformatics and Biotechnology, Government College University, 38000 Faisalabad, Pakistan.
| | - Matloob Ahmed
- Department of Chemistry, Government College University, 38000 Faisalabad, Pakistan
| | - Afshan Kanwal
- Department of Chemistry, Government College University, 38000 Faisalabad, Pakistan
| | - Matheus Froeyen
- Department of Pharmaceutical Sciences, REGA Institute for Medical Research, Medicinal Chemistry, University of Leuven, 3000 Leuven, Belgium
| | - Muhammad Usman Mirza
- Department of Pharmaceutical Sciences, REGA Institute for Medical Research, Medicinal Chemistry, University of Leuven, 3000 Leuven, Belgium
| |
Collapse
|
10
|
Mahboubi Rabbani SMI, Vahabpour R, Hajimahdi Z, Zarghi A. Design, Synthesis, Molecular Modeling Studies and Biological Evaluation of N'-Arylidene-6-(benzyloxy)-4-oxo-1,4-dihydroquinoline-3-carbohydrazide Derivatives as Novel Anti-HCV Agents. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2019; 18:1790-1802. [PMID: 32184846 PMCID: PMC7059030 DOI: 10.22037/ijpr.2019.112186.13586] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
HCV-induced hepatitis is one of the most debilitating diseases. The limited number of anti-HCV drugs and drug-resistance necessitate developing of new scaffolds with different mode of actions. HCV non-structural protein 5B (NS5B) is an attractive target for development of novel inhibitors of HCV replication. In this paper, new N'-arylidene-6-(benzyloxy)-4-oxo-1,4-dihydroquinoline-3-carbohydrazide derivatives were designed based on the pharmacophores of HCV NS5B active site binding inhibitors. Designed compounds were synthesized and evaluated for their inhibitory activities in a cell-based HCV replicon system assay. Among tested compounds, compounds 18 and 20 were found to be the most active (EC50 = 35 and 70 µM, respectively) with good selectivity index (SI > 2) in the corresponding series. Molecular modeling studies showed that the designed compounds are capable of forming key coordination with the two magnesium ions as well as interactions with other key residues at the active site of HCV NS5B.
Collapse
Affiliation(s)
| | - Rouhollah Vahabpour
- Department of Medical Lab Technology, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Zahra Hajimahdi
- Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Afshin Zarghi
- Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
11
|
Shunmugam L, Soliman MES. Targeting HCV polymerase: a structural and dynamic perspective into the mechanism of selective covalent inhibition. RSC Adv 2018; 8:42210-42222. [PMID: 35558797 PMCID: PMC9092151 DOI: 10.1039/c8ra07346e] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 11/30/2018] [Indexed: 12/16/2022] Open
Abstract
Background: Concerns have been raised over the emerging pandemic status of hepatitis C virus (HCV). Current available drugs lack specificity, stability and potency. The HCV NS5B RNA-dependent RNA polymerase (RdRp) is a vital component in viral replication and is often targeted in antiviral therapies. Recent experimental procedures have led to the discovery of a novel covalent RdRp inhibitor, compound 47, which selectively targets cysteine 366 of the HCV RdRp and exhibits promising pharmacokinetic outcomes. Selective covalent inhibition of HCV is, however, a highly neglected subject in the literature, that is reinforced by the lack of efficient structure-based drug design protocols. In this paper, an atomistic insight into a novel selective approach to inhibit HCV RdRp is provided. Methodology/Results: Covalent molecular dynamic analyses revealed the inhibitory mechanism of compound 47 on the RdRp. Inhibitor binding induced distinctive internal movements resulting in the disruption of normal physiological interdomain interactions. Conclusion: Compound 47 stimulates reorganization of key protein elements required for RNA transcription, thus hampering viral replication as well as disrupting the overall conformation of HCV. This study will open new lines of approach for the design of novel selective inhibitors against HCV as well as other viral families.
Collapse
Affiliation(s)
- Letitia Shunmugam
- Molecular Bio-Computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal Westville Campus Durban 4001 South Africa
| | - Mahmoud E S Soliman
- Molecular Bio-Computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal Westville Campus Durban 4001 South Africa
- School of Health Sciences, University of KwaZulu-Natal Westville Campus Durban 4001 South Africa +27 (0) 31 260 7872 +27 (0) 31 260 8048
| |
Collapse
|
12
|
Akaberi D, Bergfors A, Kjellin M, Kameli N, Lidemalm L, Kolli B, Shafer RW, Palanisamy N, Lennerstrand J. Baseline dasabuvir resistance in Hepatitis C virus from the genotypes 1, 2 and 3 and modeling of the NS5B-dasabuvir complex by the in silico approach. Infect Ecol Epidemiol 2018; 8:1528117. [PMID: 30319736 PMCID: PMC6179053 DOI: 10.1080/20008686.2018.1528117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 09/13/2018] [Indexed: 02/08/2023] Open
Abstract
Background: Current combination treatments with direct-acting antiviral agents (DAAs) can cure more than 95% of hepatitis C virus (HCV) infections. However, resistance-associated substitutions (RASs) may emerge and can also be present in treatment-naïve patients. Methods, results and discussion: In this study, a semi-pan-genotypic population sequencing method was developed and used to assess all NS5B amino acid variants between residue positions 310 and 564. Our method successfully sequenced more than 90% of genotype (GT) 1a, 1b, 2b and 3a samples. By using the population sequencing method with a cut-off of 20%, we found the dasabuvir RASs A553V and C445F to be a baseline polymorphism of GT 2b (8 out of 8) and GT 3a (18 out of 18) sequences, respectively. In GT 1a and 1b treatment-naïve subjects (n=25), no high-fold resistance polymorphism/RASs were identified. We further predicted dasabuvir’s binding pose with the NS5B polymerase using the in silico methods to elucidate the reasons associated with the resistance of clinically relevant RASs. Dasabuvir was docked at the palm-I site and was found to form hydrogen bonds with the residues S288, I447, Y448, N291 and D318. The RAS positions 316, 414, 448, 553 and 556 were found to constitute the dasabuvir binding pocket.
Collapse
Affiliation(s)
- Dario Akaberi
- Clinical Microbiology, Department of Medical Sciences, Uppsala University, Uppsala, Sweden.,Department of Medical Biochemistry and Microbiology, Zoonosis Science Center, Uppsala University, Uppsala, Sweden
| | - Assar Bergfors
- Clinical Microbiology, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Midori Kjellin
- Clinical Microbiology, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Nader Kameli
- Clinical Microbiology, Department of Medical Sciences, Uppsala University, Uppsala, Sweden.,Department of Medical Microbiology, NUTRIM school of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Louise Lidemalm
- Clinical Microbiology, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Bhavya Kolli
- Clinical Microbiology, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Robert W Shafer
- Department of Medicine, Division of Infectious Diseases, Stanford University, Stanford, CA, USA
| | - Navaneethan Palanisamy
- HBIGS, University of Heidelberg, Heidelberg, Germany.,Institute of Biology II, University of Freiburg, Freiburg, Germany
| | - Johan Lennerstrand
- Clinical Microbiology, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
13
|
Bessa LM, Launay H, Dujardin M, Cantrelle FX, Lippens G, Landrieu I, Schneider R, Hanoulle X. NMR reveals the intrinsically disordered domain 2 of NS5A protein as an allosteric regulator of the hepatitis C virus RNA polymerase NS5B. J Biol Chem 2017; 292:18024-18043. [PMID: 28912275 DOI: 10.1074/jbc.m117.813766] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 09/06/2017] [Indexed: 12/13/2022] Open
Abstract
Non-structural protein 5B (NS5B) is the RNA-dependent RNA polymerase that catalyzes replication of the hepatitis C virus (HCV) RNA genome and therefore is central for its life cycle. NS5B interacts with the intrinsically disordered domain 2 of NS5A (NS5A-D2), another essential multifunctional HCV protein that is required for RNA replication. As a result, these two proteins represent important targets for anti-HCV chemotherapies. Despite this importance and the existence of NS5B crystal structures, our understanding of the conformational and dynamic behavior of NS5B in solution and its relationship with NS5A-D2 remains incomplete. To address these points, we report the first detailed NMR spectroscopic study of HCV NS5B lacking its membrane anchor (NS5BΔ21). Analysis of constructs with selective isotope labeling of the δ1 methyl groups of isoleucine side chains demonstrates that, in solution, NS5BΔ21 is highly dynamic but predominantly adopts a closed conformation. The addition of NS5A-D2 leads to spectral changes indicative of binding to both allosteric thumb sites I and II of NS5BΔ21 and induces long-range perturbations that affect the RNA-binding properties of the polymerase. We compared these modifications with the short- and long-range effects triggered in NS5BΔ21 upon binding of filibuvir, an allosteric inhibitor. We demonstrate that filibuvir-bound NS5BΔ21 is strongly impaired in the binding of both NS5A-D2 and RNA. NS5A-D2 induces conformational and functional perturbations in NS5B similar to those triggered by filibuvir. Thus, our work highlights NS5A-D2 as an allosteric regulator of the HCV polymerase and provides new insight into the dynamics of NS5B in solution.
Collapse
Affiliation(s)
- Luiza M Bessa
- From the University of Lille, CNRS, UMR 8576, UGSF, Unité de Glycobiologie Structurale et Fonctionnelle, 59000 Lille, France
| | - Hélène Launay
- From the University of Lille, CNRS, UMR 8576, UGSF, Unité de Glycobiologie Structurale et Fonctionnelle, 59000 Lille, France
| | - Marie Dujardin
- From the University of Lille, CNRS, UMR 8576, UGSF, Unité de Glycobiologie Structurale et Fonctionnelle, 59000 Lille, France
| | - François-Xavier Cantrelle
- From the University of Lille, CNRS, UMR 8576, UGSF, Unité de Glycobiologie Structurale et Fonctionnelle, 59000 Lille, France
| | - Guy Lippens
- From the University of Lille, CNRS, UMR 8576, UGSF, Unité de Glycobiologie Structurale et Fonctionnelle, 59000 Lille, France
| | - Isabelle Landrieu
- From the University of Lille, CNRS, UMR 8576, UGSF, Unité de Glycobiologie Structurale et Fonctionnelle, 59000 Lille, France
| | - Robert Schneider
- From the University of Lille, CNRS, UMR 8576, UGSF, Unité de Glycobiologie Structurale et Fonctionnelle, 59000 Lille, France
| | - Xavier Hanoulle
- From the University of Lille, CNRS, UMR 8576, UGSF, Unité de Glycobiologie Structurale et Fonctionnelle, 59000 Lille, France
| |
Collapse
|
14
|
Biophysical Mode-of-Action and Selectivity Analysis of Allosteric Inhibitors of Hepatitis C Virus (HCV) Polymerase. Viruses 2017. [PMID: 28621755 PMCID: PMC5490826 DOI: 10.3390/v9060151] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Allosteric inhibitors of hepatitis C virus (HCV) non-structural protein 5B (NS5B) polymerase are effective for treatment of genotype 1, although their mode of action and potential to inhibit other isolates and genotypes are not well established. We have used biophysical techniques and a novel biosensor-based real-time polymerase assay to investigate the mode-of-action and selectivity of four inhibitors against enzyme from genotypes 1b (BK and Con1) and 3a. Two thumb inhibitors (lomibuvir and filibuvir) interacted with all three NS5B variants, although the affinities for the 3a enzyme were low. Of the two tested palm inhibitors (dasabuvir and nesbuvir), only dasabuvir interacted with the 1b variant, and nesbuvir interacted with NS5B 3a. Lomibuvir, filibuvir and dasabuvir stabilized the structure of the two 1b variants, but not the 3a enzyme. The thumb compounds interfered with the interaction between the enzyme and RNA and blocked the transition from initiation to elongation. The two allosteric inhibitor types have different inhibition mechanisms. Sequence and structure analysis revealed differences in the binding sites for 1b and 3a variants, explaining the poor effect against genotype 3a NS5B. The indirect mode-of-action needs to be considered when designing allosteric compounds. The current approach provides an efficient strategy for identifying and optimizing allosteric inhibitors targeting HCV genotype 3a.
Collapse
|
15
|
Sesmero E, Brown JA, Thorpe IF. Molecular simulations to delineate functional conformational transitions in the HCV polymerase. J Comput Chem 2016; 38:1125-1137. [PMID: 27859387 DOI: 10.1002/jcc.24662] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 09/29/2016] [Accepted: 10/18/2016] [Indexed: 01/08/2023]
Abstract
Hepatitis C virus (HCV) is a global health concern for which there is no vaccine available. The HCV polymerase is responsible for the critical function of replicating the RNA genome of the virus. Transitions between at least two conformations (open and closed) are necessary to allow the enzyme to replicate RNA. In this study, molecular dynamic simulations were initiated from multiple crystal structures to understand the free energy landscape (FEL) explored by the enzyme as it interconverts between these conformations. Our studies reveal the location of distinct states within the FEL as well as the molecular interactions associated with these states. Specific hydrogen bonds appear to play a key role in modulating conformational transitions. This knowledge is essential to elucidate the role of these conformations in replication and may also be valuable in understanding the basis by which this enzyme is inhibited by small molecules. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ester Sesmero
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, Maryland, 21250
| | - Jodian A Brown
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, Maryland, 21250
| | - Ian F Thorpe
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, Maryland, 21250
| |
Collapse
|
16
|
Deval J, Fung A, Stevens SK, Jordan PC, Gromova T, Taylor JS, Hong J, Meng J, Wang G, Dyatkina N, Prhavc M, Symons JA, Beigelman L. Biochemical Effect of Resistance Mutations against Synergistic Inhibitors of RSV RNA Polymerase. PLoS One 2016; 11:e0154097. [PMID: 27163448 PMCID: PMC4862670 DOI: 10.1371/journal.pone.0154097] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 04/08/2016] [Indexed: 11/18/2022] Open
Abstract
ALS-8112 is the parent molecule of ALS-8176, a first-in-class nucleoside analog prodrug effective in the clinic against respiratory syncytial virus (RSV) infection. The antiviral activity of ALS-8112 is mediated by its 5'-triphosphate metabolite (ALS-8112-TP, or 2'F-4'ClCH2-cytidine triphosphate) inhibiting the RNA polymerase activity of the RSV L-P protein complex through RNA chain termination. Four amino acid mutations in the RNA-dependent RNA polymerase (RdRp) domain of L (QUAD: M628L, A789V, L795I, and I796V) confer in vitro resistance to ALS-8112-TP by increasing its discrimination relative to natural CTP. In this study, we show that the QUAD mutations specifically recognize the ClCH2 group of ALS-8112-TP. Among the four mutations, A789V conferred the greatest resistance phenotype, which was consistent with its putative position in the active site of the RdRp domain. AZ-27, a non-nucleoside inhibitor of RSV, also inhibited the RdRp activity, with decreased inhibition potency in the presence of the Y1631H mutation. The QUAD mutations had no effect on the antiviral activity of AZ-27, and the Y1631H mutation did not significantly increase the discrimination of ALS-8112-TP. Combining ALS-8112 with AZ-27 in vitro resulted in significant synergistic inhibition of RSV replication. Overall, this is the first mechanistic study showing a lack of cross-resistance between mutations selected by different classes of RSV polymerase inhibitors acting in synergy, opening the door to future potential combination therapies targeting different regions of the L protein.
Collapse
Affiliation(s)
- Jerome Deval
- Alios BioPharma, Inc., part of the Janssen Pharmaceutical Companies, South San Francisco, California, United States of America
- * E-mail:
| | - Amy Fung
- Alios BioPharma, Inc., part of the Janssen Pharmaceutical Companies, South San Francisco, California, United States of America
| | - Sarah K. Stevens
- Alios BioPharma, Inc., part of the Janssen Pharmaceutical Companies, South San Francisco, California, United States of America
| | - Paul C. Jordan
- Alios BioPharma, Inc., part of the Janssen Pharmaceutical Companies, South San Francisco, California, United States of America
| | - Tatiana Gromova
- Alios BioPharma, Inc., part of the Janssen Pharmaceutical Companies, South San Francisco, California, United States of America
| | - Joshua S. Taylor
- Alios BioPharma, Inc., part of the Janssen Pharmaceutical Companies, South San Francisco, California, United States of America
| | - Jin Hong
- Alios BioPharma, Inc., part of the Janssen Pharmaceutical Companies, South San Francisco, California, United States of America
| | - Jia Meng
- Alios BioPharma, Inc., part of the Janssen Pharmaceutical Companies, South San Francisco, California, United States of America
| | - Guangyi Wang
- Alios BioPharma, Inc., part of the Janssen Pharmaceutical Companies, South San Francisco, California, United States of America
| | - Natalia Dyatkina
- Alios BioPharma, Inc., part of the Janssen Pharmaceutical Companies, South San Francisco, California, United States of America
| | - Marija Prhavc
- Alios BioPharma, Inc., part of the Janssen Pharmaceutical Companies, South San Francisco, California, United States of America
| | - Julian A. Symons
- Alios BioPharma, Inc., part of the Janssen Pharmaceutical Companies, South San Francisco, California, United States of America
| | - Leo Beigelman
- Alios BioPharma, Inc., part of the Janssen Pharmaceutical Companies, South San Francisco, California, United States of America
| |
Collapse
|
17
|
Deredge D, Li J, Johnson KA, Wintrode PL. Hydrogen/Deuterium Exchange Kinetics Demonstrate Long Range Allosteric Effects of Thumb Site 2 Inhibitors of Hepatitis C Viral RNA-dependent RNA Polymerase. J Biol Chem 2016; 291:10078-88. [PMID: 27006396 DOI: 10.1074/jbc.m115.708370] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Indexed: 01/08/2023] Open
Abstract
New nonnucleoside analogs are being developed as part of a multi-drug regimen to treat hepatitis C viral infections. Particularly promising are inhibitors that bind to the surface of the thumb domain of the viral RNA-dependent RNA polymerase (NS5B). Numerous crystal structures have been solved showing small molecule non-nucleoside inhibitors bound to the hepatitis C viral polymerase, but these structures alone do not define the mechanism of inhibition. Our prior kinetic analysis showed that nonnucleoside inhibitors binding to thumb site-2 (NNI2) do not block initiation or elongation of RNA synthesis; rather, they block the transition from the initiation to elongation, which is thought to proceed with significant structural rearrangement of the enzyme-RNA complex. Here we have mapped the effect of three NNI2 inhibitors on the conformational dynamics of the enzyme using hydrogen/deuterium exchange kinetics. All three inhibitors rigidify an extensive allosteric network extending >40 Å from the binding site, thus providing a structural rationale for the observed disruption of the transition from distributive initiation to processive elongation. The two more potent inhibitors also suppress slow cooperative unfolding in the fingers extension-thumb interface and primer grip, which may contribute their stronger inhibition. These results establish that NNI2 inhibitors act through long range allosteric effects, reveal important conformational changes underlying normal polymerase function, and point the way to the design of more effective allosteric inhibitors that exploit this new information.
Collapse
Affiliation(s)
- Daniel Deredge
- From the Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201 and
| | - Jiawen Li
- Department of Molecular Biosciences, Institute for Cell and Molecular Biology, University of Texas, Austin, Texas 78712
| | - Kenneth A Johnson
- Department of Molecular Biosciences, Institute for Cell and Molecular Biology, University of Texas, Austin, Texas 78712
| | - Patrick L Wintrode
- From the Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201 and
| |
Collapse
|
18
|
Camarasa M, Puig de la Bellacasa R, González ÀL, Ondoño R, Estrada R, Franco S, Badia R, Esté J, Martínez MÁ, Teixidó J, Clotet B, Borrell JI. Design, synthesis and biological evaluation of pyrido[2,3-d]pyrimidin-7-(8H)-ones as HCV inhibitors. Eur J Med Chem 2016; 115:463-83. [PMID: 27054294 DOI: 10.1016/j.ejmech.2016.03.055] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 03/03/2016] [Accepted: 03/18/2016] [Indexed: 11/26/2022]
Abstract
The design and selection of a combinatorial library of pyrido[2,3-d]pyrimidin-7(8H)-ones (4) has allowed the synthesis of 121 compounds, using known and new synthetic methodologies, and the evaluation of the inhibitory activity against hepatitis C virus (HCV) genotype 1b replicon. Among these compounds, 21{4,10} and 24{2,10} presented very high activities [EC50 = 0.027 μM (CC50 = 5.3 μM) and EC50 = 0.034 μM (CC50 = 13.5 μM), respectively] and high selectivity indexes, 196 and 397. These values are similar to the EC50 reported for sofosbuvir (2) (0.048 μM) using a similar methodological approach and the same virus subtype. 21{4,10} and 24{2,10} are obtained through shorter synthetic itineraries than sofosbuvir and 24{2,10} is achiral contrary to sofosbuvir which presents 4 stereogenic centers. In silico studies suggest that 21{4,10} and 24{2,10} inhibits NS5B polymerase through allosteric site binding.
Collapse
Affiliation(s)
- Marta Camarasa
- Grup d'Enginyeria Molecular, Institut Químic de Sarrià, Universitat Ramon Llull, Via Augusta 390, E-08017 Barcelona, Spain.
| | - Raimon Puig de la Bellacasa
- Grup d'Enginyeria Molecular, Institut Químic de Sarrià, Universitat Ramon Llull, Via Augusta 390, E-08017 Barcelona, Spain.
| | - Àlex L González
- Grup d'Enginyeria Molecular, Institut Químic de Sarrià, Universitat Ramon Llull, Via Augusta 390, E-08017 Barcelona, Spain.
| | - Raül Ondoño
- Grup d'Enginyeria Molecular, Institut Químic de Sarrià, Universitat Ramon Llull, Via Augusta 390, E-08017 Barcelona, Spain.
| | - Roger Estrada
- Grup d'Enginyeria Molecular, Institut Químic de Sarrià, Universitat Ramon Llull, Via Augusta 390, E-08017 Barcelona, Spain.
| | - Sandra Franco
- Retrovirology Laboratory IrsiCaixa, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona, 08916 Badalona, Spain.
| | - Roger Badia
- Retrovirology Laboratory IrsiCaixa, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona, 08916 Badalona, Spain.
| | - José Esté
- Retrovirology Laboratory IrsiCaixa, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona, 08916 Badalona, Spain.
| | - Miguel Ángel Martínez
- Retrovirology Laboratory IrsiCaixa, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona, 08916 Badalona, Spain.
| | - Jordi Teixidó
- Grup d'Enginyeria Molecular, Institut Químic de Sarrià, Universitat Ramon Llull, Via Augusta 390, E-08017 Barcelona, Spain.
| | - Bonaventura Clotet
- Retrovirology Laboratory IrsiCaixa, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona, 08916 Badalona, Spain.
| | - José I Borrell
- Grup d'Enginyeria Molecular, Institut Químic de Sarrià, Universitat Ramon Llull, Via Augusta 390, E-08017 Barcelona, Spain.
| |
Collapse
|
19
|
Schein CH, Rowold D, Choi KH. Allosteric inhibitors of Coxsackie virus A24 RNA polymerase. Bioorg Med Chem 2016; 24:570-7. [PMID: 26762834 PMCID: PMC4743507 DOI: 10.1016/j.bmc.2015.12.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 12/04/2015] [Accepted: 12/14/2015] [Indexed: 10/22/2022]
Abstract
Coxsackie virus A24 (CVA24), a causative agent of acute hemorrhagic conjunctivitis, is a prototype of enterovirus (EV) species C. The RNA polymerase (3D(pol)) of CVA24 can uridylylate the viral peptide linked to the genome (VPg) from distantly related EV and is thus, a good model for studying this reaction. Once UMP is bound, VPgpU primes RNA elongation. Structural and mutation data have identified a conserved binding surface for VPg on the RNA polymerase (3D(pol)), located about 20Å from the active site. Here, computational docking of over 60,000 small compounds was used to select those with the lowest (best) specific binding energies (BE) for this allosteric site. Compounds with varying structures and low BE were assayed for their effect on formation of VPgU by CVA24-3D(pol). Two compounds with the lowest specific BE for the site inhibited both uridylylation and formation of VPgpolyU at 10-20μM. These small molecules can be used to probe the role of this allosteric site in polymerase function, and may be the basis for novel antiviral compounds.
Collapse
Affiliation(s)
- Catherine H Schein
- Foundation for Applied Molecular Evolution, 13709 Progress Blvd, Box 7, Alachua, FL 32616, United States; Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, United States.
| | - Diane Rowold
- Foundation for Applied Molecular Evolution, 13709 Progress Blvd, Box 7, Alachua, FL 32616, United States
| | - Kyung H Choi
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, United States; Sealy Center for Structural Biology and Molecular Biophysics, UTMB, United States
| |
Collapse
|
20
|
Using the Hepatitis C Virus RNA-Dependent RNA Polymerase as a Model to Understand Viral Polymerase Structure, Function and Dynamics. Viruses 2015; 7:3974-94. [PMID: 26193306 PMCID: PMC4517137 DOI: 10.3390/v7072808] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 07/13/2015] [Accepted: 07/13/2015] [Indexed: 12/11/2022] Open
Abstract
Viral polymerases replicate and transcribe the genomes of several viruses of global health concern such as Hepatitis C virus (HCV), human immunodeficiency virus (HIV) and Ebola virus. For this reason they are key targets for therapies to treat viral infections. Although there is little sequence similarity across the different types of viral polymerases, all of them present a right-hand shape and certain structural motifs that are highly conserved. These features allow their functional properties to be compared, with the goal of broadly applying the knowledge acquired from studying specific viral polymerases to other viral polymerases about which less is known. Here we review the structural and functional properties of the HCV RNA-dependent RNA polymerase (NS5B) in order to understand the fundamental processes underlying the replication of viral genomes. We discuss recent insights into the process by which RNA replication occurs in NS5B as well as the role that conformational changes play in this process.
Collapse
|
21
|
Wen Y, Lin X, Fan B, Ranjith-Kumar CT, Kao CC. The juxtamembrane sequence of the Hepatitis C virus polymerase can affect RNA synthesis and inhibition by allosteric polymerase inhibitors. Virus Genes 2015; 51:1-11. [PMID: 25895103 DOI: 10.1007/s11262-015-1199-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 04/09/2015] [Indexed: 12/21/2022]
Abstract
The Hepatitis C virus (HCV) RNA-dependent RNA polymerase (RdRp), nonstructural protein 5B (NS5B), is anchored in the membrane through a C-terminal helix. A sequence of ca. 12 residues that connects the catalytically competent portion of the RdRp and the C-terminal helix, the juxtamembrane sequence (JMS), has a poorly defined role in RdRp function in a large part since it is translated from a cis-acting RNA element (CRE) that is essential for HCV replication. Using a HCV replicon that transposed a second copy of CRE to the 3' UTR of the HCV replicon, we demonstrate that amino acid substitutions in the JMS were detrimental for HCV replicon replication. Substitutions in the JMS also resulted in a defect in de novo-initiated RNAs synthesis in vitro and in a cell-based reporter assay. A nonnucleoside inhibitor of the NS5B that binds to the catalytic pocket was less potent in inhibiting NS5B in the presence of JMS mutations. The JMS mutants exhibit reduced stability in thermodenaturation assays, suggesting that the JMS helps confer a more stable conformation to NS5B that could impact RNA synthesis.
Collapse
Affiliation(s)
- Y Wen
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN, 47405, USA
| | | | | | | | | |
Collapse
|
22
|
Harikishore A, Li E, Lee JJ, Cho NJ, Yoon HS. Combination of pharmacophore hypothesis and molecular docking to identify novel inhibitors of HCV NS5B polymerase. Mol Divers 2015; 19:529-39. [PMID: 25862642 DOI: 10.1007/s11030-015-9591-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2014] [Accepted: 03/25/2015] [Indexed: 01/03/2023]
Abstract
Hepatitis C virus (HCV) infection or HCV-related liver diseases are now shown to cause more than 350,000 deaths every year. Adaptability of HCV genome to vary its composition and the existence of multiple strains makes it more difficult to combat the emergence of drug-resistant HCV infections. Among the HCV polyprotein which has both the structural and non-structural regions, the non-structural protein NS5B RNA-dependent RNA polymerase (RdRP) mainly mediates the catalytic role of RNA replication in conjunction with its viral protein machinery as well as host chaperone proteins. Lack of such RNA-dependent RNA polymerase enzyme in host had made it an attractive and hotly pursued target for drug discovery efforts. Recent drug discovery efforts targeting HCV RdRP have seen success with FDA approval for sofosbuvir as a direct-acting antiviral against HCV infection. However, variations in drug-binding sites induce drug resistance, and therefore targeting allosteric sites could delay the emergence of drug resistance. In this study, we focussed on allosteric thumb site II of the non-structural protein NS5B RNA-dependent RNA polymerase and developed a five-feature pharmacophore hypothesis/model which estimated the experimental activity with a strong correlation of 0.971 & 0.944 for training and test sets, respectively. Further, the Güner-Henry score of 0.6 suggests that the model was able to discern the active and inactive compounds and enrich the true positives during a database search. In this study, database search and molecular docking results supported by experimental HCV viral replication inhibition assays suggested ligands with best fitness to the pharmacophore model dock to the key residues involved in thumbs site II, which inhibited the HCV 1b viral replication in sub-micro-molar range.
Collapse
Affiliation(s)
- Amaravadhi Harikishore
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore,
| | | | | | | | | |
Collapse
|
23
|
Hydrophobic and charged residues in the C-terminal arm of hepatitis C virus RNA-dependent RNA polymerase regulate initiation and elongation. J Virol 2014; 89:2052-63. [PMID: 25428878 DOI: 10.1128/jvi.01106-14] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
UNLABELLED The RNA-dependent RNA polymerase (RdRp) of hepatitis C virus (HCV) is essential for viral genome replication. Crystal structures of the HCV RdRp reveal two C-terminal features, a β-loop and a C-terminal arm, suitably located for involvement in positioning components of the initiation complex. Here we show that these two elements intimately regulate template and nucleotide binding, initiation, and elongation. We constructed a series of β-loop and C-terminal arm mutants, which were used for in vitro analysis of RdRp de novo initiation and primer extension activities. All mutants showed a substantial decrease in initiation activities but a marked increase in primer extension activities, indicating an ability to form more stable elongation complexes with long primer-template RNAs. Structural studies of the mutants indicated that these enzyme properties might be attributed to an increased flexibility in the C-terminal features resulting in a more open polymerase cleft, which likely favors the elongation process but hampers the initiation steps. A UTP cocrystal structure of one mutant shows, in contrast to the wild-type protein, several alternate conformations of the substrate, confirming that even subtle changes in the C-terminal arm result in a more loosely organized active site and flexible binding modes of the nucleotide. We used a subgenomic replicon system to assess the effects of the same mutations on viral replication in cells. Even the subtlest mutations either severely impaired or completely abolished the ability of the replicon to replicate, further supporting the concept that the correct positioning of both the β-loop and C-terminal arm plays an essential role during initiation and in HCV replication in general. IMPORTANCE HCV RNA polymerase is a key target for the development of directly acting agents to cure HCV infections, which necessitates a thorough understanding of the functional roles of the various structural features of the RdRp. Here we show that even highly conservative changes, e.g., Tyr→Phe or Asp→Glu, in these seemingly peripheral structural features have profound effects on the initiation and elongation properties of the HCV polymerase.
Collapse
|
24
|
Wong M, Papalia G. A Surface Plasmon Resonance Method to Study HCV NS5B Inhibitors. Bio Protoc 2014. [DOI: 10.21769/bioprotoc.1044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|