1
|
Sadr Z, Ghasemi M, Jafarpour S, Seyfi R, Ghasemi A, Boustanipour E, Khorshid HRK, Ehtesham N. Beginning at the ends: telomere and telomere-based cancer therapeutics. Mol Genet Genomics 2024; 300:1. [PMID: 39638969 DOI: 10.1007/s00438-024-02206-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 11/15/2024] [Indexed: 12/07/2024]
Abstract
Telomeres, which are situated at the terminal ends of chromosomes, undergo a reduction in length with each cellular division, ultimately reaching a critical threshold that triggers cellular senescence. Cancer cells circumvent this senescence by utilizing telomere maintenance mechanisms (TMMs) that grant them a form of immortality. These mechanisms can be categorized into two primary processes: the reactivation of telomerase reverse transcriptase and the alternative lengthening of telomeres (ALT) pathway, which is dependent on homologous recombination (HR). Various strategies have been developed to inhibit telomerase activation in 85-95% of cancers, including the use of antisense oligonucleotides such as small interfering RNAs and endogenous microRNAs, agents that simulate telomere uncapping, expression modulators, immunotherapeutic vaccines targeting telomerase, reverse transcriptase inhibitors, stabilization of G-quadruplex structures, and gene therapy approaches. Conversely, in the remaining 5-15% of human cancers that rely on ALT, mechanisms involve modifications in the chromatin environment surrounding telomeres, upregulation of TERRA long non-coding RNA, enhanced activation of the ataxia telangiectasia and Rad-3-related protein kinase signaling pathway, increased interactions with nuclear receptors, telomere repositioning driven by HR, and recombination events between non-sister chromatids, all of which present potential targets for therapeutic intervention. Additionally, combinatorial therapy has emerged as a strategy that employs selective agents to simultaneously target both telomerase and ALT, aiming for optimal clinical outcomes. Given the critical role of anti-TMM strategies in cancer treatment, this review provides an overview of the latest insights into the structure and function of telomeres, their involvement in tumorigenesis, and the advancements in TMM-based cancer therapies.
Collapse
Affiliation(s)
- Zahra Sadr
- Department of Medical Genetics, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Masoumeh Ghasemi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Soheyla Jafarpour
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reyhaneh Seyfi
- Department of Stem Cells Technology and Tissue Regeneration, Faculty of Interdisciplinary Science and Technologies, Tarbiat Modares University, Tehran, Iran
| | - Aida Ghasemi
- Neuromuscular Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Elham Boustanipour
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Naeim Ehtesham
- Department of Medical Genetics, School of Medicine, Iranshahr University of Medical Sciences, Iranshahr, Iran.
| |
Collapse
|
2
|
Palanivel C, Somers TN, Gabler BM, Chen Y, Zeng Y, Cox JL, Seshacharyulu P, Dong J, Yan Y, Batra SK, Ouellette MM. Rac1 GTPase Regulates the βTrCP-Mediated Proteolysis of YAP Independently of the LATS1/2 Kinases. Cancers (Basel) 2024; 16:3605. [PMID: 39518045 PMCID: PMC11545309 DOI: 10.3390/cancers16213605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/16/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
Background: Oncogenic mutations in the KRAS gene are detected in >90% of pancreatic cancers (PC). In genetically engineered mouse models of PC, oncogenic KRAS drives the formation of precursor lesions and their progression to invasive PC. The Yes-associated Protein (YAP) is a transcriptional coactivator required for transformation by the RAS oncogenes and the development of PC. In Ras-driven tumors, YAP can also substitute for oncogenic KRAS to drive tumor survival after the repression of the oncogene. Ras oncoproteins exert their transforming properties through their downstream effectors, including the PI3K kinase, Rac1 GTPase, and MAPK pathways. Methods: To identify Ras effectors that regulate YAP, YAP levels were measured in PC cells exposed to inhibitors of oncogenic K-Ras and its effectors. Results: In PC cells, the inhibition of Rac1 leads to a time-dependent decline in YAP protein, which could be blocked by proteosome inhibitor MG132. This YAP degradation after Rac1 inhibition was observed in a range of cell lines using different Rac1 inhibitors, Rac1 siRNA, or expression of dominant negative Rac1T17N mutant. Several E3 ubiquitin ligases, including SCFβTrCP, regulate YAP protein stability. To be recognized by this ligase, the βTrCP degron of YAP (amino acid 383-388) requires its phosphorylation by casein kinase 1 at Ser384 and Ser387, but these events must first be primed by the phosphorylation of Ser381 by LATS1/2. Using Flag-tagged mutants of YAP, we show that YAP degradation after Rac1 inhibition requires the integrity of this degron and is blocked by the silencing of βTrCP1/2 and by the inhibition of casein kinase 1. Unexpectedly, YAP degradation after Rac1 inhibition was still observed after the silencing of LATS1/2 or in cells carrying a LATS1/2 double knockout. Conclusions: These results reveal Rac1 as an oncogenic KRAS effector that contributes to YAP stabilization in PC cells. They also show that this regulation of YAP by Rac1 requires the SCFβTrCP ligase but occurs independently of the LATS1/2 kinases.
Collapse
Affiliation(s)
- Chitra Palanivel
- Department Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA (T.N.S.); (B.M.G.)
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Tabbatha N. Somers
- Department Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA (T.N.S.); (B.M.G.)
| | - Bailey M. Gabler
- Department Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA (T.N.S.); (B.M.G.)
| | - Yuanhong Chen
- Eppley Institute for Research in Cancer, University of Nebraska Medical Center, Omaha, NE 68198, USA; (Y.C.); (Y.Z.); (J.D.)
| | - Yongji Zeng
- Eppley Institute for Research in Cancer, University of Nebraska Medical Center, Omaha, NE 68198, USA; (Y.C.); (Y.Z.); (J.D.)
| | - Jesse L. Cox
- Department of Pathology, Microbiology and Immunology, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Parthasarathy Seshacharyulu
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (P.S.); (S.K.B.)
| | - Jixin Dong
- Eppley Institute for Research in Cancer, University of Nebraska Medical Center, Omaha, NE 68198, USA; (Y.C.); (Y.Z.); (J.D.)
| | - Ying Yan
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Surinder K. Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (P.S.); (S.K.B.)
| | - Michel M. Ouellette
- Department Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA (T.N.S.); (B.M.G.)
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (P.S.); (S.K.B.)
| |
Collapse
|
3
|
Yousefi T, Mohammadi Jobani B, Taebi R, Qujeq D. Innovating Cancer Treatment Through Cell Cycle, Telomerase, Angiogenesis, and Metastasis. DNA Cell Biol 2024; 43:438-451. [PMID: 39018567 DOI: 10.1089/dna.2024.0109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/19/2024] Open
Abstract
Cancer remains a formidable challenge in the field of medicine, necessitating innovative therapeutic strategies to combat its relentless progression. The cell cycle, a tightly regulated process governing cell growth and division, plays a pivotal role in cancer development. Dysregulation of the cell cycle allows cancer cells to proliferate uncontrollably. Therapeutic interventions designed to disrupt the cell cycle offer promise in restraining tumor growth and progression. Telomerase, an enzyme responsible for maintaining telomere length, is often overactive in cancer cells, conferring them with immortality. Targeting telomerase presents an opportunity to limit the replicative potential of cancer cells and hinder tumor growth. Angiogenesis, the formation of new blood vessels, is essential for tumor growth and metastasis. Strategies aimed at inhibiting angiogenesis seek to deprive tumors of their vital blood supply, thereby impeding their progression. Metastasis, the spread of cancer cells from the primary tumor to distant sites, is a major challenge in cancer therapy. Research efforts are focused on understanding the underlying mechanisms of metastasis and developing interventions to disrupt this deadly process. This review provides a glimpse into the multifaceted approach to cancer therapy, addressing critical aspects of cancer biology-cell cycle regulation, telomerase activity, angiogenesis, and metastasis. Through ongoing research and innovative strategies, the field of oncology continues to advance, offering new hope for improved treatment outcomes and enhanced quality of life for cancer patients.
Collapse
Affiliation(s)
- Tooba Yousefi
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bahareh Mohammadi Jobani
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reyhaneh Taebi
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Durdi Qujeq
- Department of Clinical Biochemistry, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
4
|
Shou S, Li Y, Chen J, Zhang X, Zhang C, Jiang X, Liu F, Yi L, Zhang X, Geer E, Pu Z, Pang B. Understanding, diagnosing, and treating pancreatic cancer from the perspective of telomeres and telomerase. Cancer Gene Ther 2024; 31:1292-1305. [PMID: 38594465 PMCID: PMC11405285 DOI: 10.1038/s41417-024-00768-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 04/11/2024]
Abstract
Telomerase is associated with cellular aging, and its presence limits cellular lifespan. Telomerase by preventing telomere shortening can extend the number of cell divisions for cancer cells. In adult pancreatic cells, telomeres gradually shorten, while in precancerous lesions of cancer, telomeres in cells are usually significantly shortened. At this time, telomerase is still in an inactive state, and it is not until before and after the onset of cancer that telomerase is reactivated, causing cancer cells to proliferate. Methylation of the telomerase reverse transcriptase (TERT) promoter and regulation of telomerase by lactate dehydrogenase B (LDHB) is the mechanism of telomerase reactivation in pancreatic cancer. Understanding the role of telomeres and telomerase in pancreatic cancer will help to diagnose and initiate targeted therapy as early as possible. This article reviews the role of telomeres and telomerase as biomarkers in the development of pancreatic cancer and the progress of research on telomeres and telomerase as targets for therapeutic intervention.
Collapse
Affiliation(s)
- Songting Shou
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuanliang Li
- Department of Oncology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiaqin Chen
- Department of Gastroenterology, Dongzhimen Hospital, Beijing, China
| | - Xing Zhang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chuanlong Zhang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaochen Jiang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fudong Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Li Yi
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiyuan Zhang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - En Geer
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhenqing Pu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Bo Pang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
5
|
Xiong J, Dong L, Lv Q, Yin Y, Zhao J, Ke Y, Wang S, Zhang W, Wu M. Targeting senescence-associated secretory phenotypes to remodel the tumour microenvironment and modulate tumour outcomes. Clin Transl Med 2024; 14:e1772. [PMID: 39270064 PMCID: PMC11398298 DOI: 10.1002/ctm2.1772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/17/2024] [Accepted: 07/08/2024] [Indexed: 09/15/2024] Open
Abstract
Tumour cell senescence can be induced by various factors, including DNA damage, inflammatory signals, genetic toxins, ionising radiation and nutrient metabolism. The senescence-associated secretory phenotype (SASP), secreted by senescent tumour cells, possesses the capacity to modulate various immune cells, including macrophages, T cells, natural killer cells and myeloid-derived suppressor cells, as well as vascular endothelial cells and fibroblasts within the tumour microenvironment (TME), and this modulation can result in either the promotion or suppression of tumorigenesis and progression. Exploring the impact of SASP on the TME could identify potential therapeutic targets, yet limited studies have dissected its functions. In this review, we delve into the causes and mechanisms of tumour cell senescence. We then concentrate on the influence of SASP on the tumour immune microenvironment, angiogenesis, extracellular matrix and the reprogramming of cancer stem cells, along with their associated tumour outcomes. Last, we present a comprehensive overview of the diverse array of senotherapeutics, highlighting their prospective advantages and challenge for the treatment of cancer patients. KEY POINTS: Senescence-associated secretory phenotype (SASP) secretion from senescent tumour cells significantly impacts cancer progression and biology. SASP is involved in regulating the remodelling of the tumour microenvironment, including immune microenvironment, vascular, extracellular matrix and cancer stem cells. Senotherapeutics, such as senolytic, senomorphic, nanotherapy and senolytic vaccines, hold promise for enhancing cancer treatment efficacy.
Collapse
Affiliation(s)
- Jiaqiang Xiong
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Lu Dong
- The Second Clinical College of Wuhan University, Wuhan, China
| | - Qiongying Lv
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yutong Yin
- The First Clinical College of Wuhan University, Wuhan, China
| | - Jiahui Zhao
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Youning Ke
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Shixuan Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Zhang
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Meng Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
6
|
Zhou Y, Tao L, Qiu J, Xu J, Yang X, Zhang Y, Tian X, Guan X, Cen X, Zhao Y. Tumor biomarkers for diagnosis, prognosis and targeted therapy. Signal Transduct Target Ther 2024; 9:132. [PMID: 38763973 PMCID: PMC11102923 DOI: 10.1038/s41392-024-01823-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 03/07/2024] [Accepted: 04/02/2024] [Indexed: 05/21/2024] Open
Abstract
Tumor biomarkers, the substances which are produced by tumors or the body's responses to tumors during tumorigenesis and progression, have been demonstrated to possess critical and encouraging value in screening and early diagnosis, prognosis prediction, recurrence detection, and therapeutic efficacy monitoring of cancers. Over the past decades, continuous progress has been made in exploring and discovering novel, sensitive, specific, and accurate tumor biomarkers, which has significantly promoted personalized medicine and improved the outcomes of cancer patients, especially advances in molecular biology technologies developed for the detection of tumor biomarkers. Herein, we summarize the discovery and development of tumor biomarkers, including the history of tumor biomarkers, the conventional and innovative technologies used for biomarker discovery and detection, the classification of tumor biomarkers based on tissue origins, and the application of tumor biomarkers in clinical cancer management. In particular, we highlight the recent advancements in biomarker-based anticancer-targeted therapies which are emerging as breakthroughs and promising cancer therapeutic strategies. We also discuss limitations and challenges that need to be addressed and provide insights and perspectives to turn challenges into opportunities in this field. Collectively, the discovery and application of multiple tumor biomarkers emphasized in this review may provide guidance on improved precision medicine, broaden horizons in future research directions, and expedite the clinical classification of cancer patients according to their molecular biomarkers rather than organs of origin.
Collapse
Affiliation(s)
- Yue Zhou
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lei Tao
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jiahao Qiu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jing Xu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xinyu Yang
- West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Yu Zhang
- West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
- School of Medicine, Tibet University, Lhasa, 850000, China
| | - Xinyu Tian
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xinqi Guan
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaobo Cen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yinglan Zhao
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
7
|
Al-Danakh A, Safi M, Jian Y, Yang L, Zhu X, Chen Q, Yang K, Wang S, Zhang J, Yang D. Aging-related biomarker discovery in the era of immune checkpoint inhibitors for cancer patients. Front Immunol 2024; 15:1348189. [PMID: 38590525 PMCID: PMC11000233 DOI: 10.3389/fimmu.2024.1348189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 01/29/2024] [Indexed: 04/10/2024] Open
Abstract
Older patients with cancer, particularly those over 75 years of age, often experience poorer clinical outcomes compared to younger patients. This can be attributed to age-related comorbidities, weakened immune function, and reduced tolerance to treatment-related adverse effects. In the immune checkpoint inhibitors (ICI) era, age has emerged as an influential factor impacting the discovery of predictive biomarkers for ICI treatment. These age-linked changes in the immune system can influence the composition and functionality of tumor-infiltrating immune cells (TIICs) that play a crucial role in the cancer response. Older patients may have lower levels of TIICs infiltration due to age-related immune senescence particularly T cell function, which can limit the effectivity of cancer immunotherapies. Furthermore, age-related immune dysregulation increases the exhaustion of immune cells, characterized by the dysregulation of ICI-related biomarkers and a dampened response to ICI. Our review aims to provide a comprehensive understanding of the mechanisms that contribute to the impact of age on ICI-related biomarkers and ICI response. Understanding these mechanisms will facilitate the development of treatment approaches tailored to elderly individuals with cancer.
Collapse
Affiliation(s)
- Abdullah Al-Danakh
- Department of Urology, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Mohammed Safi
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Yuli Jian
- Department of Biochemistry and Molecular Biology, Institute of Glycobiology, Dalian Medical University, Dalian, China
| | - Linlin Yang
- Department of Urology, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Xinqing Zhu
- Department of Urology, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Qiwei Chen
- Department of Urology, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Kangkang Yang
- Institute for Genome Engineered Animal Models of Human Diseases, National Center of Genetically Engineered Animal Models for International Research, Dalian Medical University, Dalian, Liaoning, China
| | - Shujing Wang
- Department of Biochemistry and Molecular Biology, Institute of Glycobiology, Dalian Medical University, Dalian, China
| | - Jianjun Zhang
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Deyong Yang
- Department of Urology, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
- Department of Surgery, Healinghands Clinic, Dalian, Liaoning, China
| |
Collapse
|
8
|
Gubu A, Zhang X, Lu A, Zhang B, Ma Y, Zhang G. Nucleic acid amphiphiles: Synthesis, properties, and applications. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 33:144-163. [PMID: 37456777 PMCID: PMC10345231 DOI: 10.1016/j.omtn.2023.05.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Nucleic acid amphiphiles, referring to nucleic acids modified with large hydrophobic groups, have been widely used in programmable bioengineering. Since nucleic acids are intrinsically hydrophilic, the hydrophobic groups endow nucleic acid amphiphiles with unique properties, such as self-assembling, interactions with artificial or biological membranes, and transmembrane transport. Importantly, the hybridization or target binding capability of oligonucleotide itself supplies nucleic acid amphiphiles with excellent programmability. As a result, this type of molecule has attracted considerable attention in academic studies and has enormous potential for further applications. For a comprehensive understanding of nucleic acid amphiphiles, we review the reported research on nucleic acid amphiphiles from their molecular design to final applications, in which we summarize the synthetic strategies for nucleic acid amphiphiles and draw much attention to their unique properties in different contexts. Finally, a summary of the applications of nucleic acid amphiphiles in drug development, bioengineering, and bioanalysis are critically discussed.
Collapse
Affiliation(s)
- Amu Gubu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Aptacure Therapeutics Limited, Kowloon, Hong Kong SAR, China
| | - Xueli Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences and Chemical Biology Center, Peking University, No. 38 Xueyuan Road, Beijing, China
| | - Aiping Lu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tsai, Hong Kong 999077, China
- Institute of Precision Medicine and Innovative Drug Discovery, HKBU Institute for Research and Continuing Education, Shenzhen 518000, China
| | - Baoting Zhang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yuan Ma
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tsai, Hong Kong 999077, China
- Institute of Precision Medicine and Innovative Drug Discovery, HKBU Institute for Research and Continuing Education, Shenzhen 518000, China
| | - Ge Zhang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tsai, Hong Kong 999077, China
- Institute of Precision Medicine and Innovative Drug Discovery, HKBU Institute for Research and Continuing Education, Shenzhen 518000, China
| |
Collapse
|
9
|
Shen Z, Wang Y, Wang G, Gu W, Zhao S, Hu X, Liu W, Cai Y, Ma Z, Gautam RK, Jia J, Wan CC, Yan T. Research progress of small-molecule drugs in targeting telomerase in human cancer and aging. Chem Biol Interact 2023; 382:110631. [PMID: 37451664 DOI: 10.1016/j.cbi.2023.110631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 05/17/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
Telomeres are unique structures located at the ends of linear chromosomes, responsible for stabilizing chromosomal structures. They are synthesized by telomerase, a reverse transcriptase ribonucleoprotein complex. Telomerase activity is generally absent in human somatic cells, except in stem cells and germ cells. Every time a cell divides, the telomere sequence is shortened, eventually leading to replicative senescence and cell apoptosis when the telomeres reach a critical limit. However, most human cancer cells exhibit increased telomerase activity, allowing them to divide continuously. The importance of telomerase in cancer and aging has made developing drugs targeting telomerase a focus of research. Such drugs can inhibit cancer cell growth and delay aging by enhancing telomerase activity in telomere-related syndromes or diseases. This review provides an overview of telomeres, telomerase, and their regulation in cancer and aging, and highlights small-molecule drugs targeting telomerase in these fields.
Collapse
Affiliation(s)
- Ziyi Shen
- School of Life Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Yuanhui Wang
- School of Life Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Guanzhen Wang
- School of Life Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444, China; University and College Key Lab of Natural Product Chemistry and Application in Xinjiang, School of Chemistry and Environmental Science, Yili Normal University, Yining, 835000, China
| | - Wei Gu
- School of Life Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Shengchao Zhao
- School of Life Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444, China; University and College Key Lab of Natural Product Chemistry and Application in Xinjiang, School of Chemistry and Environmental Science, Yili Normal University, Yining, 835000, China
| | - Xiaomeng Hu
- University and College Key Lab of Natural Product Chemistry and Application in Xinjiang, School of Chemistry and Environmental Science, Yili Normal University, Yining, 835000, China; Huzhou Central Hospital, Huzhou, 313000, China
| | - Wei Liu
- University and College Key Lab of Natural Product Chemistry and Application in Xinjiang, School of Chemistry and Environmental Science, Yili Normal University, Yining, 835000, China
| | - Yi Cai
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Zhihong Ma
- Huzhou Central Hospital, Huzhou, 313000, China
| | - Rupesh K Gautam
- Department of Pharmacology, Indore Institute of Pharmacy, Indore, 453331, India
| | - Jia Jia
- School of Life Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444, China; Translational Medicine Center, Zhejiang Xinda hospital, School of Medicine&Nursing, Huzhou University, Huzhou, 313099, China.
| | - Chunpeng Craig Wan
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits and Vegetables, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Tingdong Yan
- School of Life Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444, China; Translational Medicine Center, Zhejiang Xinda hospital, School of Medicine&Nursing, Huzhou University, Huzhou, 313099, China.
| |
Collapse
|
10
|
Zhao B, Wu B, Feng N, Zhang X, Zhang X, Wei Y, Zhang W. Aging microenvironment and antitumor immunity for geriatric oncology: the landscape and future implications. J Hematol Oncol 2023; 16:28. [PMID: 36945046 PMCID: PMC10032017 DOI: 10.1186/s13045-023-01426-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/15/2023] [Indexed: 03/23/2023] Open
Abstract
The tumor microenvironment (TME) has been extensively investigated; however, it is complex and remains unclear, especially in elderly patients. Senescence is a cellular response to a variety of stress signals, which is characterized by stable arrest of the cell cycle and major changes in cell morphology and physiology. To the best of our knowledge, senescence leads to consistent arrest of tumor cells and remodeling of the tumor-immune microenvironment (TIME) by activating a set of pleiotropic cytokines, chemokines, growth factors, and proteinases, which constitute the senescence-associated secretory phenotype (SASP). On the one hand, the SASP promotes antitumor immunity, which enhances treatment efficacy; on the other hand, the SASP increases immunosuppressive cell infiltration, including myeloid-derived suppressor cells (MDSCs), regulatory T cells (Tregs), M2 macrophages, and N2 neutrophils, contributing to TIME suppression. Therefore, a deeper understanding of the regulation of the SASP and components contributing to robust antitumor immunity in elderly individuals with different cancer types and the available therapies is necessary to control tumor cell senescence and provide greater clinical benefits to patients. In this review, we summarize the key biological functions mediated by cytokines and intercellular interactions and significant components of the TME landscape, which influence the immunotherapy response in geriatric oncology. Furthermore, we summarize recent advances in clinical practices targeting TME components and discuss potential senescent TME targets.
Collapse
Affiliation(s)
- Binghao Zhao
- Department of Thoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang University, 1 Minde Road, Nanchang, 330006, China
- Departments of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100032, China
| | - Bo Wu
- Department of Thoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang University, 1 Minde Road, Nanchang, 330006, China
- Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Nan Feng
- Department of Thoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang University, 1 Minde Road, Nanchang, 330006, China
- Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Xiang Zhang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang University, 1 Minde Road, Nanchang, 330006, China
- Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Xin Zhang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang University, 1 Minde Road, Nanchang, 330006, China
- Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Yiping Wei
- Department of Thoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang University, 1 Minde Road, Nanchang, 330006, China
| | - Wenxiong Zhang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang University, 1 Minde Road, Nanchang, 330006, China.
| |
Collapse
|
11
|
Guo J, Huang X, Dou L, Yan M, Shen T, Tang W, Li J. Aging and aging-related diseases: from molecular mechanisms to interventions and treatments. Signal Transduct Target Ther 2022; 7:391. [PMID: 36522308 PMCID: PMC9755275 DOI: 10.1038/s41392-022-01251-0] [Citation(s) in RCA: 373] [Impact Index Per Article: 124.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 11/03/2022] [Accepted: 11/10/2022] [Indexed: 12/23/2022] Open
Abstract
Aging is a gradual and irreversible pathophysiological process. It presents with declines in tissue and cell functions and significant increases in the risks of various aging-related diseases, including neurodegenerative diseases, cardiovascular diseases, metabolic diseases, musculoskeletal diseases, and immune system diseases. Although the development of modern medicine has promoted human health and greatly extended life expectancy, with the aging of society, a variety of chronic diseases have gradually become the most important causes of disability and death in elderly individuals. Current research on aging focuses on elucidating how various endogenous and exogenous stresses (such as genomic instability, telomere dysfunction, epigenetic alterations, loss of proteostasis, compromise of autophagy, mitochondrial dysfunction, cellular senescence, stem cell exhaustion, altered intercellular communication, deregulated nutrient sensing) participate in the regulation of aging. Furthermore, thorough research on the pathogenesis of aging to identify interventions that promote health and longevity (such as caloric restriction, microbiota transplantation, and nutritional intervention) and clinical treatment methods for aging-related diseases (depletion of senescent cells, stem cell therapy, antioxidative and anti-inflammatory treatments, and hormone replacement therapy) could decrease the incidence and development of aging-related diseases and in turn promote healthy aging and longevity.
Collapse
Affiliation(s)
- Jun Guo
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China
| | - Xiuqing Huang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China
| | - Lin Dou
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China
| | - Mingjing Yan
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China
| | - Tao Shen
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China.
| | - Weiqing Tang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China.
| | - Jian Li
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China.
| |
Collapse
|
12
|
Piskorz WM, Cechowska-Pasko M. Senescence of Tumor Cells in Anticancer Therapy—Beneficial and Detrimental Effects. Int J Mol Sci 2022; 23:ijms231911082. [PMID: 36232388 PMCID: PMC9570404 DOI: 10.3390/ijms231911082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/16/2022] [Accepted: 09/18/2022] [Indexed: 01/10/2023] Open
Abstract
Cellular senescence process results in stable cell cycle arrest, which prevents cell proliferation. It can be induced by a variety of stimuli including metabolic stress, DNA damage, telomeres shortening, and oncogenes activation. Senescence is generally considered as a process of tumor suppression, both by preventing cancer cells proliferation and inhibiting cancer progression. It can also be a key effector mechanism for many types of anticancer therapies such as chemotherapy and radiotherapy, both directly and through bioactive molecules released by senescent cells that can stimulate an immune response. Senescence is characterized by a senescence-associated secretory phenotype (SASP) that can have both beneficial and detrimental impact on cancer progression. Despite the negatives, attempts are still being made to use senescence to fight cancer, especially when it comes to senolytics. There is a possibility that a combination of prosenescence therapy—which targets tumor cells and causes their senescence—with senotherapy—which targets senescent cells, can be promising in cancer treatment. This review provides information on cellular senescence, its connection with carcinogenesis and therapeutic possibilities linked to this process.
Collapse
|
13
|
Abstract
Senescence is a cellular response to a variety of stress signals that is characterized by a stable withdrawal from the cell cycle and major changes in cell morphology and physiology. While most research on senescence has been performed on non-cancer cells, it is evident that cancer cells can also mount a senescence response. In this Review, we discuss how senescence can be induced in cancer cells. We describe the distinctive features of senescent cancer cells and how these changes in cellular physiology might be exploited for the selective eradication of these cells (senolysis). We discuss activation of the host immune system as a particularly attractive way to clear senescent cancer cells. Finally, we consider the challenges and opportunities provided by a 'one-two punch' sequential treatment of cancer with pro-senescence therapy followed by senolytic therapy.
Collapse
Affiliation(s)
- Liqin Wang
- Division of Molecular Carcinogenesis, Oncode Institute, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Lina Lankhorst
- Cancer, Stem Cells & Developmental Biology programme, Utrecht University, Utrecht, The Netherlands
| | - René Bernards
- Division of Molecular Carcinogenesis, Oncode Institute, Netherlands Cancer Institute, Amsterdam, The Netherlands.
| |
Collapse
|
14
|
Telomerase gene therapy: a remission toward cancer. Med Oncol 2022; 39:105. [DOI: 10.1007/s12032-022-01702-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 03/02/2022] [Indexed: 12/21/2022]
|
15
|
Pancreatic Neuroendocrine Neoplasms: Updates on Genomic Changes in Inherited Tumour Syndromes and Sporadic Tumours Based on WHO Classification. Crit Rev Oncol Hematol 2022; 172:103648. [PMID: 35248713 DOI: 10.1016/j.critrevonc.2022.103648] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 02/19/2022] [Accepted: 02/28/2022] [Indexed: 12/16/2022] Open
Abstract
Pancreatic neuroendocrine neoplasms (PanNENs) are the neuroendocrine neoplasms with greatest rate of increase in incidence. Approximately 10% of PanNENs arise as inherited tumour syndromes which include multiple endocrine neoplasia type 1, multiple endocrine neoplasia type 4, von Hippel-Lindau syndrome, neurofibromatosis type1, tuberous sclerosis complex 1/2, Cowden syndrome, and Glucagon cell hyperplasia and neoplasia as well as familial insulinomatosis. In sporadic PanNENs, driver mutations in MEN1, DAXX/ATRX and mTOR pathway genes are associated with development and progression in pancreatic neuroendocrine tumours. The other changes are in VEGF pathway, Notch pathway, germline mutations in MUTYH, CHEK2, BRCA2, PHLDA3 as well as other genetic alterations. On the other hand, pancreatic neuroendocrine carcinomas share similar genetic alterations with ductal adenocarcinomas, e.g., TP53, RB1 or KRAS. In addition, microRNA and changes in immune microenvironment were noted in PanNENs. Updates on these genetic knowledges contribute to the development of management strategies for patients with PanNENs.
Collapse
|
16
|
Palanivel C, Chaudhary N, Seshacharyulu P, Cox JL, Yan Y, Batra SK, Ouellette MM. The GSK3 kinase and LZTR1 protein regulate the stability of Ras family proteins and the proliferation of pancreatic cancer cells. Neoplasia 2022; 25:28-40. [PMID: 35114566 PMCID: PMC8814762 DOI: 10.1016/j.neo.2022.01.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/30/2021] [Accepted: 01/12/2022] [Indexed: 11/24/2022]
Abstract
Ras family proteins are membrane-bound GTPases that control proliferation, survival, and motility. Many forms of cancers are driven by the acquisition of somatic mutations in a RAS gene. In pancreatic cancer (PC), more than 90% of tumors carry an activating mutation in KRAS. Mutations in components of the Ras signaling pathway can also be the cause of RASopathies, a group of developmental disorders. In a subset of RASopathies, the causal mutations are in the LZTR1 protein, a substrate adaptor for E3 ubiquitin ligases that promote the degradation of Ras proteins. Here, we show that the function of LZTR1 is regulated by the glycogen synthase kinase 3 (GSK3). In PC cells, inhibiting or silencing GSK3 led to a decline in the level of Ras proteins, including both wild type Ras proteins and the oncogenic Kras protein. This decline was accompanied by a 3-fold decrease in the half-life of Ras proteins and was blocked by the inhibition of the proteasome or the knockdown of LZTR1. Irrespective of the mutational status of KRAS, the decline in Ras proteins was observed and accompanied by a loss of cell proliferation. This loss of proliferation was blocked by the knockdown of LZTR1 and could be recapitulated by the silencing of either KRAS or GSK3. These results reveal a novel GSK3-regulated LZTR1-dependent mechanism that controls the stability of Ras proteins and proliferation of PC cells. The significance of this novel pathway to Ras signaling and its contribution to the therapeutic properties of GSK3 inhibitors are both discussed.
Collapse
|
17
|
Delivery of Oligonucleotides: Efficiency with Lipid Conjugation and Clinical Outcome. Pharmaceutics 2022; 14:pharmaceutics14020342. [PMID: 35214074 PMCID: PMC8879684 DOI: 10.3390/pharmaceutics14020342] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/24/2022] [Accepted: 01/27/2022] [Indexed: 11/21/2022] Open
Abstract
Oligonucleotides have shifted drug discovery into a new paradigm due to their ability to silence the genes and inhibit protein translation. Importantly, they can drug the un-druggable targets from the conventional small-molecule perspective. Unfortunately, poor cellular permeability and susceptibility to nuclease degradation remain as major hurdles for the development of oligonucleotide therapeutic agents. Studies of safe and effective delivery technique with lipid bioconjugates gains attention to resolve these issues. Our review article summarizes the physicochemical effect of well-studied hydrophobic moieties to enhance the cellular entry of oligonucleotides. The structural impacts of fatty acids, cholesterol, tocopherol, and squalene on cellular internalization and membrane penetration in vitro and in vivo were discussed first. The crucial assays for delivery evaluation within this section were analyzed sequentially. Next, we provided a few successful examples of lipid-conjugated oligonucleotides advanced into clinical studies for treating patients with different medical backgrounds. Finally, we pinpointed current limitations and outlooks in this research field along with opportunities to explore new modifications and efficacy studies.
Collapse
|
18
|
Andrade da Mota TH, Reis Guimarães AF, Silva de Carvalho AÉ, Saldanha- de Araujo F, Pinto de Faria Lopes G, Pittella-Silva F, do Amaral Rabello D, Madureira de Oliveira D. Effects of in vitro short- and long-term treatment with telomerase inhibitor in U-251 glioma cells. Tumour Biol 2021; 43:327-340. [DOI: 10.3233/tub-211515] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND: The inhibition of the enzyme telomerase (TERT) has been widely investigated as a new pharmacological approach for cancer treatment, but its real potential and the biochemical consequences are not totally understood. OBJECTIVE: Here, we investigated the effects of the telomerase inhibitor MST-312 on a human glioma cell line after both short- and long-term (290 days) treatments. METHODS: Effects on cell growth, viability, cell cycle, morphology, cell death and genes expression were assessed. RESULTS: We found that short-term treatment promoted cell cycle arrest followed by apoptosis. Importantly, cells with telomerase knock-down revealed that the toxic effects of MST-312 are partially TERT dependent. In contrast, although the long-term treatment decreased cell proliferation at first, it also caused adaptations potentially related to treatment resistance and tumor aggressiveness after long time of exposition. CONCLUSIONS: Despite the short-term effects of telomerase inhibition not being due to telomere erosion, they are at least partially related to the enzyme inhibition, which may represent an important strategy to pave the way for tumor growth control, especially through modulation of the non-canonical functions of telomerase. On the other hand, long-term exposure to the inhibitor had the potential to induce cell adaptations with possible negative clinical implications.
Collapse
Affiliation(s)
- Tales Henrique Andrade da Mota
- Multidisciplinary Laboratory of Human Health, University of Brasilia, Ceilândia, DF, Brazil
- Laboratory of Molecular Pathology of Cancer, University of Brasilia, Brasilia, DF, Brazil
| | - Ana Flávia Reis Guimarães
- Multidisciplinary Laboratory of Human Health, University of Brasilia, Ceilândia, DF, Brazil
- Laboratory of Molecular Pathology of Cancer, University of Brasilia, Brasilia, DF, Brazil
| | - Amandda Évelin Silva de Carvalho
- Laboratory of Molecular Pharmacology, Department of Pharmaceutical Sciences, University of Brasilia, Brasilia, DF, Brazil
- Laboratory of Hematology, Department of Pharmaceutical Sciences, University of Brasilia, Brasilia, DF, Brazil
| | - Felipe Saldanha- de Araujo
- Laboratory of Molecular Pharmacology, Department of Pharmaceutical Sciences, University of Brasilia, Brasilia, DF, Brazil
- Laboratory of Hematology, Department of Pharmaceutical Sciences, University of Brasilia, Brasilia, DF, Brazil
| | - Giselle Pinto de Faria Lopes
- Laboratory of Cellular and Molecular Hemato-oncology, National Institute of Cancer (INCA), Rio de Janeiro, RJ, Brazil
- Marine Biotechnology Department, Admiral Paulo Moreira Sea Studies Institute, IEAPM, Arraial do Cabo, RJ, Brazil
| | - Fábio Pittella-Silva
- Laboratory of Molecular Pathology of Cancer, University of Brasilia, Brasilia, DF, Brazil
| | | | - Diêgo Madureira de Oliveira
- Multidisciplinary Laboratory of Human Health, University of Brasilia, Ceilândia, DF, Brazil
- Laboratory of Molecular Pathology of Cancer, University of Brasilia, Brasilia, DF, Brazil
| |
Collapse
|
19
|
Gupta A, Andresen JL, Manan RS, Langer R. Nucleic acid delivery for therapeutic applications. Adv Drug Deliv Rev 2021; 178:113834. [PMID: 34492233 DOI: 10.1016/j.addr.2021.113834] [Citation(s) in RCA: 118] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/25/2021] [Accepted: 06/11/2021] [Indexed: 02/07/2023]
Abstract
Recent medical advances have exploited the ability to address a given disease at the underlying level of transcription and translation. These treatment paradigms utilize nucleic acids - including short interfering RNA (siRNA), microRNA (miRNA), antisense oligonucleotides (ASO), and messenger RNA (mRNA) - to achieve a desired outcome ranging from gene knockdown to induced expression of a selected target protein. Towards this end, numerous strategies for encapsulation or stabilization of various nucleic acid structures have been developed in order to achieve intracellular delivery. In this review, we discuss several therapeutic applications of nucleic acids directed towards specific diseases and tissues of interest, in particular highlighting recent technologies which have reached late-stage clinical trials and received FDA approval.
Collapse
Affiliation(s)
- Akash Gupta
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA
| | - Jason L Andresen
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA; Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Rajith S Manan
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA; Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Robert Langer
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA; Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
20
|
Volpe VO, Garcia-Manero G, Komrokji RS. Myelodysplastic Syndromes: A New Decade. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2021; 22:1-16. [PMID: 34544674 DOI: 10.1016/j.clml.2021.07.031] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/27/2021] [Accepted: 07/29/2021] [Indexed: 10/20/2022]
Abstract
Myelodysplastic syndromes (MDS) are a group of heterogeneous clonal hematopoietic stem cell disorders. The 2020 Surveillance, Epidemiology, and End Results data demonstrates the incidence rate of MDS increases with age especially in those greater than 70 years of age. Risk stratification that impact prognosis, survival, and rate of acute myeloid leukemia (AML) transformation in MDS is largely dependent on revised International Prognostic Scoring System along with molecular genetic testing as a supplement. Low risk MDS typically have a more indolent disease course in which treatment is only initiated to ameliorate symptoms of cytopenias. In many, anemia is the most common cytopenia requiring treatment and erythroid stimulating agents, are considered first line. In contrast, high risk MDS tend to behave more aggressively for which treatment should be initiated rapidly with Hypomethylating Agents (HMA) being in the frontline. In those with high risk MDS and eligible, evaluation for allogeneic stem cell transplant should be considered as this is the only potential curative option for MDS. With the use of molecular genetic testing, a personalized approach to therapy in MDS has ensued. As the treatment landscape in MDS continues to flourish with novel targeted agents, we ambitiously seek to improve survival rates especially among the relapsed/refractory and transplant ineligible.
Collapse
Affiliation(s)
- Virginia O Volpe
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center, Tampa, FL
| | | | - Rami S Komrokji
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center, Tampa, FL.
| |
Collapse
|
21
|
Volpe VO, Komrokji RS. Treatment options for lower-risk myelodysplastic syndromes. Where are we now? Ther Adv Hematol 2021; 12:2040620720986641. [PMID: 33505645 PMCID: PMC7812395 DOI: 10.1177/2040620720986641] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 11/12/2020] [Indexed: 12/11/2022] Open
Abstract
Myelodysplastic syndromes (MDS) are a spectrum of clonal stem-cell disorders characterized clinically by bone-marrow failure. Resultant cytopenias are responsible for significant mortality and decreased quality of life in patients with MDS. In patients with low-risk MDS (LR-MDS), anemia is the most common cytopenia and erythropoiesis-stimulating agents (ESA) are usually used as first-line therapy. Those patients who become refractory to ESA have a poor survival. Available treatment options such as lenalidomide, hypomethylating agents, and immunosuppressive therapy can provide some hematologic response among selected subsets of patients, however durable responses are limited, and these agents can carry significant adverse effects. Chronic transfusions help to alleviate symptoms of anemia but still carry risks associated with transfusion and iron overload. Luspatercept, recently approved for those LR-MDS with ring sideroblasts refractory to ESA, was found to have an improvement in transfusion independence with a well-tolerated safety profile. While anemia is the most common cytopenia, thrombocytopenia and neutropenia management is challenging and the co-occurrence of these cytopenias with anemia may dictate the choice of therapy. In this article, we review LR-MDS and discuss the optimal use of current treatment options and explore new therapeutic options on the horizon.
Collapse
Affiliation(s)
- Virginia O. Volpe
- H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612, USA
| | - Rami S. Komrokji
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| |
Collapse
|
22
|
Honcharenko D, Druceikaite K, Honcharenko M, Bollmark M, Tedebark U, Strömberg R. New Alkyne and Amine Linkers for Versatile Multiple Conjugation of Oligonucleotides. ACS OMEGA 2021; 6:579-593. [PMID: 33458510 PMCID: PMC7807750 DOI: 10.1021/acsomega.0c05075] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 12/08/2020] [Indexed: 05/08/2023]
Abstract
Oligonucleotide (ON) conjugates are increasingly important tools for various molecular diagnostics, nanotechnological applications, and for the development of nucleic acid-based therapies. Multiple labeling of ONs can further equip ON-conjugates and provide improved or additional tailored properties. Typically, the preparation of ON multiconjugates involves additional synthetic steps and/or manipulations in post-ON assembly. This report describes the simplified methodology allowing for multiple labeling of ONs on a solid support and is compatible with phosphodiester as well as phosphorothioate (PS) ONs. The current approach utilizes two novel alkyne- and amino-functionalized linker phosphoramidites that can be readily synthesized from a common aminodiol intermediate in three steps. The combination of new linkers provides orthogonal functionalities, which allow for multiple attachments of similar or varied moieties. The linkers are incorporated into ONs during automated solid-phase ON synthesis, and the conjugation with functional entities is achieved by either amide bond formation or by copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC). The versatility of the approach is demonstrated by the synthesis of 5'-site ON multiconjugates with small molecules, peptides, and fatty acids as well as in the preparation of an internal peptide-ON conjugate.
Collapse
Affiliation(s)
- Dmytro Honcharenko
- Department
of Biosciences and Nutrition, Karolinska
Institutet, 14183 Huddinge, Sweden
| | - Kristina Druceikaite
- Department
of Biosciences and Nutrition, Karolinska
Institutet, 14183 Huddinge, Sweden
- RISE
Chemical Process and Pharmaceutical Development, Forskargatan 20J, 15136 Södertälje, Sweden
| | | | - Martin Bollmark
- RISE
Chemical Process and Pharmaceutical Development, Forskargatan 20J, 15136 Södertälje, Sweden
| | - Ulf Tedebark
- RISE
Chemical Process and Pharmaceutical Development, Forskargatan 20J, 15136 Södertälje, Sweden
| | - Roger Strömberg
- Department
of Biosciences and Nutrition, Karolinska
Institutet, 14183 Huddinge, Sweden
| |
Collapse
|
23
|
Al-Share B, Hammad N, Diab M. Pancreatic adenocarcinoma: molecular drivers and the role of targeted therapy. Cancer Metastasis Rev 2021; 40:355-371. [PMID: 33398620 DOI: 10.1007/s10555-020-09948-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 12/15/2020] [Indexed: 01/05/2023]
Abstract
Prognosis from pancreatic ductal adenocarcinoma (PDAC) continues to be poor despite the many efforts channeled to improve its management. Although the mainstay treatment is still traditional chemotherapy, recent advances highlighted a promising potential for targeted therapy in the management of this disease. Those advances emphasize the significance of timely genomic profiling of tumor tissue as well as germline testing of patients to identify potential markers of targeted therapy. While targeted therapy is reserved for a relatively small subset of patients with PDAC, ongoing research is uncovering additional markers, and targeted agents, that will hopefully translate to better outcomes for patients.
Collapse
Affiliation(s)
- Bayan Al-Share
- Department of Oncology, Wayne State University, Karmanos Cancer Institute, Detroit, MI, USA
| | - Nour Hammad
- Department of Oncology, Ascension Providence Hospital and Medical Center/Michigan State University/Collage of Human Medicine, Southfield, MI, USA
| | - Maria Diab
- Department of Oncology, Emory University, Atlanta, GA, USA.
| |
Collapse
|
24
|
Hawner M, Ducho C. Cellular Targeting of Oligonucleotides by Conjugation with Small Molecules. Molecules 2020; 25:E5963. [PMID: 33339365 PMCID: PMC7766908 DOI: 10.3390/molecules25245963] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 12/11/2020] [Accepted: 12/11/2020] [Indexed: 12/20/2022] Open
Abstract
Drug candidates derived from oligonucleotides (ON) are receiving increased attention that is supported by the clinical approval of several ON drugs. Such therapeutic ON are designed to alter the expression levels of specific disease-related proteins, e.g., by displaying antigene, antisense, and RNA interference mechanisms. However, the high polarity of the polyanionic ON and their relatively rapid nuclease-mediated cleavage represent two major pharmacokinetic hurdles for their application in vivo. This has led to a range of non-natural modifications of ON structures that are routinely applied in the design of therapeutic ON. The polyanionic architecture of ON often hampers their penetration of target cells or tissues, and ON usually show no inherent specificity for certain cell types. These limitations can be overcome by conjugation of ON with molecular entities mediating cellular 'targeting', i.e., enhanced accumulation at and/or penetration of a specific cell type. In this context, the use of small molecules as targeting units appears particularly attractive and promising. This review provides an overview of advances in the emerging field of cellular targeting of ON via their conjugation with small-molecule targeting structures.
Collapse
Affiliation(s)
| | - Christian Ducho
- Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2 3, 66 123 Saarbrücken, Germany;
| |
Collapse
|
25
|
Fundamental insights into the interaction between telomerase/TERT and intracellular signaling pathways. Biochimie 2020; 181:12-24. [PMID: 33232793 DOI: 10.1016/j.biochi.2020.11.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 11/07/2020] [Accepted: 11/16/2020] [Indexed: 12/12/2022]
Abstract
Telomerase activity is critical for cancer cells to provide unrestricted proliferation and cellular immortality through maintaining telomeres. Telomerase enzymatic activity is regulatable at the level of DNA, mRNA, post translational modifications, cellular transport and enzyme assembly. More recent studies confirm the interaction of the telomerase with various intracellular signaling pathways including PI3K/AKT/mTOR, NF-κB and Wnt/β-catenin which mainly participating in inflammation, epithelial to mesenchymal transition (EMT) and tumor cell invasion and metastasis. Furthermore, hTERT protein has been detected in non-nuclear sites such as the mitochondria and cytoplasm in cells. Mitochondrial TERT indicates various non-telomere-related functions such as decreasing reactive oxygen species (ROS) generation, boosting the respiration rate, protecting mtDNA by direct binding, interacting with mitochondrial tRNAs and increasing mitochondrial membrane potential which can lead to higher chemoresistance rate in cancer cells during therapies. Understanding the molecular mechanisms of the TERT function and depended interactions in tumor cells can suggest novel therapeutic approaches. Hence, in this review we will explain the telomerase activity regulation in translational and post translational levels besides the established correlations with various cell signaling pathways with possible pathways for therapeutic targeting.
Collapse
|
26
|
Eckburg A, Dein J, Berei J, Schrank Z, Puri N. Oligonucleotides and microRNAs Targeting Telomerase Subunits in Cancer Therapy. Cancers (Basel) 2020; 12:E2337. [PMID: 32825005 PMCID: PMC7565511 DOI: 10.3390/cancers12092337] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/15/2020] [Accepted: 08/17/2020] [Indexed: 12/15/2022] Open
Abstract
Telomerase provides cancer cells with replicative immortality, and its overexpression serves as a near-universal marker of cancer. Anti-cancer therapeutics targeting telomerase have garnered interest as possible alternatives to chemotherapy and radiotherapy. Oligonucleotide-based therapies that inhibit telomerase through direct or indirect modulation of its subunits, human telomerase reverse transcriptase (hTERT) and human telomerase RNA gene (hTERC), are a unique and diverse subclass of telomerase inhibitors which hold clinical promise. MicroRNAs that play a role in the upregulation or downregulation of hTERT and respective progression or attenuation of cancer development have been effectively targeted to reduce telomerase activity in various cancer types. Tumor suppressor miRNAs, such as miRNA-512-5p, miRNA-138, and miRNA-128, and oncogenic miRNAs, such as miRNA-19b, miRNA-346, and miRNA-21, have displayed preclinical promise as potential hTERT-based therapeutic targets. Antisense oligonucleotides like GRN163L and T-oligos have also been shown to uniquely target the telomerase subunits and have become popular in the design of novel cancer therapies. Finally, studies suggest that G-quadruplex stabilizers, such as Telomestatin, preserve telomeric oligonucleotide architecture, thus inhibiting hTERC binding to the telomere. This review aims to provide an adept understanding of the conceptual foundation and current state of therapeutics utilizing oligonucleotides to target the telomerase subunits, including the advantages and drawbacks of each of these approaches.
Collapse
Affiliation(s)
| | | | | | | | - Neelu Puri
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, USA; (A.E.); (J.D.); (J.B.); (Z.S.)
| |
Collapse
|
27
|
Hidaka D, Onozawa M, Miyashita N, Yokoyama S, Nakagawa M, Hashimoto D, Teshima T. Short-term treatment with imetelstat sensitizes hematopoietic malignant cells to a genotoxic agent via suppression of the telomerase-mediated DNA repair process. Leuk Lymphoma 2020; 61:2722-2732. [PMID: 32571117 DOI: 10.1080/10428194.2020.1779256] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Imetelstat is a specific and competitive inhibitor of telomerase enzymatic activity. We demonstrated that imetelstat could interfere with the DNA repair process and enhance the effect of DNA damaging agents using hematological tumor cell lines. Short-term administration of imetelstat enhanced growth suppression by anticancer agents and radiation. It also upregulated γH2AX expression induced by irradiation. Immunofluorescence staining showed that both human telomerase reverse transcriptase (hTERT) and γH2AX were upregulated and co-localized in the nucleus of peripheral blood mononuclear cells after irradiation, suggesting that hTERT was involved in the DNA-DSB repair process. Imetelstat enhanced growth inhibitory effect of cytotoxic agents in short-term culture without shortening of telomeres, indicating that this effect was attributed by telomere length independent mechanism. Our results suggest that the combination of short-term treatment with imetelstat and cytotoxic agent is a promising strategy to treat a wide variety of hematopoietic malignancies.
Collapse
Affiliation(s)
- Daisuke Hidaka
- Department of Hematology, Hokkaido University Faculty of Medicine, Graduate School of Medicine, Sapporo, Japan
| | - Masahiro Onozawa
- Department of Hematology, Hokkaido University Faculty of Medicine, Graduate School of Medicine, Sapporo, Japan
| | - Naohiro Miyashita
- Department of Hematology, Hokkaido University Faculty of Medicine, Graduate School of Medicine, Sapporo, Japan
| | - Shota Yokoyama
- Department of Hematology, Hokkaido University Faculty of Medicine, Graduate School of Medicine, Sapporo, Japan
| | - Masao Nakagawa
- Department of Hematology, Hokkaido University Faculty of Medicine, Graduate School of Medicine, Sapporo, Japan
| | - Daigo Hashimoto
- Department of Hematology, Hokkaido University Faculty of Medicine, Graduate School of Medicine, Sapporo, Japan
| | - Takanori Teshima
- Department of Hematology, Hokkaido University Faculty of Medicine, Graduate School of Medicine, Sapporo, Japan
| |
Collapse
|
28
|
Trybek T, Kowalik A, Góźdź S, Kowalska A. Telomeres and telomerase in oncogenesis. Oncol Lett 2020; 20:1015-1027. [PMID: 32724340 PMCID: PMC7377093 DOI: 10.3892/ol.2020.11659] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 03/25/2020] [Indexed: 12/24/2022] Open
Abstract
Telomeres are located at the ends of chromosomes and protect them from degradation. Suppressing the activity of telomerase, a telomere-synthesizing enzyme, and maintaining short telomeres is a protective mechanism against cancer in humans. In most human somatic cells, the expression of telomerase reverse transcriptase (TERT) is repressed and telomerase activity is inhibited. This leads to the progressive shortening of telomeres and inhibition of cell growth in a process called replicative senescence. Most types of primary cancer exhibit telomerase activation, which allows uncontrolled cell proliferation. Previous research indicates that TERT activation also affects cancer development through activities other than the canonical function of mediating telomere elongation. Recent studies have improved the understanding of the structure and function of telomeres and telomerase as well as key mechanisms underlying the activation of TERT and its role in oncogenesis. These advances led to a search for drugs that inhibit telomerase as a target for cancer therapy. The present review article summarizes the organization and function of telomeres, their role in carcinogenesis, and advances in telomerase-targeted therapy.
Collapse
Affiliation(s)
- Tomasz Trybek
- Endocrinology Clinic, Holycross Cancer Center, 25-734 Kielce, Poland
| | - Artur Kowalik
- Department of Molecular Diagnostics, Holycross Cancer Center, 25-734 Kielce, Poland
| | - Stanisław Góźdź
- The Faculty of Health Sciences, Jan Kochanowski University, 25-319 Kielce, Poland.,Oncology Clinic, Holycross Cancer Center, 25-734 Kielce, Poland
| | - Aldona Kowalska
- Endocrinology Clinic, Holycross Cancer Center, 25-734 Kielce, Poland.,The Faculty of Health Sciences, Jan Kochanowski University, 25-319 Kielce, Poland
| |
Collapse
|
29
|
Lyakhova I, Piatkova M, Gulaia V, Romanishin A, Shmelev M, Bryukhovetskiy A, Sharma A, Sharma HS, Khotimchenko R, Bryukhovetskiy I. Alkaloids of fascaplysin are promising chemotherapeutic agents for the treatment of glioblastoma: Review. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2020; 151:299-324. [PMID: 32448613 DOI: 10.1016/bs.irn.2020.03.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Glioblastoma is one of the most aggressive human brain tumors. Even following all the modern protocols of complex treatment, the median patient survival typically does not exceed 15 months. This review analyzes the main reasons for glioblastoma resistance to therapy, as well as attempts at categorizing the main approaches to increasing chemotherapy efficiency. Special emphasis is placed on the specific group of compounds, known as marine alkaloids and their synthetic derivatives exerting a general antitumor effect on glioblastoma cells. The unique mechanisms of marine alkaloid influence on the tumor cells prompt considering them as a promising basis for creating new chemotherapeutic agents for glioblastoma treatment.
Collapse
Affiliation(s)
- Irina Lyakhova
- Department of Fundamental Medicine, School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| | - Mariia Piatkova
- Department of Fundamental Medicine, School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| | - Valeriia Gulaia
- Laboratory of Biomedical Cell Technologies, Department of Medical Biology and Biotechnology, School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| | - Aleksandr Romanishin
- Laboratory of Biomedical Cell Technologies, Department of Medical Biology and Biotechnology, School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| | - Mikhail Shmelev
- Laboratory of Biomedical Cell Technologies, Department of Medical Biology and Biotechnology, School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| | - Andrey Bryukhovetskiy
- NeuroVita Clinic of Interventional and Restorative Neurology and Therapy, Moscow, Russia
| | - Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, University Hospital, Uppsala University, S-75185 Uppsala, Sweden
| | - Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, University Hospital, Uppsala University, S-75185 Uppsala, Sweden
| | - Rodion Khotimchenko
- Department of Fundamental Medicine, School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia; Laboratory of Pharmacology, National Scientific Center of Marine Biology, Far East Branch of the Russian Academy of Sciences, Vladivostok, Russia
| | - Igor Bryukhovetskiy
- Department of Fundamental Medicine, School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia; Laboratory of Pharmacology, National Scientific Center of Marine Biology, Far East Branch of the Russian Academy of Sciences, Vladivostok, Russia.
| |
Collapse
|
30
|
Wu L, Fidan K, Um JY, Ahn KS. Telomerase: Key regulator of inflammation and cancer. Pharmacol Res 2020; 155:104726. [PMID: 32109579 DOI: 10.1016/j.phrs.2020.104726] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 02/24/2020] [Accepted: 02/24/2020] [Indexed: 12/11/2022]
Abstract
The telomerase holoenzyme, which has a highly conserved role in maintaining telomere length, has long been regarded as a high-profile target in cancer therapy due to the high dependency of the majority of cancer cells on constitutive and elevated telomerase activity for sustained proliferation and immortality. In this review, we present the salient findings in the telomerase field with special focus on the association of telomerase with inflammation and cancer. The elucidation of extra-telomeric roles of telomerase in inflammation, reactive oxygen species (ROS) generation, and cancer development further complicated the design of anti-telomerase therapy. Of note, the discovery of the unique mechanism that underlies reactivation of the dormant telomerase reverse transcriptase TERT promoter in somatic cells not only enhanced our understanding of the critical role of TERT in carcinogenesis but also opens up new intervention ideas that enable the differential targeting of cancer cells only. Despite significant effort invested in developing telomerase-targeted therapeutics, devising efficacious cancer-specific telomerase/TERT inhibitors remains an uphill task. The latest discoveries of the telomere-independent functionalities of telomerase in inflammation and cancer can help illuminate the path of developing specific anti-telomerase/TERT therapeutics against cancer cells.
Collapse
Affiliation(s)
- Lele Wu
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore 138673, Singapore
| | - Kerem Fidan
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore 138673, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore 117597, Singapore
| | - Jae-Young Um
- College of Korean Medicine, Kyung Hee University, #47, Kyungheedae-gil, Dongdaemoon-gu, Seoul 130-701, Republic of Korea
| | - Kwang Seok Ahn
- College of Korean Medicine, Kyung Hee University, #47, Kyungheedae-gil, Dongdaemoon-gu, Seoul 130-701, Republic of Korea.
| |
Collapse
|
31
|
Chen X, Tang WJ, Shi JB, Liu MM, Liu XH. Therapeutic strategies for targeting telomerase in cancer. Med Res Rev 2019; 40:532-585. [PMID: 31361345 DOI: 10.1002/med.21626] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 07/12/2019] [Accepted: 07/16/2019] [Indexed: 12/13/2022]
Abstract
Telomere and telomerase play important roles in abnormal cell proliferation, metastasis, stem cell maintenance, and immortalization in various cancers. Therefore, designing of drugs targeting telomerase and telomere is of great significance. Over the past two decades, considerable knowledge regarding telomere and telomerase has been accumulated, which provides theoretical support for the design of therapeutic strategies such as telomere elongation. Therefore, the development of telomere-based therapies such as nucleoside analogs, non-nucleoside small molecules, antisense technology, ribozymes, and dominant negative human telomerase reverse transcriptase are being prioritized for eradicating a majority of tumors. While the benefits of telomere-based therapies are obvious, there is a need to address the limitations of various therapeutic strategies to improve the possibility of clinical applications. In this study, current knowledge of telomere and telomerase is discussed, and therapeutic strategies based on recent research are reviewed.
Collapse
Affiliation(s)
- Xing Chen
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, People's Republic of China
| | - Wen-Jian Tang
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, People's Republic of China
| | - Jing Bo Shi
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, People's Republic of China
| | - Ming Ming Liu
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, People's Republic of China
| | - Xin-Hua Liu
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, People's Republic of China
| |
Collapse
|
32
|
Kutahyalioglu M, Nguyen HT, Kwatampora L, Clarke C, Silva A, Ibrahim E, Waguespack SG, Cabanillas ME, Jimenez C, Hu MI, Sherman SI, Kopetz S, Broaddus R, Dadu R, Wanland K, Williams M, Zafereo M, Perrier N, Busaidy NL. Genetic profiling as a clinical tool in advanced parathyroid carcinoma. J Cancer Res Clin Oncol 2019; 145:1977-1986. [PMID: 31309300 DOI: 10.1007/s00432-019-02945-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 05/27/2019] [Indexed: 12/19/2022]
Abstract
CONTEXT Parathyroid carcinoma (PC) is a rare endocrine malignancy with no approved systemic therapies for unresectable locally invasive or distant metastatic disease. Understanding the molecular changes in advanced PC can provide better understanding of this disease and potentially help directing targeted therapy. OBJECTIVE To evaluate tumor-specific genetic changes using next-generation sequencing (NGS) panels. DESIGN All patients with advanced PC were tested for hot-spot panels using NGS panels including a 50-gene panel, a 409-gene panel if the standard 50-gene panel (Ion Torrent, Life Technology) was negative or a FoundationOne panel. SETTING The University of Texas MD Anderson Cancer Center, Houston, Texas, USA. PATIENTS OR OTHER PARTICIPANTS 11 patients with advanced PC were selected to undergo molecular testing. MAIN OUTCOME MEASURE(S) Genetic profiles of advanced PC. RESULTS Among the 11 patients, 4 patients had the 50-gene panel only, 6 had 409-gene panel after a negative 50-gene panel and 1 had FoundationOne. One patient who had 50-gene panel only also had his metastatic site (esophagus) of his tumor tested with FoundationOne. The most common mutations identified were in the PI3 K (PIK3CA, TSC1 and ATM) (4/11 patients) and TP53 (3/11) pathways. Genes not previously reported to be mutated in PC included: SDHA, TERT promoter and DICER1. Actionable mutations were found in 54% (6/11) of the patients. CONCLUSIONS Mutational profiling using NGS panels in advanced PC has yielded important potentially targetable genetic alterations. Larger studies are needed to identify commonly mutated genes in advanced PC patients. Development of novel therapies targeting these cellular pathways should be considered.
Collapse
Affiliation(s)
- Merve Kutahyalioglu
- Department of Endocrine Neoplasia and Hormonal Disorders, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, 1400 Pressler Street Unit 1461, Houston, TX, 77030, USA
| | - Ha T Nguyen
- Department of Endocrine Neoplasia and Hormonal Disorders, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, 1400 Pressler Street Unit 1461, Houston, TX, 77030, USA
| | - Lily Kwatampora
- Department of Endocrine Neoplasia and Hormonal Disorders, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, 1400 Pressler Street Unit 1461, Houston, TX, 77030, USA
| | - Callisia Clarke
- Department of Surgical Oncology, Division of Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Angelica Silva
- Department of Surgical Oncology, Division of Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Eiman Ibrahim
- Department of Endocrine Neoplasia and Hormonal Disorders, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, 1400 Pressler Street Unit 1461, Houston, TX, 77030, USA
| | - Steven G Waguespack
- Department of Endocrine Neoplasia and Hormonal Disorders, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, 1400 Pressler Street Unit 1461, Houston, TX, 77030, USA
| | - Maria E Cabanillas
- Department of Endocrine Neoplasia and Hormonal Disorders, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, 1400 Pressler Street Unit 1461, Houston, TX, 77030, USA
| | - Camilo Jimenez
- Department of Endocrine Neoplasia and Hormonal Disorders, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, 1400 Pressler Street Unit 1461, Houston, TX, 77030, USA
| | - Mimi I Hu
- Department of Endocrine Neoplasia and Hormonal Disorders, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, 1400 Pressler Street Unit 1461, Houston, TX, 77030, USA
| | - Steven I Sherman
- Department of Endocrine Neoplasia and Hormonal Disorders, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, 1400 Pressler Street Unit 1461, Houston, TX, 77030, USA
| | - Scott Kopetz
- Department of Gastrointestinal Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Russell Broaddus
- Department of Pathology, Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ramona Dadu
- Department of Endocrine Neoplasia and Hormonal Disorders, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, 1400 Pressler Street Unit 1461, Houston, TX, 77030, USA
| | - Kacey Wanland
- Department of Endocrine Neoplasia and Hormonal Disorders, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, 1400 Pressler Street Unit 1461, Houston, TX, 77030, USA
| | - Michelle Williams
- Department of Pathology, Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mark Zafereo
- Department of Head and Neck Surgery, Division of Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nancy Perrier
- Department of Surgical Oncology, Division of Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Naifa L Busaidy
- Department of Endocrine Neoplasia and Hormonal Disorders, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, 1400 Pressler Street Unit 1461, Houston, TX, 77030, USA.
| |
Collapse
|
33
|
Insights into Telomerase/hTERT Alternative Splicing Regulation Using Bioinformatics and Network Analysis in Cancer. Cancers (Basel) 2019; 11:cancers11050666. [PMID: 31091669 PMCID: PMC6562651 DOI: 10.3390/cancers11050666] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 05/10/2019] [Accepted: 05/13/2019] [Indexed: 01/08/2023] Open
Abstract
The reactivation of telomerase in cancer cells remains incompletely understood. The catalytic component of telomerase, hTERT, is thought to be the limiting component in cancer cells for the formation of active enzymes. hTERT gene expression is regulated at several levels including chromatin, DNA methylation, transcription factors, and RNA processing events. Of these regulatory events, RNA processing has received little attention until recently. RNA processing and alternative splicing regulation have been explored to understand how hTERT is regulated in cancer cells. The cis- and trans-acting factors that regulate the alternative splicing choice of hTERT in the reverse transcriptase domain have been investigated. Further, it was discovered that the splicing factors that promote the production of full-length hTERT were also involved in cancer cell growth and survival. The goals are to review telomerase regulation via alternative splicing and the function of hTERT splicing variants and to point out how bioinformatics approaches are leading the way in elucidating the networks that regulate hTERT splicing choice and ultimately cancer growth.
Collapse
|
34
|
Benizri S, Gissot A, Martin A, Vialet B, Grinstaff MW, Barthélémy P. Bioconjugated Oligonucleotides: Recent Developments and Therapeutic Applications. Bioconjug Chem 2019; 30:366-383. [PMID: 30608140 PMCID: PMC6766081 DOI: 10.1021/acs.bioconjchem.8b00761] [Citation(s) in RCA: 138] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Oligonucleotide-based agents have the potential to treat or cure almost any disease, and are one of the key therapeutic drug classes of the future. Bioconjugated oligonucleotides, a subset of this class, are emerging from basic research and being successfully translated to the clinic. In this Review, we first briefly describe two approaches for inhibiting specific genes using oligonucleotides-antisense DNA (ASO) and RNA interference (RNAi)-followed by a discussion on delivery to cells. We then summarize and analyze recent developments in bioconjugated oligonucleotides including those possessing GalNAc, cell penetrating peptides, α-tocopherol, aptamers, antibodies, cholesterol, squalene, fatty acids, or nucleolipids. These novel conjugates provide a means to enhance tissue targeting, cell internalization, endosomal escape, target binding specificity, resistance to nucleases, and more. We next describe those bioconjugated oligonucleotides approved for patient use or in clinical trials. Finally, we summarize the state of the field, describe current limitations, and discuss future prospects. Bioconjugation chemistry is at the centerpiece of this therapeutic oligonucleotide revolution, and significant opportunities exist for development of new modification chemistries, for mechanistic studies at the chemical-biology interface, and for translating such agents to the clinic.
Collapse
Affiliation(s)
- Sebastien Benizri
- Inserm U1212, F-33076 Bordeaux, France
- CNRS 5320, F-33076 Bordeaux, France
- Universitéde Bordeaux, 146 rue Léo Saignat, F-33076 Bordeaux Cedex, France
| | - Arnaud Gissot
- Inserm U1212, F-33076 Bordeaux, France
- CNRS 5320, F-33076 Bordeaux, France
- Universitéde Bordeaux, 146 rue Léo Saignat, F-33076 Bordeaux Cedex, France
| | - Andrew Martin
- Departments of Biomedical Engineering, Chemistry, and Medicine, Boston University, Boston, Massachusetts 02215, United States
| | - Brune Vialet
- Inserm U1212, F-33076 Bordeaux, France
- CNRS 5320, F-33076 Bordeaux, France
- Universitéde Bordeaux, 146 rue Léo Saignat, F-33076 Bordeaux Cedex, France
| | - Mark W. Grinstaff
- Departments of Biomedical Engineering, Chemistry, and Medicine, Boston University, Boston, Massachusetts 02215, United States
| | - Philippe Barthélémy
- Inserm U1212, F-33076 Bordeaux, France
- CNRS 5320, F-33076 Bordeaux, France
- Universitéde Bordeaux, 146 rue Léo Saignat, F-33076 Bordeaux Cedex, France
| |
Collapse
|
35
|
Calcinotto A, Kohli J, Zagato E, Pellegrini L, Demaria M, Alimonti A. Cellular Senescence: Aging, Cancer, and Injury. Physiol Rev 2019; 99:1047-1078. [PMID: 30648461 DOI: 10.1152/physrev.00020.2018] [Citation(s) in RCA: 706] [Impact Index Per Article: 117.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Cellular senescence is a permanent state of cell cycle arrest that occurs in proliferating cells subjected to different stresses. Senescence is, therefore, a cellular defense mechanism that prevents the cells to acquire an unnecessary damage. The senescent state is accompanied by a failure to re-enter the cell cycle in response to mitogenic stimuli, an enhanced secretory phenotype and resistance to cell death. Senescence takes place in several tissues during different physiological and pathological processes such as tissue remodeling, injury, cancer, and aging. Although senescence is one of the causative processes of aging and it is responsible of aging-related disorders, senescent cells can also play a positive role. In embryogenesis and tissue remodeling, senescent cells are required for the proper development of the embryo and tissue repair. In cancer, senescence works as a potent barrier to prevent tumorigenesis. Therefore, the identification and characterization of key features of senescence, the induction of senescence in cancer cells, or the elimination of senescent cells by pharmacological interventions in aging tissues is gaining consideration in several fields of research. Here, we describe the known key features of senescence, the cell-autonomous, and noncell-autonomous regulators of senescence, and we attempt to discuss the functional role of this fundamental process in different contexts in light of the development of novel therapeutic targets.
Collapse
Affiliation(s)
- Arianna Calcinotto
- Institute of Oncology Research (IOR), Oncology Institute of Southern Switzerland , Bellinzona , Switzerland ; University of Groningen, European Research Institute for the Biology of Ageing, University Medical Center Groningen , Groningen , The Netherlands ; IOR, Oncology Institute of Southern Switzerland , Bellinzona , Switzerland ; Università della Svizzera Italiana, Faculty of Biomedical Sciences , Lugano , Italy ; Faculty of Biology and Medicine, University of Lausanne UNIL , Lausanne , Switzerland ; and Department of Medicine, Venetian Institute of Molecular Medicine, University of Padova , Padova , Italy
| | - Jaskaren Kohli
- Institute of Oncology Research (IOR), Oncology Institute of Southern Switzerland , Bellinzona , Switzerland ; University of Groningen, European Research Institute for the Biology of Ageing, University Medical Center Groningen , Groningen , The Netherlands ; IOR, Oncology Institute of Southern Switzerland , Bellinzona , Switzerland ; Università della Svizzera Italiana, Faculty of Biomedical Sciences , Lugano , Italy ; Faculty of Biology and Medicine, University of Lausanne UNIL , Lausanne , Switzerland ; and Department of Medicine, Venetian Institute of Molecular Medicine, University of Padova , Padova , Italy
| | - Elena Zagato
- Institute of Oncology Research (IOR), Oncology Institute of Southern Switzerland , Bellinzona , Switzerland ; University of Groningen, European Research Institute for the Biology of Ageing, University Medical Center Groningen , Groningen , The Netherlands ; IOR, Oncology Institute of Southern Switzerland , Bellinzona , Switzerland ; Università della Svizzera Italiana, Faculty of Biomedical Sciences , Lugano , Italy ; Faculty of Biology and Medicine, University of Lausanne UNIL , Lausanne , Switzerland ; and Department of Medicine, Venetian Institute of Molecular Medicine, University of Padova , Padova , Italy
| | - Laura Pellegrini
- Institute of Oncology Research (IOR), Oncology Institute of Southern Switzerland , Bellinzona , Switzerland ; University of Groningen, European Research Institute for the Biology of Ageing, University Medical Center Groningen , Groningen , The Netherlands ; IOR, Oncology Institute of Southern Switzerland , Bellinzona , Switzerland ; Università della Svizzera Italiana, Faculty of Biomedical Sciences , Lugano , Italy ; Faculty of Biology and Medicine, University of Lausanne UNIL , Lausanne , Switzerland ; and Department of Medicine, Venetian Institute of Molecular Medicine, University of Padova , Padova , Italy
| | - Marco Demaria
- Institute of Oncology Research (IOR), Oncology Institute of Southern Switzerland , Bellinzona , Switzerland ; University of Groningen, European Research Institute for the Biology of Ageing, University Medical Center Groningen , Groningen , The Netherlands ; IOR, Oncology Institute of Southern Switzerland , Bellinzona , Switzerland ; Università della Svizzera Italiana, Faculty of Biomedical Sciences , Lugano , Italy ; Faculty of Biology and Medicine, University of Lausanne UNIL , Lausanne , Switzerland ; and Department of Medicine, Venetian Institute of Molecular Medicine, University of Padova , Padova , Italy
| | - Andrea Alimonti
- Institute of Oncology Research (IOR), Oncology Institute of Southern Switzerland , Bellinzona , Switzerland ; University of Groningen, European Research Institute for the Biology of Ageing, University Medical Center Groningen , Groningen , The Netherlands ; IOR, Oncology Institute of Southern Switzerland , Bellinzona , Switzerland ; Università della Svizzera Italiana, Faculty of Biomedical Sciences , Lugano , Italy ; Faculty of Biology and Medicine, University of Lausanne UNIL , Lausanne , Switzerland ; and Department of Medicine, Venetian Institute of Molecular Medicine, University of Padova , Padova , Italy
| |
Collapse
|
36
|
Targeting Telomerase and ATRX/DAXX Inducing Tumor Senescence and Apoptosis in the Malignant Glioma. Int J Mol Sci 2019; 20:ijms20010200. [PMID: 30625996 PMCID: PMC6337644 DOI: 10.3390/ijms20010200] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 01/02/2019] [Indexed: 02/06/2023] Open
Abstract
Glioblastoma multiforme (GBM) is a type of brain tumor that is notorious for its aggressiveness and invasiveness, and the complete removal of GBM is still not possible, even with advanced diagnostic strategies and extensive therapeutic plans. Its dismal prognosis and short survival time after diagnosis make it a crucial public health issue. Understanding the molecular mechanisms underlying GBM may inspire novel and effective treatments against this type of cancer. At a molecular level, almost all tumor cells exhibit telomerase activity (TA), which is a major means by which they achieve immortalization. Further studies show that promoter mutations are associated with increased TA and stable telomere length. Moreover, some tumors and immortalized cells maintain their telomeres with a telomerase-independent mechanism termed the “alternative lengthening of telomeres” (ALT), which relates to the mutations of the α-thalassemia/mental retardation syndrome X-linked protein (ATRX), the death-domain associated protein (DAXX) and H3.3. By means of the mutations of the telomerase reverse transcriptase (TERT) promoter and ATRX/DAXX, cancers can immortalize and escape cell senescence and apoptosis. In this article, we review the evidence for triggering GBM cell death by targeting telomerase and the ALT pathway, with an extra focus on a plant-derived compound, butylidene phthalide (BP), which may be a promising novel anticancer compound with good potential for clinical applications.
Collapse
|
37
|
Abdulrahman SS, Mohammad DN, Hamied MAS, Abdulqadir MO. Immunohistochemical evaluation of salivary gland tumors differentiation and proliferation by using calponin and telomerase. Saudi Dent J 2018; 31:105-114. [PMID: 30705574 PMCID: PMC6349947 DOI: 10.1016/j.sdentj.2018.11.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 11/20/2018] [Accepted: 11/21/2018] [Indexed: 12/29/2022] Open
Abstract
Background Salivary gland tumors are a heterogeneous group of lesions with diverse histological features. Hence they are considered as a diagnostic challenge for the pathologist. Myoepithelial cells are considered as a key in the morphogenetic process, with diverse differentiation in various salivary gland tumors. Calponin is an actin filament- associated protein that represents a sensitive marker of myoepithelial cells. Telomerase is a ribonucleoprotein that adds telomere repeats at the end of chromosomes in order to prevent replicative senescence. It has a key role in cellular immortality and tumorgenesis of various tumors. This study evaluates the immunohistochemical expression of calponin and telomerase in various salivary gland tumors. Methods This retrospective study involved 30 formalin fixed paraffin embedded blocks of salivary gland tumors. The immunohistochemical staining and evaluation of subcellular localization, pattern, intensity, and distribution for calponin and immune scoring for telomerase were done. The statistical analyses of data were conducted by Chi-square and ANOVA-test, a P-value of <0.05 was considered significant. Results Calponin showed expression at the periphery of acini and intercalated ducts in the normal salivary gland. It revealed cytoplasmic expression in 83.3% of benign tumors. The pleomorphic adenoma showed a diffuse pattern of staining (85.7%), strong intensity (64.3%), and mixed distributions (57.1%). The diffuse pattern of calponin was seen in all cases of mucoepidermoid, polymorphous low-grade adenocarcinoma and epithelial-myoepithelial carcinoma (100%). Telomerase revealed negative expression in the normal salivary gland. Pleomorphic adenoma illustrated high telomerase expression in score 2 and score 3 (93.3%). Telomerase immune scoring is significantly related to the benign tumors as P value was 0.03. Both polymorphous low grade and epithelial-myoepithelial carcinoma were detected only in score 3. Finally, the mean level of telomerase activity was slightly higher in malignant tumors than benign ones with non-significant relation as P value was 0.6. Conclusions Calponin showed high diffuse staining with altered distribution in salivary gland tumors, which might give an additional role for this marker in the identification of luminal immuno-modified neoplastic cells. Telomerase is considered as a useful marker in identifying proliferation capacity of salivary gland tumors and is remarkably more detected in malignant salivary gland tumors.
Collapse
|
38
|
Schrank Z, Khan N, Osude C, Singh S, Miller RJ, Merrick C, Mabel A, Kuckovic A, Puri N. Oligonucleotides Targeting Telomeres and Telomerase in Cancer. Molecules 2018; 23:molecules23092267. [PMID: 30189661 PMCID: PMC6225148 DOI: 10.3390/molecules23092267] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 08/27/2018] [Accepted: 09/04/2018] [Indexed: 02/07/2023] Open
Abstract
Telomeres and telomerase have become attractive targets for the development of anticancer therapeutics due to their involvement in cancer cell immortality. Currently, several therapeutics have been developed that directly target telomerase and telomeres, such as telomerase inhibitors and G-quadruplex stabilizing ligands. Telomere-specific oligonucleotides that reduce telomerase activity and disrupt telomere architecture are also in development as novel anticancer therapeutics. Specifically, GRN163L and T-oligos have demonstrated promising anticancer activity in multiple cancers types via induction of potent DNA damage responses. Currently, several miRNAs have been implicated in the regulation of telomerase activity and may prove to be valuable targets in the development of novel therapies by reducing expression of telomerase subunits. Targeting miRNAs that are known to increase expression of telomerase subunits may be another strategy to reduce carcinogenesis. This review aims to provide a comprehensive understanding of current oligonucleotide-based anticancer therapies that target telomeres and telomerase. These studies may help design novel therapeutic approaches to overcome the challenges of oligonucleotide therapy in a clinical setting.
Collapse
Affiliation(s)
- Zachary Schrank
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, USA.
| | - Nabiha Khan
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, USA.
| | - Chike Osude
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, USA.
| | - Sanjana Singh
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, USA.
| | - Rachel J Miller
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, USA.
| | - Collin Merrick
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, USA.
| | - Alexander Mabel
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, USA.
| | - Adijan Kuckovic
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, USA.
| | - Neelu Puri
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, USA.
| |
Collapse
|
39
|
Solomon P, Dong Y, Dogra S, Gupta R. Interleukin 8 is a biomarker of telomerase inhibition in cancer cells. BMC Cancer 2018; 18:730. [PMID: 29986697 PMCID: PMC6038317 DOI: 10.1186/s12885-018-4633-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 06/25/2018] [Indexed: 12/29/2022] Open
Abstract
Background Telomerase activity is required for both initiation and maintenance of tumorigenesis and over 90% cancers overexpress telomerase. Therefore, telomerase targeting has emerged as a potential strategy for cancer treatment. In agreement with this, several telomerase inhibitors are being tested for cancer treatment and have shown some promise. However, because of the variability in response between the cancer patients, it is important to identify biomarkers that allow for distinguishing cancers that are responsive to telomerase inhibition from the cancers that are not. Therefore, in this study we performed experiments to identify a biomarker that can be used to predict telomerase inhibition induced tumor growth inhibition. Methods In our study, we have performed transcriptome-wide gene expression analysis on multiple ovarian and colon cancer cell lines that were treated with telomerase inhibitor imetelstat and were responsive to telomerase inhibition-induced tumor growth attenuation. Results We demonstrate that telomerase inhibition by telomerase inhibitor imetelstat results in decreased expression of interleukin 8 (IL8) in all telomerase responsive cancer cell lines. This phenomenon is of general occurrence because we find that multiple ovarian and colon cell lines show decrease in IL8 mRNA and protein levels after telomerase inhibition. Additionally, we find loss of IL8 phenocopy Telomerase inhibition mediated growth inhibitory effect in cancer cells. Conclusion Taken together, our results show that IL8 is a biomarker that predict telomerase inhibition mediated growth attenuation of cancer cells and its loss phenocopy telomerase inhibition. Therefore, IL8 expression can be utilized as a biomarker for telomerase targeted cancer therapies to potentially predict therapeutic response. Electronic supplementary material The online version of this article (10.1186/s12885-018-4633-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Peter Solomon
- Department of Pathology, Yale University School of Medicine, LH-306, New Haven, CT, 06510, USA
| | - Yuying Dong
- Department of Pathology, Yale University School of Medicine, LH-306, New Haven, CT, 06510, USA
| | - Shaillay Dogra
- Singapore Institute of Clinical Sciences, Agency for Science Technology and Research (A*STAR), Brenner Centre for Molecular Medicine, 30 Medical Dr., Singapore, 117609, Singapore
| | - Romi Gupta
- Department of Pathology, Yale University School of Medicine, LH-306, New Haven, CT, 06510, USA.
| |
Collapse
|
40
|
Zhdanov DD, Gladilina YA, Pokrovsky VS, Grishin DV, Grachev VA, Orlova VS, Pokrovskaya MV, Alexandrova SS, Sokolov NN. Murine regulatory T cells induce death of effector T, B, and NK lymphocytes through a contact-independent mechanism involving telomerase suppression and telomere-associated senescence. Cell Immunol 2018; 331:146-160. [PMID: 29935763 DOI: 10.1016/j.cellimm.2018.06.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 05/22/2018] [Accepted: 06/18/2018] [Indexed: 12/30/2022]
Abstract
Regulatory T cells (Tregs) suppress the activity of effector T, B and NK lymphocytes and sustain immunological tolerance, but the proliferative activity of suppressed cells remains unexplored. In the present study, we report that mouse Tregs can induce replicative senescence and the death of responder mouse CD4+CD25- T cells, CD8+ T cells, B cells and NK cells in vitro and in vivo. Contact-independent in vitro co-cultivation with Tregs up-regulated endonuclease G (EndoG) expression and its translocation to the nucleus in responder cells. EndoG localization in the nucleus induced alternative mRNA splicing of the telomerase catalytic subunit Tert and telomerase inhibition. The lack of telomerase activity in proliferating cells led to telomere loss followed by the development of senescence and cell death. Injection of Tregs into mice resulted in EndoG-associated alternative splicing of Tert, telomerase inhibition, telomere loss, senescence development and increased cell death in vivo. The present study describes a novel contact-independent mechanism by which Tregs specify effector cell fate and provides new insights into cellular crosstalk related to immune suppression.
Collapse
Affiliation(s)
- Dmitry D Zhdanov
- Institute of Biomedical Chemistry, Pogodinskaya st 10/8, 119121 Moscow, Russia; Peoples Friendship University of Russia (RUDN University), Miklukho-Maklaya 6, 117198 Moscow, Russia.
| | - Yulia A Gladilina
- Institute of Biomedical Chemistry, Pogodinskaya st 10/8, 119121 Moscow, Russia
| | - Vadim S Pokrovsky
- Institute of Biomedical Chemistry, Pogodinskaya st 10/8, 119121 Moscow, Russia; Peoples Friendship University of Russia (RUDN University), Miklukho-Maklaya 6, 117198 Moscow, Russia; N.N. Blokhin Cancer Research Center, Kashirskoe Shosse 24, 115478 Moscow, Russia
| | - Dmitry V Grishin
- Institute of Biomedical Chemistry, Pogodinskaya st 10/8, 119121 Moscow, Russia
| | - Vladimir A Grachev
- Peoples Friendship University of Russia (RUDN University), Miklukho-Maklaya 6, 117198 Moscow, Russia
| | - Valentina S Orlova
- Peoples Friendship University of Russia (RUDN University), Miklukho-Maklaya 6, 117198 Moscow, Russia
| | | | | | - Nikolay N Sokolov
- Institute of Biomedical Chemistry, Pogodinskaya st 10/8, 119121 Moscow, Russia
| |
Collapse
|
41
|
Zheng H, Huang Q, Huang S, Yang X, Zhu T, Wang W, Wang H, He S, Ji L, Wang Y, Qi X, Liu Z, Lu L. Senescence Inducer Shikonin ROS-Dependently Suppressed Lung Cancer Progression. Front Pharmacol 2018; 9:519. [PMID: 29875661 PMCID: PMC5974149 DOI: 10.3389/fphar.2018.00519] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 04/30/2018] [Indexed: 01/03/2023] Open
Abstract
Lung adenocarcinoma (LAC), predominant subclassfication of lung cancer, leads high incidence and mortality annually worldwide. During the premalignant transition from lung adenomas to LAC, cellular senescence is regard as a critical physiological barrier against tumor progression. Nevertheless, the role of senescence in tumorigenesis is controversial and few senescence inducers are extensively determined. In this study, we used two classical cell lines A549 and H1299 and two NSCLC xenograft models on Balb/c-nude mice to reveal the pro-senescence effects of shikonin and the corresponding underlying mechanism in LAC. Shikonin, a pure compound isolated from the herbal medicine Lithospermum erythrorhizon, remarkably stimulated cellular senescence including increased SAHF formation, enlarged cellular morphology, and induced SA-β-Gal positive staining. Further mechanism study revealed that the pro-senescence effect of shikonin was dependent on the increased intercellular ROS generation, which subsequently triggered DNA damage-p53/p21waf axis without activating oncogenes such as Ras and MEK-1. Meanwhile, Kdm2b, an H3K36me2-specific demethylase effectively suppressed ROS generation, was also notably suppressed by shikonin treatment. Moreover, shikonin at 10 mg/kg significantly inhibited tumor weights by 55.84% and 50.98% in A549 and H1299 xenograft model, respectively (P < 0.05) through activating cellular senescence. Our study suggested that shikonin, a ROS-dependent senescence inducer, could serve as a promising agent for further lung cancer treatment.
Collapse
Affiliation(s)
- Hongming Zheng
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qiuju Huang
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Suchao Huang
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xia Yang
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ting Zhu
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wensheng Wang
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Haojia Wang
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shugui He
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Liyan Ji
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ying Wang
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaoxiao Qi
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhongqiu Liu
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China.,State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau
| | - Linlin Lu
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China.,State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau
| |
Collapse
|
42
|
Inhibitor of the human telomerase reverse trancriptase (hTERT) gene promoter induces cell apoptosis via a mitochondrial-dependent pathway. Eur J Med Chem 2018; 145:370-378. [DOI: 10.1016/j.ejmech.2017.12.077] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 12/20/2017] [Accepted: 12/22/2017] [Indexed: 12/14/2022]
|
43
|
Telomeres: Implications for Cancer Development. Int J Mol Sci 2018; 19:ijms19010294. [PMID: 29351238 PMCID: PMC5796239 DOI: 10.3390/ijms19010294] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 01/12/2018] [Accepted: 01/16/2018] [Indexed: 12/31/2022] Open
Abstract
Telomeres facilitate the protection of natural ends of chromosomes from constitutive exposure to the DNA damage response (DDR). This is most likely achieved by a lariat structure that hides the linear telomeric DNA through protein-protein and protein-DNA interactions. The telomere shortening associated with DNA replication in the absence of a compensatory mechanism culminates in unmasked telomeres. Then, the subsequent activation of the DDR will define the fate of cells according to the functionality of cell cycle checkpoints. Dysfunctional telomeres can suppress cancer development by engaging replicative senescence or apoptotic pathways, but they can also promote tumour initiation. Studies in telomere dynamics and karyotype analysis underpin telomere crisis as a key event driving genomic instability. Significant attainment of telomerase or alternative lengthening of telomeres (ALT)-pathway to maintain telomere length may be permissive and required for clonal evolution of genomically-unstable cells during progression to malignancy. We summarise current knowledge of the role of telomeres in the maintenance of chromosomal stability and carcinogenesis.
Collapse
|
44
|
Frink RE, Peyton M, Schiller JH, Gazdar AF, Shay JW, Minna JD. Telomerase inhibitor imetelstat has preclinical activity across the spectrum of non-small cell lung cancer oncogenotypes in a telomere length dependent manner. Oncotarget 2017; 7:31639-51. [PMID: 27192120 PMCID: PMC5077965 DOI: 10.18632/oncotarget.9335] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 04/27/2016] [Indexed: 11/25/2022] Open
Abstract
Telomerase was evaluated as a therapeutic oncotarget by studying the efficacy of the telomerase inhibitor imetelstat in non-small cell lung cancer (NSCLC) cell lines to determine the range of response phenotypes and identify potential biomarkers of response. A panel of 63 NSCLC cell lines was studied for telomere length and imetelstat efficacy in inhibiting colony formation and no correlation was found with patient characteristics, tumor histology, and oncogenotypes. While there was no overall correlation between imetelstat efficacy with initial telomere length (ranging from 1.5 to 20 kb), the quartile of NSCLC lines with the shortest telomeres was more sensitive than the quartile with the longest telomeres. Continuous long-term treatment with imetelstat resulted in sustained telomerase inhibition, progressive telomere shortening and eventual growth inhibition in a telomere-length dependent manner. Cessation of imetelstat therapy before growth inhibition was followed by telomere regrowth. Likewise, in vivo imetelstat treatment caused tumor xenograft growth inhibition in a telomere-length dependent manner. We conclude from these preclinical studies of telomerase as an oncotarget tested by imetelstat response that imetelstat has efficacy across the entire oncogenotype spectrum of NSCLC, continuous therapy is necessary to prevent telomere regrowth, and short telomeres appears to be the best treatment biomarker.
Collapse
Affiliation(s)
- Robin E Frink
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Michael Peyton
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Joan H Schiller
- Inova Schar Cancer Institute, Falls Church, VA, USA.,Simmons Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Adi F Gazdar
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Simmons Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jerry W Shay
- Simmons Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Center for Excellence in Genomics Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - John D Minna
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Simmons Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
45
|
Zhdanov DD, Pokrovsky VS, Pokrovskaya MV, Alexandrova SS, Eldarov MA, Grishin DV, Basharov MM, Gladilina YA, Podobed OV, Sokolov NN. Inhibition of telomerase activity and induction of apoptosis by Rhodospirillum rubrum L-asparaginase in cancer Jurkat cell line and normal human CD4+ T lymphocytes. Cancer Med 2017; 6:2697-2712. [PMID: 28984046 PMCID: PMC5673955 DOI: 10.1002/cam4.1218] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 08/05/2017] [Accepted: 09/01/2017] [Indexed: 12/28/2022] Open
Abstract
Rhodospirillum rubrum L-asparaginase mutant E149R, V150P, F151T (RrA) down-regulates telomerase activity due to its ability to inhibit the expression of telomerase catalytic subunit hTERT. The aim of this study was to define the effect of short-term and long-term RrA exposure on proliferation of cancer Jurkat cell line and normal human CD4+ T lymphocytes. RrA could inhibit telomerase activity in dose- and time-dependent manner in both Jurkat and normal CD4+ T cells. Continuous RrA exposure of these cells resulted in shortening of telomeres followed by cell cycle inhibition, replicative senescence, and development of apoptosis. Complete death of Jurkat cells was observed at the day 25 of RrA exposure while normal CD4+ T cells died at the day 50 due to the initial longer length of telomeres. Removal of RrA from senescent cells led to a reactivation of hTERT expression, restoration telomerase activity, re-elongation of telomeres after 48 h of cultivation, and survival of cells. These findings demonstrate that proliferation of cancer and normal telomerase-positive cells can be limited by continuous telomerase inhibition with RrA. Longer telomeres of normal CD4+ T lymphocytes make such cells more sustainable to RrA exposure that could give them an advantage during anti-telomerase therapy. These results should facilitate further investigations of RrA as a potent anti-telomerase therapeutic protein.
Collapse
Affiliation(s)
- Dmitry D. Zhdanov
- Institute of Biomedical ChemistryPogodinskaya st., 10/8Moscow119121Russia
| | - Vadim S. Pokrovsky
- Institute of Biomedical ChemistryPogodinskaya st., 10/8Moscow119121Russia
- N.N. Blokhin Cancer Research CenterKashirskoe Shosse 24Moscow115478Russia
- Peoples’ FriendshipUniversity of RussiaRUDN UniversityMiklukho‐Maklaya st., 6Moscow117198Russia
| | | | | | - Mikhail A. Eldarov
- Research Center of Biotechnology RASLeninsky prospect, 33Moscow119071Russia
| | - Dmitry V. Grishin
- Institute of Biomedical ChemistryPogodinskaya st., 10/8Moscow119121Russia
| | - Marsel M. Basharov
- Peoples’ FriendshipUniversity of RussiaRUDN UniversityMiklukho‐Maklaya st., 6Moscow117198Russia
| | - Yulia A. Gladilina
- Institute of Biomedical ChemistryPogodinskaya st., 10/8Moscow119121Russia
| | - Olga V. Podobed
- Institute of Biomedical ChemistryPogodinskaya st., 10/8Moscow119121Russia
| | - Nikolai N. Sokolov
- Institute of Biomedical ChemistryPogodinskaya st., 10/8Moscow119121Russia
| |
Collapse
|
46
|
Kukowska M. Amino acid or peptide conjugates of acridine/acridone and quinoline/quinolone-containing drugs. A critical examination of their clinical effectiveness within a twenty-year timeframe in antitumor chemotherapy and treatment of infectious diseases. Eur J Pharm Sci 2017; 109:587-615. [PMID: 28842352 DOI: 10.1016/j.ejps.2017.08.027] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 08/16/2017] [Accepted: 08/19/2017] [Indexed: 01/10/2023]
Abstract
Acridines/acridones, quinolines/quinolones (chromophores) and their derivatives constitute extremely important family of compounds in current medicine. Great significance of the compounds is connected with antimicrobial and antitumor activities. Combining these features together in one drug seems to be long-term benefit, especially in oncology therapy. The attractiveness of the chromophore drugs is still enhanced by elimination their toxicity and improvement not only selectivity, specificity but also bioavailability. The best results are reached by conjugation to natural peptides. This paper highlights significant advance in the study of amino acid or peptide chromophore conjugates that provide highly encouraging data for novel drug development. The structures and clinical significance of amino acid or peptide chromophore conjugates are widely discussed.
Collapse
Affiliation(s)
- Monika Kukowska
- Chair & Department of Chemical Technology of Drugs, Faculty of Pharmacy with Subfaculty of Laboratory Medicine, Medical University of Gdansk, Al. Gen. J. Hallera 107, 80-416 Gdansk, Poland.
| |
Collapse
|
47
|
Zhdanov DD, Pokrovsky VS, Pokrovskaya MV, Alexandrova SS, Eldarov MA, Grishin DV, Basharov MM, Gladilina YA, Podobed OV, Sokolov NN. Rhodospirillum rubruml-asparaginase targets tumor growth by a dual mechanism involving telomerase inhibition. Biochem Biophys Res Commun 2017; 492:282-288. [PMID: 28837806 DOI: 10.1016/j.bbrc.2017.08.078] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 08/21/2017] [Indexed: 01/20/2023]
Abstract
Rhodospirillum rubruml-asparaginase mutant RrA E149R, V150P, F151T (RrA) was previously identified to down-regulate telomerase activity along with catalyzing the hydrolysis of l-asparagine. The aim of this study was to define the effect of prolonged RrA exposure on telomerase activity, maintenance of telomeres and proliferation of cancer cells in vitro and in vivo. RrA could inhibit telomerase activity in SCOV-3, SkBr-3 and A549 human cancer cell lines due to its ability to down-regulate the expression of telomerase catalytic subunit hTERT. Telomerase activity in treated cells did not exceeded 29.63 ± 12.3% of control cells. Continuous RrA exposure of these cells resulted in shortening of telomeres followed by cell death in vitro. Using real time PCR we showed that length of telomeres in SCOV-3 cells has been gradually decreasing from 10105 ± 2530 b.p. to 1233 ± 636 b.p. after 35 days of cultivation. RrA treatment of xenograft models in vivo showed slight inhibition of tumor growth accompanied with 49.5-53.3% of decrease in hTERT expression in the all tumors. However down-regulation of hTERT expression, inhibition of telomerase activity and the loss of telomeres was significant in response to RrA administration in xenograft models. These results should facilitate further investigations of RrA as a potent therapeutic protein.
Collapse
Affiliation(s)
| | - Vadim S Pokrovsky
- Institute of Biomedical Chemistry, Moscow, Russia; N.N. Blokhin Cancer Research Center, Moscow, Russia; Peoples' Friendship University of Russia, Moscow, Russia
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Chen RJ, Wu PH, Ho CT, Way TD, Pan MH, Chen HM, Ho YS, Wang YJ. P53-dependent downregulation of hTERT protein expression and telomerase activity induces senescence in lung cancer cells as a result of pterostilbene treatment. Cell Death Dis 2017; 8:e2985. [PMID: 28796247 PMCID: PMC5596539 DOI: 10.1038/cddis.2017.333] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 06/13/2017] [Accepted: 06/19/2017] [Indexed: 12/12/2022]
Abstract
Cellular senescence is characterized by permanent cell cycle arrest, triggered by a variety of stresses, such as telomerase inhibition, and it is recognized as a tumor-suppressor mechanism. In recent years, telomerase has become an important therapeutic target in several cancers; inhibition of telomerase can induce senescence via the DNA damage response (DDR). Pterostilbene (PT), a dimethyl ether analog of resveratrol, possesses a variety of biological functions, including anticancer effects; however, the molecular mechanisms underlying these effects are not fully understood. In this study, we investigated the possible mechanisms of PT-induced senescence through telomerase inhibition in human non-small cell lung cancer cells and delineated the role of p53 in senescence. The results indicated that PT-induced senescence is characterized by a flattened morphology, positive staining for senescence-associated-β galactosidase activity, and the formation of senescence-associated heterochromatic foci. Telomerase activity and protein expression was significantly decreased in H460 (p53 wild type) cells compared with H1299 (p53 null) cells and p53 knockdown H460 cells (H460-p53-). A more detailed mechanistic study revealed that PT-induced senescence partially occurred via a p53-dependent mechanism, triggering inhibition of telomerase activity and protein expression, and leading to the DDR, S phase arrest and, finally, cellular senescence. This study is the first to explore the novel anticancer mechanism of PT senescence induction via the inhibition of telomerase in lung cancer cells.
Collapse
Affiliation(s)
- Rong-Jane Chen
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Pei-Hsuan Wu
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, NJ, USA
| | - Tzong-Der Way
- Department of Biological Science and Technology, College of Life Sciences, China Medical University, Taichung, Taiwan
| | - Min-Hsiung Pan
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan.,Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization; Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains; Huanggang Normal University, Huanggang, Hubei, China
| | - Hsiu-Min Chen
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yuan-Soon Ho
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Medical Laboratory Science and Biotechnology, Taipei Medical University, Taipei, Taiwan
| | - Ying-Jan Wang
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Biomedical Informatics, Asia University, Taichung, Taiwan.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan.,Graduate Institute of Clinical Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
49
|
Inhibitors of telomerase and poly(ADP-ribose) polymerases synergize to limit the lifespan of pancreatic cancer cells. Oncotarget 2017; 8:83754-83767. [PMID: 29137380 PMCID: PMC5663552 DOI: 10.18632/oncotarget.19410] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 07/12/2017] [Indexed: 01/05/2023] Open
Abstract
Imetelstat (GRN163L) is a potent and selective inhibitor of telomerase. We have previously reported that GRN163L could shorten telomeres and limit the lifespan of CD18/HPAF and CAPAN1 pancreatic cancer cells. Here, we examined the effects of GRN163L on two other pancreatic cancer cell lines: AsPC1 and L3.6pl. In both lines, chronic exposure to GRN163L led to an initial shortening of telomeres followed by a stabilization of extremely short telomeres. In AsPC1 cells, telomere attrition eventually led to the induction of crisis and the loss of the treated population. In L3.6pl cells, crisis was transient and followed by the emergence of GRN163L-resistant cells, which could grow at increasing concentrations of GRN163L. The Shelterin complex is a telomere-associated complex that limits the access of telomerase to telomeres. The telomerase inhibitory function of this complex can be enhanced by drugs that block the poly(ADP-ribosyl)ation of its TRF1 and/or TRF2 subunits. Combined treatment of the GRN163L-resistant L3.6pl cells with GRN163L and 3-aminobenzamide (3AB), a general inhibitor of poly(ADP-ribose) polymerases, led to additional telomere shortening and limited the lifespan of the resistant cells. Results from this work suggest that inhibitors of telomerase and poly(ADP-ribose) polymerases can cooperate to limit the lifespan of pancreatic cancer cells.
Collapse
|
50
|
Imetelstat, a telomerase inhibitor, differentially affects normal and malignant megakaryopoiesis. Leukemia 2017; 31:2458-2467. [PMID: 28270692 DOI: 10.1038/leu.2017.78] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 02/13/2017] [Accepted: 02/16/2017] [Indexed: 02/06/2023]
Abstract
Imetelstat (GRN163L) is a specific telomerase inhibitor that has demonstrated clinical activity in patients with myeloproliferative neoplasms (MPN) and in patients with solid tumors. The antitumor effects were associated with the development of thrombocytopenia, one of the common side effects observed in patients treated with imetelstat. The events underlying these adverse effects are not apparent. In this report, we investigated the potential mechanisms that account for imetelstat's beneficial effects in MPN patients and the manner by which imetelstat treatment leads to a reduction in platelet numbers. Using a well-established system of ex vivo megakaryopoiesis, we demonstrated that imetelestat treatment affects normal megakaryocyte (MK) development by exclusively delaying maturation of MK precursor cells. By contrast, additional stages along MPN MK development were affected by imetelstat resulting in reduced numbers of assayable colony-forming unit MK and impaired MK maturation. In addition, treatment with imetelstat inhibited the secretion of fibrogenic growth factors by malignant but not by normal MK. Our results indicate that the delay observed in normal MK maturation may account for imetelstat-induced thrombocytopenia, while the more global effects of imetelstat on several stages along the hierarchy of MPN megakaryopoiesis may be responsible for the favorable clinical outcomes reported in MPN patients.
Collapse
|