1
|
He J, Wang Z, Yang L, Jiang Y, Yan G, Pan Y, Gao F, Yuan J, Gao Y. Unveiling the role of FOXL2 in female differentiation and disease: a comprehensive review†. Biol Reprod 2025; 112:600-613. [PMID: 39976382 DOI: 10.1093/biolre/ioaf013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 12/30/2024] [Accepted: 02/20/2025] [Indexed: 02/21/2025] Open
Abstract
Ovarian differentiation relies on the accurate and orderly expression of numerous related genes. Forkhead box protein L2 (FOXL2) is one of the earliest ovarian differentiation markers and transcription factors. In sex determination, FOXL2 maintains the differentiation of the female pathway by inhibiting male differentiation genes, including SOX9 and SF1. In addition, FOXL2 promotes the synthesis of follicle-stimulating hormone and anti-Müllerian hormone to support follicle development. Mutations in FOXL2 are associated with numerous female reproductive diseases. A comprehensive and in-depth study of FOXL2 provides novel strategies for the diagnosis and treatment of such diseases. This review discusses the mechanism of FOXL2 in female sex differentiation and maintenance, hormone synthesis, and disease occurrence and reveals the role of FOXL2 as a central factor in female sex development and fertility maintenance. This review will serve as a reference for identifying novel targets of other regulatory factors interacting with FOXL2 in female sex determination and follicle development and for the diagnosis and treatment of female reproductive diseases.
Collapse
Affiliation(s)
- Jia He
- College of Basic Medicine, Jining Medical University, Jining, Shandong, China
| | - Zican Wang
- College of Clinical Medicine, Jining Medical University, Jining, Shandong, China
| | - Lici Yang
- College of Clinical Medicine, Jining Medical University, Jining, Shandong, China
| | - Yongjian Jiang
- College of Clinical Medicine, Jining Medical University, Jining, Shandong, China
| | - Ge Yan
- College of Clinical Medicine, Jining Medical University, Jining, Shandong, China
| | - Yongwei Pan
- College of Clinical Medicine, Jining Medical University, Jining, Shandong, China
| | - Fei Gao
- Lin He's Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, Shandong, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Jinxiang Yuan
- Lin He's Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, Shandong, China
| | - Yang Gao
- College of Basic Medicine, Jining Medical University, Jining, Shandong, China
| |
Collapse
|
2
|
Gao K, Chen Y, Wang P, Chang W, Cao B, Luo L. GATA4: Regulation of expression and functions in goat granulosa cells. Domest Anim Endocrinol 2024; 89:106859. [PMID: 38810369 DOI: 10.1016/j.domaniend.2024.106859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 05/19/2024] [Accepted: 05/20/2024] [Indexed: 05/31/2024]
Abstract
GATA4 plays a pivotal role in the reproductive processes of mammals. However, the research on GATA4 in goat ovary is limited. This study aimed to study the expression and function of GATA4 in goat ovary. Utilizing real-time PCR and western blot analysis, we studied the expression and regulatory mechanisms of GATA4 in goat ovary and granulosa cells (GCs). We found that GATA4 was expressed in all follicle types in the goat ovary, with significantly higher levels in GCs of larger follicles (>3 mm) compared to those in smaller follicles (<3 mm). Additionally, we demonstrated that human chorionic gonadotrophin (hCG) induced GATA4 mRNA expression via the activation of PKA, MEK, p38 MAPK, PKC, and PI3K pathways in vitro. Our study also showed that hCG suppressed the levels of miR-200b and miR-429, which in turn directly target GATA4, thereby modulating the basal and hCG-induced expression of GATA4. Functionally, we examined the effect of siRNA-mediated GATA4 knockdown on cell proliferation and hormone secretion in goat GCs. Our results revealed that knockdown of GATA4, miR-200b, and miR-429 suppressed cell proliferation. Moreover, knockdown of GATA4 decreased estradiol and progesterone production by inhibiting the promoter activities of CYP11A1, CYP19A1, HSD3B, and StAR. Collectively, our findings suggest a critical involvement of GATA4 in regulating goat GC survival and steroidogenesis.
Collapse
Affiliation(s)
- Kexin Gao
- Department of Obstetrics, Affiliated Longhua People's Hospital, Southern Medical University (Longhua People's Hospital), Shenzhen, Guangdong 518109, PR China
| | - Yeda Chen
- Department of Obstetrics, Affiliated Longhua People's Hospital, Southern Medical University (Longhua People's Hospital), Shenzhen, Guangdong 518109, PR China
| | - Peijie Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Wenlin Chang
- Department of Obstetrics, Affiliated Longhua People's Hospital, Southern Medical University (Longhua People's Hospital), Shenzhen, Guangdong 518109, PR China
| | - Binyun Cao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Liqiong Luo
- Department of Obstetrics, Affiliated Longhua People's Hospital, Southern Medical University (Longhua People's Hospital), Shenzhen, Guangdong 518109, PR China.
| |
Collapse
|
3
|
Yu SY, Luan Y, Xu PC, Zhang Y, Dong R, Abazarikia A, Kim SY. Metabolic characteristics of granulosa cell tumor: role of PPARγ signaling†. Biol Reprod 2024; 110:509-520. [PMID: 38123510 PMCID: PMC10941086 DOI: 10.1093/biolre/ioad173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/27/2023] [Accepted: 12/18/2023] [Indexed: 12/23/2023] Open
Abstract
Granulosa cell tumors are relatively rare, posing challenges for comprehension and therapeutic development due to limited cases and preclinical models. Metabolic reprogramming, a hallmark of cancer, manifests in granulosa cell tumors with notable lipid accumulation and increased expression of peroxisome proliferator-activated receptor gamma (PPARγ), a key lipid metabolism regulator. The roles of these features, however, remain unclear. In our previous work, we established a granulosa cell tumor model in mice by introducing a constitutively active Pik3ca mutant in oocytes, enabling the study of predictable tumor patterns from postnatal day 50. In this study, we characterized metabolic alterations during tumorigenesis (postnatal day 8 to day 50) and tumor growth (day 50 to day 65) in this model and explored the impact of PPARγ antagonism on human granulosa cell tumor proliferation. The tumor exhibited significant lipid accumulation, with PPARγ and the proliferation marker Ki67 co-localizing at postnatal day 65. Transcriptome analysis demonstrates that pathways for lipid metabolism and mitochondrial oxidation are promoted during tumorigenesis and tumor growth, respectively. Overlappingly upregulated genes during tumorigenesis and tumor growth are associated with lipid metabolism pathways. Correspondingly, mouse granulosa cell tumor shows overexpression of peroxisome proliferator-activated receptor gamma and DGAT2 proteins at postnatal day 65. Furthermore, GW9662 reduces the proliferation of KGN human granulosa cell tumor cells and decreases the phosphorylation of AKT and SMAD3. Our findings identify metabolic abnormalities in ooPIK3CA* granulosa cell tumor model and suggest peroxisome proliferator-activated receptor gamma as a potential driver for primary granulosa cell tumor growth.
Collapse
Affiliation(s)
- Seok-Yeong Yu
- Department of Obstetrics and Gynecology, Olson Center for Women’s Health, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Yi Luan
- Department of Obstetrics and Gynecology, Olson Center for Women’s Health, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Pauline C Xu
- Department of Obstetrics and Gynecology, Olson Center for Women’s Health, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Yaqi Zhang
- Division of Reproductive Science in Medicine, Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Rosemary Dong
- Department of Obstetrics and Gynecology, Olson Center for Women’s Health, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Amirhossein Abazarikia
- Department of Obstetrics and Gynecology, Olson Center for Women’s Health, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - So-Youn Kim
- Department of Obstetrics and Gynecology, Olson Center for Women’s Health, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, 985860 Nebraska Med Center, Omaha, NE, 68198, USA
| |
Collapse
|
4
|
Jung D, Almstedt K, Battista MJ, Seeger A, Jäkel J, Brenner W, Hasenburg A. Immunohistochemical markers of prognosis in adult granulosa cell tumors of the ovary - a review. J Ovarian Res 2023; 16:50. [PMID: 36869369 PMCID: PMC9983179 DOI: 10.1186/s13048-023-01125-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 02/23/2023] [Indexed: 03/05/2023] Open
Abstract
BACKGROUND Granulosa cell tumors (GCT) are rare malignant ovarian tumors. The two subtypes, adult and juvenile granulosa cell tumors, differ in clinical and molecular characteristics. GCT are low-malignant tumors and are generally associated with favorable prognosis. However, relapses are common even years and decades after diagnosis. Prognostic and predictive factors are difficult to assess in this rare tumor entity. The purpose of this review is to provide a comprehensive overview of the current state of knowledge on prognostic markers of GCT to identify patients with a high risk of recurrence. METHODS Systematic research for adult ovarian granulosa cell tumors and prognosis revealed n = 409 English full text results from 1965 to 2021. Of these articles, n = 35 were considered for this review after title and abstract screening and topic-specific matching. A specific search for pathologic markers with prognostic relevance for GCT identified n = 19 articles that were added to this review. RESULTS FOXL2 mutation and FOXL2 mRNA were inverse and immunohistochemical (IHC) expression of CD56, GATA-4 and SMAD3 was associated with reduced prognosis. IHC analysis of estrogen receptor, Anti-Mullerian hormone (AMH) and inhibin was not associated with prognosis for GCT. Analyses of mitotic rate, Ki-67, p53, β-catenin and HER2 revealed inconsistent results.
Collapse
Affiliation(s)
- Dennis Jung
- Department of Gynecology and Obstetrics, University Mainz, Langenbeckstr. 1, Mainz, 55131, Germany.
| | - Katrin Almstedt
- Department of Gynecology and Obstetrics, University Mainz, Langenbeckstr. 1, Mainz, 55131, Germany
| | - Marco J Battista
- Department of Gynecology and Obstetrics, University Mainz, Langenbeckstr. 1, Mainz, 55131, Germany
| | - Alexander Seeger
- Department of Gynecology and Obstetrics, University Mainz, Langenbeckstr. 1, Mainz, 55131, Germany
| | - Jörg Jäkel
- Department of Pathology, University Mainz, Langenbeckstr. 1, Mainz, 55131, Germany
| | - Walburgis Brenner
- Department of Gynecology and Obstetrics, University Mainz, Langenbeckstr. 1, Mainz, 55131, Germany
| | - Annette Hasenburg
- Department of Gynecology and Obstetrics, University Mainz, Langenbeckstr. 1, Mainz, 55131, Germany
| |
Collapse
|
5
|
Li J, Gao L, Wang A, Qian H, Zhu J, Ji S, Chen J, Liu Z, Ji C. Forkhead box L2 is a target of miR-133b and plays an important role in the pathogenesis of non-small cell lung cancer. Cancer Med 2023; 12:9826-9842. [PMID: 36846934 PMCID: PMC10166978 DOI: 10.1002/cam4.5746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 01/21/2023] [Accepted: 02/15/2023] [Indexed: 03/01/2023] Open
Abstract
BACKGROUND Forkhead box L2 (FOXL2) has been recognized as a transcription factor in the progression of many malignancies, but its role in non-small cell lung cancer (NSCLC) remains unclear. This research clarified on the role of FOXL2 and the specific molecular mechanism in NSCLC. METHODS RNA and protein levels were detected by quantitative real-time polymerase chain reaction (qRT-PCR) and western blotting assays. Cell proliferation was examined by cell counting kit-8 (CCK-8) and clonogenic assays. Transwell and wound healing assays were used to detect cell invasion and migration. Cell cycle alterations were assessed by flow cytometry. The relationship between FOXL2 and miR-133b was verified by dual-luciferase reporter assays. In vivo metastasis was monitored in the tail vein-injected mice. RESULTS FOXL2 was upregulated in NSCLC cells and tissues. Downregulation of FOXL2 restrained cell proliferation, migration, and invasion and arrested the cell cycle of NSCLC cells. Moreover, FOXL2 promoted the epithelial-mesenchymal transition (EMT) process of NSCLC cells by inducing the transforming growth factor-β (TGF-β)/Smad signaling pathway. miR-133b directly targeted the 3'-UTR of FOXL2 and negatively regulated FOXL2 expression. Knockdown of FOXL2 blocked metastasis in vivo. CONCLUSIONS miR-133b downregulates FOXL2 by targeting the 3'-UTR of FOXL2, thereby inhibiting cell proliferation, EMT and metastasis induced by the TGF-β/Smad signaling pathway in NSCLC. FOXL2 may be a potential molecular target for treating NSCLC.
Collapse
Affiliation(s)
- Juan Li
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China.,Suzhou Key Laboratory for Respiratory Diseases, Suzhou, China.,Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Lirong Gao
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China.,Suzhou Key Laboratory for Respiratory Diseases, Suzhou, China
| | - Anqi Wang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China.,Suzhou Key Laboratory for Respiratory Diseases, Suzhou, China
| | - Huiwen Qian
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jianjie Zhu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China.,Suzhou Key Laboratory for Respiratory Diseases, Suzhou, China.,Institute of Respiratory Diseases, Soochow University, Suzhou, China
| | - Shundong Ji
- Jiangsu Institute of Hematology, MOH Key Laboratory of Thrombosis and Hemostasis, Collaborative Innovation Center of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jun Chen
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zeyi Liu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China.,Suzhou Key Laboratory for Respiratory Diseases, Suzhou, China.,Institute of Respiratory Diseases, Soochow University, Suzhou, China
| | - Cheng Ji
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
6
|
Fischer AK, Schömig-Markiefka B, Heydt C, Ratiu D, Mallmann P, Meinel J, Büttner R, Schmidt D, Quaas A. Incidental FOXL2 mutated adult granulosa cell tumour of the ovary with thecoma-like foci. Virchows Arch 2022:10.1007/s00428-022-03452-y. [DOI: 10.1007/s00428-022-03452-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/25/2022] [Accepted: 11/02/2022] [Indexed: 11/19/2022]
Abstract
Abstract
We report on the incidental finding of a FOXL2 mutated adult granulosa cell tumour of the ovary with thecoma-like foci, a rare entity recently described by Jennifer N. Stall and Robert H. Young in a series of sixteen cases in 2019, displaying features differing from conventional adult granulosa cell tumour. Our aim is to specify the morphologic and molecular particularities of this presumably underrecognized finding, with a short presentation of the typical clinical context. Awareness of this rare and challenging neoplasm with indeterminate clinical course is crucial in routine diagnostics.
Collapse
|
7
|
Abd El hafez A. Nuclear Localization of SMAD3 as an Independent Predictor of Recurrence in Ovarian Adult Granulosa Cell Tumor. JOURNAL OF OBSTETRICS, GYNECOLOGY AND CANCER RESEARCH 2021; 7:38-44. [DOI: 10.30699/jogcr.7.1.38] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
8
|
Forkhead Transcription Factors in Health and Disease. Trends Genet 2021; 37:460-475. [DOI: 10.1016/j.tig.2020.11.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 12/12/2022]
|
9
|
Herman L, Legois B, Todeschini AL, Veitia RA. Genomic exploration of the targets of FOXL2 and ESR2 unveils their implication in cell migration, invasion, and adhesion. FASEB J 2021; 35:e21355. [PMID: 33749886 DOI: 10.1096/fj.202002444r] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/16/2020] [Accepted: 12/23/2020] [Indexed: 01/01/2023]
Abstract
FOXL2 and ESR2 are key transcriptional regulators in ovarian granulosa cells. To explore their transcriptional roles and their interplay, we have depleted Foxl2 and Esr2 in mouse primary granulosa cells to assess their ability to bind their targets and/or to modulate gene expression and cellular functions. We show that FOXL2 is involved in a large number of regulatory actions essential for the maintenance of granulosa cell fate. A parallel ChIP-seq analysis showed that FOXL2 mainly binds to sites located in intergenic regions quite far from its targets. A bioinformatic analysis demonstrated that FOXL2-activated genes were enriched in peaks associated with the H3K27ac mark, whereas FOXL2-repressed genes were not, suggesting that FOXL2 can activate transcription through binding to enhancer sites. We also identified about 500 deregulated genes upon Esr2 silencing, of which one third are also targets of FOXL2. We provide evidence showing that both factors modulate, through a coherent feed-forward loop, a number of common targets. Many of the FOXL2/ESR2 targets are involved in cell motility and, consistently, granulosa cells depleted for either Foxl2 or Esr2 exhibit decreased migration, invasion and adhesion. This effect is paralleled by the depletion of their target Phactr1, involved in actin cytoskeleton dynamics. Our analysis expands the number of direct and indirect transcriptional targets of both FOXL2 and ESR2, which deserve investigation in the context of adult-type granulosa cell tumors whose molecular diagnostic hallmark is the presence of the C134W FOXL2 pathogenic variant.
Collapse
Affiliation(s)
- Laetitia Herman
- Faculté des Sciences, Université de Paris, Paris, France.,Institut Jacques Monod, Université de Paris, CNRS, Paris, France
| | - Bérangère Legois
- Faculté des Sciences, Université de Paris, Paris, France.,Institut Jacques Monod, Université de Paris, CNRS, Paris, France
| | - Anne-Laure Todeschini
- Faculté des Sciences, Université de Paris, Paris, France.,Institut Jacques Monod, Université de Paris, CNRS, Paris, France
| | - Reiner A Veitia
- Faculté des Sciences, Université de Paris, Paris, France.,Institut Jacques Monod, Université de Paris, CNRS, Paris, France.,Institut de Biologie F. Jacob, Université Paris-Saclay, Commissariat à l'Energie Atomique, Fontenay aux Roses, France
| |
Collapse
|
10
|
Secchi C, Benaglio P, Mulas F, Belli M, Stupack D, Shimasaki S. FOXO1 mitigates the SMAD3/FOXL2 C134W transcriptomic effect in a model of human adult granulosa cell tumor. J Transl Med 2021; 19:90. [PMID: 33639972 PMCID: PMC7913442 DOI: 10.1186/s12967-021-02754-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 02/16/2021] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Adult granulosa cell tumor (aGCT) is a rare type of stromal cell malignant cancer of the ovary characterized by elevated estrogen levels. aGCTs ubiquitously harbor a somatic mutation in FOXL2 gene, Cys134Trp (c.402C < G); however, the general molecular effect of this mutation and its putative pathogenic role in aGCT tumorigenesis is not completely understood. We previously studied the role of FOXL2C134W, its partner SMAD3 and its antagonist FOXO1 in cellular models of aGCT. METHODS In this work, seeking more comprehensive profiling of FOXL2C134W transcriptomic effects, we performed an RNA-seq analysis comparing the effect of FOXL2WT/SMAD3 and FOXL2C134W/SMAD3 overexpression in an established human GC line (HGrC1), which is not luteinized, and bears normal alleles of FOXL2. RESULTS Our data shows that FOXL2C134W/SMAD3 overexpression alters the expression of 717 genes. These genes include known and novel FOXL2 targets (TGFB2, SMARCA4, HSPG2, MKI67, NFKBIA) and are enriched for neoplastic pathways (Proteoglycans in Cancer, Chromatin remodeling, Apoptosis, Tissue Morphogenesis, Tyrosine Kinase Receptors). We additionally expressed the FOXL2 antagonistic Forkhead protein, FOXO1. Surprisingly, overexpression of FOXO1 mitigated 40% of the altered genome-wide effects specifically related to FOXL2C134W, suggesting it can be a new target for aGCT treatment. CONCLUSIONS Our transcriptomic data provide novel insights into potential genes (FOXO1 regulated) that could be used as biomarkers of efficacy in aGCT patients.
Collapse
Affiliation(s)
- Christian Secchi
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Diego School of Medicine, 9500 Gilman Drive, La Jolla, CA, 92093, USA.
| | - Paola Benaglio
- Department of Pediatrics, University of California San Diego, School of Medicine, La Jolla, CA, USA
| | - Francesca Mulas
- Department of Pediatrics, University of California San Diego, School of Medicine, La Jolla, CA, USA
| | - Martina Belli
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Diego School of Medicine, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Dwayne Stupack
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Diego School of Medicine, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Shunichi Shimasaki
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Diego School of Medicine, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| |
Collapse
|
11
|
Al Harbi R, McNeish IA, El-Bahrawy M. Ovarian sex cord-stromal tumors: an update on clinical features, molecular changes, and management. Int J Gynecol Cancer 2021; 31:161-168. [PMID: 33414107 DOI: 10.1136/ijgc-2020-002018] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/24/2020] [Accepted: 11/30/2020] [Indexed: 12/17/2022] Open
Abstract
Sex cord stromal-tumors are rare tumors of the ovary that include numerous tumor subtypes of variable histological features and biological behavior. Surgery is the main therapeutic modality for the management of these tumors, while chemotherapy and hormonal therapy may be used in some patients with progressive and recurrent tumors. Several studies investigated molecular changes in the different tumor types. Understanding molecular changes underlying the development and progression of sex cord-stromal tumors provides valuable information for diagnostic and prognostic biomarkers and potential therapeutic targets for these tumors. In this review, we provide an update on the clinical presentation, molecular changes, and management of sex cord-stromal tumors.
Collapse
Affiliation(s)
- Rehab Al Harbi
- Department of Metabolism, Digestion, and Reproduction, Imperial College London, London, UK
| | - Iain A McNeish
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Mona El-Bahrawy
- Department of Metabolism, Digestion, and Reproduction, Imperial College London, London, UK
- Department of Pathology, Faculty of Medicine, University of Alexandria, Alexandria, Egypt
| |
Collapse
|
12
|
Zhao H, Jiang A, Yu M, Bao H. Identification of biomarkers correlated with diagnosis and prognosis of endometrial cancer using bioinformatics analysis. J Cell Biochem 2020; 121:4908-4921. [PMID: 32692884 DOI: 10.1002/jcb.29819] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 02/27/2020] [Accepted: 06/12/2020] [Indexed: 12/14/2022]
Abstract
Endometrial cancer (EC) is one of the most common malignancies in the female genital system, characterized by high mortality and recurrence rates. This study attempted to screen key genes and potential prognostic biomarkers for EC using bioinformatics analysis. Twenty-seven normal endometrial tissues and 135 EC samples were collected from four Gene Expression Omnibus (GEO) databases, then we identified the differentially expressed genes (DEGs) and conducted downstream analyses. Moreover, we screened hub genes by constructing a protein-protein interaction (PPI) network. Finally, we assessed the prognostic values and molecular mechanism of the potential prognostic genes using the Kaplan-Meier curve and Gene Set Enrichment Analysis (GSEA). As a result, 28 upregulated and 94 downregulated genes were determined after gene integration of these four GEO data sets. Gene Ontology analysis indicated that DEGs were mainly involved in transcriptional regulation and cell proliferation. The Kyoto Encyclopedia of Gene and Genome pathway analysis primarily related to transcriptional misregulation and apoptosis. Moreover, the PPI analysis revealed 10 hub genes (JUN, UBE2I, GATA2, WT1, PIAS1, FOXL2, RUNXI, EZR, TCF4, and NR2F2) with a high degree of connectivity, among them, the expression tendency of nine genes except UBE2I were consistent with messenger RNA level from The Cancer Genome Atlas data. Furthermore, only FOXL2, TCF4, and NR2F2 were significantly correlated with prognosis of EC patients, and their low expression associated biological pathways were enriched in the cell cycle and fatty acid metabolism. In conclusion, this study identified three key genes as biomarkers and potential therapeutic targets of EC on the basis of integrated bioinformatics analysis. The findings will improve our comprehension of the molecular mechanisms underlying the pathogenesis and prognosis of EC.
Collapse
Affiliation(s)
- Huishan Zhao
- Reproductive Medicine Centre, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Aihua Jiang
- Department of Anesthesia, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Mingwei Yu
- Department of Orthopedics, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Hongchu Bao
- Reproductive Medicine Centre, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| |
Collapse
|
13
|
Negroni C, Hilton DA, Ercolano E, Adams CL, Kurian KM, Baiz D, Hanemann CO. GATA-4, a potential novel therapeutic target for high-grade meningioma, regulates miR-497, a potential novel circulating biomarker for high-grade meningioma. EBioMedicine 2020; 59:102941. [PMID: 32810829 PMCID: PMC7452696 DOI: 10.1016/j.ebiom.2020.102941] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/06/2020] [Accepted: 07/22/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Meningiomas are the most common primary intracranial tumours. They are classified as grade I, II, and III based on their histopathological features. While most meningiomas can be managed by surgery alone, adjuvant treatment may be required in case of recurrent, or high-grade tumours. To date, chemotherapy has proven ineffective in meningioma patients, reinforcing the need for novel therapeutic targets and molecular biomarkers. METHODS Using meningioma tissues and in vitro models, we investigated microRNA levels in meningioma samples of different grades, as well as their regulation. Based on this, we also investigated candidate miRNAs expression in serum, and their potential as biomarkers. FINDINGS We found that miR-497~195 cluster expression in meningioma decreases with increasing malignancy grade, and that Cyclin D1 overexpression correlated with downregulation of the miR-497~195 cluster. GATA binding protein 4, a transcription factor upregulated in malignant meningioma, caused increased cell viability by controlling the expression of the miR-497~195 cluster, resulting in increased Cyclin D1 expression. Accordingly, GATA-4 inhibition via the small-molecule inhibitor NSC140905 restored miR-497~195 cluster expression, resulting in decreased viability, and Cyclin D1 downregulation. Analysis of the miR-497~195 cluster expression in serum exosomes derived from high-grade meningioma patients, revealed lower levels of miR-497 compared to those of benign origin. INTERPRETATION Our data suggest that GATA-4 could be a novel potential therapeutic target, and miR-497 could serve as a potential non-invasive biomarker for high-grade meningioma.
Collapse
Affiliation(s)
- Caterina Negroni
- University of Plymouth, Faculty of Medicine and Dentistry, The Institute of Translational and Stratified Medicine, The John Bull Building, Plymouth Science Park, Research Way, Plymouth PL6 8BU, UK
| | - David A Hilton
- Cellular and Anatomical Pathology, University Hospitals Plymouth NHS Trust, Derriford Road, Plymouth PL6 8DH, UK
| | - Emanuela Ercolano
- University of Plymouth, Faculty of Medicine and Dentistry, The Institute of Translational and Stratified Medicine, The John Bull Building, Plymouth Science Park, Research Way, Plymouth PL6 8BU, UK
| | - Claire L Adams
- University of Plymouth, Faculty of Medicine and Dentistry, The Institute of Translational and Stratified Medicine, The John Bull Building, Plymouth Science Park, Research Way, Plymouth PL6 8BU, UK
| | - Kathreena M Kurian
- Institute of Clinical Neuroscience, University of Bristol and Southmead Hospital - North Bristol Trust, Bristol BS8 1QU, UK
| | - Daniele Baiz
- University of Plymouth, Faculty of Medicine and Dentistry, The Institute of Translational and Stratified Medicine, The John Bull Building, Plymouth Science Park, Research Way, Plymouth PL6 8BU, UK
| | - C Oliver Hanemann
- University of Plymouth, Faculty of Medicine and Dentistry, The Institute of Translational and Stratified Medicine, The John Bull Building, Plymouth Science Park, Research Way, Plymouth PL6 8BU, UK.
| |
Collapse
|
14
|
Weis-Banke SE, Lerdrup M, Kleine-Kohlbrecher D, Mohammad F, Sidoli S, Jensen ON, Yanase T, Nakamura T, Iwase A, Stylianou A, Abu-Rustum NR, Aghajanian C, Soslow R, Da Cruz Paula A, Koche RP, Weigelt B, Christensen J, Helin K, Cloos PAC. Mutant FOXL2 C134W Hijacks SMAD4 and SMAD2/3 to Drive Adult Granulosa Cell Tumors. Cancer Res 2020; 80:3466-3479. [PMID: 32641411 DOI: 10.1158/0008-5472.can-20-0259] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 03/26/2020] [Accepted: 06/30/2020] [Indexed: 12/11/2022]
Abstract
The mutant protein FOXL2C134W is expressed in at least 95% of adult-type ovarian granulosa cell tumors (AGCT) and is considered to be a driver of oncogenesis in this disease. However, the molecular mechanism by which FOXL2C134W contributes to tumorigenesis is not known. Here, we show that mutant FOXL2C134W acquires the ability to bind SMAD4, forming a FOXL2C134W/SMAD4/SMAD2/3 complex that binds a novel hybrid DNA motif AGHCAHAA, unique to the FOXL2C134W mutant. This binding induced an enhancer-like chromatin state, leading to transcription of nearby genes, many of which are characteristic of epithelial-to-mesenchymal transition. FOXL2C134W also bound hybrid loci in primary AGCT. Ablation of SMAD4 or SMAD2/3 resulted in strong reduction of FOXL2C134W binding at hybrid sites and decreased expression of associated genes. Accordingly, inhibition of TGFβ mitigated the transcriptional effect of FOXL2C134W. Our results provide mechanistic insight into AGCT pathogenesis, identifying FOXL2C134W and its interaction with SMAD4 as potential therapeutic targets to this condition. SIGNIFICANCE: FOXL2C134W hijacks SMAD4 and leads to the expression of genes involved in EMT, stemness, and oncogenesis in AGCT, making FOXL2C134W and the TGFβ pathway therapeutic targets in this condition. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/80/17/3466/F1.large.jpg.
Collapse
Affiliation(s)
- Stine E Weis-Banke
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen N, Denmark.,The Novo Nordisk Foundation Center for Stem Cell Research (DanStem), University of Copenhagen, Copenhagen N, Denmark
| | - Mads Lerdrup
- Center for Chromosome Stability, University of Copenhagen, Copenhagen N, Denmark
| | - Daniela Kleine-Kohlbrecher
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen N, Denmark.,The Novo Nordisk Foundation Center for Stem Cell Research (DanStem), University of Copenhagen, Copenhagen N, Denmark
| | - Faizaan Mohammad
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen N, Denmark.,The Novo Nordisk Foundation Center for Stem Cell Research (DanStem), University of Copenhagen, Copenhagen N, Denmark
| | - Simone Sidoli
- Department of Biochemistry and Molecular Biology, VILLUM Centre for Bioanalytical Sciences, University of Southern Denmark, Odense, Denmark.,Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York
| | - Ole N Jensen
- Department of Biochemistry and Molecular Biology, VILLUM Centre for Bioanalytical Sciences, University of Southern Denmark, Odense, Denmark
| | - Toshihiko Yanase
- Seiwakai Muta Hospital, 3-9-1 Hoshikuma, Sawara-ku, Fukuoka, Japan
| | - Tomoko Nakamura
- Departments of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Akira Iwase
- Department of Obstetrics and Gynecology, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Anthe Stylianou
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Nadeem R Abu-Rustum
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Carol Aghajanian
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Robert Soslow
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Arnaud Da Cruz Paula
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Richard P Koche
- Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Britta Weigelt
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jesper Christensen
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen N, Denmark.,The Novo Nordisk Foundation Center for Stem Cell Research (DanStem), University of Copenhagen, Copenhagen N, Denmark
| | - Kristian Helin
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen N, Denmark. .,The Novo Nordisk Foundation Center for Stem Cell Research (DanStem), University of Copenhagen, Copenhagen N, Denmark.,Cell Biology Program and Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Paul A C Cloos
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen N, Denmark. .,The Novo Nordisk Foundation Center for Stem Cell Research (DanStem), University of Copenhagen, Copenhagen N, Denmark
| |
Collapse
|
15
|
FOXL2 homozygous genotype and chromosome instability are associated with recurrence in adult granulosa cell tumors of the ovary. Oncotarget 2020; 11:419-428. [PMID: 32064045 PMCID: PMC6996913 DOI: 10.18632/oncotarget.27447] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Accepted: 01/04/2020] [Indexed: 12/22/2022] Open
Abstract
Introduction: Adult granulosa cell tumors (aGCTs) are extremely rare tumors characterized by the presence of the single missense mutation (c.402 C>G, p. C134W) in the FOXL2 gene. These tumors are frequently associated with a slow, indolent disease progression and a high probability of aggressive tumor recurrence. Hence, the identification of molecular markers that are predictive of recurrence and/or aggressive behavior would be a great asset in the management of aGCT. The present study focused on the influence of the FOXL2 genotype (heterozygous or homozygous) and copy number variations (CNVs) in recurrence by comparing the primary tumor with recurrent lesions in the same patient. We performed array comparative genomic hybridization (CGH) experiments and FOXL2 genotyping by allelic discrimination on 40 tumor samples. Results and Discussion: In array CGH results of recurrent tumors, few samples presented the multiple chromosome losses and gains characteristic of chromosome instability (CIN). We also observed that three recurrent tumors and one primary tumor appeared to be homozygous for the FOXL2 c.402C>G mutation. Interestingly, the homozygous FOXL2 genotype was correlated with a shorter time to relapse. A change in the FOXL2 genotype in cases of recurrence was correlated with the appearance of CIN. Conclusion: Despite the small number of matching primary and recurrent tumors analyzed here, the present study is the first to have shown that the FOXL2 homozygous genotype and CIN are prevalent in recurrent aGCTs. The two mechanisms are probably linked, and both almost certainly have a role in the molecular transformation of aGCTs.
Collapse
|
16
|
Wang Y, Wu Q, Li L, Liu W, Li C, Fan Y, Cao W, Li N. A modified Fox pentagon technique performed using a polytetrafluoroethylene sling in frontalis suspension to treat blepharophimosis syndrome. Sci Prog 2020; 103:36850419893880. [PMID: 32008456 PMCID: PMC10452787 DOI: 10.1177/0036850419893880] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The purpose of this study was to evaluate the functional and cosmetic outcomes of a new modified Fox pentagon technique performed using polytetrafluoroethylene in frontalis suspension surgery for blepharophimosis syndrome. This retrospective study enrolled 40 patients diagnosed with blepharophimosis syndrome from March 2016 to October 2018. All patients underwent frontalis suspension using a new modified Fox pentagon technique. The functional and cosmetic outcomes were evaluated. After the operation, the mean palpebral fissure height increased from 2.68 to 6.93 in right eyes and from 2.73 to 6.98 in left eyes. The mean MRD1 increased from 0.53 to 3.76 in right eyes and from 0.50 to 3.78 in left eyes. While preoperative to postoperative differences were statistically significant (p < 0.01), there were no significant differences between right and left eyes either before or after the surgery (p > 0.01). All patients achieved good cosmetic results with an average score of 0.6. We have experimentally created a modified Fox pentagon technique performed using a polytetrafluoroethylene sling in a frontalis suspension to treat BPES; this approach yielded favorable cosmetic and functional outcomes.
Collapse
Affiliation(s)
- Yuan Wang
- Department of Ophthalmology, Beijing Children’s Hospital, National Center for Children’s Health, Capital Medical University, Beijing, China
| | - Qian Wu
- Department of Ophthalmology, Beijing Children’s Hospital, National Center for Children’s Health, Capital Medical University, Beijing, China
| | - Li Li
- Department of Ophthalmology, Beijing Children’s Hospital, National Center for Children’s Health, Capital Medical University, Beijing, China
| | - Wen Liu
- Department of Ophthalmology, Beijing Children’s Hospital, National Center for Children’s Health, Capital Medical University, Beijing, China
| | - Cheng Li
- Department of Ophthalmology, Beijing Children’s Hospital, National Center for Children’s Health, Capital Medical University, Beijing, China
| | - Yunwei Fan
- Department of Ophthalmology, Beijing Children’s Hospital, National Center for Children’s Health, Capital Medical University, Beijing, China
| | - WenHong Cao
- Department of Ophthalmology, Beijing Children’s Hospital, National Center for Children’s Health, Capital Medical University, Beijing, China
| | - Ningdong Li
- Department of Ophthalmology, Beijing Children’s Hospital, National Center for Children’s Health, Capital Medical University, Beijing, China
| |
Collapse
|
17
|
Belli M, Secchi C, Stupack D, Shimasaki S. FOXO1 Negates the Cooperative Action of FOXL2 C134W and SMAD3 in CYP19 Expression in HGrC1 Cells by Sequestering SMAD3. J Endocr Soc 2019; 3:2064-2081. [PMID: 31701078 PMCID: PMC6797057 DOI: 10.1210/js.2019-00279] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 08/23/2019] [Indexed: 12/25/2022] Open
Abstract
Adult granulosa cell tumor (aGCT) is a rare type of ovarian cancer characterized by estrogen excess. Interestingly, only the single somatic mutation FOXL2 C134W was found across virtually all aGCTs. We previously reported that FOXL2C134W stimulates CYP19 transcription synergistically with SMAD3, leading to elevated estradiol synthesis in a human granulosa cell line (HGrC1). This finding suggested a key role for FOXL2C134W in causing the typical estrogen overload in patients with aGCTs. We have now investigated the effect of FOXO1, a tumor suppressor, on CYP19 activation by FOXL2C134W in the presence of SMAD3. Intriguingly, FOXO1 antagonized the positive, synergistic effect of FOXL2C134W and SMAD3 on CYP19 transcription. Similar to FOXL2C134W, FOXO1 binds SMAD3 but not the proximal FOXL2C134W binding site (-199 bp) of the CYP19 promoter identified in our earlier studies. The results of a competitive binding assay suggested a possible underlying mechanism in which FOXO1 sequesters SMAD3 away from FOXL2C134W, thereby negating the cooperative action of FOXL2C134W and SMAD3 in inducing CYP19 expression. To our knowledge, this study is the first to demonstrate the ability of FOXO1 to restore an altered CYP19 expression by FOXL2C134W and SMAD3 and provides insight as to why FOXO1 deficiency promotes GCT development in mice.
Collapse
Affiliation(s)
- Martina Belli
- Department of Reproductive Medicine, School of Medicine, University of California San Diego, La Jolla, California
| | - Christian Secchi
- Department of Reproductive Medicine, School of Medicine, University of California San Diego, La Jolla, California
| | - Dwayne Stupack
- Department of Reproductive Medicine, School of Medicine, University of California San Diego, La Jolla, California
| | - Shunichi Shimasaki
- Department of Reproductive Medicine, School of Medicine, University of California San Diego, La Jolla, California
| |
Collapse
|
18
|
Chen H, Crosley P, Azad AK, Gupta N, Gokul N, Xu Z, Weinfeld M, Postovit LM, Pangas SA, Hitt MM, Fu Y. RUNX3 Promotes the Tumorigenic Phenotype in KGN, a Human Granulosa Cell Tumor-Derived Cell Line. Int J Mol Sci 2019; 20:ijms20143471. [PMID: 31311113 PMCID: PMC6678151 DOI: 10.3390/ijms20143471] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 07/02/2019] [Accepted: 07/12/2019] [Indexed: 12/17/2022] Open
Abstract
Granulosa cell tumors of the ovary (GCT) are the predominant type of ovarian sex cord/stromal tumor. Although prognosis is generally favorable, the outcome for advanced and recurrent GCT is poor. A better understanding of the molecular pathogenesis of GCT is critical to developing effective therapeutic strategies. Here we have examined the potential role of the runt-related transcription factor RUNX3. There are only two GCT cell lines available. While RUNX3 is silenced in the GCT cell line KGN cells, it is highly expressed in another GCT cell line, COV434 cells. Re-expression of RUNX3 promotes proliferation, anchorage-independent growth, and motility in KGN cells in vitro and tumor formation in mice in vivo. Furthermore, expression of a dominant negative form of RUNX3 decreases proliferation of COV434 cells. To address a potential mechanism of action, we examined expression of cyclin D2 and the CDK inhibitor p27Kip1, two cell cycle regulators known to be critical determinants of GCT cell proliferation. We found that RUNX3 upregulates the expression of cyclin D2 at the mRNA and protein level, and decreases the level of the p27Kip1 protein, but not p27Kip1 mRNA. In conclusion, we demonstrate that RUNX proteins are expressed in GCT cell lines and human GCT specimens, albeit at variable levels, and RUNX3 may play an oncogenic role in a subset of GCTs.
Collapse
Affiliation(s)
- Huachen Chen
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Powel Crosley
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Abul K Azad
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Nidhi Gupta
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Nisha Gokul
- Department of Pathology & Immunology and Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Graduate Program in Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Zhihua Xu
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Michael Weinfeld
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Lynne-Marie Postovit
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2E1, Canada
- Department of Obstetrics and Gynecology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Stephanie A Pangas
- Department of Pathology & Immunology and Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Mary M Hitt
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - YangXin Fu
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2E1, Canada.
- Department of Obstetrics and Gynecology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2E1, Canada.
| |
Collapse
|
19
|
Roane BM, Arend RC, Birrer MJ. Review: Targeting the Transforming Growth Factor-Beta Pathway in Ovarian Cancer. Cancers (Basel) 2019; 11:cancers11050668. [PMID: 31091744 PMCID: PMC6562901 DOI: 10.3390/cancers11050668] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 05/10/2019] [Accepted: 05/12/2019] [Indexed: 02/07/2023] Open
Abstract
Despite extensive efforts, there has been limited progress in optimizing treatment of ovarian cancer patients. The vast majority of patients experience recurrence within a few years despite a high response rate to upfront therapy. The minimal improvement in overall survival of ovarian cancer patients in recent decades has directed research towards identifying specific biomarkers that serve both as prognostic factors and targets for therapy. Transforming Growth Factor-β (TGF-β) is a superfamily of proteins that have been well studied and implicated in a wide variety of cellular processes, both in normal physiologic development and malignant cellular growth. Hypersignaling via the TGF-β pathway is associated with increased tumor dissemination through various processes including immune evasion, promotion of angiogenesis, and increased epithelial to mesenchymal transformation. This pathway has been studied in various malignancies, including ovarian cancer. As targeted therapy has become increasingly prominent in drug development and clinical research, biomarkers such as TGF-β are being studied to improve outcomes in the ovarian cancer patient population. This review article discusses the role of TGF-β in ovarian cancer progression, the mechanisms of TGF-β signaling, and the targeted therapies aimed at the TGF-β pathway that are currently being studied.
Collapse
Affiliation(s)
- Brandon M Roane
- Department of Obstetrics and Gynecology-Gynecologic Oncology, University of Alabama at Birmingham, Birmingham, AL 35233, USA.
| | - Rebecca C Arend
- Department of Obstetrics and Gynecology-Gynecologic Oncology, University of Alabama at Birmingham, Birmingham, AL 35233, USA.
| | - Michael J Birrer
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35233, USA.
| |
Collapse
|
20
|
Ernst EH, Franks S, Hardy K, Villesen P, Lykke-Hartmann K. Granulosa cells from human primordial and primary follicles show differential global gene expression profiles. Hum Reprod 2019; 33:666-679. [PMID: 29506120 DOI: 10.1093/humrep/dey011] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 01/12/2018] [Indexed: 12/13/2022] Open
Abstract
STUDY QUESTION Can novel genetic candidates involved in follicle dormancy, activation and integrity be identified from transcriptomic profiles of isolated granulosa cells from human primordial and primary follicles? SUMMARY ANSWER The granulosa cell compartment of the human primordial and primary follicle was extensively enriched in signal transducer and activator of transcription 3 (STAT3) and cAMP-response element binding protein (CREB) signalling, and several other putative signalling pathways that may also be mediators of follicle growth and development were identified. WHAT IS KNOWN ALREADY Mechanistic target of rapamycin kinase (mTOR) signalling and the factors Forkhead Box L2 (FOXL2) and KIT proto-oncogene receptor tyrosine kinase (KITL) may be involved in defining the early steps of mammalian follicular recruitment through complex bidirectional signalling between the oocyte and granulosa cells. cAMP/protein kinase K (PKA)/CREB signalling is a feature of FSH-induced regulation of granulosa cell steroidogenesis that is essential to normal human fertility. STUDY DESIGN, SIZE, DURATION A class comparison study was carried out on primordial follicles (n = 539 follicles) and primary follicles (n = 261) follicles) donated by three women having ovarian tissue cryopreserved before chemotherapy. PARTICIPANTS/MATERIALS, SETTING, METHODS RNA samples from isolates of laser capture micro-dissected oocytes and follicles from the primordial and primary stage, respectively, were sequenced on the HiSeq Illumina platform. Data mapping, quality control, filtering, FPKM (fragments per kilobase of exon per million) normalization and comparisons were performed. The granulosa cell contribution in whole follicle isolates was extracted in silico. Modelling of complex biological systems was performed using Ingenuity Pathway Analysis (IPA). For validation of transcriptomic findings, we performed quantitative RT-PCR of selected candidate genes. Furthermore, we interrogated the in situ localization of selected corresponding proteins using immunofluorescence. MAIN RESULTS AND THE ROLE OF CHANCE Our differentially expressed gene analysis revealed a number of transcripts in the granulosa cells to be significantly down- (736 genes) or up- (294 genes) regulated during the human primordial-to-primary follicle transition. The IPA analysis revealed enriched canonical signalling pathways not previously associated with granulosa cells from human primordial and primary follicles. Immunofluorescent staining of human ovarian tissue explored the intra-ovarian localization of FOG2, and FOXL2, which revealed the presence of forkhead box L2 (FOXL2) in both oocytes and granulosa cells in primary follicles, with a more enriched staining in the granulosa cells in primary follicles. Friend of GATA 2 (FOG2) stained strongly in oocytes in primordial follicles, with a shift towards granulosa cell as follicle stage advanced. LARGE SCALE DATA http://users-birc.au.dk/biopv/published_data/ernst_et_al_GC_2017/. LIMITATIONS REASONS FOR CAUTION This is a descriptive study, and no functional assays were employed. The study was based on a limited number of patients, and it is acknowledged that natural biological variance exists in human samples. Strict filters were applied to accommodate the in silico extraction of the granulosa cell contribution. In support of this, quantitative RT-PCR was used to confirm selected candidate genes, and immunofluorescent staining was employed to interrogate the intra-ovarian distribution of selected corresponding proteins. Moreover, it is unknown whether the primordial follicles analysed represent those still in the resting pool, or those from the cohort that have entered the growing pool. WIDER IMPLICATIONS OF THE FINDINGS We present, for the first time, a detailed description of global gene activity in the human granulosa cell compartment of primordial and primary follicles. These results may be utilized in the development of novel clinical treatment strategies aimed at improving granulosa cell function. STUDY FUNDING/COMPETING INTEREST(S) E.H.E. was supported by the Health Faculty, Aarhus University and Kong Christian Den Tiendes Fond. K.L.H. was supported by a grant from Fondens til Lægevidenskabens Fremme and Kong Christian Den Tiendes Fond. No authors have competing interests to declare.
Collapse
Affiliation(s)
- E H Ernst
- Department of Biomedicine, Aarhus University, Wilhelm Meyers Allé 4, DK-8000 Aarhus C, Denmark
| | - S Franks
- Institute of Reproductive and Developmental Biology, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - K Hardy
- Institute of Reproductive and Developmental Biology, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - P Villesen
- Bioinformatic Research Centre (BiRC), Aarhus University, C.F. Møllers Allé 8, DK-8000 Aarhus C, Denmark.,Department of Clinical Medicine, Aarhus University, Wilhelm Meyers Allé 4, DK-8000 Aarhus C, Denmark
| | - K Lykke-Hartmann
- Department of Biomedicine, Aarhus University, Wilhelm Meyers Allé 4, DK-8000 Aarhus C, Denmark.,Department of Clinical Medicine, Aarhus University, Wilhelm Meyers Allé 4, DK-8000 Aarhus C, Denmark.,Department of Clinical Genetics, Aarhus University Hospital, Brendstrupgårdsvej 21, DK-8200 Aarhus N, Denmark
| |
Collapse
|
21
|
Shen H, Wang Y. Activation of TGF‐β1/Smad3 signaling pathway inhibits the development of ovarian follicle in polycystic ovary syndrome by promoting apoptosis of granulosa cells. J Cell Physiol 2018; 234:11976-11985. [PMID: 30536903 DOI: 10.1002/jcp.27854] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 11/13/2018] [Indexed: 01/07/2023]
Affiliation(s)
- Haoran Shen
- Department of Gynecology Obstetrics & Gynecology Hospital of Fudan University Shanghai P.R. China
| | - Yao Wang
- Department of Assisted Reproduction Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine Shanghai P.R. China
| |
Collapse
|
22
|
Cheng L, Li L, Wang L, Li X, Xing H, Zhou J. A random forest classifier predicts recurrence risk in patients with ovarian cancer. Mol Med Rep 2018; 18:3289-3297. [PMID: 30066910 PMCID: PMC6102638 DOI: 10.3892/mmr.2018.9300] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Accepted: 04/23/2018] [Indexed: 12/12/2022] Open
Abstract
Ovarian cancer (OC) is associated with a poor prognosis due to difficulties in early detection. The aims of the present study were to construct a recurrence risk prediction model and to reveal important OC genes or pathways. RNA sequencing data was obtained for 307 OC samples, and the corresponding clinical data were downloaded from The Cancer Genome Atlas database. Additionally, two validation datasets, GSE44104 (20 recurrent and 40 non-recurrent OC samples) and GSE49997 (204 OC samples), were obtained from the Gene Expression Omnibus database. Differentially expressed genes were screened using the differential expression via distance synthesis algorithm, followed by gene ontology enrichment analysis and weighted gene coexpression network analysis (WGCNA). Furthermore, subnetwork analysis was conducted for the protein-protein interaction (PPI) network using the BioNet package. Finally, a random forest classifier was constructed based on the subnetwork nodes, and its reliability was validated using the GSE44104 and GSE49997 validation datasets. A total of 44 upregulated and 117 downregulated genes were identified in the recurrent samples. Enrichment analysis indicated that cytochrome P450 family 17 subfamily A member 1 (CYP17A1) was associated with ‘positive regulation of steroid hormone biosynthetic processes’. WGCNA identified turquoise and grey modules that were significantly correlated with status and prognosis. A significant PPI subnetwork containing 16 nodes was also identified, including: Transcription factor GATA-4; fibroblast growth factor 9; aromatase; 3β-hydroxysteroid dehydrogenase/δ5-4-isomerase type 2; corticosteroid 11β-dehydrogenase isozyme 1; CYP17A1; pituitary homeobox 2; left-right determination factor 1; homeobox protein ARX; estrogen receptor β; steroidogenic factor 1; forkhead box protein L2; myocardin; steroidogenic acute regulatory protein mitochondrial; vesicular inhibitory amino acid transporter; and twist-related protein 1. A random forest classifier was constructed using the subnetwork nodes as feature genes, which exhibited a 92% true positive rate when classifying recurrent and non-recurrent OC samples. The classifying efficiency of the random forest classifier was validated using the two other independent datasets. Overall, 44 upregulated and 117 downregulated genes associated with OC recurrence were identified. Furthermore, the 16 subnetwork node genes that were identified may be important molecules in OC recurrence.
Collapse
Affiliation(s)
- Li Cheng
- Department of Obstetrics and Gynecology, Xiangyang Central Hospital (Affiliated Hospital of Hubei University of Arts and Science), Xiangyang, Hubei 441021, P.R. China
| | - Lin Li
- Department of Obstetrics and Gynecology, Xiangyang Central Hospital (Affiliated Hospital of Hubei University of Arts and Science), Xiangyang, Hubei 441021, P.R. China
| | - Liling Wang
- Department of Obstetrics and Gynecology, Xiangyang Central Hospital (Affiliated Hospital of Hubei University of Arts and Science), Xiangyang, Hubei 441021, P.R. China
| | - Xiaofang Li
- Department of Obstetrics and Gynecology, Xiangyang Central Hospital (Affiliated Hospital of Hubei University of Arts and Science), Xiangyang, Hubei 441021, P.R. China
| | - Hui Xing
- Department of Obstetrics and Gynecology, Xiangyang Central Hospital (Affiliated Hospital of Hubei University of Arts and Science), Xiangyang, Hubei 441021, P.R. China
| | - Jinting Zhou
- Department of Obstetrics and Gynecology, Xiangyang Central Hospital (Affiliated Hospital of Hubei University of Arts and Science), Xiangyang, Hubei 441021, P.R. China
| |
Collapse
|
23
|
Abstract
Granulosa cell tumors (GCTs) comprise 2% to 5% of ovarian neoplasms, with unpredictable patterns of recurrence. The HER family, GATA4, and SMAD3 genes are reportedly involved in GCT proliferation and apoptosis and may serve as new predictors of recurrence. The aim of the study was to evaluate novel predictors of recurrence in GCT from a large single institution cohort. Patients diagnosed with GCTs (n=125) between 1975 and 2014 were identified. Clinicopathologic parameters were obtained and immunohistochemical evaluation was performed of calretinin, inhibin, HER2, CD56, SMAD3, and GATA4. Statistical analyses were conducted using Fisher exact test and Kaplan-Meier survival curves and Cox regression analysis. The median follow-up period was 120 months (range, 1-465 mo). Recurrence was noted in 12/125 (9.6%) patients. Kaplan-Meier analysis showed a shorter mean disease-free interval in whites versus blacks (P=0.001), stage III-IV versus stage I-II (P=0.0001), patients treated with surgery+chemotherapy versus surgery (P=0.0001), mitotic rate ≥4 (P=0.005), severe nuclear pleomorphism (P=0.013), high HER2 expression (P=0.001), high CD56 expression (P=0.001), and high SMAD3 expression (P=0.001). On Cox regression analysis, SMAD3 and type of treatment received were the only 2 independent prognostic factors for disease-free interval (P=0.03 and P=0.007, respectively). On subanalysis for early-stage (stage I) GCTs, the need for adjuvant chemotherapy and high expression of SMAD3 continued to be independent predictors of recurrence (HR=10.2, P=0.01 and HR=8.9, P=0.001, respectively).
Collapse
|
24
|
Belli M, Iwata N, Nakamura T, Iwase A, Stupack D, Shimasaki S. FOXL2C134W-Induced CYP19 Expression via Cooperation With SMAD3 in HGrC1 Cells. Endocrinology 2018; 159:1690-1703. [PMID: 29471425 PMCID: PMC6238151 DOI: 10.1210/en.2017-03207] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 02/13/2018] [Indexed: 12/21/2022]
Abstract
Germline knockout studies in female mice demonstrated an essential role for forkhead box L2 (FOXL2) in early follicle development, whereas an inducible granulosa cell (GC)-specific deletion of Foxl2 in adults has shown ovary-to-testis somatic sex reprogramming. In women, over 120 different germline mutations in the FOXL2 gene have been shown to cause blepharophimosis/ptosis/epicantus inversus syndrome associated with or without primary ovarian insufficiency. By contrast, a single somatic mutation (FOXL2C134W) accounts for almost all adult-type GC tumors (aGCTs). To test the hypothesis that FOXL2C134W differentially regulates the expression of aGCT markers, we investigated the effect of FOXL2C134W on inhibin B and P450 aromatase expression using a recently established human GC line (HGrC1), which we now show to bear two normal alleles of FOXL2. Neither FOXL2wt nor FOXL2C134W regulate INHBB messenger RNA (mRNA) expression. However, FOXL2C134W selectively displays a 50-fold induction of CYP19 mRNA expression dependent upon activin A. Mechanistically, the CYP19 promoter is activated in a similar way by FOXL2C134W interaction with SMAD3, but not by FOXL2wt. SMAD2 had no effect. Moreover, FOXL2C134W interactions with SMAD3 and with the FOX binding element located at -199 bp upstream of the ATG initiation codon of CYP19 are more sustainable than FOXL2wt. Thus, FOXL2C134W potentiates CYP19 expression in HGrC1 cells via enhanced recruitment of SMAD3 to a proximal FOX binding element. These findings may explain the pathophysiology of estrogen excess in patients with aGCT.
Collapse
Affiliation(s)
- Martina Belli
- Department of Reproductive Medicine, School of Medicine, University of California, San Diego, La Jolla, California
| | - Nahoko Iwata
- Department of Reproductive Medicine, School of Medicine, University of California, San Diego, La Jolla, California
| | - Tomoko Nakamura
- Center for Maternal-Perinatal Care, Nagoya University Hospital, Nagoya, Japan
| | - Akira Iwase
- Center for Maternal-Perinatal Care, Nagoya University Hospital, Nagoya, Japan
| | - Dwayne Stupack
- Department of Reproductive Medicine, School of Medicine, University of California, San Diego, La Jolla, California
| | - Shunichi Shimasaki
- Department of Reproductive Medicine, School of Medicine, University of California, San Diego, La Jolla, California
- Correspondence: Shunichi Shimasaki, PhD, Department of Reproductive Medicine, School of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093. E-mail:
| |
Collapse
|
25
|
Bildik G, Akin N, Senbabaoglu F, Esmalian Y, Sahin GN, Urman D, Karahuseyinoglu S, Ince U, Palaoglu E, Taskiran C, Arvas M, Guzel Y, Yakin K, Oktem O. Endogenous c-Jun N-terminal kinase (JNK) activity marks the boundary between normal and malignant granulosa cells. Cell Death Dis 2018; 9:421. [PMID: 29549247 PMCID: PMC5856777 DOI: 10.1038/s41419-018-0459-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 03/02/2018] [Accepted: 03/05/2018] [Indexed: 12/21/2022]
Abstract
Granulosa cell tumor of the ovary (GCT) is a very rare tumor, accounting for only 2% of all ovarian tumors. It originates from sex cords in the ovary and can be divided into adult (95%) and juvenile (5%) types based on histologic findings. To date, no clear etiologic process has been identified other than a missense point mutation in the FOXL2 gene. Our previous works showed that c-Jun N-terminal kinase (JNK) pathway plays critical role in cell cycle progression and mitosis of normal and immortalized granulosa cells and follicle growth in rodent ovaries. These findings led us to investigate the role of JNK pathway in the granulosa cell tumor of the ovary. We used two different GCT cell lines (COV434 and KGN) and fresh GCT samples of adult and juvenile types obtained from the patients during surgery. We have discovered that endogenous kinase activity of JNK is markedly enhanced in the GCT samples and cell lines, whereas it was almost undetectable in mitotic non-malignant human granulosa cells. The inhibition of JNK pathway in GCT cell lines with two different pharmacologic inhibitors (SP600125 and AS601245) or siRNA resulted in a dose-dependent reduction in in vitro cell growth, increased apoptosis and diminished estradiol and AMH productions. JNK inhibition was also associated with a decrease in the number of cells positive for mitosis marker phospho-histone H3Ser 10 in the asynchronous cells; and diminished EdU uptake during S phase and cell cycle arrest at G2/M-phase transition in the synchronized cells. Ex vivo treatment of patient-derived GCT samples with JNK inhibitors for 24 h significantly decreased their in vitro growth and estradiol and AMH productions. Furthermore, in human GCT xenograft model, in vivo tumor growth was significantly reduced and plasma AMH levels were significantly decreased in SCID mice after administration of JNK inhibitors and siRNA. These findings suggest that targeting JNK pathway may provide therapeutic benefit in the treatment of granulosa cell tumors for which currently no curative therapy exists beyond surgery.
Collapse
Affiliation(s)
- Gamze Bildik
- Graduate School of Health Sciences and School of Medicines, Koc University, Istanbul, Turkey
| | - Nazli Akin
- Graduate School of Health Sciences and School of Medicines, Koc University, Istanbul, Turkey
| | - Filiz Senbabaoglu
- Graduate School of Health Sciences and School of Medicines, Koc University, Istanbul, Turkey
| | - Yashar Esmalian
- Graduate School of Health Sciences and School of Medicines, Koc University, Istanbul, Turkey
| | - Gizem Nur Sahin
- Graduate School of Health Sciences and School of Medicines, Koc University, Istanbul, Turkey
| | - Defne Urman
- Graduate School of Health Sciences and School of Medicines, Koc University, Istanbul, Turkey
| | - Sercin Karahuseyinoglu
- Department of Histology and Embryology, School of Medicine, Koc University, Istanbul, Turkey
| | - Umit Ince
- Department of Pathology, School of Medicine, Acibadem University, Istanbul, Turkey
| | - Erhan Palaoglu
- American Hospital Clinical Biochemistry Laboratories, Istanbul, Turkey
| | - Cagatay Taskiran
- Department of Obstetrics and Gynecology, Gynecologic Oncology Division, School of Medicine, Koc University, Istanbul, Turkey
| | - Macit Arvas
- Women's Health Center, American Hospital, Istanbul, Turkey
| | - Yilmaz Guzel
- Women's Health Center, American Hospital, Istanbul, Turkey
| | - Kayhan Yakin
- Department of Obstetrics and Gynecology, The Division of Reproductive Endocrinology and Infertility, Translational Research Laboratories, School of Medicine, Koc University, Istanbul, Turkey
| | - Ozgur Oktem
- Department of Obstetrics and Gynecology, The Division of Reproductive Endocrinology and Infertility, Translational Research Laboratories, School of Medicine, Koc University, Istanbul, Turkey.
| |
Collapse
|
26
|
Li J, Bao R, Peng S, Zhang C. The molecular mechanism of ovarian granulosa cell tumors. J Ovarian Res 2018; 11:13. [PMID: 29409506 PMCID: PMC5802052 DOI: 10.1186/s13048-018-0384-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 01/30/2018] [Indexed: 12/12/2022] Open
Abstract
Over these years, more and more sex cord-stromal tumors have been reported. Granulosa cell tumor (GCT) is a rare tumor in ovaries, accounts for 2% to 5% of ovarian cancers. The main different feature of GCTs from other ovarian cancers is that GCTs can lead to abnormally secreted hormones (estrogen, inhibin and Müllerian inhibiting substance). The GCT is divided into two categories according to the age of patients, namely AGCT (adult granulosa cell tumor) and JGCT (Juvenile granulosa cell tumor). AGCT patients accounts for 95%. Although the pathogenesis is not clear, FOXL2 (Forkhead box L2) mutation was considered as the most critical factor in AGCT development. The current treatment is dominated by surgery. Target therapy remains in the adjuvant therapy stage, such as hormone therapy. During these years, other pathogenic factors were also explored, such as PI3K/AKT (phosphatidylinositol-3-kinase; serine/threonine kinase), TGF-β (Transforming growth factor beta) signaling pathway, Notch signaling pathway, GATA4 and VEGF (vascular endothelial growth factor). These factors and signaling pathway play important roles in GCT cell proliferation, apoptosis, or angiogenesis. The purpose of this review is to summarize the possible pathogenic factors and signaling pathways, which may shed lights on developing potential therapeutic targets for GCT.
Collapse
Affiliation(s)
- Jiaheng Li
- Joint programme of Nanchang University and Queen Mary University of London, Nanchang, China
| | - Riqiang Bao
- Joint programme of Nanchang University and Queen Mary University of London, Nanchang, China
| | - Shiwei Peng
- Department of Gynecology and Obstetrics, Jiangxi Provincial People's Hospital, Nanchang, China
| | - Chunping Zhang
- Department of Cell Biology, School of Medicine, Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China.
| |
Collapse
|
27
|
Penny GM, Cochran RB, Pihlajoki M, Kyrönlahti A, Schrade A, Häkkinen M, Toppari J, Heikinheimo M, Wilson DB. Probing GATA factor function in mouse Leydig cells via testicular injection of adenoviral vectors. Reproduction 2017; 154:455-467. [PMID: 28710293 PMCID: PMC5589507 DOI: 10.1530/rep-17-0311] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 07/09/2017] [Accepted: 07/14/2017] [Indexed: 12/21/2022]
Abstract
Testicular Leydig cells produce androgens essential for proper male reproductive development and fertility. Here, we describe a new Leydig cell ablation model based on Cre/Lox recombination of mouse Gata4 and Gata6, two genes implicated in the transcriptional regulation of steroidogenesis. The testicular interstitium of adult Gata4flox/flox ; Gata6flox/flox mice was injected with adenoviral vectors encoding Cre + GFP (Ad-Cre-IRES-GFP) or GFP alone (Ad-GFP). The vectors efficiently and selectively transduced Leydig cells, as evidenced by GFP reporter expression. Three days after Ad-Cre-IRES-GFP injection, expression of androgen biosynthetic genes (Hsd3b1, Cyp17a1 and Hsd17b3) was reduced, whereas expression of another Leydig cell marker, Insl3, was unchanged. Six days after Ad-Cre-IRES-GFP treatment, the testicular interstitium was devoid of Leydig cells, and there was a concomitant loss of all Leydig cell markers. Chromatin condensation, nuclear fragmentation, mitochondrial swelling, and other ultrastructural changes were evident in the degenerating Leydig cells. Liquid chromatography-tandem mass spectrometry demonstrated reduced levels of androstenedione and testosterone in testes from mice injected with Ad-Cre-IRES-GFP. Late effects of treatment included testicular atrophy, infertility and the accumulation of lymphoid cells in the testicular interstitium. We conclude that adenoviral-mediated gene delivery is an expeditious way to probe Leydig cell function in vivo Our findings reinforce the notion that GATA factors are key regulators of steroidogenesis and testicular somatic cell survival.Free Finnish abstract: A Finnish translation of this abstract is freely available at http://www.reproduction-online.org/content/154/4/455/suppl/DC2.
Collapse
Affiliation(s)
- Gervette M Penny
- Department of Pediatrics, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, Missouri, USA
| | - Rebecca B Cochran
- Department of Pediatrics, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, Missouri, USA
| | - Marjut Pihlajoki
- Children's HospitalUniversity of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Antti Kyrönlahti
- Children's HospitalUniversity of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Anja Schrade
- Children's HospitalUniversity of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Merja Häkkinen
- University of Eastern FinlandSchool of Pharmacy, Kuopio, Finland
| | - Jorma Toppari
- Department of PhysiologyInstitute of Biomedicine, University of Turku and Department of Pediatrics, Turku University Hospital, Turku, Finland
| | - Markku Heikinheimo
- Department of Pediatrics, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, Missouri, USA
- Children's HospitalUniversity of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - David B Wilson
- Department of Pediatrics, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, Missouri, USA
- Department of Developmental BiologyWashington University School of Medicine, St. Louis Children's Hospital, St. Louis, Missouri, USA
| |
Collapse
|
28
|
Han Q, Xu X, Li J, Wang J, Bai L, Wang A, Wang W, Zhang B. GATA4 is highly expressed in childhood acute lymphoblastic leukemia, promotes cell proliferation and inhibits apoptosis by activating BCL2 and MDM2. Mol Med Rep 2017; 16:6290-6298. [PMID: 28849107 DOI: 10.3892/mmr.2017.7369] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Accepted: 06/16/2017] [Indexed: 11/05/2022] Open
Abstract
Members of the GATA‑binding factor protein family, including GATA1, GATA2 and GATA3, serve an inhibiting role in leukemia. The present study demonstrated that GATA4 was upregulated in children with acute lymphoblastic leukemia (ALL). Results from a number of functional experiments, including cell proliferation analysis, cell cycle analysis, cell apoptosis assay and Transwell migration and invasion analyses, have suggested that high expression of GATA4 may facilitate proliferation and metastasis, and suppress apoptosis in ALL cells. Chromatin immunoprecipitation assay and luciferase reporter assay revealed that GATA4 was a transcription factor that activated mouse double minute 2 homolog (MDM2) and B cell lymphoma 2 (BCL2) expression in ALL cells. BCL2 is a key anti‑apoptosis protein that was demonstrated to suppress cell apoptosis. In addition, GATA4 was revealed to regulate p53 through the transcriptional activation of MDM2, subsequently influencing cell cycle and apoptosis. Results from the present study suggested that GATA4 may be a key marker in ALL diagnosis and a potential target of molecular therapy.
Collapse
Affiliation(s)
- Qiuguo Han
- Department of Pediatrics, Daqing Oilfield General Hospital, Daqing, Heilongjiang 163000, P.R. China
| | - Xin Xu
- Department of Pediatrics, Daqing Oilfield General Hospital, Daqing, Heilongjiang 163000, P.R. China
| | - Jing Li
- Department of Pediatrics, Daqing Oilfield General Hospital, Daqing, Heilongjiang 163000, P.R. China
| | - Jinggang Wang
- Department of Pediatrics, Daqing Oilfield General Hospital, Daqing, Heilongjiang 163000, P.R. China
| | - Li Bai
- Department of Pediatrics, Daqing Oilfield General Hospital, Daqing, Heilongjiang 163000, P.R. China
| | - Aihong Wang
- Department of Pediatrics, Daqing Oilfield General Hospital, Daqing, Heilongjiang 163000, P.R. China
| | - Wei Wang
- Department of Pediatrics, Daqing Oilfield General Hospital, Daqing, Heilongjiang 163000, P.R. China
| | - Bo Zhang
- Department of Pediatric Neurology, The First Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| |
Collapse
|
29
|
Färkkilä A, Haltia UM, Tapper J, McConechy MK, Huntsman DG, Heikinheimo M. Pathogenesis and treatment of adult-type granulosa cell tumor of the ovary. Ann Med 2017; 49:435-447. [PMID: 28276867 DOI: 10.1080/07853890.2017.1294760] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Adult-type granulosa cell tumor is a clinically and molecularly unique subtype of ovarian cancer. These tumors originate from the sex cord stromal cells of the ovary and represent 3-5% of all ovarian cancers. The majority of adult-type granulosa cell tumors are diagnosed at an early stage with an indolent prognosis. Surgery is the cornerstone for the treatment of both primary and relapsed tumor, while chemotherapy is applied only for advanced or non-resectable cases. Tumor stage is the only factor consistently associated with prognosis. However, every third of the patients relapse, typically in 4-7 years from diagnosis, leading to death in 50% of these patients. Anti-Müllerian Hormone and inhibin B are currently the most accurate circulating biomarkers. Adult-type granulosa cell tumors are molecularly characterized by a pathognomonic somatic missense point mutation 402C->G (C134W) in the transcription factor FOXL2. The FOXL2 402C->G mutation leads to increased proliferation and survival of granulosa cells, and promotes hormonal changes. Histological diagnosis of adult-type granulosa cell tumor is challenging, therefore testing for the FOXL2 mutation is crucial for differential diagnosis. Large international collaborations utilizing molecularly defined cohorts are essential to improve and validate new treatment strategies for patients with high-risk or relapsed adult-type granulosa cell tumor. Key Messages: Adult-type granulosa cell tumor is a unique ovarian cancer with an indolent, albeit unpredictable disease course. Adult-type granulosa cell tumors harbor a pathognomonic somatic missense mutation in transcription factor FOXL2. The key challenges in the treatment of patients with adult-type granulosa cell tumor lie in the identification and management of patients with high-risk or relapsed disease.
Collapse
Affiliation(s)
- Anniina Färkkilä
- a Department of Obstetrics and Gynecology , University of Helsinki and Helsinki University Hospital , Helsinki , Finland.,b Children's Hospital , University of Helsinki and Helsinki University Hospital , Helsinki , Finland
| | - Ulla-Maija Haltia
- a Department of Obstetrics and Gynecology , University of Helsinki and Helsinki University Hospital , Helsinki , Finland.,b Children's Hospital , University of Helsinki and Helsinki University Hospital , Helsinki , Finland
| | - Johanna Tapper
- a Department of Obstetrics and Gynecology , University of Helsinki and Helsinki University Hospital , Helsinki , Finland
| | - Melissa K McConechy
- c Department of Human Genetics , Research Institute of the McGill University Health Centre, McGill University , Montreal , Canada
| | - David G Huntsman
- d Department of Pathology and Laboratory Medicine , University of British Columbia , Vancouver , Canada.,e Department of Molecular Oncology , British Columbia Cancer Agency , Vancouver , Canada
| | - Markku Heikinheimo
- b Children's Hospital , University of Helsinki and Helsinki University Hospital , Helsinki , Finland.,f Department of Pediatrics , Washington University School of Medicine, St. Louis Children's Hospital , St. Louis , MO , USA
| |
Collapse
|
30
|
Chai P, Li F, Fan J, Jia R, Zhang H, Fan X. Functional Analysis of a Novel FOXL2 Indel Mutation in Chinese Families with Blepharophimosis-Ptosis-Epicanthus Inversus Syndrome Type I. Int J Biol Sci 2017; 13:1019-1028. [PMID: 28924383 PMCID: PMC5599907 DOI: 10.7150/ijbs.19532] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 05/25/2017] [Indexed: 11/07/2022] Open
Abstract
Background: Blepharophimosis-ptosis-epicanthus inversus syndrome (BPES) is an autosomal dominant disease with a low incidence rate. Indel mutations in the forkhead box L2 (FOXL2) gene cause two types of BPES that are distinguished by the presence (type I) or absence (type II) of premature ovarian failure (POF). The purpose of this study was to identify a possible deletion in FOXL2 in Chinese families with BPES and to clarify its relationship with POF. Methods: An autosomal dominant Chinese BPES family with four generations was enrolled in this study. Peripheral venous blood was collected from all affected patients, and genomic DNA was extracted from leukocytes. The whole coding sequence and nearby 5' untranslated region (UTR) and 3'UTR of the FOXL2 gene were amplified using polymerase chain reaction (PCR) with three sets of overlapping primers, followed by sequencing analyses. The sequencing results were analysed using SeqMan software. Based on the patients' clinical manifestations and analysis of the identified indel mutation, we found that the mutation disturbed interactions between FOXL2 and the StAR gene. Furthermore, through subcellular localisation and functional studies, we observed significant mislocalisation of the mutant protein; the mutant protein was found in the cytoplasm, while the wild-type protein was found in the nucleus. Loss of function was confirmed by transcriptional activity assays, quantitative real-time PCR, and electrophoretic mobility shift assays. Results: All affected patients presented with clinical features of BPES type I, including small palpebral fissures, ptosis, telecanthus, and epicanthus inversus with POF. A novel FOXL2 heterozygous indel mutation, c.19_95del, a 77-bp deletion that disrupts FOXL2 protein structure, was identified in all affected members of the family. In addition, this indel mutation significantly increased StAR mRNA expression by disrupting the ability of the FOXL2 protein to bind to the StAR promoter and act as a repressor of this gene. Conclusions: A novel FOXL2 indel mutation was identified in Chinese families with BPES. Our results expand the spectrum of known FOXL2 mutations and provide additional insight into the structure-function relationships of the FOXL2 protein. Furthermore, this novel mutation resulted in the dysfunction of FOXL2 as a transcription factor, blocking its ability to bind to the promoter region of the StAR gene, resulting in POF in the affected patient.
Collapse
Affiliation(s)
- Peiwei Chai
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Fang Li
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Jiayan Fan
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Ruobin Jia
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - He Zhang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Xianqun Fan
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| |
Collapse
|
31
|
Yanagida S, Anglesio MS, Nazeran TM, Lum A, Inoue M, Iida Y, Takano H, Nikaido T, Okamoto A, Huntsman DG. Clinical and genetic analysis of recurrent adult-type granulosa cell tumor of the ovary: Persistent preservation of heterozygous c.402C>G FOXL2 mutation. PLoS One 2017; 12:e0178989. [PMID: 28594898 PMCID: PMC5464638 DOI: 10.1371/journal.pone.0178989] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 05/22/2017] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Adult-type granulosa cell tumors of the ovary (aGCTs) are rare tumors that represent 2-5% of ovarian malignancies. The prognosis of this tumor is favorable, and it is characterized by slow progression. 10-30% of these tumors recur after 4-7 years of the primary surgery and the 5-year survival rate from the first recurrence is 55%, for the incompletely resected patients. At this time, complete resection is the only prognostic factor for better outcome, and establishing a novel strategy for identification and/or treatment of recurrent tumors is crucial. After the discovery of heterozygous c.402C>G FOXL2 mutations in 97% of cases of aGCT, much effort has been made to find the role of the mutation on the pathogenesis of aGCT, however, little is known about the role of the mutation in disease progression. METHODS We analyzed the clinical data of 56 aGCT patients to find a marker of recurrence. In particular, we compared the FOXL2 status in 5 matched primary and recurrent samples by immunohistochemistry, and TaqMan allelic discrimination assay to address the role of FOXL2 in potential mechanisms of recurrence. RESULTS The clinical data analysis was consistent with complete resection as an indicator of disease eradication, though the sample size was limited. The genetic analysis showed all the samples, including recurrent tumor samples up to 14 years after the primary surgery, expressed heterozygous c.402C>G FOXL2 mutation and the FOXL2 protein expression. CONCLUSION This report describes the preservation of heterozygous c.402C>G FOXL2 mutation in recurrent aGCTs. This finding adds further credence to the concept that the c.402C>G FOXL2 mutation is oncogenic and integral to this disease.
Collapse
Affiliation(s)
- Satoshi Yanagida
- Department of Obstetrics and Gynecology, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Obstetrics and Gynecology, The Jikei University School of Medicine, Tokyo, Japan
| | - Michael S. Anglesio
- Department of Obstetrics and Gynecology, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Tayyebeh M. Nazeran
- Department of Obstetrics and Gynecology, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Amy Lum
- Department of Molecular Oncology, BC Cancer Agency Research Centre, Vancouver, British Columbia, Canada
| | - Momoko Inoue
- Department of Obstetrics and Gynecology, The Jikei University School of Medicine, Tokyo, Japan
| | - Yasushi Iida
- Department of Obstetrics and Gynecology, The Jikei University School of Medicine, Tokyo, Japan
| | - Hirokuni Takano
- Department of Obstetrics and Gynecology, The Jikei University School of Medicine, Tokyo, Japan
| | - Takashi Nikaido
- Department of Pathology, Kosei General Hospital, Tokyo, Japan
| | - Aikou Okamoto
- Department of Obstetrics and Gynecology, The Jikei University School of Medicine, Tokyo, Japan
| | - David G. Huntsman
- Department of Obstetrics and Gynecology, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Molecular Oncology, BC Cancer Agency Research Centre, Vancouver, British Columbia, Canada
| |
Collapse
|
32
|
Guzel Y, Oktem O. Understanding follicle growth in vitro: Are we getting closer to obtaining mature oocytes from in vitro-grown follicles in human? Mol Reprod Dev 2017; 84:544-559. [PMID: 28452156 DOI: 10.1002/mrd.22822] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 03/06/2017] [Accepted: 04/06/2017] [Indexed: 12/17/2022]
Abstract
Obtaining and fertilizing mature oocytes from immature follicles that were grown outside the body has conceptually attracted scientists for centuries, with initial attempts first documented in the 19th century. Significant progress has been made since then, due in part to a better understanding of folliculogenesis and improved techniques of in vitro follicle growth. Indeed, in vitro growth is now considered a reasonable approach to preserve or restore fertility when immature follicles and their oocytes need to be grown and matured outside the body. Certain patients would benefit from in vitro follicle growth, particularly those who carry a risk of cancer re-seeding after grafting of frozen-thawed ovarian tissue or who are at the risk of premature ovarian failure due to several intrinsic ovarian defects and genetic mutations that lead to accelerated follicle atresia and early exhaustion of the ovarian reserve. This review provides an update on the current status of in vitro growth of preantral human follicles, from initial efforts to the most recent achievements.
Collapse
Affiliation(s)
- Yilmaz Guzel
- Department of Obstetrics and Gynecology, Istanbul Aydin University School of Medicine, Istanbul, Turkey
| | - Ozgur Oktem
- Division Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Koc University School of Medicine, Istanbul, Turkey.,Women's Health Center, Assisted Reproduction Unit, American Hospital, Istanbul, Turkey
| |
Collapse
|
33
|
Soini T, Pihlajoki M, Kyrönlahti A, Andersson LC, Wilson DB, Heikinheimo M. Downregulation of transcription factor GATA4 sensitizes human hepatoblastoma cells to doxorubicin-induced apoptosis. Tumour Biol 2017; 39:1010428317695016. [PMID: 28349834 DOI: 10.1177/1010428317695016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Hepatoblastoma, the most common type of pediatric liver cancer, is treated with a combination of surgery and chemotherapy. An essential drug in the treatment of hepatoblastoma is doxorubicin, which in high doses is cardiotoxic. This adverse effect is due to downregulation of cardiac expression of transcription factor GATA4, leading in turn to diminished levels of anti-apoptotic BCL2 (B-cell lymphoma 2) protein family members. GATA4 is also expressed in early fetal liver, but absent from normal postnatal hepatocytes. However, GATA4 is highly expressed in hepatoblastoma tissue. In this study, we assessed the role of GATA4 in doxorubicin-induced apoptosis of hepatoblastoma cells. Herein, we demonstrate that doxorubicin decreases GATA4 expression and alters the expression pattern of BCL2 family members, most profoundly that of BCL2 and BAK, in the HUH6 hepatoblastoma cell line. Silencing of GATA4 by siRNA prior to doxorubicin treatment sensitizes HUH6 cells to the apoptotic effect of this drug by further shifting the balance of BCL2 family members to the pro-apoptotic direction. Specifically, expression levels of anti-apoptotic BCL2 were decreased and pro-apoptotic BID were increased after GATA4 silencing. On the whole, our results indicate that since high endogenous levels of transcription factor GATA4 likely protect hepatoblastoma cells from doxorubicin-induced apoptosis, these cells can be rendered more sensitive to the drug by downregulation of GATA4.
Collapse
Affiliation(s)
- Tea Soini
- 1 Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Marjut Pihlajoki
- 1 Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,2 Department of Pediatrics, School of Medicine, Washington University in St. Louis and St. Louis Children's Hospital, St. Louis, MO, USA
| | - Antti Kyrönlahti
- 1 Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,2 Department of Pediatrics, School of Medicine, Washington University in St. Louis and St. Louis Children's Hospital, St. Louis, MO, USA
| | - Leif C Andersson
- 3 Department of Pathology, University of Helsinki and HUSLAB, Helsinki, Finland
| | - David B Wilson
- 2 Department of Pediatrics, School of Medicine, Washington University in St. Louis and St. Louis Children's Hospital, St. Louis, MO, USA.,4 Department of Developmental Biology, School of Medicine, Washington University in St. Louis and St. Louis Children's Hospital, St. Louis, MO, USA
| | - Markku Heikinheimo
- 1 Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,2 Department of Pediatrics, School of Medicine, Washington University in St. Louis and St. Louis Children's Hospital, St. Louis, MO, USA
| |
Collapse
|
34
|
Fang X, Gao Y, Li Q. SMAD3 Activation: A Converging Point of Dysregulated TGF-Beta Superfamily Signaling and Genetic Aberrations in Granulosa Cell Tumor Development? Biol Reprod 2016; 95:105. [PMID: 27683263 PMCID: PMC5178148 DOI: 10.1095/biolreprod.116.143412] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 08/10/2016] [Accepted: 09/21/2016] [Indexed: 12/30/2022] Open
Abstract
Ovarian granulosa cell tumors (GCTs) are rare gynecologic tumors in women. Due to the rarity and limited research efforts invested, the etiology of GCTs remains poorly defined. A landmark study has discovered the mutation of forkhead box L2 (FOXL2) as a genetic hallmark of adult GCTs in the human. However, our understanding of the role of cell signaling in GCT development is far from complete. Increasing lines of evidence highlight the importance of TGF-beta (TGFB) superfamily signaling in the pathogenesis of GCTs. This review draws on findings using genetically modified mouse models and human patient specimens and cell lines to reveal SMAD3 activation as a potentially key converging point of dysregulated TGFB superfamily signaling and genetic aberrations in GCT development. It is anticipated that deciphering the role of TGFB superfamily signaling cascades in ovarian tumorigenesis will help develop new therapeutic approaches for GCTs by targeting core signaling elements essential for tumor initiation, growth, and progression.
Collapse
Affiliation(s)
- Xin Fang
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas
| | - Yang Gao
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas
| | - Qinglei Li
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas
| |
Collapse
|
35
|
Kim SY, Ebbert K, Cordeiro MH, Romero MM, Whelan KA, Suarez AA, Woodruff TK, Kurita T. Constitutive Activation of PI3K in Oocyte Induces Ovarian Granulosa Cell Tumors. Cancer Res 2016; 76:3851-61. [PMID: 27197196 DOI: 10.1158/0008-5472.can-15-3358] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 04/19/2016] [Indexed: 11/16/2022]
Abstract
Cell-cell interactions play crucial roles in the maintenance of tissue homeostasis, a loss of which often leads to varying diseases, including cancer. Here, we report that uncontrolled PI3K activity within oocytes irreversibly transforms granulosa cells (GC), causing GC tumors (GCT) through perturbed local cell communication. Previously, we reported reproductive phenotypes of transgenic mice, in which expression of constitutively active mutant PI3K was induced in primordial oocytes by Gdf9-iCre. The transgenic mice (Cre(+)) demonstrated severe ovarian phenotypes, including the overgrowth of excess ovarian follicles and anovulation. Surprisingly, the Cre(+) mice became cachectic by postnatal day 80 due to bilateral GCT. Although GCT cells proliferated independently of oocytes, local interactions with mutant PI3K-positive oocytes during early folliculogenesis were essential for the GC transformation. Growing GCT cells expressed high levels of inhibin βA and nuclear SMAD3, and the proliferation rate was positively correlated with a high activin A to inhibin A ratio. These results suggested that the tumor cells stimulated their growth through an activin A autocrine signaling pathway, a hypothesis confirmed by activin A secretion in cultured GCT cells, which proliferated in response. Although communication between the oocyte and surrounding somatic cells is critical for the normal development of ovarian follicles, perturbations in oocyte-GC communication during early folliculogenesis can induce GCT by activating an autocrine growth circuit program in GC. Cancer Res; 76(13); 3851-61. ©2016 AACR.
Collapse
Affiliation(s)
- So-Youn Kim
- Division of Reproductive Science in Medicine, Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois.
| | - Katherine Ebbert
- Division of Reproductive Science in Medicine, Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Marilia H Cordeiro
- Division of Reproductive Science in Medicine, Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Megan M Romero
- Division of Reproductive Science in Medicine, Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Kelly A Whelan
- Division of Reproductive Science in Medicine, Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Adrian A Suarez
- Department of Pathology, The Comprehensive Cancer Center, Ohio State University, Columbus, Ohio
| | - Teresa K Woodruff
- Division of Reproductive Science in Medicine, Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Takeshi Kurita
- Department of Molecular Virology, Immunology and Medical Genetics, The Comprehensive Cancer Center, Ohio State University, Columbus, Ohio.
| |
Collapse
|
36
|
Matrix Metallopeptidase 14 Plays an Important Role in Regulating Tumorigenic Gene Expression and Invasion Ability of HeLa Cells. Int J Gynecol Cancer 2016; 26:600-6. [DOI: 10.1097/igc.0000000000000652] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
37
|
Leung DT, Fuller PJ, Chu S. Impact of FOXL2 mutations on signaling in ovarian granulosa cell tumors. Int J Biochem Cell Biol 2016; 72:51-54. [DOI: 10.1016/j.biocel.2016.01.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 01/08/2016] [Accepted: 01/08/2016] [Indexed: 12/21/2022]
|
38
|
Basham KJ, Hung HA, Lerario AM, Hammer GD. Mouse models of adrenocortical tumors. Mol Cell Endocrinol 2016; 421:82-97. [PMID: 26678830 PMCID: PMC4720156 DOI: 10.1016/j.mce.2015.11.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Revised: 11/23/2015] [Accepted: 11/24/2015] [Indexed: 12/17/2022]
Abstract
The molecular basis of the organogenesis, homeostasis, and tumorigenesis of the adrenal cortex has been the subject of intense study for many decades. Specifically, characterization of tumor predisposition syndromes with adrenocortical manifestations and molecular profiling of sporadic adrenocortical tumors have led to the discovery of key molecular pathways that promote pathological adrenal growth. However, given the observational nature of such studies, several important questions regarding the molecular pathogenesis of adrenocortical tumors have remained. This review will summarize naturally occurring and genetically engineered mouse models that have provided novel tools to explore the molecular and cellular underpinnings of adrenocortical tumors. New paradigms of cancer initiation, maintenance, and progression that have emerged from this work will be discussed.
Collapse
Affiliation(s)
- Kaitlin J Basham
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, USA; Endocrine Oncology Program, Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Holly A Hung
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, USA; Endocrine Oncology Program, Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Antonio M Lerario
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, USA; Endocrine Oncology Program, Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Gary D Hammer
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, USA; Endocrine Oncology Program, Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
39
|
Pihlajoki M, Färkkilä A, Soini T, Heikinheimo M, Wilson DB. GATA factors in endocrine neoplasia. Mol Cell Endocrinol 2016; 421:2-17. [PMID: 26027919 PMCID: PMC4662929 DOI: 10.1016/j.mce.2015.05.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Revised: 04/26/2015] [Accepted: 05/09/2015] [Indexed: 02/07/2023]
Abstract
GATA transcription factors are structurally-related zinc finger proteins that recognize the consensus DNA sequence WGATAA (the GATA motif), an essential cis-acting element in the promoters and enhancers of many genes. These transcription factors regulate cell fate specification and differentiation in a wide array of tissues. As demonstrated by genetic analyses of mice and humans, GATA factors play pivotal roles in the development, homeostasis, and function of several endocrine organs including the adrenal cortex, ovary, pancreas, parathyroid, pituitary, and testis. Additionally, GATA factors have been shown to be mutated, overexpressed, or underexpressed in a variety of endocrine tumors (e.g., adrenocortical neoplasms, parathyroid tumors, pituitary adenomas, and sex cord stromal tumors). Emerging evidence suggests that GATA factors play a direct role in the initiation, proliferation, or propagation of certain endocrine tumors via modulation of key developmental signaling pathways implicated in oncogenesis, such as the WNT/β-catenin and TGFβ pathways. Altered expression or function of GATA factors can also affect the metabolism, ploidy, and invasiveness of tumor cells. This article provides an overview of the role of GATA factors in endocrine neoplasms. Relevant animal models are highlighted.
Collapse
Affiliation(s)
- Marjut Pihlajoki
- Children's Hospital, Helsinki University Central Hospital, University of Helsinki, 00290 Helsinki, Finland
| | - Anniina Färkkilä
- Children's Hospital, Helsinki University Central Hospital, University of Helsinki, 00290 Helsinki, Finland; Department of Obstetrics and Gynecology, Helsinki University Central Hospital, University of Helsinki, 00290 Helsinki, Finland
| | - Tea Soini
- Children's Hospital, Helsinki University Central Hospital, University of Helsinki, 00290 Helsinki, Finland
| | - Markku Heikinheimo
- Children's Hospital, Helsinki University Central Hospital, University of Helsinki, 00290 Helsinki, Finland; Department of Pediatrics, St. Louis Children's Hospital, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - David B Wilson
- Department of Pediatrics, St. Louis Children's Hospital, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
40
|
Goulvent T, Ray-Coquard I, Borel S, Haddad V, Devouassoux-Shisheboran M, Vacher-Lavenu MC, Pujade-Laurraine E, Savina A, Maillet D, Gillet G, Treilleux I, Rimokh R. DICER1 and FOXL2 mutations in ovarian sex cord-stromal tumours: a GINECO Group study. Histopathology 2015; 68:279-85. [PMID: 26033501 DOI: 10.1111/his.12747] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 05/27/2015] [Indexed: 12/21/2022]
Abstract
AIMS FOXL2 mutation has been consistently identified in adult granulosa cell tumours (A-GCTs). DICER1 mutations have been described predominantly in Sertoli-Leydig cell tumours (SLCTs). The prognostic implication of these mutations remains uncertain, as moderately sized studies have yielded variable outcomes. Our aim was to determine the implications of DICER1 and FOXL2 mutations in 156 ovarian sex cord-stromal tumours (SCSTs). METHODS AND RESULTS FOXL2 mutations were found in 94% of pathologically confirmed A-GCTs (95/101), in one of eight juvenile granulosa cell tumours (J-GCTs), and in two of 19 SLCTs. DICER1 mutations in the RNase IIIb domain were found in six of 19 SLCTs, two of eight J-GCTs, and one of 12 undifferentiated SCSTs (Und-SCSTs). Comparison of DICER1-mutated SLCTs with DICER1-non-mutated SLCTs showed that patient age at diagnosis was lower and oestrogen receptor expression was more frequent in DICER1-mutated tumours. With a median follow-up of 22 months, two of five DICER1-mutated SLCTs relapsed, in contrast to none of eight DICER1-non-mutated tumours. CONCLUSIONS Our results suggest that, in contrast to FOXL2 mutations in A-GCT, DICER1 mutations in SLCT might be more useful for prognosis than for diagnosis. However, study of a larger cohort of patients is necessary to establish this. Identification of genetic alterations in SCST offers promising therapeutic options.
Collapse
Affiliation(s)
- Thibault Goulvent
- U1052 Inserm, UMR CNRS 5286, Centre de Recherche en Cancérologie de Lyon, Université de Lyon, Centre Léon Bérard, Lyon, France.,Institut Roche de Recherche et Médecine Translationnelle, Boulogne Billancourt, France
| | - Isabelle Ray-Coquard
- Department of Medical Oncology, Université de Lyon, Centre Léon Bérard, Lyon, France
| | - Stéphane Borel
- U1052 Inserm, UMR CNRS 5286, Centre de Recherche en Cancérologie de Lyon, Université de Lyon, Centre Léon Bérard, Lyon, France
| | | | | | | | | | - Ariel Savina
- RocheSAS Scientific Partnerships, Boulogne Billancourt, France
| | - Denis Maillet
- Department of Medical Oncology, Université de Lyon, Centre Léon Bérard, Lyon, France
| | - Germain Gillet
- U1052 Inserm, UMR CNRS 5286, Centre de Recherche en Cancérologie de Lyon, Université de Lyon, Centre Léon Bérard, Lyon, France
| | | | - Ruth Rimokh
- U1052 Inserm, UMR CNRS 5286, Centre de Recherche en Cancérologie de Lyon, Université de Lyon, Centre Léon Bérard, Lyon, France
| |
Collapse
|
41
|
Wilberger A, Yang B. Gynandroblastoma With Juvenile Granulosa Cell Tumor and Concurrent Renal Cell Carcinoma. Int J Surg Pathol 2015; 23:393-8. [DOI: 10.1177/1066896915573569] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Gynandroblastoma is an extremely rare primary tumor of the ovary showing morphological evidence of both female (granulosa cell tumor) and male (Sertoli or Sertoli–Leydig tumor) differentiation. We report an unusual case of a 32-year-old female who presented with hyperandrogenism and was found on imaging to have concurrent ovarian and renal masses. Following surgical excision, the ovarian mass was diagnosed as gynandroblastoma, which consisted of 45% juvenile granulosa cell tumor and 55% intermediately differentiated Sertoli–Leydig tumor. The renal mass was diagnosed as a conventional renal clear cell carcinoma. Gynandroblastoma, especially with juvenile granulosa cell tumor, is an extremely rare ovarian tumor. Concurrent gynandroblastoma with another malignant neoplasm has not been reported in the literature.
Collapse
Affiliation(s)
| | - Bin Yang
- Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
42
|
Liu Z, Ren YA, Pangas SA, Adams J, Zhou W, Castrillon DH, Wilhelm D, Richards JS. FOXO1/3 and PTEN Depletion in Granulosa Cells Promotes Ovarian Granulosa Cell Tumor Development. Mol Endocrinol 2015; 29:1006-24. [PMID: 26061565 DOI: 10.1210/me.2015-1103] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The forkhead box (FOX), FOXO1 and FOXO3, transcription factors regulate multiple functions in mammalian cells. Selective inactivation of the Foxo1 and Foxo3 genes in murine ovarian granulosa cells severely impairs follicular development and apoptosis causing infertility, and as shown here, granulosa cell tumor (GCT) formation. Coordinate depletion of the tumor suppressor Pten gene in the Foxo1/3 strain enhanced the penetrance and onset of GCT formation. Immunostaining and Western blot analyses confirmed FOXO1 and phosphatase and tensin homolog (PTEN) depletion, maintenance of globin transcription factor (GATA) 4 and nuclear localization of FOXL2 and phosphorylated small mothers against decapentaplegic (SMAD) 2/3 in the tumor cells, recapitulating results we observed in human adult GCTs. Microarray and quantitative PCR analyses of mouse GCTs further confirmed expression of specific genes (Foxl2, Gata4, and Wnt4) controlling granulosa cell fate specification and proliferation, whereas others (Emx2, Nr0b1, Rspo1, and Wt1) were suppressed. Key genes (Amh, Bmp2, and Fshr) controlling follicle growth, apoptosis, and differentiation were also suppressed. Inhbb and Grem1 were selectively elevated, whereas reduction of Inha provided additional evidence that activin signaling and small mothers against decapentaplegic (SMAD) 2/3 phosphorylation impact GCT formation. Unexpectedly, markers of Sertoli/epithelial cells (SRY [sex determining region Y]-box 9/keratin 8) and alternatively activated macrophages (chitinase 3-like 3) were elevated in discrete subpopulations within the mouse GCTs, indicating that Foxo1/3/Pten depletion not only leads to GCTs but also to altered granulosa cell fate decisions and immune responses. Thus, analyses of the Foxo1/3/Pten mouse GCTs and human adult GCTs provide strong evidence that impaired functions of the FOXO1/3/PTEN pathways lead to dramatic changes in the molecular program within granulosa cells, chronic activin signaling in the presence of FOXL2 and GATA4, and tumor formation.
Collapse
Affiliation(s)
- Zhilin Liu
- Departments of Molecular and Cellular Biology (Z.L., Y.A.R., S.A.P., J.A., J.S.R.), Pathology and Immunology (S.A.P.), and Obstetrics and Gynecology (J.A.), Baylor College of Medicine, and Department of Experimental Radiation Oncology (W.Z.), The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030; Department of Pathology (D.H.C.), The University of Texas Southwestern Medical School, Dallas, Texas 75390; and Department of Anatomy and Developmental Biology (D.W.), Monash University, Clayton VIC 3800, Australia
| | - Yi A Ren
- Departments of Molecular and Cellular Biology (Z.L., Y.A.R., S.A.P., J.A., J.S.R.), Pathology and Immunology (S.A.P.), and Obstetrics and Gynecology (J.A.), Baylor College of Medicine, and Department of Experimental Radiation Oncology (W.Z.), The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030; Department of Pathology (D.H.C.), The University of Texas Southwestern Medical School, Dallas, Texas 75390; and Department of Anatomy and Developmental Biology (D.W.), Monash University, Clayton VIC 3800, Australia
| | - Stephanie A Pangas
- Departments of Molecular and Cellular Biology (Z.L., Y.A.R., S.A.P., J.A., J.S.R.), Pathology and Immunology (S.A.P.), and Obstetrics and Gynecology (J.A.), Baylor College of Medicine, and Department of Experimental Radiation Oncology (W.Z.), The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030; Department of Pathology (D.H.C.), The University of Texas Southwestern Medical School, Dallas, Texas 75390; and Department of Anatomy and Developmental Biology (D.W.), Monash University, Clayton VIC 3800, Australia
| | - Jaye Adams
- Departments of Molecular and Cellular Biology (Z.L., Y.A.R., S.A.P., J.A., J.S.R.), Pathology and Immunology (S.A.P.), and Obstetrics and Gynecology (J.A.), Baylor College of Medicine, and Department of Experimental Radiation Oncology (W.Z.), The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030; Department of Pathology (D.H.C.), The University of Texas Southwestern Medical School, Dallas, Texas 75390; and Department of Anatomy and Developmental Biology (D.W.), Monash University, Clayton VIC 3800, Australia
| | - Wei Zhou
- Departments of Molecular and Cellular Biology (Z.L., Y.A.R., S.A.P., J.A., J.S.R.), Pathology and Immunology (S.A.P.), and Obstetrics and Gynecology (J.A.), Baylor College of Medicine, and Department of Experimental Radiation Oncology (W.Z.), The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030; Department of Pathology (D.H.C.), The University of Texas Southwestern Medical School, Dallas, Texas 75390; and Department of Anatomy and Developmental Biology (D.W.), Monash University, Clayton VIC 3800, Australia
| | - Diego H Castrillon
- Departments of Molecular and Cellular Biology (Z.L., Y.A.R., S.A.P., J.A., J.S.R.), Pathology and Immunology (S.A.P.), and Obstetrics and Gynecology (J.A.), Baylor College of Medicine, and Department of Experimental Radiation Oncology (W.Z.), The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030; Department of Pathology (D.H.C.), The University of Texas Southwestern Medical School, Dallas, Texas 75390; and Department of Anatomy and Developmental Biology (D.W.), Monash University, Clayton VIC 3800, Australia
| | - Dagmar Wilhelm
- Departments of Molecular and Cellular Biology (Z.L., Y.A.R., S.A.P., J.A., J.S.R.), Pathology and Immunology (S.A.P.), and Obstetrics and Gynecology (J.A.), Baylor College of Medicine, and Department of Experimental Radiation Oncology (W.Z.), The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030; Department of Pathology (D.H.C.), The University of Texas Southwestern Medical School, Dallas, Texas 75390; and Department of Anatomy and Developmental Biology (D.W.), Monash University, Clayton VIC 3800, Australia
| | - JoAnne S Richards
- Departments of Molecular and Cellular Biology (Z.L., Y.A.R., S.A.P., J.A., J.S.R.), Pathology and Immunology (S.A.P.), and Obstetrics and Gynecology (J.A.), Baylor College of Medicine, and Department of Experimental Radiation Oncology (W.Z.), The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030; Department of Pathology (D.H.C.), The University of Texas Southwestern Medical School, Dallas, Texas 75390; and Department of Anatomy and Developmental Biology (D.W.), Monash University, Clayton VIC 3800, Australia
| |
Collapse
|
43
|
Heikinheimo M, Pihlajoki M, Schrade A, Kyrönlahti A, Wilson DB. Testicular steroidogenic cells to the rescue. Endocrinology 2015; 156:1616-9. [PMID: 25886071 DOI: 10.1210/en.2015-1222] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Markku Heikinheimo
- Departments of Pediatrics and Developmental Biology (M.H., D.B.W.), Washington University School of Medicine and St Louis Children's Hospital, St Louis, Missouri 63110; and Children's Hospital (M.H., M.P., A.S., A.K.), University of Helsinki and Helsinki Central Hospital, 00290 Helsinki, Finland
| | | | | | | | | |
Collapse
|
44
|
Cai L, Sun A, Li H, Tsinkgou A, Yu J, Ying S, Chen Z, Shi Z. Molecular mechanisms of enhancing porcine granulosa cell proliferation and function by treatment in vitro with anti-inhibin alpha subunit antibody. Reprod Biol Endocrinol 2015; 13:26. [PMID: 25889399 PMCID: PMC4395973 DOI: 10.1186/s12958-015-0022-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 03/24/2015] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND This study was conducted to clarify the effect of the inhibiting action of inhibin on porcine granulosa cell proliferation and function, and to investigate the underlying intracellular regulatory molecular mechanisms. METHODS Porcine granulosa cells were cultured in vitro, and were treated with an anti-inhibin alpha subunit antibody, with or without co-treatment of follicle-stimulating hormone (FSH) in the culture medium. RESULTS Treatment with anti-inhibin alpha subunit antibody led to a significant increase in estradiol (E2) secretion and cell proliferation. Anti-inhibin alpha subunit antibody worked synergistically with FSH at low concentrations (25 microg/mL) to stimulate E2 secretion, but attenuated FSH action at high concentrations (50 microg/mL). Immunoneutralization of inhibin bioactivity increased FOXL2, Smad3, and PKA phosphorylation, and mRNA expression of the transcription factors CEBP and c-FOS. The expression of genes encoding gonadotropin receptors, FSHR and LHR, and of those involved in steroidogenesis, as well as IGFs and IGFBPs, the cell cycle progression factors cyclinD1 and cyclinD2, and the anti-apoptosis and anti-atresia factors Bcl2, TIMP, and ADAMTS were upregulated following anti-inhibin alpha-subunit treatment. Treatment with anti-inhibin alpha subunit down regulated expression of the pro-apoptotic gene encoding caspase3. Although expression of the pro-angiogenesis genes FN1, FGF2, and VEGF was upregulated, expression of the angiogenesis-inhibiting factor THBS1 was downregulated following anti-inhibin alpha subunit treatment. CONCLUSIONS These results suggest that immunoneutralization of inhibin bioactivity, through augmentation of the activin and gonadotropin receptor signaling pathways and regulation of gene expression, permits the development of healthy and viable granulosa cells. These molecular mechanisms help to explain the enhanced ovarian follicular development observed following inhibin immunization in animal models.
Collapse
Affiliation(s)
- Liuping Cai
- Laboratory of Animal Breeding and Reproduction, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China.
| | - Aidong Sun
- Laboratory of Animal Breeding and Reproduction, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China.
| | - Hui Li
- Laboratory of Animal Breeding and Reproduction, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China.
| | - Anastasia Tsinkgou
- Department of Life Science, Xijiao-Liverpool University, Suzhou, 215123, China.
| | - Jianning Yu
- Laboratory of Animal Breeding and Reproduction, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China.
| | - Shijia Ying
- Laboratory of Animal Breeding and Reproduction, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China.
| | - Zhe Chen
- Laboratory of Animal Breeding and Reproduction, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China.
| | - Zhendan Shi
- Laboratory of Animal Breeding and Reproduction, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China.
| |
Collapse
|
45
|
Abstract
PURPOSE OF REVIEW Adult ovarian granulosa cell tumours (AGCTs) are the most common sex cord-stromal tumours. Although the prognosis is generally favourable, recurrent or advanced AGCT shows poor prognosis. An overview of the main findings on the management of AGCT published recently is provided. RECENT FINDINGS Novel biomarkers, including FOXL2, SMAD3 and GATA4, have been identified as potential diagnostic and therapeutic targets for this type of tumour. Interesting therapeutic implications are also emerging from studies on preclinical models, supporting the possible activity of anti-vascular endothelial growth factor A therapy for the treatment of AGCTs. Further, potentially active drugs could be targeting agents directed against epidermal growth factor receptor and/or insulin growth factor receptor-1. Recent data confirmed the importance of surgery in the management of AGCTs, in which hysterectomy can be avoided in young patients, as a recent study demonstrated that the risk of endometrial cancer after salpingo-oophorectomy for AGCT, with negative endometrial evaluation, is lower than the risk of endometrial cancer in the general population. SUMMARY The present review highlights current challenges and future directions in the treatment of AGCTs.Optimization of existing treatment modalities and the addition of novel drugs may hopefully lead to improved oncologic outcomes.
Collapse
|
46
|
Vaiman D. Reproductive performance: at the cross-road of genetics, technologies and environment. Reprod Fertil Dev 2015; 27:1-13. [DOI: 10.1071/rd14316] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Sexual reproduction depends on a negotiation between the sexes at the level of the cells (gametes), tissue (trophectoderm of the blastocyst and endometrium in the uterus) and organisms (to allow sexual intercourse). This review evaluates new questions linked to sexual reproduction in the biosphere in the context of the 21st century, in light of current knowledge in genetics and epigenetics. It presents the challenge of ‘forcing reproductive efficiency’ using ineffective gametes, or despite other fertility problems, through medically assisted reproduction and presents the reproductive challenge of high production farm animals, which are in a situation of chronically negative energy balance. It also analyses the situation created by the release of endocrine disruptors into the environment and discusses the possible transgenerational consequences of environmental modifications linked to these compounds.
Collapse
|
47
|
Georges A, L'Hôte D, Todeschini AL, Auguste A, Legois B, Zider A, Veitia RA. The transcription factor FOXL2 mobilizes estrogen signaling to maintain the identity of ovarian granulosa cells. eLife 2014; 3. [PMID: 25369636 PMCID: PMC4356143 DOI: 10.7554/elife.04207] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 10/07/2014] [Indexed: 12/19/2022] Open
Abstract
FOXL2 is a lineage determining transcription factor in the ovary, but its direct targets and modes of action are not fully characterized. In this study, we explore the targets of FOXL2 and five nuclear receptors in murine primary follicular cells. We found that FOXL2 is required for normal gene regulation by steroid receptors, and we show that estrogen receptor beta (ESR2) is the main vector of estradiol signaling in these cells. Moreover, we found that FOXL2 directly modulates Esr2 expression through a newly identified intronic element. Interestingly, we found that FOXL2 repressed the testis-determining gene Sox9 both independently of estrogen signaling and through the activation of ESR2 expression. Altogether, we show that FOXL2 mobilizes estrogen signaling to establish a coherent feed-forward loop repressing Sox9. This sheds a new light on the role of FOXL2 in ovarian maintenance and function. DOI:http://dx.doi.org/10.7554/eLife.04207.001 In female mammals, granulosa cells in the ovaries help egg cells to grow and develop by secreting nutrients and estrogens—the female sex hormones. A protein called FOXL2 helps granulosa cells to develop and functions by binding to the DNA of the cells to switch certain genes either on or off. In humans, mutations in the gene that codes for the FOXL2 protein are associated with granulosa cell tumors and with a loss of female fertility in early adulthood. In addition, if the amount of FOXL2 is artificially reduced in granulosa cells in female mice, the cells take on many of the characteristics of supporting cells found in the testes of males. To investigate in more detail how FOXL2 works, Georges et al. grew mouse granulosa cells in the laboratory to identify the DNA sequences where FOXL2 will bind, and to uncover how this binding affects gene expression. Georges et al. conclude that FOXL2 orchestrates a network involving many different proteins that allows estrogen to be produced and used by granulosa cells; and in doing so these cells maintain their identity as ovarian cells. FOXL2 was also shown to work closely with the receptor proteins that detect the sex hormones, and which help to control whether particular sex-specific genes are switched on or off. One particularly important role of FOXL2 in granulosa cells is that it represses a gene called Sox9. By repressing Sox9, the granulosa cells do not transform into their counterparts normally found in testes. Although FOXL2 was previously reported to directly regulate the Sox9 gene, Georges et al. find that it also acts through other molecules, and that there are alternative ways in which it can do so. Although Georges et al. have established some of the ways that FOXL2 functions, this protein can work via other pathways; these will require further investigation to be fully understood. DOI:http://dx.doi.org/10.7554/eLife.04207.002
Collapse
|
48
|
YANG CHUANG, FU ZHONGXUE. PEG-liposomal oxaliplatin combined with nuclear factor-κB inhibitor (PDTC) induces apoptosis in human colorectal cancer cells. Oncol Rep 2014; 32:1617-21. [DOI: 10.3892/or.2014.3336] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 07/03/2014] [Indexed: 11/06/2022] Open
|
49
|
Färkkilä A, Andersson N, Bützow R, Leminen A, Heikinheimo M, Anttonen M, Unkila-Kallio L. HER2 and GATA4 are new prognostic factors for early-stage ovarian granulosa cell tumor-a long-term follow-up study. Cancer Med 2014; 3:526-36. [PMID: 24687970 PMCID: PMC4101743 DOI: 10.1002/cam4.230] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 02/10/2014] [Accepted: 02/14/2014] [Indexed: 12/11/2022] Open
Abstract
Granulosa cell tumors (GCTs) carry a risk of recurrence also at an early stage, but reliable prognostic factors are lacking. We assessed clinicopathological prognostic factors and the prognostic roles of the human epidermal growth factor receptors (HER 2–4) and the transcription factor GATA4 in GCTs. We conducted a long-term follow-up study of 80 GCT patients with a mean follow-up time of 16.8 years. A tumor-tissue microarray was immunohistochemically stained for HER2–4 and GATA4. Expression of HER2–4 mRNA was studied by means of real time polymerase chain reaction and HER2 gene amplification was analyzed by means of silver in situ hybridization. The results were correlated to clinical data on recurrences and survival. We found that GCTs have an indolent prognosis, with 5-year disease-specific survival (DSS) being 97.5%. Tumor recurrence was detected in 24% of the patients at a median of 7.0 years (range 2.6–18 years) after diagnosis. Tumor stage was not prognostic of disease-free survival (DFS). Of the molecular prognostic factors, high-level expression of HER2, and GATA4, and high nuclear atypia were prognostic of shorter DFS. In multivariate analyses, high-level coexpression of HER2 and GATA4 independently predicted DFS (hazard ratio [HR] 8.75, 95% CI 2.20–39.48, P = 0.002). High-level expression of GATA4 also predicted shorter DSS (HR 3.96, 95% CI 1.45–12.57, P = 0.006). In multivariate analyses, however, tumor stage (II–III) and nuclear atypia were independent prognostic factors of DSS. In conclusion HER2 and GATA4 are new molecular prognostic markers of GCT recurrence, which could be utilized to optimize the management and follow-up of patients with early-stage GCTs.
Collapse
Affiliation(s)
- Anniina Färkkilä
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland; Children's Hospital, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland
| | | | | | | | | | | | | |
Collapse
|