1
|
Ubiali T, Madruga-Rimoli CC, Diniz-Hein TA, Sanfins MD, Masiero BS, Colella-Santos MF. Effects of stimuli and contralateral noise levels on auditory cortical potentials recorded in school-age children. PLoS One 2025; 20:e0317661. [PMID: 39841711 PMCID: PMC11753713 DOI: 10.1371/journal.pone.0317661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 12/31/2024] [Indexed: 01/24/2025] Open
Abstract
BACKGROUND AND OBJECTIVE One of the functions attributed to the auditory efferent system is related to the processing of acoustic stimuli in noise backgrounds. However, clinical implications and the neurophysiological mechanisms of this system are not yet understood, especially on higher regions of the central nervous system. Only a few researchers studied the effects of noise on cortical auditory evoked potentials (CAEP), but the lack of studies in this area and the contradictory results, especially in children, point to the need to investigate different protocols and parameters that could allow the study of top-down activity in humans. For this reason, the aim of this study was to analyze the effect of varying levels of contralateral noise on efferent activity in children by recording CAEPs with tone burst stimuli. Additionally, we aimed at verifying the effects of contralateral noise on cortical processing of speech stimuli. METHODS Monaural CAEPs were recorded using tone burst stimuli in quiet and with contralateral white noise at 60 dB and at 70 dB in 65 typically developing school-aged children (experiment 1), and using speech stimuli with contralateral white noise at 60 dB in 41 children (experiment 2). RESULTS In experiment 1, noise induced changes were observed only for P1 and P300 components. P1 latency was prolonged at both noise level conditions, P300 latency was prolonged only in the condition with noise at 70 dB, and P300 amplitude was reduced only in the condition with noise at 60 dB. In experiment 2, noise induced latency delays were observed on P1, P2, N2, and P300 components and amplitude reduction was observed only for N1. CONCLUSION The effects of noise stimulation were observed on all CAEP components elicited by speech, but the same was not observed in the experiment with tone bursts. The study of noise effects on CAEPs can provide electrophysiological evidence on how difficult listening situations affect sound discrimination and stimulus evaluation at thalamocortical regions.
Collapse
Affiliation(s)
- Thalita Ubiali
- Faculdade de Ciências Médicas, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | | | | | - Milaine Dominici Sanfins
- Department of Speech-Hearing-Language, Universidade Federal de São Paulo, São Paulo, Brazil
- Instituto de Ensino e Pesquisa Albert Einstein, Post-Graduate Program in Clinical Audiology, São Paulo, Brazil
- Department of Teleaudiology and Screening, Institute of Physiology and Pathology of Hearing, World Hearing Center, Kajetany, Poland
| | - Bruno Sanches Masiero
- Faculdade de Engenharia Elétrica e de Computação, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | | |
Collapse
|
2
|
Mertes IB. Associations between the medial olivocochlear reflex, middle-ear muscle reflex, and sentence-in-noise recognition using steady and pulsed noise elicitors. Hear Res 2024; 453:109108. [PMID: 39244840 DOI: 10.1016/j.heares.2024.109108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 08/21/2024] [Accepted: 08/27/2024] [Indexed: 09/10/2024]
Abstract
The middle-ear muscle reflex (MEMR) and medial olivocochlear reflex (MOCR) modify peripheral auditory function, which may reduce masking and improve speech-in-noise (SIN) recognition. Previous work and our pilot data suggest that the two reflexes respond differently to static versus dynamic noise elicitors. However, little is known about how the two reflexes work in tandem to contribute to SIN recognition. We hypothesized that SIN recognition would be significantly correlated with the strength of the MEMR and with the strength of the MOCR. Additionally, we hypothesized that SIN recognition would be best when both reflexes were activated. A total of 43 healthy, normal-hearing adults met the inclusion/exclusion criteria (35 females, age range: 19-29 years). MEMR strength was assessed using wideband absorbance. MOCR strength was assessed using transient-evoked otoacoustic emissions. SIN recognition was assessed using a modified version of the QuickSIN. All measurements were made with and without two types of contralateral noise elicitors (steady and pulsed) at two levels (50 and 65 dB SPL). Steady noise was used to primarily elicit the MOCR and pulsed noise was used to elicit both reflexes. Two baseline conditions without a contralateral elicitor were also obtained. Results revealed differences in how the MEMR and MOCR responded to elicitor type and level. Contrary to hypotheses, SIN recognition was not significantly improved in the presence of any contralateral elicitors relative to the baseline conditions. Additionally, there were no significant correlations between MEMR strength and SIN recognition, or between MOCR strength and SIN recognition. MEMR and MOCR strength were significantly correlated for pulsed noise elicitors but not steady noise elicitors. Results suggest no association between SIN recognition and the MEMR or MOCR, at least as measured and analyzed in this study. SIN recognition may have been influenced by factors not accounted for in this study, such as contextual cues, warranting further study.
Collapse
Affiliation(s)
- Ian B Mertes
- Department of Speech and Hearing Science, 901 South Sixth Street, University of Illinois Urbana-Champaign, Champaign 61820 IL, USA.
| |
Collapse
|
3
|
Bolat C, Yaldız ZÇB. Evaluation of the Effect of Age on the Contralateral Acoustic Reflex Suppression Test in Individuals With Normal Hearing. Am J Audiol 2024; 33:964-971. [PMID: 39133833 DOI: 10.1044/2024_aja-24-00025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024] Open
Abstract
PURPOSE The aim of this study is to investigate the age-related changes of the Contralateral Acoustic Reflex Suppression (CARS) test in individuals with normal hearing and to provide age-related normal values. METHOD The study included 66 individuals aged 18-65 years. The participants were divided into three age groups, respectively, 18-30 years, 31-45 years, and 46-65 years. Acoustic reflex threshold and acoustic reflex amplitude measurements were performed at frequencies of 500, 1000, and 2000 Hz in the presence and absence of suppressive noise from the contralateral ear. RESULTS In the comparison of suppression amounts according to age groups, the highest suppression amount at all frequencies was observed in the 18-30 years age group. CONCLUSIONS It is known that changes in the function of the efferent hearing system occur due to aging. In the CARS test, a decrease in the amount of suppression produced by the efferent system has been observed due to aging.
Collapse
Affiliation(s)
- Cihat Bolat
- Department of Audiology and Speech Disorders PhD Programme, Institute of Health Sciences, Ankara University, Turkey
| | | |
Collapse
|
4
|
Gafoor SA, Uppunda AK. Role of the medial olivocochlear efferent auditory system in speech perception in noise: a systematic review and meta-analyses. Int J Audiol 2024; 63:561-569. [PMID: 37791429 DOI: 10.1080/14992027.2023.2260951] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 09/09/2023] [Accepted: 09/14/2023] [Indexed: 10/05/2023]
Abstract
OBJECTIVE The study investigated the relationship between the strength of the medial olivocochlear reflex (measured via contralateral inhibition of otoacoustic emissions) and speech perception in noise (obtained from behavioural identification task) through meta-analyses. DESIGN A systematic review and random-effects meta-analysis of studies investigating the relationship in neurotypical adults was performed. STUDY SAMPLE The systematic search (in PubMed, Scopus, Science Direct and Google Scholar databases) revealed 21 eligible studies, which were critically appraised using the NIH tool for Observational Cohort and Cross-Sectional Studies. Meta-analysis was performed on 17 studies (374 participants) with fair to good quality. RESULTS The results revealed that the medial olivocochlear reflex accounts for less than 1% of the variations in speech perception in noise in neurotypical individuals. Sub-group analyses conducted to address a few methodological differences also revealed no discernible association between the two variables. CONCLUSIONS The results reveal no modulatory effect of the medial olivocochlear reflex assessed using contralateral inhibition of otoacoustic emission on the ability to perceive speech in noise. However, more data utilising alternative measures of medial olivocochlear reflex strength is necessary before drawing any conclusions about the role of the medial olivocochlear bundle in speech perception in noise.
Collapse
Affiliation(s)
- Shezeen Abdul Gafoor
- Department of Audiology, All India Institute of Speech and Hearing, Mysuru, India
| | - Ajith Kumar Uppunda
- Department of Audiology, All India Institute of Speech and Hearing, Mysuru, India
| |
Collapse
|
5
|
Boothalingam S, Peterson A, Powell L, Easwar V. Auditory brainstem mechanisms likely compensate for self-imposed peripheral inhibition. Sci Rep 2023; 13:12693. [PMID: 37542191 PMCID: PMC10403563 DOI: 10.1038/s41598-023-39850-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 08/01/2023] [Indexed: 08/06/2023] Open
Abstract
Feedback networks in the brain regulate downstream auditory function as peripheral as the cochlea. However, the upstream neural consequences of this peripheral regulation are less understood. For instance, the medial olivocochlear reflex (MOCR) in the brainstem causes putative attenuation of responses generated in the cochlea and cortex, but those generated in the brainstem are perplexingly unaffected. Based on known neural circuitry, we hypothesized that the inhibition of peripheral input is compensated for by positive feedback in the brainstem over time. We predicted that the inhibition could be captured at the brainstem with shorter (1.5 s) than previously employed long duration (240 s) stimuli where this inhibition is likely compensated for. Results from 16 normal-hearing human listeners support our hypothesis in that when the MOCR is activated, there is a robust reduction of responses generated at the periphery, brainstem, and cortex for short-duration stimuli. Such inhibition at the brainstem, however, diminishes for long-duration stimuli suggesting some compensatory mechanisms at play. Our findings provide a novel non-invasive window into potential gain compensation mechanisms in the brainstem that may have implications for auditory disorders such as tinnitus. Our methodology will be useful in the evaluation of efferent function in individuals with hearing loss.
Collapse
Affiliation(s)
- Sriram Boothalingam
- Waisman Center and Department of Communication Sciences and Disorders, University of Wisconsin-Madison, Madison, WI, 53705, USA.
- Macquarie University, Sydney, NSW, 2109, Australia.
- National Acoustic Laboratories, Sydney, NSW, 2109, Australia.
| | - Abigayle Peterson
- Waisman Center and Department of Communication Sciences and Disorders, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Macquarie University, Sydney, NSW, 2109, Australia
| | - Lindsey Powell
- Waisman Center and Department of Communication Sciences and Disorders, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Vijayalakshmi Easwar
- Waisman Center and Department of Communication Sciences and Disorders, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Macquarie University, Sydney, NSW, 2109, Australia
- National Acoustic Laboratories, Sydney, NSW, 2109, Australia
| |
Collapse
|
6
|
M B, Swathi C, Shameer S. Estimation of efferent inhibition and speech in noise perception on vocal musicians and music sleepers: A comparative study. J Otol 2023; 18:91-96. [PMID: 37153705 PMCID: PMC10159755 DOI: 10.1016/j.joto.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/30/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023] Open
|
7
|
Mertes IB, Stutz AL. Lack of correlation between medial olivocochlear reflex strength and sentence recognition in noise. Int J Audiol 2023; 62:110-117. [PMID: 35195043 DOI: 10.1080/14992027.2022.2033857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE The medial olivocochlear (MOC) reflex provides unmasking of sounds in noise, but its contribution to speech-in-noise perception remains unclear due to conflicting results. This study determined associations between MOC reflex strength and sentence recognition in noise in individuals with normal hearing. DESIGN MOC reflex strength was assessed using contralateral inhibition of transient-evoked otoacoustic emissions (TEOAEs). Scores on the AzBio sentence task were quantified at three signal-to-noise ratios (SNRs). Additionally, slope and threshold of the psychometric function were computed. Associations between MOC reflex strength and speech-in-noise outcomes were assessed using Spearman rank correlations. STUDY SAMPLE Nineteen young adults with normal hearing participated, with data from 17 individuals (mean age = 21.8 years) included in the analysis. RESULTS Contralateral noise significantly decreased the amplitude of TEOAEs. A range of contralateral inhibition values was exhibited across participants. Scores increased significantly with increasing SNR. Contrary to hypotheses, there were no significant correlations between MOC reflex strength and score, nor were there any significant correlations between MOC reflex strength and measures of the psychometric function. CONCLUSIONS Results found no significant monotonic relationship between MOC reflex strength and sentence recognition in noise. Future work is needed to determine the functional role of the MOC reflex.
Collapse
Affiliation(s)
- Ian B Mertes
- Department of Speech and Hearing Science, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| | - Abigail L Stutz
- Department of Speech and Hearing Science, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| |
Collapse
|
8
|
Kalaiah MK, Mishra K, Shastri U. The Relationship between Contralateral Suppression of Transient Evoked Otoacoustic Emission and Unmasking of Speech Evoked Auditory Brainstem Response. Int Arch Otorhinolaryngol 2022; 26:e676-e682. [DOI: 10.1055/s-0042-1742774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 12/21/2021] [Indexed: 10/18/2022] Open
Abstract
Abstract
Introduction Several studies have shown that efferent pathways of the auditory system improve perception of speech-in-noise. But, the majority of investigations assessing the role of efferent pathways on speech perception have used contralateral suppression of otoacoustic emissions as a measure of efferent activity. By studying the effect of efferent activity on the speech-evoked auditory brainstem response (ABR), some more light could be shed on the effect of efferent pathways on the encoding of speech in the auditory pathway.
Objectives To investigate the relationship between contralateral suppression of transient evoked otoacoustic emission (CSTEOAE) and unmasking of speech ABR.
Methods A total of 23 young adults participated in the study. The CSTEOAE was measured using linear clicks at 60 dB peSPL and white noise at 60 dB sound pressure level (SPL). The speech ABR was recorded using the syllable /da/ at 80 dB SPL in quiet, ipsilateral noise, and binaural noise conditions. In the ipsilateral noise condition, white noise was presented to the test ear at 60 dB SPL, and, in the binaural noise condition, two separate white noises were presented to both ears.
Results The F0 amplitude of speech ABR was higher in quiet condition; however, the mean amplitude of F0 was not significantly different across conditions. Correlation analysis showed a significant positive correlation between the CSTEOAE and the magnitude of unmasking of F0 amplitude of speech ABR.
Conclusions The findings of the present study suggests that the efferent pathways are involved in speech-in-noise processing.
Collapse
Affiliation(s)
- Mohan Kumar Kalaiah
- Department of Audiology and Speech Language Pathology, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Keshav Mishra
- Department of Audiology and Speech Language Pathology, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Usha Shastri
- Department of Audiology and Speech Language Pathology, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
9
|
Mertes IB, Potocki ME. Contralateral noise effects on otoacoustic emissions and electrophysiologic responses in normal-hearing adults. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2022; 151:2255. [PMID: 35364945 DOI: 10.1121/10.0009910] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 03/09/2022] [Indexed: 06/14/2023]
Abstract
Contralateral noise inhibits the amplitudes of cochlear and neural responses. These measures may hold potential diagnostic utility. The medial olivocochlear (MOC) reflex underlies the inhibition of cochlear responses but the extent to which it contributes to inhibition of neural responses remains unclear. Mertes and Leek [J. Acoust. Soc. Am. 140, 2027-2038 (2016)] recently examined contralateral inhibition of cochlear responses [transient-evoked otoacoustic emissions (TEOAEs)] and neural responses [auditory steady-state responses (ASSRs)] in humans and found that the two measures were not correlated, but potential confounds of older age and hearing loss were present. The current study controlled for these confounds by examining a group of young, normal-hearing adults. Additionally, measurements of the auditory brainstem response (ABR) were obtained. Responses were elicited using clicks with and without contralateral broadband noise. Changes in TEOAE and ASSR magnitude as well as ABR wave V latency were examined. Results indicated that contralateral inhibition of ASSRs was significantly larger than that of TEOAEs and that the two measures were uncorrelated. Additionally, there was no significant change in wave V latency. Results suggest that further work is needed to understand the mechanism underlying contralateral inhibition of the ASSR.
Collapse
Affiliation(s)
- Ian B Mertes
- Department of Speech and Hearing Science, University of Illinois at Urbana-Champaign, 901 South Sixth Street, Champaign, Illinois 61820, USA
| | - Morgan E Potocki
- Department of Speech and Hearing Science, University of Illinois at Urbana-Champaign, 901 South Sixth Street, Champaign, Illinois 61820, USA
| |
Collapse
|
10
|
Elangovan T, Selvarajan HG, McPherson B. Contralateral Suppression of Transient-evoked Otoacoustic Emissions in Leisure Noise Exposed Individuals. Noise Health 2022; 24:145-150. [PMID: 36124523 PMCID: PMC9743304 DOI: 10.4103/nah.nah_17_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background Leisure noise may have a significant impact on hearing thresholds and young adults are often exposed to loud music during leisure activities. This behavior puts them at risk of developing noise-induced hearing loss (NIHL). A frequent initial indication of NIHL is reduced hearing acuity at 4 kHz. The objective of the current study was to assess the role of the medial olivocochlear reflex (MOCR) in leisure noise-exposed individuals with and without a 4-kHz notch. Materials and Methods Audiological evaluation, including pure-tone and immittance audiometry, was performed for 156 college-going, young adults between May 2019 to December 2019. All participants had averaged pure-tone audiometric thresholds within normal limits, bilaterally. Annual individual exposure to personal listening devices (PLDs) was calculated using the Noise Exposure Questionnaire. The participants were then categorized into exposed (with and without audiometric 4 kHz notch) and nonexposed groups. Transient-evoked otoacoustic emission amplitude and its contralateral suppression were measured using linear and nonlinear click stimuli to study the effect of leisure noise exposure on MOCR. Results A significantly reduced overall contralateral suppression effect in participants exposed to PLD usage (P = 0.01) in both linear and nonlinear modes. On the contrary, significantly increased suppression was observed in linear mode for the 4 kHz frequency band in the PLD-exposed group without an audiometric notch (P = 0.009), possibly suggesting an early biomarker of NIHL. Conclusion Measuring contralateral suppression of otoacoustic emissions may be an effective tool to detect early NIHL in leisure noise-exposed individuals.
Collapse
Affiliation(s)
- Thilagaswarna Elangovan
- Department of Speech Language and Hearing Sciences, Faculty of Allied Health Sciences, Sri Ramachandra Institute of Higher Education and Research (DU), Porur, Chennai, Tamil Nadu, India
| | - Heramba Ganapathy Selvarajan
- Department of Speech Language and Hearing Sciences, Faculty of Allied Health Sciences, Sri Ramachandra Institute of Higher Education and Research (DU), Porur, Chennai, Tamil Nadu, India,Address for correspondence: Dr Heramba Ganapathy Selvarajan, Department of Speech Language and Hearing Sciences, Faculty of Allied Health Sciences, Sri Ramachandra Institute of Higher Education and Research (DU), Porur, Chennai 600116, Tamil Nadu, India.
E-mail:
| | - Bradley McPherson
- Human Communication, Development and Information Sciences, Faculty of Education, University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
11
|
Bazilio MMDM, dos Santos AFD, Frota S, Guimarães M, Ribeiro MG. Efferent Auditory Pathways Inhibition in Turner syndrome. Codas 2021; 34:e20200300. [PMID: 34730665 PMCID: PMC9886295 DOI: 10.1590/2317-1782/20212020300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 02/04/2021] [Indexed: 02/03/2023] Open
Abstract
PURPOSE The goal of this study is to investigate the efferent auditory pathways inhibition in Turner's syndrome and to relate it to the cytogenetic profile. METHODS This is a cross-sectional study with a comparison group. A sample with 94 participants divided into two groups: The study group was a sample of 40 patients diagnosed with Turner's syndrome (17.6 years of age). The control group was composed of 54 volunteers (18.9 years of age), female, without syndrome. The selected individuals were submitted to efferent auditory pathways inhibition research. RESULTS The mean of the inhibitory effect of the efferent auditory pathway in the study group in the right ear was 0.4 dB and in the comparison group it was 1.9 dB, however in the left ear the mean of the inhibitory effect of the efferent auditory pathway was 1.4 dB in the study group and 0.8 dB in the comparison group. The inhibitory effect of the efferent auditory pathway was present in 14 individuals with monosomy and in 15 with other cytogenetic alterations. CONCLUSIONS In the study group, the efferent auditory pathways inhibition value was significantly higher in the left ear and significantly lower than the control group in the right ear. There was no significant difference in efferent auditory pathways inhibition of right ear and left ear between the karyotype types.
Collapse
Affiliation(s)
- Martha Marcela de Matos Bazilio
- Universidade Federal do Rio de Janeiro – UFRJ - Rio de Janeiro (RJ), Brasil.
- Instituto Nacional de Educação de Surdos – INES - Rio de Janeiro (RJ), Brasil.
| | - Adriana Fernandes Duarte dos Santos
- Universidade Federal do Rio de Janeiro – UFRJ - Rio de Janeiro (RJ), Brasil.
- Instituto Nacional de Educação de Surdos – INES - Rio de Janeiro (RJ), Brasil.
| | - Silvana Frota
- Universidade Federal do Rio de Janeiro – UFRJ - Rio de Janeiro (RJ), Brasil.
| | - Marília Guimarães
- Universidade Federal do Rio de Janeiro – UFRJ - Rio de Janeiro (RJ), Brasil.
| | | |
Collapse
|
12
|
Dias JW, McClaskey CM, Harris KC. Early auditory cortical processing predicts auditory speech in noise identification and lipreading. Neuropsychologia 2021; 161:108012. [PMID: 34474065 DOI: 10.1016/j.neuropsychologia.2021.108012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 08/20/2021] [Accepted: 08/26/2021] [Indexed: 10/20/2022]
Abstract
Individuals typically exhibit better cross-sensory perception following unisensory loss, demonstrating improved perception of information available from the remaining senses and increased cross-sensory use of neural resources. Even individuals with no sensory loss will exhibit such changes in cross-sensory processing following temporary sensory deprivation, suggesting that the brain's capacity for recruiting cross-sensory sources to compensate for degraded unisensory input is a general characteristic of the perceptual process. Many studies have investigated how auditory and visual neural structures respond to within- and cross-sensory input. However, little attention has been given to how general auditory and visual neural processing relates to within and cross-sensory perception. The current investigation examines the extent to which individual differences in general auditory neural processing accounts for variability in auditory, visual, and audiovisual speech perception in a sample of young healthy adults. Auditory neural processing was assessed using a simple click stimulus. We found that individuals with a smaller P1 peak amplitude in their auditory-evoked potential (AEP) had more difficulty identifying speech sounds in difficult listening conditions, but were better lipreaders. The results suggest that individual differences in the auditory neural processing of healthy adults can account for variability in the perception of information available from the auditory and visual modalities, similar to the cross-sensory perceptual compensation observed in individuals with sensory loss.
Collapse
Affiliation(s)
- James W Dias
- Medical University of South Carolina, United States.
| | | | | |
Collapse
|
13
|
Hernández-Pérez H, Mikiel-Hunter J, McAlpine D, Dhar S, Boothalingam S, Monaghan JJM, McMahon CM. Understanding degraded speech leads to perceptual gating of a brainstem reflex in human listeners. PLoS Biol 2021; 19:e3001439. [PMID: 34669696 PMCID: PMC8559948 DOI: 10.1371/journal.pbio.3001439] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 11/01/2021] [Accepted: 10/07/2021] [Indexed: 11/19/2022] Open
Abstract
The ability to navigate "cocktail party" situations by focusing on sounds of interest over irrelevant, background sounds is often considered in terms of cortical mechanisms. However, subcortical circuits such as the pathway underlying the medial olivocochlear (MOC) reflex modulate the activity of the inner ear itself, supporting the extraction of salient features from auditory scene prior to any cortical processing. To understand the contribution of auditory subcortical nuclei and the cochlea in complex listening tasks, we made physiological recordings along the auditory pathway while listeners engaged in detecting non(sense) words in lists of words. Both naturally spoken and intrinsically noisy, vocoded speech-filtering that mimics processing by a cochlear implant (CI)-significantly activated the MOC reflex, but this was not the case for speech in background noise, which more engaged midbrain and cortical resources. A model of the initial stages of auditory processing reproduced specific effects of each form of speech degradation, providing a rationale for goal-directed gating of the MOC reflex based on enhancing the representation of the energy envelope of the acoustic waveform. Our data reveal the coexistence of 2 strategies in the auditory system that may facilitate speech understanding in situations where the signal is either intrinsically degraded or masked by extrinsic acoustic energy. Whereas intrinsically degraded streams recruit the MOC reflex to improve representation of speech cues peripherally, extrinsically masked streams rely more on higher auditory centres to denoise signals.
Collapse
Affiliation(s)
- Heivet Hernández-Pérez
- Department of Linguistics, The Australian Hearing Hub, Macquarie University, Sydney, Australia
| | - Jason Mikiel-Hunter
- Department of Linguistics, The Australian Hearing Hub, Macquarie University, Sydney, Australia
| | - David McAlpine
- Department of Linguistics, The Australian Hearing Hub, Macquarie University, Sydney, Australia
| | - Sumitrajit Dhar
- Department of Communication Sciences and Disorders, Northwestern University, Evanston, Illinois, United States of America
| | - Sriram Boothalingam
- University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Jessica J. M. Monaghan
- Department of Linguistics, The Australian Hearing Hub, Macquarie University, Sydney, Australia
- National Acoustic Laboratories, Sydney, Australia
| | - Catherine M. McMahon
- Department of Linguistics, The Australian Hearing Hub, Macquarie University, Sydney, Australia
| |
Collapse
|
14
|
Shaikh MA, Connell K, Zhang D. Controlled (re)evaluation of the relationship between speech perception in noise and contralateral suppression of otoacoustic emissions. Hear Res 2021; 409:108332. [PMID: 34419743 DOI: 10.1016/j.heares.2021.108332] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 07/31/2021] [Accepted: 08/03/2021] [Indexed: 10/20/2022]
Abstract
In people with normal hearing (NH), speech perception in noise (SPIN) improves when the speech signal is presented not gated with noise but after a delay. The medial olivocochlear reflex (MOCR) was thought to be involved in the neural dynamic range adaptation (NDRA) responsible for this adaptive SPIN; however, some of the recent studies do not support this hypothesis and suggest that adaptive SPIN involves the NDRA to noise-level statistics, irrespective of MOCR activation. A plausible reason for this discrepancy could be the variations and limitations of the experimental designs used in different studies. Using a relatively controlled and comprehensive study design, this study attempts to verify whether a delay between the delivery of speech and the noise improves the SPIN and whether MOCR mediates such effects. The SPIN was estimated by measuring speech reception thresholds (SRT) in noise under simultaneous-onset and delayed-onset (noise precedes speech onset by 300 ms) conditions. The SPIN in both ears was independently examined for ipsilateral, contralateral, and bilateral noise in women with normal hearing (N = 18; age range, 18-25 years). Contralateral suppression of transient-evoked otoacoustic emissions (CSOAEs) was used to estimate the MOCR based cochlear gain reduction. Under all test conditions, SPIN was improved in delayed-onset than in simultaneous-onset conditions, and the mean improvement in the SRT ranged from 0.7±1.7 to 1.8±1.8 dB. No significant correlation was obtained between CSOAEs and the mean temporal improvement in SRT, suggesting that MOCR may not be a predominant mechanism for the temporal improvement in SPIN.
Collapse
Affiliation(s)
| | - Kylie Connell
- Bloomsburg University of Pennsylvania, Bloomsburg, PA, USA
| | - Dong Zhang
- Bloomsburg University of Pennsylvania, Bloomsburg, PA, USA
| |
Collapse
|
15
|
Nagaraj NK, Yang J, Robinson TL, Magimairaj BM. Auditory closure with visual cues: Relationship with working memory and semantic memory. JASA EXPRESS LETTERS 2021; 1:095202. [PMID: 36154207 DOI: 10.1121/10.0006297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The role of working memory (WM) and long-term lexical-semantic memory (LTM) in the perception of interrupted speech with and without visual cues, was studied in 29 native English speakers. Perceptual stimuli were periodically interrupted sentences filled with speech noise. The memory measures included an LTM semantic fluency task, verbal WM, and visuo-spatial WM tasks. Whereas perceptual performance in the audio-only condition demonstrated a significant positive association with listeners' semantic fluency, perception in audio-video mode did not. These results imply that when listening to distorted speech without visual cues, listeners rely on lexical-semantic retrieval from LTM to restore missing speech information.
Collapse
Affiliation(s)
- Naveen K Nagaraj
- Cognitive Hearing Science Lab, Department of Communicative Disorders and Deaf Education, Utah State University, Logan, Utah 84322, USA
| | - Jing Yang
- Department of Communication Sciences and Disorders, University of Wisconsin-Milwaukee, P.O. Box 413, Milwaukee, Wisconsin 53201, USA , , ,
| | - Tanner L Robinson
- Cognitive Hearing Science Lab, Department of Communicative Disorders and Deaf Education, Utah State University, Logan, Utah 84322, USA
| | - Beula M Magimairaj
- Cognitive Hearing Science Lab, Department of Communicative Disorders and Deaf Education, Utah State University, Logan, Utah 84322, USA
| |
Collapse
|
16
|
Jedrzejczak WW, Pilka E, Kochanek K, Skarzynski H. Does the Presence of Spontaneous Components Affect the Reliability of Contralateral Suppression of Evoked Otoacoustic Emissions? Ear Hear 2021; 42:990-1005. [PMID: 33480622 DOI: 10.1097/aud.0000000000000996] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES The function of the medial olivocochlear system can be evaluated by measuring the suppression of otoacoustic emissions (OAEs) by contralateral stimulation. One of the obstacles preventing the clinical use of the OAE suppression is that it has considerable variability across subjects. One feature that tends to differentiate subjects is the presence or absence of spontaneous OAEs (SOAEs). The purpose of the present study was to investigate the reliability of contralateral suppression of transiently evoked OAEs (TEOAEs) measured using a commercial device in ears with and without SOAEs. DESIGN OAEs were recorded in a group of 60 women with normal hearing. TEOAEs were recorded with a linear protocol (identical stimuli), a constant stimulus level of 65 dB peSPL, and contralateral broadband noise (60 dB SPL) as a suppressor. Each recording session consisted of three measurements: the first two were made consecutively without taking out the probe (the "no refit" condition); the third measurement was made after taking out and refitting the probe (a "refit" condition). Global (for the whole signal) and half-octave band values of TEOAE response levels, signal-to-noise ratios (SNRs), raw dB TEOAE suppression, and normalized TEOAE suppression, and latency were investigated. Each subject was tested for the presence of SOAEs using the synchronized SOAE (SSOAE) technique. Reliability was evaluated by calculating the intraclass correlation coefficient, standard error of measurement (SEM) and minimum detectable change. RESULTS The TEOAE suppression was higher in ears with SSOAEs in terms of normalized percentages. However, when calculated in terms of decibels, the effect was not significant. The reliability of the TEOAE suppression as assessed by SEM was similar for ears with and without SSOAEs. The SEM for the whole dataset (with and without SSOAEs) was 0.08 dB for the no-refit condition and 0.13 dB for the refit condition (equivalent to 1.6% and 2.2%, respectively). SEMs were higher for half-octave bands than for global values. TEOAE SNRs were higher in ears with SSOAEs. CONCLUSIONS The effect of SSOAEs on reliability of the TEOAE suppression remains complicated. On the one hand, we found that higher SNRs generally provide lower variability of calculated suppressions, and that the presence of SSOAEs favors high SNRs. On the other hand, reliability estimates were not much different between ears with and without SSOAEs. Therefore, in a clinical setting, the presence of SOAEs does not seem to have an effect on suppression measures, at least when testing involves measuring global or half-octave band response levels.
Collapse
Affiliation(s)
- W Wiktor Jedrzejczak
- Institute of Physiology and Pathology of Hearing, Warsaw, Poland.,World Hearing Center, Kajetany, Nadarzyn, Poland
| | - Edyta Pilka
- Institute of Physiology and Pathology of Hearing, Warsaw, Poland.,World Hearing Center, Kajetany, Nadarzyn, Poland
| | - Krzysztof Kochanek
- Institute of Physiology and Pathology of Hearing, Warsaw, Poland.,World Hearing Center, Kajetany, Nadarzyn, Poland
| | - Henryk Skarzynski
- Institute of Physiology and Pathology of Hearing, Warsaw, Poland.,World Hearing Center, Kajetany, Nadarzyn, Poland
| |
Collapse
|
17
|
Lopez-Poveda EA, Eustaquio-Martín A, Fumero MJ, Gorospe JM, Polo López R, Gutiérrez Revilla MA, Schatzer R, Nopp P, Stohl JS. Speech-in-Noise Recognition With More Realistic Implementations of a Binaural Cochlear-Implant Sound Coding Strategy Inspired by the Medial Olivocochlear Reflex. Ear Hear 2021; 41:1492-1510. [PMID: 33136626 PMCID: PMC7722463 DOI: 10.1097/aud.0000000000000880] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 03/24/2020] [Indexed: 12/15/2022]
Abstract
OBJECTIVES Cochlear implant (CI) users continue to struggle understanding speech in noisy environments with current clinical devices. We have previously shown that this outcome can be improved by using binaural sound processors inspired by the medial olivocochlear (MOC) reflex, which involve dynamic (contralaterally controlled) rather than fixed compressive acoustic-to-electric maps. The present study aimed at investigating the potential additional benefits of using more realistic implementations of MOC processing. DESIGN Eight users of bilateral CIs and two users of unilateral CIs participated in the study. Speech reception thresholds (SRTs) for sentences in competition with steady state noise were measured in unilateral and bilateral listening modes. Stimuli were processed through two independently functioning sound processors (one per ear) with fixed compression, the current clinical standard (STD); the originally proposed MOC strategy with fast contralateral control of compression (MOC1); a MOC strategy with slower control of compression (MOC2); and a slower MOC strategy with comparatively greater contralateral inhibition in the lower-frequency than in the higher-frequency channels (MOC3). Performance with the four strategies was compared for multiple simulated spatial configurations of the speech and noise sources. Based on a previously published technical evaluation of these strategies, we hypothesized that SRTs would be overall better (lower) with the MOC3 strategy than with any of the other tested strategies. In addition, we hypothesized that the MOC3 strategy would be advantageous over the STD strategy in listening conditions and spatial configurations where the MOC1 strategy was not. RESULTS In unilateral listening and when the implant ear had the worse acoustic signal-to-noise ratio, the mean SRT was 4 dB worse for the MOC1 than for the STD strategy (as expected), but it became equal or better for the MOC2 or MOC3 strategies than for the STD strategy. In bilateral listening, mean SRTs were 1.6 dB better for the MOC3 strategy than for the STD strategy across all spatial configurations tested, including a condition with speech and noise sources colocated at front where the MOC1 strategy was slightly disadvantageous relative to the STD strategy. All strategies produced significantly better SRTs for spatially separated than for colocated speech and noise sources. A statistically significant binaural advantage (i.e., better mean SRTs across spatial configurations and participants in bilateral than in unilateral listening) was found for the MOC2 and MOC3 strategies but not for the STD or MOC1 strategies. CONCLUSIONS Overall, performance was best with the MOC3 strategy, which maintained the benefits of the originally proposed MOC1 strategy over the STD strategy for spatially separated speech and noise sources and extended those benefits to additional spatial configurations. In addition, the MOC3 strategy provided a significant binaural advantage, which did not occur with the STD or the original MOC1 strategies.
Collapse
Affiliation(s)
- Enrique A. Lopez-Poveda
- Laboratorio de Audición Computacional y Psicoacústica, Instituto de Neurociencias de Castilla y León, Universidad de Salamanca, Salamanca, Spain
- Grupo de Audiología, Instituto de Investigación Biomédica de Salamanca, Universidad de Salamanca, Salamanca, Spain
- Departamento de Cirugía, Facultad de Medicina, Universidad de Salamanca, Salamanca, Spain
| | - Almudena Eustaquio-Martín
- Laboratorio de Audición Computacional y Psicoacústica, Instituto de Neurociencias de Castilla y León, Universidad de Salamanca, Salamanca, Spain
- Grupo de Audiología, Instituto de Investigación Biomédica de Salamanca, Universidad de Salamanca, Salamanca, Spain
| | - Milagros J. Fumero
- Laboratorio de Audición Computacional y Psicoacústica, Instituto de Neurociencias de Castilla y León, Universidad de Salamanca, Salamanca, Spain
- Grupo de Audiología, Instituto de Investigación Biomédica de Salamanca, Universidad de Salamanca, Salamanca, Spain
| | - José M. Gorospe
- Laboratorio de Audición Computacional y Psicoacústica, Instituto de Neurociencias de Castilla y León, Universidad de Salamanca, Salamanca, Spain
- Grupo de Audiología, Instituto de Investigación Biomédica de Salamanca, Universidad de Salamanca, Salamanca, Spain
- Departamento de Cirugía, Facultad de Medicina, Universidad de Salamanca, Salamanca, Spain
- Unidad de Foniatría, Logopedia y Audiología, Servicio de Otorrinolaringología, Hospital Universitario de Salamanca, Salamanca, Spain
| | - Rubén Polo López
- Servicio de Otorrinolaringología, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | | | | | | | - Joshua S. Stohl
- North American Research Laboratory, MED-EL Corporation, Durham, North Carolina, USA
| |
Collapse
|
18
|
DeRoy Milvae K, Alexander JM, Strickland EA. The relationship between ipsilateral cochlear gain reduction and speech-in-noise recognition at positive and negative signal-to-noise ratios. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2021; 149:3449. [PMID: 34241110 PMCID: PMC8411890 DOI: 10.1121/10.0003964] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 03/09/2021] [Accepted: 03/11/2021] [Indexed: 06/13/2023]
Abstract
Active mechanisms that regulate cochlear gain are hypothesized to influence speech-in-noise perception. However, evidence of a relationship between the amount of cochlear gain reduction and speech-in-noise recognition is mixed. Findings may conflict across studies because different signal-to-noise ratios (SNRs) were used to evaluate speech-in-noise recognition. Also, there is evidence that ipsilateral elicitation of cochlear gain reduction may be stronger than contralateral elicitation, yet, most studies have investigated the contralateral descending pathway. The hypothesis that the relationship between ipsilateral cochlear gain reduction and speech-in-noise recognition depends on the SNR was tested. A forward masking technique was used to quantify the ipsilateral cochlear gain reduction in 24 young adult listeners with normal hearing. Speech-in-noise recognition was measured with the PRESTO-R sentence test using speech-shaped noise presented at -3, 0, and +3 dB SNR. Interestingly, greater cochlear gain reduction was associated with lower speech-in-noise recognition, and the strength of this correlation increased as the SNR became more adverse. These findings support the hypothesis that the SNR influences the relationship between ipsilateral cochlear gain reduction and speech-in-noise recognition. Future studies investigating the relationship between cochlear gain reduction and speech-in-noise recognition should consider the SNR and both descending pathways.
Collapse
Affiliation(s)
- Kristina DeRoy Milvae
- Department of Speech, Language, and Hearing Sciences, Purdue University, West Lafayette, Indiana 47907, USA
| | - Joshua M Alexander
- Department of Speech, Language, and Hearing Sciences, Purdue University, West Lafayette, Indiana 47907, USA
| | - Elizabeth A Strickland
- Department of Speech, Language, and Hearing Sciences, Purdue University, West Lafayette, Indiana 47907, USA
| |
Collapse
|
19
|
Suthakar K, Ryugo DK. Projections from the ventral nucleus of the lateral lemniscus to the cochlea in the mouse. J Comp Neurol 2021; 529:2995-3012. [PMID: 33754334 DOI: 10.1002/cne.25143] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 02/01/2023]
Abstract
Auditory efferents originate in the central auditory system and project to the cochlea. Although the specific anatomy of the olivocochlear (OC) efferents can vary between species, two types of auditory efferents have been identified based upon the general location of their cell bodies and their distinctly different axon terminations in the organ of Corti. In the mouse, the relatively small somata of the lateral (LOC) efferents reside in the lateral superior olive (LSO), have unmyelinated axons, and terminate around ipsilateral inner hair cells (IHCs), primarily against the afferent processes of type I auditory nerve fibers. In contrast, the larger somata of the medial (MOC) efferents are distributed in the ventral nucleus of the trapezoid body (VNTB), have myelinated axons, and terminate bilaterally against the base of multiple outer hair cells (OHCs). Using in vivo retrograde cell body marking, anterograde axon tracing, immunohistochemistry, and electron microscopy, we have identified a group of efferent neurons in mouse, whose cell bodies reside in the ventral nucleus of the lateral lemniscus (VNLL). By virtue of their location, we call them dorsal efferent (DE) neurons. Labeled DE cells were immuno-negative for tyrosine hydroxylase, glycine, and GABA, but immuno-positive for choline acetyltransferase. Morphologically, DEs resembled LOC efferents by their small somata, unmyelinated axons, and ipsilateral projection to IHCs. These three classes of efferent neurons all project axons directly to the cochlea and exhibit cholinergic staining characteristics. The challenge is to discover the contributions of this new population of neurons to auditory efferent function.
Collapse
Affiliation(s)
- Kirupa Suthakar
- Hearing Research, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia.,School of Medical Sciences, Faculty of Medicine, UNSW Australia, Sydney, New South Wales, Australia
| | - David K Ryugo
- Hearing Research, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia.,School of Medical Sciences, Faculty of Medicine, UNSW Australia, Sydney, New South Wales, Australia.,Department of Otolaryngology, Head, Neck & Skull Base Surgery, St. Vincent's Hospital, Sydney, New South Wales, Australia.,The Johns Hopkins University School of Medicine, Otolaryngology-HNS, Baltimore, Maryland, USA
| |
Collapse
|
20
|
Keppler H, Degeest S, Vinck B. Short-Term Test-Retest Reliability of Contralateral Suppression of Click-Evoked Otoacoustic Emissions in Normal-Hearing Subjects. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2021; 64:1062-1072. [PMID: 33719513 DOI: 10.1044/2020_jslhr-20-00393] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Purpose The objective of the current study was to investigate the short-term test-retest reliability of contralateral suppression (CS) of click-evoked otoacoustic emissions (CEOAEs) using commercially available otoacoustic emission equipment. Method Twenty-three young normal-hearing subjects were tested. An otoscopic evaluation, admittance measures, pure-tone audiometry, measurements of CEOAEs without and with contralateral acoustic stimulation (CAS) to determine CS were performed at baseline (n = 23), an immediate retest without and with refitting of the probe (only CS of CEOAEs; n = 11), and a retest after 1 week (n = 23) were performed. Test-retest reliability parameters were determined on CEOAE response amplitudes without and with CAS, and on raw and normalized CS indices between baseline and the other test moments. Results Repeated-measures analysis of variance indicated no random or systematic changes in CEOAE response amplitudes without and with CAS, and in raw and normalized CS indices between the test moments. Moderate-to-high intraclass correlation coefficients with mostly high significant between-subjects variability between baseline and each consecutive test moment were found for CEOAE response amplitude without and with CAS, and for the raw and normalized CS indices. Other reliability parameters deteriorated between CEOAE response amplitudes with CAS as compared to without CAS, between baseline and retest with probe refitting, and after 1 week, as well as for frequency-specific raw and normalized CS indices as compared to global CS indices. Conclusions There was considerable variability in raw and normalized CS indices as measured using CEOAEs with CAS using commercially available otoacoustic emission equipment. More research is needed to optimize the measurement of CS of CEOAEs and to reduce influencing factors, as well as to make generalization of test-retest reliability data possible.
Collapse
Affiliation(s)
- Hannah Keppler
- Department of Rehabilitation Sciences, Faculty of Medicine and Health Sciences, Ghent University, Belgium
- Department of Otorhinolaryngology, Ghent University Hospital, Belgium
| | - Sofie Degeest
- Department of Rehabilitation Sciences, Faculty of Medicine and Health Sciences, Ghent University, Belgium
| | - Bart Vinck
- Department of Rehabilitation Sciences, Faculty of Medicine and Health Sciences, Ghent University, Belgium
| |
Collapse
|
21
|
Lauer AM, Jimenez SV, Delano PH. Olivocochlear efferent effects on perception and behavior. Hear Res 2021; 419:108207. [PMID: 33674070 DOI: 10.1016/j.heares.2021.108207] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/18/2021] [Accepted: 02/12/2021] [Indexed: 01/13/2023]
Abstract
The role of the mammalian auditory olivocochlear efferent system in hearing has long been the subject of debate. Its ability to protect against damaging noise exposure is clear, but whether or not this is the primary function of a system that evolved in the absence of industrial noise remains controversial. Here we review the behavioral consequences of olivocochlear activation and diminished olivocochlear function. Attempts to demonstrate a role for hearing in noise have yielded conflicting results in both animal and human studies. A role in selective attention to sounds in the presence of distractors, or attention to visual stimuli in the presence of competing auditory stimuli, has been established in animal models, but again behavioral studies in humans remain equivocal. Auditory processing deficits occur in models of congenital olivocochlear dysfunction, but these deficits likely reflect abnormal central auditory development rather than direct effects of olivocochlear feedback. Additional proposed roles in age-related hearing loss, tinnitus, hyperacusis, and binaural or spatial hearing, are intriguing, but require additional study. These behavioral studies almost exclusively focus on medial olivocochlear effects, and many relied on lesioning techniques that can have unspecific effects. The consequences of lateral olivocochlear and of corticofugal pathway activation for perception remain unknown. As new tools for targeted manipulation of olivocochlear neurons emerge, there is potential for a transformation of our understanding of the role of the olivocochlear system in behavior across species.
Collapse
Affiliation(s)
- Amanda M Lauer
- David M. Rubenstein Center for Hearing Research and Department of Otolaryngology-HNS, Johns Hopkins University School of Medicine, 515 Traylor Building, 720 Rutland Ave, Baltimore, MD 21205, United States; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, United States.
| | - Sergio Vicencio Jimenez
- David M. Rubenstein Center for Hearing Research and Department of Otolaryngology-HNS, Johns Hopkins University School of Medicine, 515 Traylor Building, 720 Rutland Ave, Baltimore, MD 21205, United States; Biomedical Neuroscience Institute, BNI, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Paul H Delano
- Departments of Otolaryngology and Neuroscience, Faculty of Medicine, University of Chile, Santiago, Chile; Biomedical Neuroscience Institute, BNI, Faculty of Medicine, Universidad de Chile, Santiago, Chile; Advanced Center for Electrical and Electronic Engineer, AC3E, Universidad Técnica Federico Santa María, Valparaíso, Chile
| |
Collapse
|
22
|
Marrufo-Pérez MI, Johannesen PT, Lopez-Poveda EA. Correlation and Reliability of Behavioral and Otoacoustic-Emission Estimates of Contralateral Medial Olivocochlear Reflex Strength in Humans. Front Neurosci 2021; 15:640127. [PMID: 33664649 PMCID: PMC7921326 DOI: 10.3389/fnins.2021.640127] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 01/26/2021] [Indexed: 11/18/2022] Open
Abstract
The roles of the medial olivocochlear reflex (MOCR) in human hearing have been widely investigated but remain controversial. We reason that this may be because the effects of MOCR activation on cochlear mechanical responses can be assessed only indirectly in healthy humans, and the different methods used to assess those effects possibly yield different and/or unreliable estimates. One aim of this study was to investigate the correlation between three methods often employed to assess the strength of MOCR activation by contralateral acoustic stimulation (CAS). We measured tone detection thresholds (N = 28), click-evoked otoacoustic emission (CEOAE) input/output (I/O) curves (N = 18), and distortion-product otoacoustic emission (DPOAE) I/O curves (N = 18) for various test frequencies in the presence and the absence of CAS (broadband noise of 60 dB SPL). As expected, CAS worsened tone detection thresholds, suppressed CEOAEs and DPOAEs, and horizontally shifted CEOAE and DPOAE I/O curves to higher levels. However, the CAS effect on tone detection thresholds was not correlated with the horizontal shift of CEOAE or DPOAE I/O curves, and the CAS-induced CEOAE suppression was not correlated with DPOAE suppression. Only the horizontal shifts of CEOAE and DPOAE I/O functions were correlated with each other at 1.5, 2, and 3 kHz. A second aim was to investigate which of the methods is more reliable. The test–retest variability of the CAS effect was high overall but smallest for tone detection thresholds and CEOAEs, suggesting that their use should be prioritized over the use of DPOAEs. Many factors not related with the MOCR, including the limited parametric space studied, the low resolution of the I/O curves, and the reduced numbers of observations due to data exclusion likely contributed to the weak correlations and the large test–retest variability noted. These findings can help us understand the inconsistencies among past studies and improve our understanding of the functional significance of the MOCR.
Collapse
Affiliation(s)
- Miriam I Marrufo-Pérez
- Instituto de Neurociencias de Castilla y León, Universidad de Salamanca, Salamanca, Spain.,Instituto de Investigación Biomédica de Salamanca, Universidad de Salamanca, Salamanca, Spain
| | - Peter T Johannesen
- Instituto de Neurociencias de Castilla y León, Universidad de Salamanca, Salamanca, Spain.,Instituto de Investigación Biomédica de Salamanca, Universidad de Salamanca, Salamanca, Spain
| | - Enrique A Lopez-Poveda
- Instituto de Neurociencias de Castilla y León, Universidad de Salamanca, Salamanca, Spain.,Instituto de Investigación Biomédica de Salamanca, Universidad de Salamanca, Salamanca, Spain.,Departamento de Cirugía, Facultad de Medicina, Universidad de Salamanca, Salamanca, Spain
| |
Collapse
|
23
|
Asilador A, Llano DA. Top-Down Inference in the Auditory System: Potential Roles for Corticofugal Projections. Front Neural Circuits 2021; 14:615259. [PMID: 33551756 PMCID: PMC7862336 DOI: 10.3389/fncir.2020.615259] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 12/17/2020] [Indexed: 01/28/2023] Open
Abstract
It has become widely accepted that humans use contextual information to infer the meaning of ambiguous acoustic signals. In speech, for example, high-level semantic, syntactic, or lexical information shape our understanding of a phoneme buried in noise. Most current theories to explain this phenomenon rely on hierarchical predictive coding models involving a set of Bayesian priors emanating from high-level brain regions (e.g., prefrontal cortex) that are used to influence processing at lower-levels of the cortical sensory hierarchy (e.g., auditory cortex). As such, virtually all proposed models to explain top-down facilitation are focused on intracortical connections, and consequently, subcortical nuclei have scarcely been discussed in this context. However, subcortical auditory nuclei receive massive, heterogeneous, and cascading descending projections at every level of the sensory hierarchy, and activation of these systems has been shown to improve speech recognition. It is not yet clear whether or how top-down modulation to resolve ambiguous sounds calls upon these corticofugal projections. Here, we review the literature on top-down modulation in the auditory system, primarily focused on humans and cortical imaging/recording methods, and attempt to relate these findings to a growing animal literature, which has primarily been focused on corticofugal projections. We argue that corticofugal pathways contain the requisite circuitry to implement predictive coding mechanisms to facilitate perception of complex sounds and that top-down modulation at early (i.e., subcortical) stages of processing complement modulation at later (i.e., cortical) stages of processing. Finally, we suggest experimental approaches for future studies on this topic.
Collapse
Affiliation(s)
- Alexander Asilador
- Neuroscience Program, The University of Illinois at Urbana-Champaign, Champaign, IL, United States
- Beckman Institute for Advanced Science and Technology, Urbana, IL, United States
| | - Daniel A. Llano
- Neuroscience Program, The University of Illinois at Urbana-Champaign, Champaign, IL, United States
- Beckman Institute for Advanced Science and Technology, Urbana, IL, United States
- Molecular and Integrative Physiology, The University of Illinois at Urbana-Champaign, Champaign, IL, United States
| |
Collapse
|
24
|
Abstract
OBJECTIVE The medial olivocochlear (MOC) reflex provides efferent feedback from the brainstem to cochlear outer hair cells. Physiologic studies have demonstrated that the MOC reflex is involved in "unmasking" of signals-in-noise at the level of the auditory nerve; however, its functional importance in human hearing remains unclear. DESIGN This study examined relationships between pre-neural measurements of MOC reflex strength (click-evoked otoacoustic emission inhibition; CEOAE) and neural measurements of speech-in-noise encoding (speech frequency following response; sFFR) in four conditions (Quiet, Contralateral Noise, Ipsilateral Noise, and Ipsilateral + Contralateral Noise). Three measures of CEOAE inhibition (amplitude reduction, effective attenuation, and input-output slope inhibition) were used to quantify pre-neural MOC reflex strength. Correlations between pre-neural MOC reflex strength and sFFR "unmasking" (i.e. response recovery from masking effects with activation of the MOC reflex in time and frequency domains) were assessed. STUDY SAMPLE 18 young adults with normal hearing. RESULTS sFFR unmasking effects were insignificant, and there were no correlations between pre-neural MOC reflex strength and sFFR unmasking in the time or frequency domain. CONCLUSION Our results do not support the hypothesis that the MOC reflex is involved in speech-in-noise neural encoding, at least for features that are represented in the sFFR at the SNR tested.
Collapse
Affiliation(s)
- S B Smith
- Department of Communication Sciences and Disorders, University of Texas at Austin, Austin, TX, USA
| | - B Cone
- Department of Speech, Language, and Hearing Sciences, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
25
|
Mesik J, Wojtczak M. Effects of noise precursors on the detection of amplitude and frequency modulation for tones in noise. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2020; 148:3581. [PMID: 33379905 PMCID: PMC8097715 DOI: 10.1121/10.0002879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 11/05/2020] [Accepted: 11/16/2020] [Indexed: 06/12/2023]
Abstract
Recent studies on amplitude modulation (AM) detection for tones in noise reported that AM-detection thresholds improve when the AM stimulus is preceded by a noise precursor. The physiological mechanisms underlying this AM unmasking are unknown. One possibility is that adaptation to the level of the noise precursor facilitates AM encoding by causing a shift in neural rate-level functions to optimize level encoding around the precursor level. The aims of this study were to investigate whether such a dynamic-range adaptation is a plausible mechanism for the AM unmasking and whether frequency modulation (FM), thought to be encoded via AM, also exhibits the unmasking effect. Detection thresholds for AM and FM of tones in noise were measured with and without a fixed-level precursor. Listeners showing the unmasking effect were then tested with the precursor level roved over a wide range to modulate the effect of adaptation to the precursor level on the detection of the subsequent AM. It was found that FM detection benefits from a precursor and the magnitude of FM unmasking correlates with that of AM unmasking. Moreover, consistent with dynamic-range adaptation, the unmasking magnitude weakens as the level difference between the precursor and simultaneous masker of the tone increases.
Collapse
Affiliation(s)
- Juraj Mesik
- Department of Psychology, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Magdalena Wojtczak
- Department of Psychology, University of Minnesota, Minneapolis, Minnesota 55455, USA
| |
Collapse
|
26
|
Jedrzejczak WW, Milner R, Ganc M, Pilka E, Skarzynski H. No Change in Medial Olivocochlear Efferent Activity during an Auditory or Visual Task: Dual Evidence from Otoacoustic Emissions and Event-Related Potentials. Brain Sci 2020; 10:E894. [PMID: 33238438 PMCID: PMC7700184 DOI: 10.3390/brainsci10110894] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/17/2020] [Accepted: 11/21/2020] [Indexed: 11/17/2022] Open
Abstract
The medial olivocochlear (MOC) system is thought to be responsible for modulation of peripheral hearing through descending (efferent) pathways. This study investigated the connection between peripheral hearing function and conscious attention during two different modality tasks, auditory and visual. Peripheral hearing function was evaluated by analyzing the amount of suppression of otoacoustic emissions (OAEs) by contralateral acoustic stimulation (CAS), a well-known effect of the MOC. Simultaneously, attention was evaluated by event-related potentials (ERPs). Although the ERPs showed clear differences in processing of auditory and visual tasks, there were no differences in the levels of OAE suppression. We also analyzed OAEs for the highest magnitude resonant mode signal detected by the matching pursuit method, but again did not find a significant effect of task, and no difference in noise level or number of rejected trials. However, for auditory tasks, the amplitude of the P3 cognitive wave negatively correlated with the level of OAE suppression. We conclude that there seems to be no change in MOC function when performing different modality tasks, although the cortex still remains able to modulate some aspects of MOC activity.
Collapse
Affiliation(s)
- W. Wiktor Jedrzejczak
- Institute of Physiology and Pathology of Hearing, ul. M. Mochnackiego 10, 02-042 Warsaw, Poland; (R.M.); (M.G.); (E.P.); (H.S.)
- World Hearing Center, ul. Mokra 17, 05-830 Nadarzyn, Poland
| | - Rafal Milner
- Institute of Physiology and Pathology of Hearing, ul. M. Mochnackiego 10, 02-042 Warsaw, Poland; (R.M.); (M.G.); (E.P.); (H.S.)
- World Hearing Center, ul. Mokra 17, 05-830 Nadarzyn, Poland
| | - Malgorzata Ganc
- Institute of Physiology and Pathology of Hearing, ul. M. Mochnackiego 10, 02-042 Warsaw, Poland; (R.M.); (M.G.); (E.P.); (H.S.)
- World Hearing Center, ul. Mokra 17, 05-830 Nadarzyn, Poland
| | - Edyta Pilka
- Institute of Physiology and Pathology of Hearing, ul. M. Mochnackiego 10, 02-042 Warsaw, Poland; (R.M.); (M.G.); (E.P.); (H.S.)
- World Hearing Center, ul. Mokra 17, 05-830 Nadarzyn, Poland
| | - Henryk Skarzynski
- Institute of Physiology and Pathology of Hearing, ul. M. Mochnackiego 10, 02-042 Warsaw, Poland; (R.M.); (M.G.); (E.P.); (H.S.)
- World Hearing Center, ul. Mokra 17, 05-830 Nadarzyn, Poland
| |
Collapse
|
27
|
Dzulkarnain AA, Azizi AK, Sulaiman NH. Auditory sensory gating in Huffaz using an auditory brainstem response with a psychological task: A preliminary investigation. J Taibah Univ Med Sci 2020; 15:495-501. [PMID: 33318741 PMCID: PMC7715407 DOI: 10.1016/j.jtumed.2020.08.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 08/14/2020] [Accepted: 08/23/2020] [Indexed: 11/18/2022] Open
Abstract
Objective This study aims to investigate the auditory sensory gating capacity in Huffaz using an auditory brainstem response (ABR) test with and without psychological tasks. Methods Twenty-three participants were recruited for this study. The participants were comprised of 11 Huffaz who memorized 30 chapters of the Islamic Scripture (from the Quran) and 12 non-Huffaz as the control group. All participants had normal hearing perception and underwent an ABR test with and without psychological tasks. The ABR was elicited at 70 dB nHL using a 3000 Hz tone burst stimulus with a 2-0-2 cycle at a stimulus repetition rate of 40 Hz. The ABR wave V amplitude and latencies were measured and statistically compared. A forward digit span test was also conducted to determine participants' working memory capacity. Results There were no significant differences in the ABR wave V amplitudes and latencies between Huffaz and non-Huffaz in ABR with and without psychological tasks. There were also no significant differences in the ABR wave V amplitudes and latencies in both groups of ABR with and without psychological tasks. In addition, no significant differences were identified in the digit span working memory score between both groups. Conclusions In this study, based on the ABR findings, Huffaz showed the same auditory sensory gating capacity as the non-Huffaz group. The ABR result was consistent with the digit span working memory test score. This finding implies that both groups have similar working memory performance. However, the conclusion is limited to the specific assessment method that we used in this study.
Collapse
Affiliation(s)
- Ahmad A.A. Dzulkarnain
- Corresponding address: Department of Audiology and Speech-Language Pathology, Kulliyyah of Allied Health Sciences, International Islamic University Malaysia, Jalan Sultan Ahmad Shah, Kuantan, Pahang, 25200, Malaysia.
| | | | | |
Collapse
|
28
|
Rao A, Koerner TK, Madsen B, Zhang Y. Investigating Influences of Medial Olivocochlear Efferent System on Central Auditory Processing and Listening in Noise: A Behavioral and Event-Related Potential Study. Brain Sci 2020; 10:brainsci10070428. [PMID: 32635442 PMCID: PMC7408540 DOI: 10.3390/brainsci10070428] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/21/2020] [Accepted: 06/30/2020] [Indexed: 11/16/2022] Open
Abstract
This electrophysiological study investigated the role of the medial olivocochlear (MOC) efferents in listening in noise. Both ears of eleven normal-hearing adult participants were tested. The physiological tests consisted of transient-evoked otoacoustic emission (TEOAE) inhibition and the measurement of cortical event-related potentials (ERPs). The mismatch negativity (MMN) and P300 responses were obtained in passive and active listening tasks, respectively. Behavioral responses for the word recognition in noise test were also analyzed. Consistent with previous findings, the TEOAE data showed significant inhibition in the presence of contralateral acoustic stimulation. However, performance in the word recognition in noise test was comparable for the two conditions (i.e., without contralateral stimulation and with contralateral stimulation). Peak latencies and peak amplitudes of MMN and P300 did not show changes with contralateral stimulation. Behavioral performance was also maintained in the P300 task. Together, the results show that the peripheral auditory efferent effects captured via otoacoustic emission (OAE) inhibition might not necessarily be reflected in measures of central cortical processing and behavioral performance. As the MOC effects may not play a role in all listening situations in adults, the functional significance of the cochlear effects of the medial olivocochlear efferents and the optimal conditions conducive to corresponding effects in behavioral and cortical responses remain to be elucidated.
Collapse
Affiliation(s)
- Aparna Rao
- Department of Speech and Hearing Science, Arizona State University, Tempe, AZ 85287, USA
- Correspondence: (A.R.); (Y.Z.); Tel.: +1-480-727-2761 (A.R.); +1-612-624-7818 (Y.Z.)
| | - Tess K. Koerner
- VA RR & D National Center for Rehabilitative Auditory Research, Portland, OR 97239, USA; (T.K.K.); (B.M.)
| | - Brandon Madsen
- VA RR & D National Center for Rehabilitative Auditory Research, Portland, OR 97239, USA; (T.K.K.); (B.M.)
| | - Yang Zhang
- Department of Speech-Language-Hearing Sciences & Center for Neurobehavioral Development, University of Minnesota, Minneapolis, MN 55455, USA
- Correspondence: (A.R.); (Y.Z.); Tel.: +1-480-727-2761 (A.R.); +1-612-624-7818 (Y.Z.)
| |
Collapse
|
29
|
Cheng LH, Wang CH, Lu RH, Chen YF. Evaluating the Function of the Medial Olivocochlear Bundle in Patients With Bilateral Tinnitus. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2020; 63:1969-1978. [PMID: 32511051 DOI: 10.1044/2020_jslhr-19-00080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Purpose No study has investigated the effects of contralateral noise (CN) on speech-in-noise perception (SINP) in listeners with tinnitus. The mechanisms underlying the involvement of medial olivocochlear (MOC) reflex with SINP remain to be elucidated. This study aimed to investigate the MOC function in patients with bilateral tinnitus by measuring distortion product otoacoustic emission and SINP. Method Eighteen patients with bilateral tinnitus (one male and 17 females; age: M ± SD = 45.61 ± 10.18 years) and 19 listeners without tinnitus (six males and 13 females; age: M ± SD = 34.11 ± 8.35 years) were recruited for the study. Each subject underwent distortion product otoacoustic emission measurement and the SINP test for both ears. The effects of CN on these two measurements were compared between tinnitus ears (TEs) and no-tinnitus ears (NTEs). Results The presence of CN significantly reduced distortion product (DP) amplitudes and improved SINP for TEs, and the amounts of DP suppression and SINP improvement were similar to those in NTEs. Improvement of SINP was positively correlated with DP suppression at 6185 Hz for NTEs and at 1640 Hz for TEs. Conclusions The results of this study suggest that the amounts of DP suppression and SINP improvement were similar between listeners with and without tinnitus. For both ear groups, the MOC reflex was involved with SINP at specific frequencies. Any clinical test outcomes with regard to the MOC bundle in patients with tinnitus should be interpreted with caution until further studies are conducted.
Collapse
Affiliation(s)
- Lin-Hua Cheng
- Department of Speech-Language Pathology and Audiology, National Taipei University of Nursing and Health Sciences, Taiwan
| | - Chih-Hung Wang
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
- Taichung Armed Forces General Hospital, Taiwan
| | - Rou-Huei Lu
- Taichung Armed Forces General Hospital, Taiwan
| | - Yu-Fu Chen
- Department of Speech-Language Pathology and Audiology, National Taipei University of Nursing and Health Sciences, Taiwan
| |
Collapse
|
30
|
Mishra SK. The role of efferents in human auditory development: efferent inhibition predicts frequency discrimination in noise for children. J Neurophysiol 2020; 123:2437-2448. [PMID: 32432503 DOI: 10.1152/jn.00136.2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The descending corticofugal fibers originate from the auditory cortex and exert control on the periphery via the olivocochlear efferents. Medial efferents are thought to enhance the discriminability of transient sounds in background noise. In addition, the observation of deleterious long-term effects of efferent sectioning on the response properties of auditory nerve fibers in neonatal cats supports an efferent-mediated control of normal development. However, the role of the efferent system in human hearing remains unclear. The objective of the present study was to test the hypothesis that the medial efferents are involved in the development of frequency discrimination in noise. The hypothesis was examined with a combined behavioral and physiological approach. Frequency discrimination in noise and efferent inhibition were measured in 5- to 12-yr-old children (n = 127) and young adults (n = 37). Medial efferent strength was noninvasively assayed with a rigorous otoacoustic emission protocol. Results revealed an age-mediated relationship between efferent inhibition and frequency discrimination in noise. Efferent inhibition strongly predicted frequency discrimination in noise for younger children (5-9 yr). However, for older children (>9 yr) and adults, efferent inhibition was not related to frequency discrimination in noise. These findings support the role of efferents in the development of hearing-in-noise in humans; specifically, younger children compared with older children and adults are relatively more dependent on efferent inhibition for extracting relevant cues in noise. Additionally, the present findings caution against postulating an oversimplified relationship between efferent inhibition and measures of auditory perception in humans.NEW & NOTEWORTHY Despite several decades of research, the functional role of medial olivocochlear efferents in humans remains controversial and is thought to be insignificant. Here it is shown that medial efferent inhibition strongly predicts frequency discrimination in noise for younger children but not for older children and adults. Young children are relatively more dependent on the efferent system for listening-in-noise. This study highlights the role of the efferent system in hearing-in-noise during childhood development.
Collapse
Affiliation(s)
- Srikanta K Mishra
- Department of Communication Sciences and Disorders, The University of Texas Rio Grande Valley, Edinburg, Texas.,Department of Communication Disorders, New Mexico State University, Las Cruces, New Mexico
| |
Collapse
|
31
|
Jedrzejczak WW, Pilka E, Skarzynski PH, Skarzynski H. Contralateral suppression of otoacoustic emissions in pre-school children. Int J Pediatr Otorhinolaryngol 2020; 132:109915. [PMID: 32028191 DOI: 10.1016/j.ijporl.2020.109915] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/28/2020] [Accepted: 01/28/2020] [Indexed: 10/25/2022]
Abstract
BACKGROUND Contralateral suppression of otoacoustic emissions (OAEs) may serve as an index of the medial olivocochlear (MOC) reflex. To date, this index has been studied in various populations but never in pre-school children. The purpose of this study was to fill this gap and describe how the MOC reflex affects the properties of transiently evoked OAEs (TEOAEs) in this age group. In addition, the influence of the presence of spontaneous OAEs (SOAEs) in the studied ear on the suppression of TEOAEs was also investigated. METHODS TEOAEs with and without contralateral acoustic stimulation (CAS) by white noise were measured in 126 normally hearing pre-school children aged 3-6 years. The values of response levels, suppression by CAS, and signal-to-noise ratios (SNRs) of TEOAEs were investigated for the whole signal (global) and for half-octave frequency bands from 1 to 4 kHz. Only ears with SNR >6 dB were used in the analyses. SOAEs were acquired using the so-called synchronized SOAEs (SSOAEs) technique. RESULTS Ears with SSOAEs had higher response levels and SNRs than ears without SSOAEs, and suppression was lower (0.58 dB compared to 0.85 dB). Only 22% of all studied ears had an SNR >20 dB, a level recommended in some studies for measuring suppression. There were no significant effects of age or gender on TEOAE suppression. CONCLUSIONS Suppression levels for pre-school children did not differ appreciably from those of adults measured under similar conditions in other studies. Taken together with no effect of age in the data studied here, it seems that there is no effect of age on TEOAE suppression. However, we did find that the presence of SSOAEs had an effect on TEOAE suppression, a finding which has not been reported in earlier studies on different populations. We suggest that the presence of SSOAEs might be a crucial factor related to MOC function.
Collapse
Affiliation(s)
- W Wiktor Jedrzejczak
- Institute of Physiology and Pathology of Hearing, Warsaw, Poland; World Hearing Center, Kajetany, Poland.
| | - Edyta Pilka
- Institute of Physiology and Pathology of Hearing, Warsaw, Poland; World Hearing Center, Kajetany, Poland
| | - Piotr Henryk Skarzynski
- Institute of Physiology and Pathology of Hearing, Warsaw, Poland; World Hearing Center, Kajetany, Poland; Heart Failure and Cardiac Rehabilitation Department, Medical University of Warsaw, Warsaw, Poland; Institute of Sensory Organs, Warsaw, Kajetany, Poland
| | - Henryk Skarzynski
- Institute of Physiology and Pathology of Hearing, Warsaw, Poland; World Hearing Center, Kajetany, Poland
| |
Collapse
|
32
|
Paradoxical and labile medial olivocochlear functioning as a potential marker of auditory processing disorder in a child with learning disabilities. Eur Ann Otorhinolaryngol Head Neck Dis 2020; 137:339-342. [PMID: 32247718 DOI: 10.1016/j.anorl.2020.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
INTRODUCTION The medial olivocochlear system (MOCS) is composed of fibres projecting directly onto outer hair cells and plays a role in improving the signal-to-noise ratio. The MOCS can be evaluated by measuring suppression of the otoacoustic emissions evoked by contralateral acoustic stimulation. Dyslexic children present an increased probability of auditory processing disorder (APD). These children may present paradoxical MOCS dysfunction. CASE REPORT We report the case of a dyslexic child with APD, who was severely disabled in a noisy environment. Audiometric tests were normal, and the central auditory assessment showed labile MOCS functioning that was not only ineffective, but also potentially deleterious, possibly accounting for this child's hearing impairment in a noisy environment. DISCUSSION This case illustrates the importance of audiological assessment and objective investigation of MOCS function in children with a learning disability, especially with hearing difficulties in the presence of noise, in whom auditory training can be beneficial.
Collapse
|
33
|
Kuenzel T. Modulatory influences on time-coding neurons in the ventral cochlear nucleus. Hear Res 2019; 384:107824. [DOI: 10.1016/j.heares.2019.107824] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 09/10/2019] [Accepted: 10/14/2019] [Indexed: 02/07/2023]
|
34
|
Mertes IB. Establishing critical differences in ear-canal stimulus amplitude for detecting middle ear muscle reflex activation during olivocochlear efferent measurements. Int J Audiol 2019; 59:140-147. [DOI: 10.1080/14992027.2019.1673491] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Ian B. Mertes
- Department of Speech and Hearing Science, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| |
Collapse
|
35
|
Swamy SP, Yathiraj A. Short-Term Reliability of Different Methods of Contralateral Suppression of Transient Evoked Otoacoustic Emission in Children and Adults. Am J Audiol 2019; 28:495-507. [PMID: 31461330 DOI: 10.1044/2018_aja-ind50-18-0093] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Purpose This study aimed to investigate the reliability of 3 methods to measure contralateral suppression of transient evoked otoacoustic emissions (TEOAEs) in children and adults. Method Contralateral suppression of TEOAEs was measured in 14 adults and 14 children using 3 methods with and without contralateral acoustic stimulus (CAS). Method-I having "2 s on-off" and Method-II having "10 s on-off" interleaved presentation of white noise. Method-III used "continuous presentation of white noise". Test-retest reliability was checked in adults without removing the probe (same-probe recording) and reinserting the probe (different-probe recording) and in children using a different-probe recording. Results The absolute suppression amplitude of TEOAEs was higher for "continuous noise," followed by "10 s on-off" and "2 s on-off" CAS. There was no significant effect of age across the 2 probe recordings, 3 methods of TEOAEs with and without CAS, and for the absolute suppression amplitude. Also, in adults, there was no significant difference between same-probe and different-probe recordings across the 3 methods. High internal consistency was observed on Cronbach's alpha (α > .9) for the 3 methods and 2 probe recordings. High agreement and correlation between the recordings for all 3 methods were seen using Bland-Altman plots and Pearson product-moment correlation coefficient. Conclusion The study demonstrated that highly reliable contralateral suppression of TEOAE can be measured using the 3 methods in adults and children. However, continuous presentation of CAS resulted in greater TEOAE suppression amplitude compared to interleaved presentation of CAS; hence, the former is recommended.
Collapse
Affiliation(s)
- Shreyank P. Swamy
- Department of Audiology, All India Institute of Speech and Hearing, Manasagangothri, Mysuru, Karnataka, India
| | - Asha Yathiraj
- Department of Audiology, All India Institute of Speech and Hearing, Manasagangothri, Mysuru, Karnataka, India
| |
Collapse
|
36
|
Yashaswini L, Maruthy S. The Influence of Efferent Inhibition on Speech Perception in Noise: A Revisit Through Its Level-Dependent Function. Am J Audiol 2019; 28:508-515. [PMID: 31461336 DOI: 10.1044/2019_aja-ind50-18-0098] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Purpose The study aimed to assess the relationship between the level-dependent function of efferent inhibition and speech perception in noise across different intensities of suppressor and across different signal-to-noise ratios (SNRs) of speech. Method Twenty-six young normal-hearing adults participated in the study. Contralateral suppression of transient evoked otoacoustic emissions (TEOAEs) was measured for 3 levels of suppressor (40, 50, and 60 dB SPL). Speech identification score (SIS) was measured at 5 ipsilateral SNR conditions (quiet, 0, -5, -10, and -15 dB), with and without contralateral broadband noise at 3 levels (40, 50, and 60 dB SPL). Furthermore, SNR-50 was measured with and without the same 3 levels of contralateral broadband noise. Results The results showed that the suppression magnitude of TEOAE increased with an increase in suppressor level. However, neither SIS nor SNR-50 was influenced by the contralateral noise. In addition, SIS and SNR-50 did not show significant correlation with contralateral suppression of TEOAEs. This was true at all the SNRs and contralateral noise levels used in the study. Conclusions The findings suggest that the intensity of noise directly influences medial olivocochlear bundle-mediated efferent inhibition. However, the role of the medial olivocochlear bundle in regulating speech perception in noise needs to be revisited. Supplemental Material https://doi.org/10.23641/asha.9336353.
Collapse
Affiliation(s)
- L. Yashaswini
- Department of Audiology, All India Institute of Speech and Hearing, Mysuru, India
| | - Sandeep Maruthy
- Department of Audiology, All India Institute of Speech and Hearing, Mysuru, India
| |
Collapse
|
37
|
Exploring the Role of Medial Olivocochlear Efferents on the Detection of Amplitude Modulation for Tones Presented in Noise. J Assoc Res Otolaryngol 2019; 20:395-413. [PMID: 31140010 PMCID: PMC6646499 DOI: 10.1007/s10162-019-00722-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 04/15/2019] [Indexed: 10/26/2022] Open
Abstract
The medial olivocochlear reflex has been hypothesized to improve the detection and discrimination of dynamic signals in noisy backgrounds. This hypothesis was tested here by comparing behavioral outcomes with otoacoustic emissions. The effects of a precursor on amplitude-modulation (AM) detection were measured for a 1- and 6-kHz carrier at levels of 40, 60, and 80 dB SPL in a two-octave-wide noise masker with a level designed to produce poor, but above-chance, performance. Three types of precursor were used: a two-octave noise band, an inharmonic complex tone, and a pure tone. Precursors had the same overall level as the simultaneous noise masker that immediately followed the precursor. The noise precursor produced a large improvement in AM detection for both carrier frequencies and at all three levels. The complex tone produced a similarly large improvement in AM detection at the highest level but had a smaller effect for the two lower carrier levels. The tonal precursor did not significantly affect AM detection in noise. Comparisons of behavioral thresholds and medial olivocochlear efferent effects on stimulus frequency otoacoustic emissions measured with similar stimuli did not support the hypothesis that efferent-based reduction of cochlear responses contributes to the precursor effects on AM detection.
Collapse
|
38
|
Mertes IB, Wilbanks EC, Leek MR. Olivocochlear Efferent Activity Is Associated With the Slope of the Psychometric Function of Speech Recognition in Noise. Ear Hear 2019; 39:583-593. [PMID: 29135685 PMCID: PMC5920700 DOI: 10.1097/aud.0000000000000514] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES The medial olivocochlear (MOC) efferent system can modify cochlear function to improve sound detection in noise, but its role in speech perception in noise is unclear. The purpose of this study was to determine the association between MOC efferent activity and performance on two speech-in-noise tasks at two signal-to-noise ratios (SNRs). It was hypothesized that efferent activity would be more strongly correlated with performance at the more challenging SNR, relative to performance at the less challenging SNR. DESIGN Sixteen adults aged 35 to 73 years participated. Subjects had pure-tone averages ≤25 dB HL and normal middle ear function. High-frequency pure-tone averages were computed across 3000 to 8000 Hz and ranged from 6.3 to 48.8 dB HL. Efferent activity was assessed using contralateral suppression of transient-evoked otoacoustic emissions (TEOAEs) measured in right ears, and MOC activation was achieved by presenting broadband noise to left ears. Contralateral suppression was expressed as the decibel change in TEOAE magnitude obtained with versus without the presence of the broadband noise. TEOAE responses were also examined for middle ear muscle reflex activation and synchronous spontaneous otoacoustic emissions (SSOAEs). Speech-in-noise perception was assessed using the closed-set coordinate response measure word recognition task and the open-set Institute of Electrical and Electronics Engineers sentence task. Speech and noise were presented to right ears at two SNRs. Performance on each task was scored as percent correct. Associations between contralateral suppression and speech-in-noise performance were quantified using partial rank correlational analyses, controlling for the variables age and high-frequency pure-tone average. RESULTS One subject was excluded due to probable middle ear muscle reflex activation. Subjects showed a wide range of contralateral suppression values, consistent with previous reports. Three subjects with SSOAEs had similar contralateral suppression results as subjects without SSOAEs. The magnitude of contralateral suppression was not significantly correlated with speech-in-noise performance on either task at a single SNR (p > 0.05), contrary to hypothesis. However, contralateral suppression was significantly correlated with the slope of the psychometric function, computed as the difference between performance levels at the two SNRs divided by 3 (decibel difference between the 2 SNRs) for the coordinate response measure task (partial rs = 0.59; p = 0.04) and for the Institute of Electrical and Electronics Engineers task (partial rs = 0.60; p = 0.03). CONCLUSIONS In a group of primarily older adults with normal hearing or mild hearing loss, olivocochlear efferent activity assessed using contralateral suppression of TEOAEs was not associated with speech-in-noise performance at a single SNR. However, auditory efferent activity appears to be associated with the slope of the psychometric function for both a word and sentence recognition task in noise. Results suggest that individuals with stronger MOC efferent activity tend to be more responsive to changes in SNR, where small increases in SNR result in better speech-in-noise performance relative to individuals with weaker MOC efferent activity. Additionally, the results suggest that the slope of the psychometric function may be a more useful metric than performance at a single SNR when examining the relationship between speech recognition in noise and MOC efferent activity.
Collapse
Affiliation(s)
- Ian B. Mertes
- Research Service 151, VA Loma Linda Healthcare System, Loma Linda, CA, USA
- Current affiliation: Department of Speech and Hearing Science, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| | - Erin C. Wilbanks
- Research Service 151, VA Loma Linda Healthcare System, Loma Linda, CA, USA
| | - Marjorie R. Leek
- Research Service 151, VA Loma Linda Healthcare System, Loma Linda, CA, USA
- Department of Otolaryngology - Head & Neck Surgery, Loma Linda University Health, Loma Linda, CA, USA
| |
Collapse
|
39
|
Mattsson TS, Lind O, Follestad T, Grøndahl K, Wilson W, Nordgård S. Contralateral suppression of otoacoustic emissions in a clinical sample of children with auditory processing disorder. Int J Audiol 2019; 58:301-310. [DOI: 10.1080/14992027.2019.1570358] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Tone Stokkereit Mattsson
- Department of Otorhinolaryngology, Head and Neck Surgery, Ålesund Hospital, Ålesund, Norway
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, Trondheim, Norway
| | - Ola Lind
- Department of Otorhinolaryngology, Head and Neck Surgery, Haukeland University Hospital, Bergen, Norway
| | - Turid Follestad
- Department of Public Health and General Practice, Norwegian University of Science and Technology, Trondheim, Norway
| | - Kjell Grøndahl
- Department of Clinical Engineering, Haukeland University Hospital, Bergen, Norway
| | - Wayne Wilson
- School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane, Australia
| | - Ståle Nordgård
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Otorhinolaryngology, Head and Neck Surgery, St. Olavs University Hospital, Trondheim, Norway
| |
Collapse
|
40
|
Mertes IB, Johnson KM, Dinger ZA. Olivocochlear efferent contributions to speech-in-noise recognition across signal-to-noise ratios. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2019; 145:1529. [PMID: 31067949 DOI: 10.1121/1.5094766] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 03/01/2019] [Indexed: 06/09/2023]
Abstract
The medial olivocochlear (MOC) efferent system modifies cochlear output to aid signal detection in noise, but the precise role of efferents in speech-in-noise understanding remains unclear. The current study examined the contribution of the MOC reflex for speech recognition in noise in 30 normal-hearing young adults (27 females, mean age = 22.7 yr). The MOC reflex was assessed using contralateral inhibition of transient-evoked otoacoustic emissions. Speech-in-noise perception was evaluated using the coordinate response measure presented in ipsilateral speech-shaped noise at signal-to-noise ratios (SNRs) ranging from -12 to 0 dB. Performance was assessed without and with the presence of contralateral noise to activate the MOC reflex. Performance was significantly better with contralateral noise only at the lowest SNR. There was a trend of better performance with increasing contralateral inhibition at the lowest SNR. Threshold of the psychometric function was significantly correlated with contralateral inhibition. Response time on the speech task was not significantly correlated with contralateral inhibition. Results suggest that the MOC reflex contributes to listening in low SNRs and the relationship between the MOC reflex and perception is highly dependent upon the task characteristics.
Collapse
Affiliation(s)
- Ian B Mertes
- Department of Speech and Hearing Science, University of Illinois at Urbana-Champaign, 901 South Sixth Street, Champaign, Illinois 61820, USA
| | - Kristin M Johnson
- Department of Speech and Hearing Science, University of Illinois at Urbana-Champaign, 901 South Sixth Street, Champaign, Illinois 61820, USA
| | - Zoë A Dinger
- Department of Speech and Hearing Science, University of Illinois at Urbana-Champaign, 901 South Sixth Street, Champaign, Illinois 61820, USA
| |
Collapse
|
41
|
Akbari M, Panahi R, Valadbeigi A, Hamadi Nahrani M. Speech-in-noise perception ability can be related to auditory efferent pathway function: a comparative study in reading impaired and normal reading children. Braz J Otorhinolaryngol 2019; 86:209-216. [PMID: 30772249 PMCID: PMC9422508 DOI: 10.1016/j.bjorl.2018.11.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 11/11/2018] [Indexed: 11/19/2022] Open
Abstract
Introduction Deficient auditory processing can cause problems with speech perception and affect the development and evolution of reading skills. The efferent auditory pathway has an important role in normal auditory system functions like speech-in-noise perception, but there is still no general agreement on this. Objective To study the performance of the efferent auditory system in a group of children with reading impairment in comparison with normal reading and evaluation of its relationship with speech-in-noise perception. Methods A total of 53 children between the ages of 8–12 years were selected for the study of which 27 were with reading impairment and 26 were normal reading children. Transient evoked otoacoustic emissions suppression and auditory recognition of words-in-noise test were performed for all the children. Results The average amplitude of transient evoked otoacoustic emissions suppression showed a significant difference between the two groups in the right (p = 0.004) and in the left ear (p = 0.028). Assessment of the relationship between transient evoked otoacoustic emissions suppression and monaural auditory recognition of words-in-noise scores showed a significant moderate negative relationship only in the right ear (p = 0.034, r = −0.41) of the normal reading children. Binaural auditory recognition of words-in-noise scores were significantly correlated with the amplitude of transient evoked otoacoustic emissions suppression in the right ear (p < 0.001, r = −0.75) and in the left ear (p < 0.001, r = −0.64) of normal reading children. In the reading impaired group, ?a weaker correlation was observed between binaural auditory recognition of words-in-noise scores and transient evoked otoacoustic emissions suppression in the right (p = 0.003, r = −0.55) and in the left ear (p = 0.012, r = −0.47). Conclusions Transient evoked otoacoustic emissions suppression pattern in the reading impaired group was different compared with normal reading children, and this difference could be related to efferent system performance. Words-in-noise scores in children with impaired reading were lower than in normal reading children. In addition, a relationship was found between transient evoked otoacoustic emissions suppression and words-in-noise scores in both normal and impaired reading children.
Collapse
Affiliation(s)
- Mehdi Akbari
- Iran University of Medical Sciences, School of Rehabilitation Sciences, Department of Audiology, Tehran, Iran
| | - Rasool Panahi
- Iran University of Medical Sciences, School of Rehabilitation Sciences, Department of Audiology, Tehran, Iran.
| | - Ayub Valadbeigi
- Iran University of Medical Sciences, School of Rehabilitation Sciences, Department of Audiology, Tehran, Iran
| | - Morteza Hamadi Nahrani
- Iran University of Medical Sciences, School of Rehabilitation Sciences, Department of Audiology, Tehran, Iran
| |
Collapse
|
42
|
Smart JL, Kuruvilla-Mathew A, Kelly AS, Purdy SC. Assessment of the efferent auditory system in children with suspected auditory processing disorder: the Middle ear muscle reflex and contralateral inhibition of OAEs. Int J Audiol 2019; 58:37-44. [DOI: 10.1080/14992027.2018.1523578] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Jennifer L. Smart
- Speech Science, School of Psychology, The University of Auckland, Auckland, New Zealand
- Audiology, Speech-Language Pathology and Deaf Studies, Towson University, Towson, MD, USA
| | - Abin Kuruvilla-Mathew
- Speech Science, School of Psychology, The University of Auckland, Auckland, New Zealand
| | - Andrea S. Kelly
- Speech Science, School of Psychology, The University of Auckland, Auckland, New Zealand
- Audiology, Auckland District Health Board, Auckland, New Zealand
| | - Suzanne C. Purdy
- Speech Science, School of Psychology, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
43
|
Iliadou VV, Weihing J, Chermak GD, Bamiou DE. Otoacoustic emission suppression in children diagnosed with central auditory processing disorder and speech in noise perception deficits. Int J Pediatr Otorhinolaryngol 2018; 111:39-46. [PMID: 29958612 DOI: 10.1016/j.ijporl.2018.05.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 05/21/2018] [Accepted: 05/22/2018] [Indexed: 11/17/2022]
Abstract
OBJECTIVE The present study was designed to test the hypothesis that medial olivocochlear system functionality is associated with speech recognition in babble performance in children diagnosed with central auditory processing disorder. METHOD Children diagnosed with central auditory processing disorder who specifically demonstrated speech in noise deficits were compared to children diagnosed with central auditory processing disorder without these deficits. Suppression effects were examined across 15 time intervals to examine variability. Analysis of right and left ear suppression was performed separately to evaluate laterality. STUDY SAMPLE 52 children diagnosed with central auditory processing disorder, aged 6-14 years were divided into normal or abnormal groups based on SinB performance in each ear. Cut-off value was set at SNR = 1.33 dB. Transient otoacoustic emissions suppression was measured. RESULTS The abnormal Speech in Babble Right Ear group showed significant negative correlations with suppression levels for 7 of the 15 time intervals measured. No significant correlations with SinBR performance were observed for the remaining time intervals, as was the case for the typically evaluated R8-18 time interval and the Speech in Babble Left Ear. CONCLUSIONS Results indicate that suppression is influenced by the time window analysed, and ear tested, and is associated with speech recognition in babble performance in children with central auditory processing disorder.
Collapse
Affiliation(s)
| | - Jeffrey Weihing
- Department of Otolaryngology - Head and Neck Surgery - and Communicative Disorders, University of Louisville, Louisville, KY, United States
| | - Gail D Chermak
- Department of Speech and Hearing Sciences, Elson S. Floyd College of Medicine, Washington State University Health Sciences, Spokane, WA, United States
| | - Doris Eva Bamiou
- Neuro-Otology Department, University College London Hospitals NHS Trust, United Kingdom; University College London Ear Institute, United Kingdom
| |
Collapse
|
44
|
Brainstem-cortical functional connectivity for speech is differentially challenged by noise and reverberation. Hear Res 2018; 367:149-160. [PMID: 29871826 DOI: 10.1016/j.heares.2018.05.018] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 05/18/2018] [Accepted: 05/23/2018] [Indexed: 11/21/2022]
Abstract
Everyday speech perception is challenged by external acoustic interferences that hinder verbal communication. Here, we directly compared how different levels of the auditory system (brainstem vs. cortex) code speech and how their neural representations are affected by two acoustic stressors: noise and reverberation. We recorded multichannel (64 ch) brainstem frequency-following responses (FFRs) and cortical event-related potentials (ERPs) simultaneously in normal hearing individuals to speech sounds presented in mild and moderate levels of noise and reverb. We matched signal-to-noise and direct-to-reverberant ratios to equate the severity between classes of interference. Electrode recordings were parsed into source waveforms to assess the relative contribution of region-specific brain areas [i.e., brainstem (BS), primary auditory cortex (A1), inferior frontal gyrus (IFG)]. Results showed that reverberation was less detrimental to (and in some cases facilitated) the neural encoding of speech compared to additive noise. Inter-regional correlations revealed associations between BS and A1 responses, suggesting subcortical speech representations influence higher auditory-cortical areas. Functional connectivity analyses further showed that directed signaling toward A1 in both feedforward cortico-collicular (BS→A1) and feedback cortico-cortical (IFG→A1) pathways were strong predictors of degraded speech perception and differentiated "good" vs. "poor" perceivers. Our findings demonstrate a functional interplay within the brain's speech network that depends on the form and severity of acoustic interference. We infer that in addition to the quality of neural representations within individual brain regions, listeners' success at the "cocktail party" is modulated based on how information is transferred among subcortical and cortical hubs of the auditory-linguistic network.
Collapse
|
45
|
Marrufo-Pérez MI, Eustaquio-Martín A, Lopez-Poveda EA. Adaptation to Noise in Human Speech Recognition Unrelated to the Medial Olivocochlear Reflex. J Neurosci 2018; 38:4138-4145. [PMID: 29593051 PMCID: PMC6596031 DOI: 10.1523/jneurosci.0024-18.2018] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 02/26/2018] [Accepted: 03/24/2018] [Indexed: 11/21/2022] Open
Abstract
Sensory systems constantly adapt their responses to the current environment. In hearing, adaptation may facilitate communication in noisy settings, a benefit frequently (but controversially) attributed to the medial olivocochlear reflex (MOCR) enhancing the neural representation of speech. Here, we show that human listeners (N = 14; five male) recognize more words presented monaurally in ipsilateral, contralateral, and bilateral noise when they are given some time to adapt to the noise. This finding challenges models and theories that claim that speech intelligibility in noise is invariant over time. In addition, we show that this adaptation to the noise occurs also for words processed to maintain the slow-amplitude modulations in speech (the envelope) disregarding the faster fluctuations (the temporal fine structure). This demonstrates that noise adaptation reflects an enhancement of amplitude modulation speech cues and is unaffected by temporal fine structure cues. Last, we show that cochlear implant users (N = 7; four male) show normal monaural adaptation to ipsilateral noise. Because the electrical stimulation delivered by cochlear implants is independent from the MOCR, this demonstrates that noise adaptation does not require the MOCR. We argue that noise adaptation probably reflects adaptation of the dynamic range of auditory neurons to the noise level statistics.SIGNIFICANCE STATEMENT People find it easier to understand speech in noisy environments when they are given some time to adapt to the noise. This benefit is frequently but controversially attributed to the medial olivocochlear efferent reflex enhancing the representation of speech cues in the auditory nerve. Here, we show that the adaptation to noise reflects an enhancement of the slow fluctuations in amplitude over time that are present in speech. In addition, we show that adaptation to noise for cochlear implant users is not statistically different from that for listeners with normal hearing. Because the electrical stimulation delivered by cochlear implants is independent from the medial olivocochlear efferent reflex, this demonstrates that adaptation to noise does not require this reflex.
Collapse
Affiliation(s)
- Miriam I Marrufo-Pérez
- Instituto de Neurociencias de Castilla y León
- Instituto de Investigación Biomédica de Salamanca, and
| | | | - Enrique A Lopez-Poveda
- Instituto de Neurociencias de Castilla y León,
- Instituto de Investigación Biomédica de Salamanca, and
- Departamento de Cirugía, Facultad de Medicina, Universidad de Salamanca, 37007 Salamanca, Spain
| |
Collapse
|
46
|
Lopez-Poveda EA. Olivocochlear Efferents in Animals and Humans: From Anatomy to Clinical Relevance. Front Neurol 2018; 9:197. [PMID: 29632514 PMCID: PMC5879449 DOI: 10.3389/fneur.2018.00197] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 03/13/2018] [Indexed: 11/13/2022] Open
Abstract
Olivocochlear efferents allow the central auditory system to adjust the functioning of the inner ear during active and passive listening. While many aspects of efferent anatomy, physiology and function are well established, others remain controversial. This article reviews the current knowledge on olivocochlear efferents, with emphasis on human medial efferents. The review covers (1) the anatomy and physiology of olivocochlear efferents in animals; (2) the methods used for investigating this auditory feedback system in humans, their limitations and best practices; (3) the characteristics of medial-olivocochlear efferents in humans, with a critical analysis of some discrepancies across human studies and between animal and human studies; (4) the possible roles of olivocochlear efferents in hearing, discussing the evidence in favor and against their role in facilitating the detection of signals in noise and in protecting the auditory system from excessive acoustic stimulation; and (5) the emerging association between abnormal olivocochlear efferent function and several health conditions. Finally, we summarize some open issues and introduce promising approaches for investigating the roles of efferents in human hearing using cochlear implants.
Collapse
Affiliation(s)
- Enrique A Lopez-Poveda
- Instituto de Neurociencias de Castilla y León, Universidad de Salamanca, Salamanca, Spain.,Departamento de Cirugía, Facultad de Medicina, Universidad de Salamanca, Salamanca, Spain.,Instituto de Investigación Biomédica de Salamanca, Universidad de Salamanca, Salamanca, Spain
| |
Collapse
|
47
|
Olivocochlear efferents: Their action, effects, measurement and uses, and the impact of the new conception of cochlear mechanical responses. Hear Res 2017; 362:38-47. [PMID: 29291948 DOI: 10.1016/j.heares.2017.12.012] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 11/08/2017] [Accepted: 12/12/2017] [Indexed: 12/27/2022]
Abstract
The anatomy and physiology of olivocochlear (OC) efferents are reviewed. To help interpret these, recent advances in cochlear mechanics are also reviewed. Lateral OC (LOC) efferents innervate primary auditory-nerve (AN) fiber dendrites. The most important LOC function may be to reduce auditory neuropathy. Medial OC (MOC) efferents innervate the outer hair cells (OHCs) and act to turn down the gain of cochlear amplification. Cochlear amplification had been thought to act only through basilar membrane (BM) motion, but recent reports show that motion near the reticular lamina (RL) is amplified more than BM motion, and that RL-motion amplification extends to several octaves below the local characteristic frequency. Data on efferent effects on AN-fiber responses, otoacoustic emissions (OAEs) and human psychophysics are reviewed and reinterpreted in the light of the new cochlear-mechanical data. The possible origin of OAEs in RL motion is considered. MOC-effect measuring methods and MOC-induced changes in human responses are also reviewed, including that ipsilateral and contralateral sound can produce MOC effects with different patterns across frequency. MOC efferents help to reduce damage due to acoustic trauma. Many, but not all, reports show that subjects with stronger contralaterally-evoked MOC effects have better ability to detect signals (e.g. speech) in noise, and that MOC effects can be modulated by attention.
Collapse
|
48
|
Bhatt I. Increased medial olivocochlear reflex strength in normal-hearing, noise-exposed humans. PLoS One 2017; 12:e0184036. [PMID: 28886123 PMCID: PMC5590870 DOI: 10.1371/journal.pone.0184036] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 08/16/2017] [Indexed: 11/23/2022] Open
Abstract
Research suggests that college-aged adults are vulnerable to tinnitus and hearing loss due to exposure to traumatic levels of noise on a regular basis. Recent human studies have associated exposure to high noise exposure background (NEB, i.e., routine noise exposure) with the reduced cochlear output and impaired speech processing ability in subjects with clinically normal hearing sensitivity. While the relationship between NEB and the functions of the auditory afferent neurons are studied in the literature, little is known about the effects of NEB on functioning of the auditory efferent system. The objective of the present study was to investigate the relationship between medial olivocochlear reflex (MOCR) strength and NEB in subjects with clinically normal hearing sensitivity. It was hypothesized that subjects with high NEB would exhibit reduced afferent input to the MOCR circuit which would subsequently lead to reduced strength of the MOCR. In normal-hearing listeners, the study examined (1) the association between NEB and baseline click-evoked otoacoustic emissions (CEOAEs) and (2) the association between NEB and MOCR strength. The MOCR was measured using CEOAEs evoked by 60 dB pSPL linear clicks in a contralateral acoustic stimulation (CAS)-off and CAS-on (a broadband noise at 60 dB SPL) condition. Participants with at least 6 dB signal-to-noise ratio (SNR) in the CAS-off and CAS-on conditions were included for analysis. A normalized CEOAE inhibition index was calculated to express MOCR strength in a percentage value. NEB was estimated using a validated questionnaire. The results showed that NEB was not associated with the baseline CEOAE amplitude (r = -0.112, p = 0.586). Contrary to the hypothesis, MOCR strength was positively correlated with NEB (r = 0.557, p = 0.003). NEB remained a significant predictor of MOCR strength (β = 2.98, t(19) = 3.474, p = 0.003) after the unstandardized coefficient was adjusted to control for effects of smoking, sound level tolerance (SLT) and tinnitus. These data provide evidence that MOCR strength is associated with NEB. The functional significance of increased MOCR strength is discussed.
Collapse
Affiliation(s)
- Ishan Bhatt
- Department of Communication Sciences & Disorders, Northern Arizona University, Flagstaff, AZ, United States of America
- * E-mail:
| |
Collapse
|
49
|
Maruthy S, Kumar UA, Gnanateja GN. Functional Interplay Between the Putative Measures of Rostral and Caudal Efferent Regulation of Speech Perception in Noise. J Assoc Res Otolaryngol 2017; 18:635-648. [PMID: 28447225 DOI: 10.1007/s10162-017-0623-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 03/22/2017] [Indexed: 01/23/2023] Open
Abstract
Efferent modulation has been demonstrated to be very important for speech perception, especially in the presence of noise. We examined the functional relationship between two efferent systems: the rostral and caudal efferent pathways and their individual influences on speech perception in noise. Earlier studies have shown that these two efferent mechanisms were correlated with speech perception in noise. However, previously, these mechanisms were studied in isolation, and their functional relationship with each other was not investigated. We used a correlational design to study the relationship if any, between these two mechanisms in young and old normal hearing individuals. We recorded context-dependent brainstem encoding as an index of rostral efferent function and contralateral suppression of otoacoustic emissions as an index of caudal efferent function in groups with good and poor speech perception in noise. These efferent mechanisms were analysed for their relationship with each other and with speech perception in noise. We found that the two efferent mechanisms did not show any functional relationship. Interestingly, both the efferent mechanisms correlated with speech perception in noise and they even emerged as significant predictors. Based on the data, we posit that the two efferent mechanisms function relatively independently but with a common goal of fine-tuning the afferent input and refining auditory perception in degraded listening conditions.
Collapse
Affiliation(s)
- Sandeep Maruthy
- Electrophysiology Laboratory, Department of Audiology, All India Institute of Speech and Hearing, Manasagangothri, Mysore, Karnataka, IN-570006, India
| | - U Ajith Kumar
- Electrophysiology Laboratory, Department of Audiology, All India Institute of Speech and Hearing, Manasagangothri, Mysore, Karnataka, IN-570006, India
| | - G Nike Gnanateja
- Electrophysiology Laboratory, Department of Audiology, All India Institute of Speech and Hearing, Manasagangothri, Mysore, Karnataka, IN-570006, India.
| |
Collapse
|
50
|
Kalaiah MK, Theruvan NB, Kumar K, Bhat JS. Role of Active Listening and Listening Effort on Contralateral Suppression of Transient Evoked Otoacousic Emissions. J Audiol Otol 2017; 21:1-8. [PMID: 28417101 PMCID: PMC5392001 DOI: 10.7874/jao.2017.21.1.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 11/18/2016] [Accepted: 01/09/2017] [Indexed: 11/22/2022] Open
Abstract
Background and Objectives The present study aimed to investigate the effect of active listening and listening effort on the contralateral suppression of transient evoked otoacoustic emissions (CSTEOAEs). Subjects and Methods Twenty eight young adults participated in the study. Transient evoked otoacoustic emissions (TEOAEs) were recorded using ‘linear’ clicks at 60 dB peSPL, in three contralateral noise conditions. In condition 1, TEOAEs were obtained in the presence of white noise in the contralateral ear. While, in condition 2, speech was embedded into white noise at +3, −3, and −9 dB signal-to-noise ratio (SNR) and delivered to the contralateral ear. The SNR was varied to investigate the effect of listening effort on the CSTEOAE. In condition 3, speech was played backwards and embedded into white noise at −3 dB SNR. The conditions 1 and 3 served as passive listening condition and the condition 2 served as active listening condition. In active listening condition, the participants categorized the words in to two groups (e.g., animal and vehicle). Results CSTEOAE was found to be largest in the presence of white noise, and the amount of CSTEOAE was not significantly different between active and passive listening conditions (condition 2 and 3). Listening effort had an effect on the CSTEOAE, the amount of suppression increased with listening effort, when SNR was decreased from +3 dB to −3 dB. However, when the SNR was further reduced to −9 dB, there was no further increase in the amount of CSTEOAE, instead there was a reduction in the amount of suppression. Conclusions The findings of the present study show that listening effort might affect CSTEOAE.
Collapse
Affiliation(s)
- Mohan Kumar Kalaiah
- Department of Audiology and Speech Language Pathology, Kasturba Medical College, Manipal University, Mangalore, India
| | - Nikhitha B Theruvan
- Department of Audiology and Speech Language Pathology, Kasturba Medical College, Manipal University, Mangalore, India
| | - Kaushlendra Kumar
- Department of Audiology and Speech Language Pathology, Kasturba Medical College, Manipal University, Mangalore, India
| | - Jayashree S Bhat
- Department of Audiology and Speech Language Pathology, Kasturba Medical College, Manipal University, Mangalore, India
| |
Collapse
|