1
|
Demoen L, Matthijssens F, Reunes L, Palhais B, Lintermans B, T’Sas S, Fijalkowski I, Taminau J, Akele MZ, Van Belle S, Taghon T, Deforce D, Van Nieuwerburgh F, Berx G, Ntziachristos P, Debyser Z, Durinck K, Pieters T, Goossens S, Van Vlierberghe P. A dual role for PSIP1/LEDGF in T cell acute lymphoblastic leukemia. SCIENCE ADVANCES 2024; 10:eado6765. [PMID: 39485844 PMCID: PMC11529709 DOI: 10.1126/sciadv.ado6765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 09/30/2024] [Indexed: 11/03/2024]
Abstract
T cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematological malignancy. Current intensified therapeutic protocols coincide with severe side effects, and no salvage therapy is available for primary therapy-resistant or relapsed patients. This highlights the need to identify new therapeutic targets in T-ALL. PSIP1, dispensable for normal hematopoiesis, is a dependency factor in KMT2A-rearranged myeloid leukemia. Nonetheless, loss-of-function mutations suggest a tumor suppressor role for PSIP1 in T-ALL. Here, we demonstrate that the loss of Psip1 accelerates T-ALL initiation in mice which we correlated with reduced H3K27me3 binding. Contrastingly, loss of PSIP1 impaired cell proliferation in several T-ALL cell lines. In cell lines, PSIP1 down-regulation leads to a reduction of COX20, an assembly factor of the cytochrome c oxidase in the mitochondria, and to a reduction in mitochondrial respiration. This indicates that PSIP1 can exert a dual role in the context of T-ALL, either as a tumor suppressor gene during tumor initiation or as a dependency factor in tumor maintenance.
Collapse
Affiliation(s)
- Lisa Demoen
- Lab of Normal and Malignant Hematopoiesis, Center for Medical Genetics, Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent University, 9000 Ghent, Belgium
| | - Filip Matthijssens
- Lab of Normal and Malignant Hematopoiesis, Center for Medical Genetics, Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent University, 9000 Ghent, Belgium
| | - Lindy Reunes
- Lab of Normal and Malignant Hematopoiesis, Center for Medical Genetics, Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent University, 9000 Ghent, Belgium
| | - Bruno Palhais
- Lab of Normal and Malignant Hematopoiesis, Center for Medical Genetics, Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent University, 9000 Ghent, Belgium
| | - Béatrice Lintermans
- Lab of Normal and Malignant Hematopoiesis, Center for Medical Genetics, Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent University, 9000 Ghent, Belgium
| | - Sara T’Sas
- Cancer Research Institute Ghent (CRIG), Ghent University, 9000 Ghent, Belgium
- Unit for Translational Research in Oncology, Department of Diagnostic Sciences, Ghent University, 9000 Ghent, Belgium
| | - Igor Fijalkowski
- Cancer Research Institute Ghent (CRIG), Ghent University, 9000 Ghent, Belgium
- Leukemia Therapy Resistance Laboratory, Center for Medical Genetics, Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
| | - Joachim Taminau
- Cancer Research Institute Ghent (CRIG), Ghent University, 9000 Ghent, Belgium
- Department Biomedical Molecular Biology, 9000 Ghent University, Ghent, Belgium
| | - Muluembet Z. Akele
- Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, Katholieke Universiteit (KU) Leuven, 3000 Leuven, Belgium
| | - Siska Van Belle
- Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, Katholieke Universiteit (KU) Leuven, 3000 Leuven, Belgium
| | - Tom Taghon
- Cancer Research Institute Ghent (CRIG), Ghent University, 9000 Ghent, Belgium
- T Cell Team Taghon, Department of Diagnostic Sciences, Ghent University, 9000 Ghent, Belgium
| | - Dieter Deforce
- Laboratory of Pharmaceutical Biotechnology, Ghent University, 9000 Ghent, Belgium
| | | | - Geert Berx
- Cancer Research Institute Ghent (CRIG), Ghent University, 9000 Ghent, Belgium
- Department Biomedical Molecular Biology, 9000 Ghent University, Ghent, Belgium
| | - Panagiotis Ntziachristos
- Cancer Research Institute Ghent (CRIG), Ghent University, 9000 Ghent, Belgium
- Leukemia Therapy Resistance Laboratory, Center for Medical Genetics, Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
| | - Zeger Debyser
- Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, Katholieke Universiteit (KU) Leuven, 3000 Leuven, Belgium
| | - Kaat Durinck
- Cancer Research Institute Ghent (CRIG), Ghent University, 9000 Ghent, Belgium
- Pediatric Precision Oncology Lab, Center for Medical Genetics, Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
| | - Tim Pieters
- Lab of Normal and Malignant Hematopoiesis, Center for Medical Genetics, Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent University, 9000 Ghent, Belgium
- Unit for Translational Research in Oncology, Department of Diagnostic Sciences, Ghent University, 9000 Ghent, Belgium
- Leukemia Therapy Resistance Laboratory, Center for Medical Genetics, Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
| | - Steven Goossens
- Cancer Research Institute Ghent (CRIG), Ghent University, 9000 Ghent, Belgium
- Unit for Translational Research in Oncology, Department of Diagnostic Sciences, Ghent University, 9000 Ghent, Belgium
| | - Pieter Van Vlierberghe
- Lab of Normal and Malignant Hematopoiesis, Center for Medical Genetics, Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
2
|
Shin B, Chang SJ, MacNabb BW, Rothenberg EV. Transcriptional network dynamics in early T cell development. J Exp Med 2024; 221:e20230893. [PMID: 39167073 PMCID: PMC11338287 DOI: 10.1084/jem.20230893] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/07/2024] [Accepted: 07/10/2024] [Indexed: 08/23/2024] Open
Abstract
The rate at which cells enter the T cell pathway depends not only on the immigration of hematopoietic precursors into the strong Notch signaling environment of the thymus but also on the kinetics with which each individual precursor cell reaches T-lineage commitment once it arrives. Notch triggers a complex, multistep gene regulatory network in the cells in which the steps are stereotyped but the transition speeds between steps are variable. Progenitor-associated transcription factors delay T-lineage differentiation even while Notch-induced transcription factors within the same cells push differentiation forward. Progress depends on regulator cross-repression, on breaching chromatin barriers, and on shifting, competitive collaborations between stage-specific and stably expressed transcription factors, as reviewed here.
Collapse
Affiliation(s)
- Boyoung Shin
- Division of Biology and Biological Engineering California Institute of Technology , Pasadena, CA, USA
| | - Samantha J Chang
- Division of Biology and Biological Engineering California Institute of Technology , Pasadena, CA, USA
| | - Brendan W MacNabb
- Division of Biology and Biological Engineering California Institute of Technology , Pasadena, CA, USA
| | - Ellen V Rothenberg
- Division of Biology and Biological Engineering California Institute of Technology , Pasadena, CA, USA
| |
Collapse
|
3
|
De Coninck S, Roels J, Lintermans B, T’Sas S, Taghon T, Curtis DJ, Pieters T, Goossens S, Van Vlierberghe P. Tet2 is a tumor suppressor in the preleukemic phase of T-cell acute lymphoblastic leukemia. Blood Adv 2024; 8:2646-2649. [PMID: 38536906 PMCID: PMC11157202 DOI: 10.1182/bloodadvances.2023011970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 02/28/2024] [Indexed: 05/30/2024] Open
Affiliation(s)
- Stien De Coninck
- Department of Biomolecular Medicine, Laboratory of Normal and Malignant Hematopoiesis, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent, Belgium
- Department of Diagnostic Sciences, Unit for Translational Research in Oncology, Ghent University, Ghent, Belgium
| | - Juliette Roels
- Department of Biomolecular Medicine, Laboratory of Normal and Malignant Hematopoiesis, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent, Belgium
- Department of Diagnostic Sciences, Taghon Laboratory, Ghent University, Ghent, Belgium
| | - Béatrice Lintermans
- Department of Biomolecular Medicine, Laboratory of Normal and Malignant Hematopoiesis, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent, Belgium
| | - Sara T’Sas
- Department of Biomolecular Medicine, Laboratory of Normal and Malignant Hematopoiesis, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent, Belgium
- Department of Diagnostic Sciences, Unit for Translational Research in Oncology, Ghent University, Ghent, Belgium
| | - Tom Taghon
- Department of Diagnostic Sciences, Taghon Laboratory, Ghent University, Ghent, Belgium
| | - David J. Curtis
- Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, VIC, Australia
- Department of Clinical Haematology, Alfred Hospital, Prahran, VIC, Australia
| | - Tim Pieters
- Department of Biomolecular Medicine, Laboratory of Normal and Malignant Hematopoiesis, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent, Belgium
- Department of Diagnostic Sciences, Unit for Translational Research in Oncology, Ghent University, Ghent, Belgium
- Department of Biomolecular Medicine, Laboratory for research in oncogenesis and resistance to therapy, Ghent University, Ghent, Belgium
| | - Steven Goossens
- Cancer Research Institute Ghent, Ghent, Belgium
- Department of Diagnostic Sciences, Unit for Translational Research in Oncology, Ghent University, Ghent, Belgium
| | - Pieter Van Vlierberghe
- Department of Biomolecular Medicine, Laboratory of Normal and Malignant Hematopoiesis, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent, Belgium
| |
Collapse
|
4
|
Almeida A, T'Sas S, Pagliaro L, Fijalkowski I, Sleeckx W, Van Steenberge H, Zamponi R, Lintermans B, Van Loocke W, Palhais B, Reekmans A, Bardelli V, Demoen L, Reunes L, Deforce D, Van Nieuwerburgh F, Kentsis A, Ntziachristos P, Van Roy N, De Moerloose B, Mecucci C, La Starza R, Roti G, Goossens S, Van Vlierberghe P, Pieters T. Myb overexpression synergizes with the loss of Pten and is a dependency factor and therapeutic target in T-cell lymphoblastic leukemia. Hemasphere 2024; 8:e51. [PMID: 38463444 PMCID: PMC10924755 DOI: 10.1002/hem3.51] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 01/28/2024] [Indexed: 03/12/2024] Open
Abstract
T-lineage acute lymphoblastic leukemia (T-ALL) is an aggressive hematological malignancy that accounts for 10%-15% of pediatric and 25% of adult ALL cases. Although the prognosis of T-ALL has improved over time, the outcome of T-ALL patients with primary resistant or relapsed leukemia remains poor. Therefore, further progress in the treatment of T-ALL requires a better understanding of its biology and the development of more effective precision oncologic therapies. The proto-oncogene MYB is highly expressed in diverse hematologic malignancies, including T-ALLs with genomic aberrations that further potentiate its expression and activity. Previous studies have associated MYB with a malignant role in the pathogenesis of several cancers. However, its role in the induction and maintenance of T-ALL remains relatively poorly understood. In this study, we found that an increased copy number of MYB is associated with higher MYB expression levels, and might be associated with inferior event-free survival of pediatric T-ALL patients. Using our previously described conditional Myb overexpression mice, we generated two distinct MYB-driven T-ALL mouse models. We demonstrated that the overexpression of Myb synergizes with Pten deletion but not with the overexpression of Lmo2 to accelerate the development of T-cell lymphoblastic leukemias. We also showed that MYB is a dependency factor in T-ALL since RNA interference of Myb blocked cell cycle progression and induced apoptosis in both human and murine T-ALL cell lines. Finally, we provide preclinical evidence that targeting the transcriptional activity of MYB can be a useful therapeutic strategy for the treatment of T-ALL.
Collapse
Affiliation(s)
- André Almeida
- Normal and Malignant Hematopoiesis Lab, Department of Biomolecular MedicineGhent UniversityGhentBelgium
- Cancer Research Institute Ghent (CRIG)GhentBelgium
| | - Sara T'Sas
- Normal and Malignant Hematopoiesis Lab, Department of Biomolecular MedicineGhent UniversityGhentBelgium
- Cancer Research Institute Ghent (CRIG)GhentBelgium
- Unit for Translational Research in Oncology, Department of Diagnostic SciencesGhent UniversityGhentBelgium
| | - Luca Pagliaro
- Normal and Malignant Hematopoiesis Lab, Department of Biomolecular MedicineGhent UniversityGhentBelgium
- Cancer Research Institute Ghent (CRIG)GhentBelgium
- Department of Medicine and SurgeryUniversity of ParmaParmaItaly
| | - Igor Fijalkowski
- Cancer Research Institute Ghent (CRIG)GhentBelgium
- Leukemia Therapy Resistance Laboratory and Center for Medical Genetics, Department of Biomolecular MedicineGhent UniversityGhentBelgium
| | - Wouter Sleeckx
- Cancer Research Institute Ghent (CRIG)GhentBelgium
- Unit for Translational Research in Oncology, Department of Diagnostic SciencesGhent UniversityGhentBelgium
| | - Hannah Van Steenberge
- Cancer Research Institute Ghent (CRIG)GhentBelgium
- Unit for Translational Research in Oncology, Department of Diagnostic SciencesGhent UniversityGhentBelgium
| | | | - Béatrice Lintermans
- Normal and Malignant Hematopoiesis Lab, Department of Biomolecular MedicineGhent UniversityGhentBelgium
- Cancer Research Institute Ghent (CRIG)GhentBelgium
| | - Wouter Van Loocke
- Normal and Malignant Hematopoiesis Lab, Department of Biomolecular MedicineGhent UniversityGhentBelgium
- Cancer Research Institute Ghent (CRIG)GhentBelgium
| | - Bruno Palhais
- Normal and Malignant Hematopoiesis Lab, Department of Biomolecular MedicineGhent UniversityGhentBelgium
- Cancer Research Institute Ghent (CRIG)GhentBelgium
- Leukemia Therapy Resistance Laboratory and Center for Medical Genetics, Department of Biomolecular MedicineGhent UniversityGhentBelgium
| | - Alexandra Reekmans
- Normal and Malignant Hematopoiesis Lab, Department of Biomolecular MedicineGhent UniversityGhentBelgium
- Unit for Translational Research in Oncology, Department of Diagnostic SciencesGhent UniversityGhentBelgium
| | - Valentina Bardelli
- Institute of Hematology and Center for Hemato‐Oncology ResearchUniversity of Perugia and S.M. Misericordia HospitalPerugiaItaly
| | - Lisa Demoen
- Normal and Malignant Hematopoiesis Lab, Department of Biomolecular MedicineGhent UniversityGhentBelgium
- Cancer Research Institute Ghent (CRIG)GhentBelgium
| | - Lindy Reunes
- Normal and Malignant Hematopoiesis Lab, Department of Biomolecular MedicineGhent UniversityGhentBelgium
- Cancer Research Institute Ghent (CRIG)GhentBelgium
- Leukemia Therapy Resistance Laboratory and Center for Medical Genetics, Department of Biomolecular MedicineGhent UniversityGhentBelgium
| | - Dieter Deforce
- Laboratory of Pharmaceutical BiotechnologyGhent UniversityGhentBelgium
| | | | - Alex Kentsis
- Tow Center for Developmental Oncology, Sloan Kettering Institute and Department of PediatricsMemorial Sloan Kettering Cancer CenterNew YorkNew YorkUSA
| | - Panagiotis Ntziachristos
- Cancer Research Institute Ghent (CRIG)GhentBelgium
- Leukemia Therapy Resistance Laboratory and Center for Medical Genetics, Department of Biomolecular MedicineGhent UniversityGhentBelgium
| | - Nadine Van Roy
- Cancer Research Institute Ghent (CRIG)GhentBelgium
- Lab for Translational Oncogenomics and Bioinformatics, Department of Biomolecular MedicineGhent UniversityGhentBelgium
- Pediatric Precision Oncology Lab, Department of Biomolecular MedicineGhent UniversityGhentBelgium
| | - Barbara De Moerloose
- Cancer Research Institute Ghent (CRIG)GhentBelgium
- Department of Pediatric Hematology‐OncologyGhent University HospitalGhentBelgium
| | - Cristina Mecucci
- Institute of Hematology and Center for Hemato‐Oncology ResearchUniversity of Perugia and S.M. Misericordia HospitalPerugiaItaly
| | - Roberta La Starza
- Institute of Hematology and Center for Hemato‐Oncology ResearchUniversity of Perugia and S.M. Misericordia HospitalPerugiaItaly
| | - Giovanni Roti
- Department of Medicine and SurgeryUniversity of ParmaParmaItaly
| | - Steven Goossens
- Cancer Research Institute Ghent (CRIG)GhentBelgium
- Unit for Translational Research in Oncology, Department of Diagnostic SciencesGhent UniversityGhentBelgium
| | - Pieter Van Vlierberghe
- Normal and Malignant Hematopoiesis Lab, Department of Biomolecular MedicineGhent UniversityGhentBelgium
- Cancer Research Institute Ghent (CRIG)GhentBelgium
| | - Tim Pieters
- Normal and Malignant Hematopoiesis Lab, Department of Biomolecular MedicineGhent UniversityGhentBelgium
- Cancer Research Institute Ghent (CRIG)GhentBelgium
- Unit for Translational Research in Oncology, Department of Diagnostic SciencesGhent UniversityGhentBelgium
- Leukemia Therapy Resistance Laboratory and Center for Medical Genetics, Department of Biomolecular MedicineGhent UniversityGhentBelgium
| |
Collapse
|
5
|
Verma D, Kapoor S, Kumari S, Sharma D, Singh J, Benjamin M, Bakhshi S, Seth R, Nayak B, Sharma A, Pramanik R, Palanichamy JK, Sivasubbu S, Scaria V, Arora M, Kumar R, Chopra A. Decoding the genetic symphony: Profiling protein-coding and long noncoding RNA expression in T-acute lymphoblastic leukemia for clinical insights. PNAS NEXUS 2024; 3:pgae011. [PMID: 38328782 PMCID: PMC10847906 DOI: 10.1093/pnasnexus/pgae011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 12/26/2023] [Indexed: 02/09/2024]
Abstract
T-acute lymphoblastic leukemia (T-ALL) is a heterogeneous malignancy characterized by the abnormal proliferation of immature T-cell precursors. Despite advances in immunophenotypic classification, understanding the molecular landscape and its impact on patient prognosis remains challenging. In this study, we conducted comprehensive RNA sequencing in a cohort of 35 patients with T-ALL to unravel the intricate transcriptomic profile. Subsequently, we validated the prognostic relevance of 23 targets, encompassing (i) protein-coding genes-BAALC, HHEX, MEF2C, FAT1, LYL1, LMO2, LYN, and TAL1; (ii) epigenetic modifiers-DOT1L, EP300, EML4, RAG1, EZH2, and KDM6A; and (iii) long noncoding RNAs (lncRNAs)-XIST, PCAT18, PCAT14, LINC00202, LINC00461, LINC00648, ST20, MEF2C-AS1, and MALAT1 in an independent cohort of 99 patients with T-ALL. Principal component analysis revealed distinct clusters aligning with immunophenotypic subtypes, providing insights into the molecular heterogeneity of T-ALL. The identified signature genes exhibited associations with clinicopathologic features. Survival analysis uncovered several independent predictors of patient outcomes. Higher expression of MEF2C, BAALC, HHEX, and LYL1 genes emerged as robust indicators of poor overall survival (OS), event-free survival (EFS), and relapse-free survival (RFS). Higher LMO2 expression was correlated with adverse EFS and RFS outcomes. Intriguingly, increased expression of lncRNA ST20 coupled with RAG1 demonstrated a favorable prognostic impact on OS, EFS, and RFS. Conclusively, several hitherto unreported associations of gene expression patterns with clinicopathologic features and prognosis were identified, which may help understand T-ALL's molecular pathogenesis and provide prognostic markers.
Collapse
Affiliation(s)
- Deepak Verma
- Laboratory Oncology, Dr BRAIRCH, All India Institute of Medical Sciences, New Delhi-110029, India
| | - Shruti Kapoor
- CSIR-Institute of Genomics and Integrative Biology, New Delhi-110025, India
| | - Sarita Kumari
- Laboratory Oncology, Dr BRAIRCH, All India Institute of Medical Sciences, New Delhi-110029, India
| | - Disha Sharma
- CSIR-Institute of Genomics and Integrative Biology, New Delhi-110025, India
| | - Jay Singh
- Laboratory Oncology, Dr BRAIRCH, All India Institute of Medical Sciences, New Delhi-110029, India
| | - Mercilena Benjamin
- Laboratory Oncology, Dr BRAIRCH, All India Institute of Medical Sciences, New Delhi-110029, India
| | - Sameer Bakhshi
- Department of Medical Oncology, Dr BRAIRCH, All India Institute of Medical Sciences, New Delhi-110029, India
| | - Rachna Seth
- Department of Pediatrics, All India Institute of Medical Sciences, New Delhi-110029, India
| | - Baibaswata Nayak
- Department of Gastroenterology, All India Institute of Medical Science, New Delhi-110029, India
| | - Atul Sharma
- Department of Medical Oncology, Dr BRAIRCH, All India Institute of Medical Sciences, New Delhi-110029, India
| | - Raja Pramanik
- Department of Medical Oncology, Dr BRAIRCH, All India Institute of Medical Sciences, New Delhi-110029, India
| | | | - Sridhar Sivasubbu
- CSIR-Institute of Genomics and Integrative Biology, New Delhi-110025, India
| | - Vinod Scaria
- CSIR-Institute of Genomics and Integrative Biology, New Delhi-110025, India
| | - Mohit Arora
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi-110029, India
| | - Rajive Kumar
- Laboratory Oncology, Dr BRAIRCH, All India Institute of Medical Sciences, New Delhi-110029, India
| | - Anita Chopra
- Laboratory Oncology, Dr BRAIRCH, All India Institute of Medical Sciences, New Delhi-110029, India
| |
Collapse
|
6
|
Melnick AF, Mullin C, Lin K, McCarter AC, Liang S, Liu YE, Wang Q, Jerome NA, Choe E, Kunnath N, Bodanapu G, Akter F, Magnuson B, Kumar S, Lombard DB, Muntean AG, Ljungman M, Sekiguchi J, Ryan RJH, Chiang MY. Cdc73 protects Notch-induced T-cell leukemia cells from DNA damage and mitochondrial stress. Blood 2023; 142:2159-2174. [PMID: 37616559 PMCID: PMC10733839 DOI: 10.1182/blood.2023020144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 07/13/2023] [Accepted: 07/31/2023] [Indexed: 08/26/2023] Open
Abstract
ABSTRACT Activated Notch signaling is highly prevalent in T-cell acute lymphoblastic leukemia (T-ALL), but pan-Notch inhibitors showed excessive toxicity in clinical trials. To find alternative ways to target Notch signals, we investigated cell division cycle 73 (Cdc73), which is a Notch cofactor and key component of the RNA polymerase-associated transcriptional machinery, an emerging target in T-ALL. Although we confirmed previous work that CDC73 interacts with NOTCH1, we also found that the interaction in T-ALL was context-dependent and facilitated by the transcription factor ETS1. Using mouse models, we showed that Cdc73 is important for Notch-induced T-cell development and T-ALL maintenance. Mechanistically, chromatin and nascent gene expression profiling showed that Cdc73 intersects with Ets1 and Notch at chromatin within enhancers to activate expression of known T-ALL oncogenes through its enhancer functions. Cdc73 also intersects with these factors within promoters to activate transcription of genes that are important for DNA repair and oxidative phosphorylation through its gene body functions. Consistently, Cdc73 deletion induced DNA damage and apoptosis and impaired mitochondrial function. The CDC73-induced DNA repair expression program co-opted by NOTCH1 is more highly expressed in T-ALL than in any other cancer. These data suggest that Cdc73 might induce a gene expression program that was eventually intersected and hijacked by oncogenic Notch to augment proliferation and mitigate the genotoxic and metabolic stresses of elevated Notch signaling. Our report supports studying factors such as CDC73 that intersect with Notch to derive a basic scientific understanding on how to combat Notch-dependent cancers without directly targeting the Notch complex.
Collapse
Affiliation(s)
- Ashley F. Melnick
- Cellular and Molecular Biology Program, University of Michigan School of Medicine, Ann Arbor, MI
| | - Carea Mullin
- Division of Hematology-Oncology, Department of Internal Medicine, University of Michigan School of Medicine, Ann Arbor, MI
| | - Karena Lin
- Cellular and Molecular Biology Program, University of Michigan School of Medicine, Ann Arbor, MI
| | - Anna C. McCarter
- Cellular and Molecular Biology Program, University of Michigan School of Medicine, Ann Arbor, MI
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA
| | - Shannon Liang
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA
| | - Yiran E. Liu
- Cancer Biology Program, Stanford University, Stanford, CA
| | - Qing Wang
- Division of Hematology-Oncology, Department of Internal Medicine, University of Michigan School of Medicine, Ann Arbor, MI
| | - Nicole A. Jerome
- Cancer Biology Program, University of Michigan School of Medicine, Ann Arbor, MI
| | - Elizabeth Choe
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI
| | - Nicholas Kunnath
- Center for Healthcare Outcomes and Policy, University of Michigan School of Medicine, Ann Arbor, MI
| | - Geethika Bodanapu
- School of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA
| | - Fatema Akter
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA
| | - Brian Magnuson
- Michigan Center for Translational Pathology, University of Michigan School of Medicine, Ann Arbor, MI
| | - Surinder Kumar
- Department of Pathology and Laboratory Medicine and Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL
| | - David B. Lombard
- Department of Pathology and Laboratory Medicine and Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL
| | - Andrew G. Muntean
- Cellular and Molecular Biology Program, University of Michigan School of Medicine, Ann Arbor, MI
- Department of Pathology, University of Michigan, Ann Arbor, MI
| | - Mats Ljungman
- Cellular and Molecular Biology Program, University of Michigan School of Medicine, Ann Arbor, MI
- Department of Radiology Oncology, University of Michigan School of Medicine, Ann Arbor, MI
| | - JoAnn Sekiguchi
- Cancer Biology Program, University of Michigan School of Medicine, Ann Arbor, MI
- Department of Human Genetics, University of Michigan School of Medicine, Ann Arbor, MI
| | - Russell J. H. Ryan
- Cellular and Molecular Biology Program, University of Michigan School of Medicine, Ann Arbor, MI
- Cancer Biology Program, University of Michigan School of Medicine, Ann Arbor, MI
- Department of Pathology, University of Michigan, Ann Arbor, MI
| | - Mark Y. Chiang
- Cellular and Molecular Biology Program, University of Michigan School of Medicine, Ann Arbor, MI
- Division of Hematology-Oncology, Department of Internal Medicine, University of Michigan School of Medicine, Ann Arbor, MI
- Cancer Biology Program, University of Michigan School of Medicine, Ann Arbor, MI
| |
Collapse
|
7
|
Lyu A, Humphrey RS, Nam SH, Durham TA, Hu Z, Arasappan D, Horton TM, Ehrlich LIR. Integrin signaling is critical for myeloid-mediated support of T-cell acute lymphoblastic leukemia. Nat Commun 2023; 14:6270. [PMID: 37805579 PMCID: PMC10560206 DOI: 10.1038/s41467-023-41925-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 09/21/2023] [Indexed: 10/09/2023] Open
Abstract
We previously found that T-cell acute lymphoblastic leukemia (T-ALL) requires support from tumor-associated myeloid cells, which activate Insulin Like Growth Factor 1 Receptor (IGF1R) signaling in leukemic blasts. However, IGF1 is not sufficient to sustain T-ALL in vitro, implicating additional myeloid-mediated signals in leukemia progression. Here, we find that T-ALL cells require close contact with myeloid cells to survive. Transcriptional profiling and in vitro assays demonstrate that integrin-mediated cell adhesion activates downstream focal adhesion kinase (FAK)/ proline-rich tyrosine kinase 2 (PYK2), which are required for myeloid-mediated T-ALL support, partly through activation of IGF1R. Blocking integrin ligands or inhibiting FAK/PYK2 signaling diminishes leukemia burden in multiple organs and confers a survival advantage in a mouse model of T-ALL. Inhibiting integrin-mediated adhesion or FAK/PYK2 also reduces survival of primary patient T-ALL cells co-cultured with myeloid cells. Furthermore, elevated integrin pathway gene signatures correlate with higher FAK signaling and myeloid gene signatures and are associated with an inferior prognosis in pediatric T-ALL patients. Together, these findings demonstrate that integrin activation and downstream FAK/PYK2 signaling are important mechanisms underlying myeloid-mediated support of T-ALL progression.
Collapse
Affiliation(s)
- Aram Lyu
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Ryan S Humphrey
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Seo Hee Nam
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Tyler A Durham
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Zicheng Hu
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Dhivya Arasappan
- Center for Biomedical Research Support, The University of Texas at Austin, Austin, TX, USA
| | - Terzah M Horton
- Department of Pediatrics, Baylor College of Medicine/Dan L. Duncan Cancer Center and Texas Children's Cancer Center, Houston, TX, USA
| | - Lauren I R Ehrlich
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA.
- Department of Oncology, Livestrong Cancer Institutes, The University of Texas at Austin Dell Medical School, Austin, TX, USA.
| |
Collapse
|
8
|
Bastone AL, Dziadek V, John-Neek P, Mansel F, Fleischauer J, Agyeman-Duah E, Schaudien D, Dittrich-Breiholz O, Schwarzer A, Schambach A, Rothe M. Development of an in vitro genotoxicity assay to detect retroviral vector-induced lymphoid insertional mutants. Mol Ther Methods Clin Dev 2023; 30:515-533. [PMID: 37693949 PMCID: PMC10491817 DOI: 10.1016/j.omtm.2023.08.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 08/18/2023] [Indexed: 09/12/2023]
Abstract
Safety assessment in retroviral vector-mediated gene therapy remains challenging. In clinical trials for different blood and immune disorders, insertional mutagenesis led to myeloid and lymphoid leukemia. We previously developed the In Vitro Immortalization Assay (IVIM) and Surrogate Assay for Genotoxicity Assessment (SAGA) for pre-clinical genotoxicity prediction of integrating vectors. Murine hematopoietic stem and progenitor cells (mHSPCs) transduced with mutagenic vectors acquire a proliferation advantage under limiting dilution (IVIM) and activate stem cell- and cancer-related transcriptional programs (SAGA). However, both assays present an intrinsic myeloid bias due to culture conditions. To detect lymphoid mutants, we differentiated mHSPCs to mature T cells and analyzed their phenotype, insertion site pattern, and gene expression changes after transduction with retroviral vectors. Mutagenic vectors induced a block in differentiation at an early progenitor stage (double-negative 2) compared to fully differentiated untransduced mock cultures. Arrested samples harbored high-risk insertions close to Lmo2, frequently observed in clinical trials with severe adverse events. Lymphoid insertional mutants displayed a unique gene expression signature identified by SAGA. The gene expression-based highly sensitive molecular readout will broaden our understanding of vector-induced oncogenicity and help in pre-clinical prediction of retroviral genotoxicity.
Collapse
Affiliation(s)
- Antonella L. Bastone
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
- REBIRTH – Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Violetta Dziadek
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
- REBIRTH – Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Philipp John-Neek
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
- REBIRTH – Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Friederike Mansel
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
- REBIRTH – Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Jenni Fleischauer
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
- REBIRTH – Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Eric Agyeman-Duah
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Dirk Schaudien
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Hannover, Germany
| | | | - Adrian Schwarzer
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
- REBIRTH – Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
- REBIRTH – Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
- Division of Hematology/Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Michael Rothe
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
- REBIRTH – Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| |
Collapse
|
9
|
Jackson JT, Nutt SL, McCormack MP. The Haematopoietically-expressed homeobox transcription factor: roles in development, physiology and disease. Front Immunol 2023; 14:1197490. [PMID: 37398663 PMCID: PMC10313424 DOI: 10.3389/fimmu.2023.1197490] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/01/2023] [Indexed: 07/04/2023] Open
Abstract
The Haematopoietically expressed homeobox transcription factor (Hhex) is a transcriptional repressor that is of fundamental importance across species, as evident by its evolutionary conservation spanning fish, amphibians, birds, mice and humans. Indeed, Hhex maintains its vital functions throughout the lifespan of the organism, beginning in the oocyte, through fundamental stages of embryogenesis in the foregut endoderm. The endodermal development driven by Hhex gives rise to endocrine organs such as the pancreas in a process which is likely linked to its role as a risk factor in diabetes and pancreatic disorders. Hhex is also required for the normal development of the bile duct and liver, the latter also importantly being the initial site of haematopoiesis. These haematopoietic origins are governed by Hhex, leading to its crucial later roles in definitive haematopoietic stem cell (HSC) self-renewal, lymphopoiesis and haematological malignancy. Hhex is also necessary for the developing forebrain and thyroid gland, with this reliance on Hhex evident in its role in endocrine disorders later in life including a potential role in Alzheimer's disease. Thus, the roles of Hhex in embryological development throughout evolution appear to be linked to its later roles in a variety of disease processes.
Collapse
Affiliation(s)
- Jacob T. Jackson
- Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Stephen L. Nutt
- Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Matthew P. McCormack
- The Australian Centre for Blood Diseases, Monash University, Melbourne, VIC, Australia
- iCamuno Biotherapeutics, Melbourne, VIC, Australia
| |
Collapse
|
10
|
Abdulla HD, Alserihi R, Flensburg C, Abeysekera W, Luo MX, Gray DH, Liu X, Smyth GK, Alexander WS, Majewski IJ, McCormack MP. Overexpression of Lmo2 initiates T-lymphoblastic leukemia via impaired thymocyte competition. J Exp Med 2023; 220:e20212383. [PMID: 36920307 PMCID: PMC10037042 DOI: 10.1084/jem.20212383] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/19/2022] [Accepted: 02/22/2023] [Indexed: 03/16/2023] Open
Abstract
Cell competition has recently emerged as an important tumor suppressor mechanism in the thymus that inhibits autonomous thymic maintenance. Here, we show that the oncogenic transcription factor Lmo2 causes autonomous thymic maintenance in transgenic mice by inhibiting early T cell differentiation. This autonomous thymic maintenance results in the development of self-renewing preleukemic stem cells (pre-LSCs) and subsequent leukemogenesis, both of which are profoundly inhibited by restoration of thymic competition or expression of the antiapoptotic factor BCL2. Genomic analyses revealed the presence of Notch1 mutations in pre-LSCs before subsequent loss of tumor suppressors promotes the transition to overt leukemogenesis. These studies demonstrate a critical role for impaired cell competition in the development of pre-LSCs in a transgenic mouse model of T cell acute lymphoblastic leukemia (T-ALL), implying that this process plays a role in the ontogeny of human T-ALL.
Collapse
Affiliation(s)
- Hesham D. Abdulla
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Raed Alserihi
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Australia
- College of Applied Medical Sciences, King Abdul-Aziz University, Jeddah, Saudi Arabia
| | - Christoffer Flensburg
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Waruni Abeysekera
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Meng-Xiao Luo
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Daniel H.D. Gray
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Xiaodong Liu
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Institute for Advanced Study, Hangzhou, China
| | - Gordon K. Smyth
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- School of Mathematics and Statistics, University of Melbourne, Parkville, Australia
| | - Warren S. Alexander
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Ian J. Majewski
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Matthew P. McCormack
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Australia
- Australian Centre for Blood Diseases, Monash University, Melbourne, Australia
- iCamuno Biotherapeutics, Melbourne, Australia
| |
Collapse
|
11
|
Shin B, Rothenberg EV. Multi-modular structure of the gene regulatory network for specification and commitment of murine T cells. Front Immunol 2023; 14:1108368. [PMID: 36817475 PMCID: PMC9928580 DOI: 10.3389/fimmu.2023.1108368] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 01/11/2023] [Indexed: 02/04/2023] Open
Abstract
T cells develop from multipotent progenitors by a gradual process dependent on intrathymic Notch signaling and coupled with extensive proliferation. The stages leading them to T-cell lineage commitment are well characterized by single-cell and bulk RNA analyses of sorted populations and by direct measurements of precursor-product relationships. This process depends not only on Notch signaling but also on multiple transcription factors, some associated with stemness and multipotency, some with alternative lineages, and others associated with T-cell fate. These factors interact in opposing or semi-independent T cell gene regulatory network (GRN) subcircuits that are increasingly well defined. A newly comprehensive picture of this network has emerged. Importantly, because key factors in the GRN can bind to markedly different genomic sites at one stage than they do at other stages, the genes they significantly regulate are also stage-specific. Global transcriptome analyses of perturbations have revealed an underlying modular structure to the T-cell commitment GRN, separating decisions to lose "stem-ness" from decisions to block alternative fates. Finally, the updated network sheds light on the intimate relationship between the T-cell program, which depends on the thymus, and the innate lymphoid cell (ILC) program, which does not.
Collapse
Affiliation(s)
- Boyoung Shin
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Ellen V. Rothenberg
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| |
Collapse
|
12
|
Wang W, Meng Y, Chen Y, Yu Y, Wang H, Yang S, Sun W. A comprehensive analysis of LMO2 pathogenic regulatory profile during T-lineage development and leukemic transformation. Oncogene 2022; 41:4079-4090. [PMID: 35851847 DOI: 10.1038/s41388-022-02414-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 07/06/2022] [Accepted: 07/08/2022] [Indexed: 11/08/2022]
Abstract
LMO2 is a well-known leukemic proto-oncogene, its ectopic expression in T-lineage specifically initiates malignant transformation of immature T cells and ultimately causes the onset of acute T-lymphocytic leukemia (T-ALL) in both mouse models and human patients. In this study, we systematically explored the LMO2 performance on the profiles of transcriptome, DNA-binding and protein interactions during T-lineage development in the pre-leukemic stage. Our data indicated that large-scale transcriptional dysregulation caused by LMO2 primarily occurred in DN3 thymocytes, characterized by enriched upregulation of the target genes of typical LMO2 complex, RUNX, ETS and STATs, and ectopic LMO2 primarily targeted to RUNX motifs along with intensive interaction with RUNX1 and H3K4 methyltransferase component ASH2L in this stage. However, binding of LMO2 on specific motifs was largely reduced in the following DP and SP stages, along with gradually disappeared LMO2-RUNX1 and LMO2-ASH2L interactions and less alteration of certain transcriptional factor profiles. Moreover, LMO2 showed relatively less influence on cellular behavior of DN3 thymocyte whereas displayed more prominent effects in DP and SP stages, including promoting Notch signaling and cell cycles. These findings provide a high-resolution landscape of the pathogenic role of LMO2 during T-lineage development in molecular level, and may benefit further clinical investigations for LMO2-associated T-lineage malignancies.
Collapse
Affiliation(s)
- Wenhao Wang
- School of Medicine, Nankai University, Tianjin, China
| | - Yingying Meng
- School of Medicine, Nankai University, Tianjin, China
| | - Yaxin Chen
- School of Medicine, Nankai University, Tianjin, China
| | - Yanhong Yu
- School of Medicine, Nankai University, Tianjin, China
| | - Hang Wang
- School of Medicine, Nankai University, Tianjin, China
| | - Shuang Yang
- School of Medicine, Nankai University, Tianjin, China
| | - Wei Sun
- School of Medicine, Nankai University, Tianjin, China.
| |
Collapse
|
13
|
Veiga DFT, Tremblay M, Gerby B, Herblot S, Haman A, Gendron P, Lemieux S, Zúñiga-Pflücker JC, Hébert J, Cohen JP, Hoang T. Monoallelic Heb/Tcf12 Deletion Reduces the Requirement for NOTCH1 Hyperactivation in T-Cell Acute Lymphoblastic Leukemia. Front Immunol 2022; 13:867443. [PMID: 35401501 PMCID: PMC8987207 DOI: 10.3389/fimmu.2022.867443] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 02/28/2022] [Indexed: 12/21/2022] Open
Abstract
Early T-cell development is precisely controlled by E proteins, that indistinguishably include HEB/TCF12 and E2A/TCF3 transcription factors, together with NOTCH1 and pre-T cell receptor (TCR) signalling. Importantly, perturbations of early T-cell regulatory networks are implicated in leukemogenesis. NOTCH1 gain of function mutations invariably lead to T-cell acute lymphoblastic leukemia (T-ALL), whereas inhibition of E proteins accelerates leukemogenesis. Thus, NOTCH1, pre-TCR, E2A and HEB functions are intertwined, but how these pathways contribute individually or synergistically to leukemogenesis remain to be documented. To directly address these questions, we leveraged Cd3e-deficient mice in which pre-TCR signaling and progression through β-selection is abrogated to dissect and decouple the roles of pre-TCR, NOTCH1, E2A and HEB in SCL/TAL1-induced T-ALL, via the use of Notch1 gain of function transgenic (Notch1ICtg) and Tcf12+/- or Tcf3+/- heterozygote mice. As a result, we now provide evidence that both HEB and E2A restrain cell proliferation at the β-selection checkpoint while the clonal expansion of SCL-LMO1-induced pre-leukemic stem cells in T-ALL is uniquely dependent on Tcf12 gene dosage. At the molecular level, HEB protein levels are decreased via proteasomal degradation at the leukemic stage, pointing to a reversible loss of function mechanism. Moreover, in SCL-LMO1-induced T-ALL, loss of one Tcf12 allele is sufficient to bypass pre-TCR signaling which is required for Notch1 gain of function mutations and for progression to T-ALL. In contrast, Tcf12 monoallelic deletion does not accelerate Notch1IC-induced T-ALL, indicating that Tcf12 and Notch1 operate in the same pathway. Finally, we identify a tumor suppressor gene set downstream of HEB, exhibiting significantly lower expression levels in pediatric T-ALL compared to B-ALL and brain cancer samples, the three most frequent pediatric cancers. In summary, our results indicate a tumor suppressor function of HEB/TCF12 in T-ALL to mitigate cell proliferation controlled by NOTCH1 in pre-leukemic stem cells and prevent NOTCH1-driven progression to T-ALL.
Collapse
Affiliation(s)
- Diogo F. T. Veiga
- Department of Pharmacology and Physiology, Université de Montréal, Institute for Research in Immunology and Cancer, QC, Canada
- Department of Translational Medicine, School of Medical Sciences, University of Campinas, Campinas, Brazil
| | - Mathieu Tremblay
- Department of Pharmacology and Physiology, Université de Montréal, Institute for Research in Immunology and Cancer, QC, Canada
| | - Bastien Gerby
- Department of Pharmacology and Physiology, Université de Montréal, Institute for Research in Immunology and Cancer, QC, Canada
- Centre de Recherches en Cancérologie de Toulouse (CRCT), Université de Toulouse, Institut National de la Santé et de la Recherche Médicale (INSERM), UMR-1037, Université Toulouse III Paul Sabatier (UPS), Toulouse, France
| | - Sabine Herblot
- Department of Pharmacology and Physiology, Université de Montréal, Institute for Research in Immunology and Cancer, QC, Canada
- Unité de recherche en hémato-oncologie Charles-Bruneau, Centre de Recherche du CHU Sainte-Justine, Montréal, Canada
| | - André Haman
- Department of Pharmacology and Physiology, Université de Montréal, Institute for Research in Immunology and Cancer, QC, Canada
| | - Patrick Gendron
- Department of Pharmacology and Physiology, Université de Montréal, Institute for Research in Immunology and Cancer, QC, Canada
| | - Sébastien Lemieux
- Department of Pharmacology and Physiology, Université de Montréal, Institute for Research in Immunology and Cancer, QC, Canada
- Department of Biochemistry and Molecular Medicine, Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
| | | | - Josée Hébert
- Department of Pharmacology and Physiology, Université de Montréal, Institute for Research in Immunology and Cancer, QC, Canada
- Institut universitaire d’hémato-oncologie et de thérapie cellulaire, Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada
- Quebec Leukemia Cell Bank, Centre de recherche de l’Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada
- Department of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Joseph Paul Cohen
- Department of Computer Science and Operations Research, Université de Montréal, Montreal, QC, Canada
- Université de Montréal, Montreal, QC, Canada
| | - Trang Hoang
- Department of Pharmacology and Physiology, Université de Montréal, Institute for Research in Immunology and Cancer, QC, Canada
- *Correspondence: Trang Hoang,
| |
Collapse
|
14
|
Tumor-associated myeloid cells provide critical support for T-ALL. Blood 2021; 136:1837-1850. [PMID: 32845007 DOI: 10.1182/blood.2020007145] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 06/26/2020] [Indexed: 12/13/2022] Open
Abstract
Despite harboring mutations in oncogenes and tumor suppressors that promote cancer growth, T-cell acute lymphoblastic leukemia (T-ALL) cells require exogenous cells or signals to survive in culture. We previously reported that myeloid cells, particularly dendritic cells, from the thymic tumor microenvironment support the survival and proliferation of primary mouse T-ALL cells in vitro. Thus, we hypothesized that tumor-associated myeloid cells would support T-ALL in vivo. Consistent with this possibility, in vivo depletion of myeloid cells results in a significant reduction in leukemia burden in multiple organs in 2 distinct mouse models of T-ALL and prolongs survival. The impact of the myeloid compartment on T-ALL growth is not dependent on suppression of antitumor T-cell responses. Instead, myeloid cells provide signals that directly support T-ALL cells. Transcriptional profiling, functional assays, and acute in vivo myeloid-depletion experiments identify activation of IGF1R as a critical component of myeloid-mediated T-ALL growth and survival. We identify several myeloid subsets that have the capacity to directly support survival of T-ALL cells. Consistent with mouse models, myeloid cells derived from human peripheral blood monocytes activate IGF1R and directly support survival of primary patient T-ALL cells in vitro. Furthermore, enriched macrophage gene signatures in published clinical samples correlate with inferior outcomes for pediatric T-ALL patients. Collectively, these data reveal that tumor-associated myeloid cells provide signals critical for T-ALL growth in multiple organs in vivo and implicate tumor-associated myeloid cells and associated signals as potential therapeutic targets.
Collapse
|
15
|
Wang F, Qi Z, Yao Y, Yu G, Feng T, Zhao T, Xue HH, Zhao Y, Jiang P, Bao L, Yu S. Exploring the stage-specific roles of Tcf-1 in T cell development and malignancy at single-cell resolution. Cell Mol Immunol 2021; 18:644-659. [PMID: 32868912 PMCID: PMC8027857 DOI: 10.1038/s41423-020-00527-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 08/04/2020] [Indexed: 01/04/2023] Open
Abstract
Tcf-1 (encoded by Tcf7) not only plays critical roles in promoting T cell development and differentiation but also has been identified as a tumor suppressor involved in preventing T cell malignancy. However, the comprehensive mechanisms of Tcf-1 involved in T cell transformation remain poorly understood. In this study, Tcf7fl/fl mice were crossed with Vav-cre, Lck-cre, or Cd4-cre mice to delete Tcf-1 conditionally at the beginning of the HSC, DN2-DN3, or DP stage, respectively. The defective T cell development phenotypes became gradually less severe as the deletion stage became more advanced in distinct mouse models. Interestingly, consistent with Tcf7-/- mice, Tcf7fl/flVav-cre mice developed aggressive T cell lymphoma within 45 weeks, but no tumors were generated in Tcf7fl/flLck-cre or Tcf7fl/flCd4-cre mice. Single-cell RNA-seq (ScRNA-seq) indicated that ablation of Tcf-1 at distinct phases can subdivide DN1 cells into three clusters (C1, C2, and C3) and DN2-DN3 cells into three clusters (C4, C5, and C6). Moreover, Tcf-1 deficiency redirects bifurcation among divergent cell fates, and clusters C1 and C4 exhibit high potential for leukemic transformation. Mechanistically, we found that Tcf-1 directly binds and mediates chromatin accessibility for both typical T cell regulators and proto-oncogenes, including Myb, Mycn, Runx1, and Lyl1 in the DN1 phase and Lef1, Id2, Dtx1, Fyn, Bcl11b, and Zfp36l2 in the DN2-DN3 phase. The aberrant expression of these genes due to Tcf-1 deficiency in very early T cells contributes to subsequent tumorigenesis. Thus, we demonstrated that Tcf-1 plays stage-specific roles in regulating early thymocyte development and transformation, providing new insights and evidence for clinical trials on T-ALL leukemia.
Collapse
MESH Headings
- Animals
- Biomarkers, Tumor/genetics
- Cell Differentiation
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/immunology
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Neoplastic/pathology
- Gene Expression Profiling
- Hepatocyte Nuclear Factor 1-alpha/physiology
- Lymphocyte Activation
- Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/physiology
- Lymphoma, T-Cell/etiology
- Lymphoma, T-Cell/metabolism
- Lymphoma, T-Cell/pathology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Single-Cell Analysis/methods
- T-Lymphocytes, Regulatory/immunology
Collapse
Affiliation(s)
- Fang Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Yuanmingyuan West Road 2, 100193, Beijing, China
| | - Zhihong Qi
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Yuanmingyuan West Road 2, 100193, Beijing, China
| | - Yingpeng Yao
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Yuanmingyuan West Road 2, 100193, Beijing, China
| | - Guotao Yu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Yuanmingyuan West Road 2, 100193, Beijing, China
| | - Tao Feng
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Yuanmingyuan West Road 2, 100193, Beijing, China
| | - Tianyan Zhao
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Yuanmingyuan West Road 2, 100193, Beijing, China
| | - Hai-Hui Xue
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Yaofeng Zhao
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Yuanmingyuan West Road 2, 100193, Beijing, China
| | - Peng Jiang
- Regenerative Biology Laboratory, Morgridge Institute for Research, Madison, WI, 53707, USA
| | - Li Bao
- Department Hematology, Beijing Jishuitan Hospital, 100096, Beijing, China
| | - Shuyang Yu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Yuanmingyuan West Road 2, 100193, Beijing, China.
| |
Collapse
|
16
|
Rothenberg EV. Single-cell insights into the hematopoietic generation of T-lymphocyte precursors in mouse and human. Exp Hematol 2021; 95:1-12. [PMID: 33454362 PMCID: PMC8018899 DOI: 10.1016/j.exphem.2020.12.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/23/2020] [Accepted: 12/24/2020] [Indexed: 01/29/2023]
Abstract
T-Cell development is a major branch of lymphoid development and a key output of hematopoiesis, especially in early life, but the molecular requirements for T-cell potential have remained obscure. Considerable advances have now been made toward solving this problem through single-cell transcriptome studies, interfaced with in vitro differentiation assays that monitor potential efficiently at the single-cell level. This review focuses on a series of recent reports studying mouse and human early T-cell precursors, both in the developing fetus and in stringently purified postnatal samples of intrathymic and prethymic T-lineage precursors. Cross-comparison of results reveals a robustly conserved core program in mouse and human, but with some informative and provocative variations between species and between ontogenic states. Repeated findings are the multipotent progenitor regulatory signature of thymus-seeding cells and the proximity of the T-cell program to dendritic cell programs, especially to plasmacytoid dendritic cells in humans.
Collapse
Affiliation(s)
- Ellen V Rothenberg
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA.
| |
Collapse
|
17
|
Ldb1 is required for Lmo2 oncogene-induced thymocyte self-renewal and T-cell acute lymphoblastic leukemia. Blood 2021; 135:2252-2265. [PMID: 32181817 DOI: 10.1182/blood.2019000794] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 02/20/2020] [Indexed: 12/18/2022] Open
Abstract
Prolonged or enhanced expression of the proto-oncogene Lmo2 is associated with a severe form of T-cell acute lymphoblastic leukemia (T-ALL), designated early T-cell precursor ALL, which is characterized by the aberrant self-renewal and subsequent oncogenic transformation of immature thymocytes. It has been suggested that Lmo2 exerts these effects by functioning as component of a multi-subunit transcription complex that includes the ubiquitous adapter Ldb1 along with b-HLH and/or GATA family transcription factors; however, direct experimental evidence for this mechanism is lacking. In this study, we investigated the importance of Ldb1 for Lmo2-induced T-ALL by conditional deletion of Ldb1 in thymocytes in an Lmo2 transgenic mouse model of T-ALL. Our results identify a critical requirement for Ldb1 in Lmo2-induced thymocyte self-renewal and thymocyte radiation resistance and for the transition of preleukemic thymocytes to overt T-ALL. Moreover, Ldb1 was also required for acquisition of the aberrant preleukemic ETP gene expression signature in immature Lmo2 transgenic thymocytes. Co-binding of Ldb1 and Lmo2 was detected at the promoters of key upregulated T-ALL driver genes (Hhex, Lyl1, and Nfe2) in preleukemic Lmo2 transgenic thymocytes, and binding of both Ldb1 and Lmo2 at these sites was reduced following Cre-mediated deletion of Ldb1. Together, these results identify a key role for Ldb1, a nonproto-oncogene, in T-ALL and support a model in which Lmo2-induced T-ALL results from failure to downregulate Ldb1/Lmo2-nucleated transcription complexes which normally function to enforce self-renewal in bone marrow hematopoietic progenitors.
Collapse
|
18
|
Roels J, Thénoz M, Szarzyńska B, Landfors M, De Coninck S, Demoen L, Provez L, Kuchmiy A, Strubbe S, Reunes L, Pieters T, Matthijssens F, Van Loocke W, Erarslan-Uysal B, Richter-Pechańska P, Declerck K, Lammens T, De Moerloose B, Deforce D, Van Nieuwerburgh F, Cheung LC, Kotecha RS, Mansour MR, Ghesquière B, Van Camp G, Berghe WV, Kowalczyk JR, Szczepański T, Davé UP, Kulozik AE, Goossens S, Curtis DJ, Taghon T, Dawidowska M, Degerman S, Van Vlierberghe P. Aging of preleukemic thymocytes drives CpG island hypermethylation in T-cell acute lymphoblastic leukemia. Blood Cancer Discov 2020; 1:274-289. [PMID: 33179015 PMCID: PMC7116343 DOI: 10.1158/2643-3230.bcd-20-0059] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 08/06/2020] [Accepted: 09/15/2020] [Indexed: 12/20/2022] Open
Abstract
Cancer cells display DNA hypermethylation at specific CpG islands in comparison to their normal healthy counterparts, but the mechanism that drives this so-called CpG island methylator phenotype (CIMP) remains poorly understood. Here, we show that CpG island methylation in human T-cell acute lymphoblastic leukemia (T-ALL) mainly occurs at promoters of Polycomb Repressor Complex 2 (PRC2) target genes that are not expressed in normal or malignant T-cells and which display a reciprocal association with H3K27me3 binding. In addition, we revealed that this aberrant methylation profile reflects the epigenetic history of T-ALL and is established already in pre-leukemic, self-renewing thymocytes that precede T-ALL development. Finally, we unexpectedly uncover that this age-related CpG island hypermethylation signature in T-ALL is completely resistant to the FDA-approved hypomethylating agent Decitabine. Altogether, we here provide conceptual evidence for the involvement of a pre-leukemic phase characterized by self-renewing thymocytes in the pathogenesis of human T-ALL.
Collapse
Affiliation(s)
- Juliette Roels
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Morgan Thénoz
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | | | - Mattias Landfors
- Department of Medical Biosciences, Umeå University, Umeå, Sweden
| | - Stien De Coninck
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Lisa Demoen
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Lien Provez
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Anna Kuchmiy
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Steven Strubbe
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Lindy Reunes
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Tim Pieters
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Filip Matthijssens
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Wouter Van Loocke
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Büşra Erarslan-Uysal
- Department of Pediatric Oncology, Hematology, and Immunology, University of Heidelberg, and Hopp Children's Cancer Center at NCT Heidelberg, Heidelberg, Germany
- Molecular Medicine Partnership Unit (MMPU), European Molecular Biology Laboratory (EMBL), University of Heidelberg, Heidelberg, Germany
| | - Paulina Richter-Pechańska
- Department of Pediatric Oncology, Hematology, and Immunology, University of Heidelberg, and Hopp Children's Cancer Center at NCT Heidelberg, Heidelberg, Germany
- Molecular Medicine Partnership Unit (MMPU), European Molecular Biology Laboratory (EMBL), University of Heidelberg, Heidelberg, Germany
| | - Ken Declerck
- Laboratory of Protein Chemistry, Proteomics and Epigenetic Signaling (PPES) and Integrated Personalized and Precision Oncology Network (IPPON), Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Tim Lammens
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Department of Pediatric Hematology-Oncology and Stem Cell Transplantation, Ghent University Hospital, Ghent, Belgium
| | - Barbara De Moerloose
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Department of Pediatric Hematology-Oncology and Stem Cell Transplantation, Ghent University Hospital, Ghent, Belgium
| | - Dieter Deforce
- Laboratory of Pharmaceutical Biotechnology, Ghent University, Ghent, Belgium
| | | | - Laurence C Cheung
- Telethon Kids Cancer Centre, Telethon Kids Institute, University of Western Australia, Perth, Western Australia
- School of Pharmacy and Biomedical Sciences, Curtin University, Perth, Western Australia
| | - Rishi S Kotecha
- Telethon Kids Cancer Centre, Telethon Kids Institute, University of Western Australia, Perth, Western Australia
- School of Pharmacy and Biomedical Sciences, Curtin University, Perth, Western Australia
| | - Marc R Mansour
- Department of Haematology, University College London Cancer Institute, London, England
| | - Bart Ghesquière
- Metabolomics Expertise Center, VIB Center for Cancer Biology, Leuven, Belgium
| | - Guy Van Camp
- Center of Medical Genetics, University of Antwerp, Antwerp, Belgium
| | - Wim Vanden Berghe
- Laboratory of Protein Chemistry, Proteomics and Epigenetic Signaling (PPES) and Integrated Personalized and Precision Oncology Network (IPPON), Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Jerzy R Kowalczyk
- Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, Lublin, Poland
| | - Tomasz Szczepański
- Department of Pediatric Hematology and Oncology, Zabrze, Medical University of Silesia, Katowice, Poland
| | - Utpal P Davé
- Roudebush Veterans Affairs Medical Center and Indiana University School of Medicine, Indianapolis, Indiana
| | - Andreas E Kulozik
- Department of Pediatric Oncology, Hematology, and Immunology, University of Heidelberg, and Hopp Children's Cancer Center at NCT Heidelberg, Heidelberg, Germany
- Molecular Medicine Partnership Unit (MMPU), European Molecular Biology Laboratory (EMBL), University of Heidelberg, Heidelberg, Germany
| | - Steven Goossens
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - David J Curtis
- Australian Centre for Blood Diseases (ACBD), Monash University, Melbourne, Australia
| | - Tom Taghon
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | | | - Sofie Degerman
- Department of Medical Biosciences, Umeå University, Umeå, Sweden
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden
| | - Pieter Van Vlierberghe
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium.
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| |
Collapse
|
19
|
Brar N, Butzmann A, Kumar J, Peerani R, Morgan EA, Grigoriadis G, Kumar B, Tatarczuch RM, Warnke RA, Ohgami RS. LIM domain only 2 (LMO2) expression distinguishes T-lymphoblastic leukemia/lymphoma from indolent T-lymphoblastic proliferations. Histopathology 2020; 77:984-988. [PMID: 32526041 DOI: 10.1111/his.14176] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 06/04/2020] [Accepted: 06/07/2020] [Indexed: 11/29/2022]
Abstract
AIMS An indolent T-lymphoblastic proliferation (iT-LBP) is a benign, reactive expansion of immature terminal deoxynucleotidyl transferase (TdT)-positive T cells found in extrathymic tissues. iT-LBP can be challenging to distinguish from malignant processes, specifically T-lymphoblastic lymphoma (T-LBL), given the overlapping clinical and histological features. Recently, it has been shown that LIM domain only 2 (LMO2) is overexpressed in T-LBL but not in reactive immature TdT+ T cells in the thymus. On the basis of these findings, the aim of this study was to investigate the expression of LMO2 by using immunohistochemistry and its role in differentiating iT-LBPs from T-LBLs. METHODS AND RESULTS We retrospectively identified cases of iT-LBP and T-LBL from the pathology archives of four institutions. Seven iT-LBP cases (including five new cases that have not been reported in the literature) and 13 T-LBL cases were analysed. Clinical, morphological, immunophenotypic and molecular data were analysed. Immunohistochemical staining with LMO2 was performed on all iT-LBP and T-LBL cases. A review of five new iT-LBP cases showed similar morphological, immunophenotypic and molecular features to those of previously reported cases. All iT-LBP cases were negative for LMO2 (0/7), whereas 92% of T-LBL cases (12/13) expressed LMO2; the sensitivity was 92% (confidence interval 64-100%) and the specificity was 100% (confidence interval 59-100%). CONCLUSION We confirm previously published findings that iT-LBP cases show highly overlapping morphological and immunophenotypic features with T-LBL. Importantly, LMO2 expression is a sensitive and specific marker with which to rule out iT-LBP.
Collapse
Affiliation(s)
- Nivaz Brar
- California Northstate University, Elk Grove, CA, USA
| | - Alexandra Butzmann
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
| | - Jyoti Kumar
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Raheem Peerani
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Elizabeth A Morgan
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Beena Kumar
- Department of Pathology, Monash Health, Melbourne, Victoria, Australia
| | | | - Roger A Warnke
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Robert S Ohgami
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
20
|
LDB1 Enforces Stability on Direct and Indirect Oncoprotein Partners in Leukemia. Mol Cell Biol 2020; 40:MCB.00652-19. [PMID: 32229578 DOI: 10.1128/mcb.00652-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 03/14/2020] [Indexed: 12/22/2022] Open
Abstract
The LMO2/LDB1 macromolecular complex is critical in hematopoietic stem and progenitor cell specification and in the development of acute leukemia. This complex is comprised of core subunits of LMO2 and LDB1 as well as single-stranded DNA-binding protein (SSBP) cofactors and DNA-binding basic helix-loop-helix (bHLH) and GATA transcription factors. We analyzed the steady-state abundance and kinetic stability of LMO2 and its partners via Halo protein tagging in conjunction with variant proteins deficient in binding their respective direct protein partners. We discovered a hierarchy of protein stabilities (with half-lives in descending order) as follows: LDB1 > SSBP > LMO2 > TAL1. Importantly, LDB1 is a remarkably stable protein that confers enhanced stability upon direct and indirect partners, thereby nucleating the formation of the multisubunit protein complex. The data imply that free subunits are more rapidly degraded than those incorporated within the LMO2/LDB1 complex. Our studies provided significant insights into LMO2/LDB1 macromolecular protein complex assembly and stability, which has implications for understanding its role in blood cell formation and for therapeutically targeting this complex in human leukemias.
Collapse
|
21
|
Abstract
Specification of multipotent blood precursor cells in postnatal mice to become committed T-cell precursors involves a gene regulatory network of several interacting but functionally distinct modules. Many links of this network have been defined by perturbation tests and by functional genomics. However, using the network model to predict real-life kinetics of the commitment process is still difficult, partly due to the tenacity of repressive chromatin states, and to the ability of transcription factors to affect each other's binding site choices through competitive recruitment to alternative sites ("coregulator theft"). To predict kinetics, future models will need to incorporate mechanistic information about chromatin state change dynamics and more sophisticated understanding of the proteomics and cooperative DNA site choices of transcription factor complexes.
Collapse
Affiliation(s)
- Ellen V Rothenberg
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
22
|
LMO2 activation by deacetylation is indispensable for hematopoiesis and T-ALL leukemogenesis. Blood 2019; 134:1159-1175. [PMID: 31366618 DOI: 10.1182/blood.2019000095] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Accepted: 07/01/2019] [Indexed: 12/19/2022] Open
Abstract
Hematopoietic transcription factor LIM domain only 2 (LMO2), a member of the TAL1 transcriptional complex, plays an essential role during early hematopoiesis and is frequently activated in T-cell acute lymphoblastic leukemia (T-ALL) patients. Here, we demonstrate that LMO2 is activated by deacetylation on lysine 74 and 78 via the nicotinamide phosphoribosyltransferase (NAMPT)/sirtuin 2 (SIRT2) pathway. LMO2 deacetylation enables LMO2 to interact with LIM domain binding 1 and activate the TAL1 complex. NAMPT/SIRT2-mediated activation of LMO2 by deacetylation appears to be important for hematopoietic differentiation of induced pluripotent stem cells and blood formation in zebrafish embryos. In T-ALL, deacetylated LMO2 induces expression of TAL1 complex target genes HHEX and NKX3.1 as well as LMO2 autoregulation. Consistent with this, inhibition of NAMPT or SIRT2 suppressed the in vitro growth and in vivo engraftment of T-ALL cells via diminished LMO2 deacetylation. This new molecular mechanism may provide new therapeutic possibilities in T-ALL and may contribute to the development of new methods for in vitro generation of blood cells.
Collapse
|
23
|
Raboso-Gallego J, Casado-García A, Isidro-Hernández M, Vicente-Dueñas C. Epigenetic Priming in Childhood Acute Lymphoblastic Leukemia. Front Cell Dev Biol 2019; 7:137. [PMID: 31380372 PMCID: PMC6652134 DOI: 10.3389/fcell.2019.00137] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 07/05/2019] [Indexed: 01/28/2023] Open
Abstract
Leukemogenesis is considered to be a process by which a normal cell acquires new but aberrant identity in order to disseminate a malignant clonal population. Under this setting, the phenotype of the leukemic cells is identical to the leukemia-initiating cell in which the genetic insult is taking place. Thus, with some exceptions, B-cell and T-cell childhood leukemias are supposed to arise from B- or T-committed cells. In contrast, several recent studies have revealed that genetic alterations may act in a “hit-and-run” way in the cell-of-origin by imposing the tumor cell identity giving rise to either B-cell or T-cell leukemias. This novel mechanism of cell transformation is mediated by an epigenetic priming mechanism that is established by the initial genetic lesion. This initial hit might be unnecessary for the subsequent tumor evolution and conservation, being the epigenetic priming the engine for the tumor evolution.
Collapse
Affiliation(s)
- Javier Raboso-Gallego
- Experimental Therapeutics and Translational Oncology Program, Instituto de Biología Molecular y Celular del Cáncer, CSIC/Universidad de Salamanca, Salamanca, Spain.,Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Ana Casado-García
- Experimental Therapeutics and Translational Oncology Program, Instituto de Biología Molecular y Celular del Cáncer, CSIC/Universidad de Salamanca, Salamanca, Spain.,Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Marta Isidro-Hernández
- Experimental Therapeutics and Translational Oncology Program, Instituto de Biología Molecular y Celular del Cáncer, CSIC/Universidad de Salamanca, Salamanca, Spain.,Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | | |
Collapse
|
24
|
Goossens S, Wang J, Tremblay CS, De Medts J, T'Sas S, Nguyen T, Saw J, Haigh K, Curtis DJ, Van Vlierberghe P, Berx G, Taghon T, Haigh JJ. ZEB2 and LMO2 drive immature T-cell lymphoblastic leukemia via distinct oncogenic mechanisms. Haematologica 2019; 104:1608-1616. [PMID: 30679322 PMCID: PMC6669144 DOI: 10.3324/haematol.2018.207837] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 01/18/2019] [Indexed: 12/29/2022] Open
Abstract
ZEB1 and ZEB2 are structurally related E-box binding homeobox transcription factors that induce epithelial to mesenchymal transitions during development and disease. As such, they regulate cancer cell invasion, dissemination and metastasis of solid tumors. In addition, their expression is associated with the gain of cancer stem cell properties and resistance to therapy. Using conditional loss-of-function mice, we previously demonstrated that Zeb2 also plays pivotal roles in hematopoiesis, controlling important cell fate decisions, lineage commitment and fidelity. In addition, upon Zeb2 overexpression, mice spontaneously develop immature T-cell lymphoblastic leukemia. Here we show that pre-leukemic Zeb2-overexpressing thymocytes are characterized by a differentiation delay at beta-selection due to aberrant activation of the interleukin-7 receptor signaling pathway. Notably, and in contrast to Lmo2-overexpressing thymocytes, these pre-leukemic Zeb2-overexpressing T-cell progenitors display no acquired self-renewal properties. Finally, Zeb2 activation in more differentiated T-cell precursor cells can also drive malignant T-cell development, suggesting that the early T-cell differentiation delay is not essential for Zeb2-mediated leukemic transformation. Altogether, our data suggest that Zeb2 and Lmo2 drive malignant transformation of immature T-cell progenitors via distinct molecular mechanisms.
Collapse
Affiliation(s)
- Steven Goossens
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium .,Department for Biomedical Molecular Biology, VIB-UGent Center for Inflammation Research (IRC), Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Jueqiong Wang
- Mammalian Functional Genetics Group, Australian Centre for Blood Diseases, Monash University, Melbourne, VIC, Australia
| | - Cedric S Tremblay
- Stem Cell Research Group, Australian Centre for Blood Diseases, Monash University, Melbourne, VIC, Australia
| | - Jelle De Medts
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Sara T'Sas
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium.,Department for Biomedical Molecular Biology, VIB-UGent Center for Inflammation Research (IRC), Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Thao Nguyen
- Mammalian Functional Genetics Group, Australian Centre for Blood Diseases, Monash University, Melbourne, VIC, Australia
| | - Jesslyn Saw
- Stem Cell Research Group, Australian Centre for Blood Diseases, Monash University, Melbourne, VIC, Australia
| | - Katharina Haigh
- Mammalian Functional Genetics Group, Australian Centre for Blood Diseases, Monash University, Melbourne, VIC, Australia
| | - David J Curtis
- Stem Cell Research Group, Australian Centre for Blood Diseases, Monash University, Melbourne, VIC, Australia
| | - Pieter Van Vlierberghe
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Geert Berx
- Department for Biomedical Molecular Biology, VIB-UGent Center for Inflammation Research (IRC), Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Tom Taghon
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Jody J Haigh
- Mammalian Functional Genetics Group, Australian Centre for Blood Diseases, Monash University, Melbourne, VIC, Australia.,Department of Pharmacology and Therapeutics, Rady Faulty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada.,Research Institute in Oncology and Hematology (RIOH), Cancer Care Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
25
|
Abraham BJ, Hnisz D, Weintraub AS, Kwiatkowski N, Li CH, Li Z, Weichert-Leahey N, Rahman S, Liu Y, Etchin J, Li B, Shen S, Lee TI, Zhang J, Look AT, Mansour MR, Young RA. Small genomic insertions form enhancers that misregulate oncogenes. Nat Commun 2017; 8:14385. [PMID: 28181482 PMCID: PMC5309821 DOI: 10.1038/ncomms14385] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 12/22/2016] [Indexed: 01/04/2023] Open
Abstract
The non-coding regions of tumour cell genomes harbour a considerable fraction of total DNA sequence variation, but the functional contribution of these variants to tumorigenesis is ill-defined. Among these non-coding variants, somatic insertions are among the least well characterized due to challenges with interpreting short-read DNA sequences. Here, using a combination of Chip-seq to enrich enhancer DNA and a computational approach with multiple DNA alignment procedures, we identify enhancer-associated small insertion variants. Among the 102 tumour cell genomes we analyse, small insertions are frequently observed in enhancer DNA sequences near known oncogenes. Further study of one insertion, somatically acquired in primary leukaemia tumour genomes, reveals that it nucleates formation of an active enhancer that drives expression of the LMO2 oncogene. The approach described here to identify enhancer-associated small insertion variants provides a foundation for further study of these abnormalities across human cancers. Sequencing initiatives have detected multiple types of mutations in cancer. Here the authors, analysing enhancer-targeting sequence data, show that small insertions in transcriptional enhancers are frequently found near oncogenes, and demonstrate how one mutation deregulates expression of LMO2 in leukemia cells.
Collapse
Affiliation(s)
- Brian J Abraham
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, Massachusetts 02142, USA
| | - Denes Hnisz
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, Massachusetts 02142, USA
| | - Abraham S Weintraub
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, Massachusetts 02142, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Nicholas Kwiatkowski
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, Massachusetts 02142, USA
| | - Charles H Li
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, Massachusetts 02142, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Zhaodong Li
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02215, USA.,Division of Hematology/Oncology, Children's Hospital, Boston, Massachusetts 02115, USA
| | - Nina Weichert-Leahey
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02215, USA.,Division of Hematology/Oncology, Children's Hospital, Boston, Massachusetts 02115, USA
| | - Sunniyat Rahman
- Department of Haematology, UCL Cancer Institute, University College London, London WC1E 6DD, UK
| | - Yu Liu
- Department of Computational Biology, St Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Julia Etchin
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02215, USA.,Division of Hematology/Oncology, Children's Hospital, Boston, Massachusetts 02115, USA
| | - Benshang Li
- Key Laboratory of Pediatric Hematology &Oncology Ministry of Health, Department of Hematology &Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China.,Pediatric Translational Medicine Institute, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Shuhong Shen
- Key Laboratory of Pediatric Hematology &Oncology Ministry of Health, Department of Hematology &Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China.,Pediatric Translational Medicine Institute, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Tong Ihn Lee
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, Massachusetts 02142, USA
| | - Jinghui Zhang
- Department of Computational Biology, St Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - A Thomas Look
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02215, USA.,Division of Hematology/Oncology, Children's Hospital, Boston, Massachusetts 02115, USA
| | - Marc R Mansour
- Department of Haematology, UCL Cancer Institute, University College London, London WC1E 6DD, UK
| | - Richard A Young
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, Massachusetts 02142, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
26
|
Yang L, Rodriguez B, Mayle A, Park HJ, Lin X, Luo M, Jeong M, Curry CV, Kim SB, Ruau D, Zhang X, Zhou T, Zhou M, Rebel VI, Challen GA, Gottgens B, Lee JS, Rau R, Li W, Goodell MA. DNMT3A Loss Drives Enhancer Hypomethylation in FLT3-ITD-Associated Leukemias. Cancer Cell 2016; 29:922-934. [PMID: 27300438 PMCID: PMC4908977 DOI: 10.1016/j.ccell.2016.05.003] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 02/29/2016] [Accepted: 05/10/2016] [Indexed: 10/21/2022]
Abstract
DNMT3A, the gene encoding the de novo DNA methyltransferase 3A, is among the most frequently mutated genes in hematologic malignancies. However, the mechanisms through which DNMT3A normally suppresses malignancy development are unknown. Here, we show that DNMT3A loss synergizes with the FLT3 internal tandem duplication in a dose-influenced fashion to generate rapid lethal lymphoid or myeloid leukemias similar to their human counterparts. Loss of DNMT3A leads to reduced DNA methylation, predominantly at hematopoietic enhancer regions in both mouse and human samples. Myeloid and lymphoid diseases arise from transformed murine hematopoietic stem cells. Broadly, our findings support a role for DNMT3A as a guardian of the epigenetic state at enhancer regions, critical for inhibition of leukemic transformation.
Collapse
Affiliation(s)
- Liubin Yang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Benjamin Rodriguez
- Dan L. Duncan Cancer Center and Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Allison Mayle
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Hyun Jung Park
- Dan L. Duncan Cancer Center and Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Xueqiu Lin
- Dan L. Duncan Cancer Center and Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
- Department of Bioinformatics, School of Life sciences and Technology, Tongji University, Shanghai 20092, China
| | - Min Luo
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Mira Jeong
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Choladda V. Curry
- Department of Pathology and Immunology, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Sang-Bae Kim
- Department of Systems Biology, Division of Cancer Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - David Ruau
- Wellcome Trust/MRC Stem Cell Institute, Cambridge CB2 0XY, UK
| | - Xiaotian Zhang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Ting Zhou
- Greehey Children's Cancer Research Institute and Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | | | - Vivienne I. Rebel
- Greehey Children's Cancer Research Institute and Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Grant A. Challen
- Division of Oncology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | - Ju-Seog Lee
- Department of Systems Biology, Division of Cancer Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Rachel Rau
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Wei Li
- Dan L. Duncan Cancer Center and Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Margaret A. Goodell
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
- Dan L. Duncan Cancer Center and Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, Texas 77030, USA
- Department of Systems Biology, Division of Cancer Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| |
Collapse
|
27
|
Wiekmeijer AS, Pike-Overzet K, Brugman MH, van Eggermond MCJA, Cordes M, de Haas EFE, Li Y, Oole E, van IJcken WFJ, Egeler RM, Meijerink JP, Staal FJT. Overexpression of LMO2 causes aberrant human T-Cell development in vivo by three potentially distinct cellular mechanisms. Exp Hematol 2016; 44:838-849.e9. [PMID: 27302866 DOI: 10.1016/j.exphem.2016.06.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 06/01/2016] [Indexed: 02/08/2023]
Abstract
Overexpression of LMO2 is known to be one of the causes of T-cell acute lymphoblastic leukemia (T-ALL) development; however, the mechanisms behind its oncogenic activity are incompletely understood. LMO2-overexpressing transgenic mouse models suggest an accumulation of immature T-cell progenitors in the thymus as the main preleukemic event. The effects of LMO2 overexpression on human T-cell development in vivo are unknown. Here, we report studies of a humanized mouse model transplanted with LMO2-transduced human hematopoietic stem/progenitor cells. The effects of LMO2 overexpression were confined to the T-cell lineage; however, initially, multipotent cells were transduced. Three effects of LMO2 on human T-cell development were observed: (1) a block at the double-negative/immature single-positive stage, (2) an accumulation of CD4(+)CD8(+) double-positive CD3(-) cells, and (3) an altered CD8/CD4 ratio with enhanced peripheral T lymphocytes. Microarray analysis of sorted double-positive cells overexpressing LMO2 led to the identification of an LMO2 gene set that clustered with human T-ALL patient samples of the described "proliferative" cluster. In this article, we demonstrate previously unrecognized mechanisms by which LMO2 alters human T-cell development in vivo; these mechanisms correlate with human T-ALL leukemogenesis.
Collapse
Affiliation(s)
- Anna-Sophia Wiekmeijer
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Karin Pike-Overzet
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Martijn H Brugman
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Marja C J A van Eggermond
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Martijn Cordes
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Edwin F E de Haas
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Yunlei Li
- Department of Pediatric Oncology/Hematology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Edwin Oole
- Center for Biomics, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | - R Maarten Egeler
- Department of Pediatrics, Leiden University Medical Center, Leiden, The Netherlands; Division of Hematology/Oncology, Hospital for Sick Children/University of Toronto, Toronto, Canada
| | - Jules P Meijerink
- Department of Pediatric Oncology/Hematology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Frank J T Staal
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
28
|
Zhou S, Fatima S, Ma Z, Wang YD, Lu T, Janke LJ, Du Y, Sorrentino BP. Evaluating the Safety of Retroviral Vectors Based on Insertional Oncogene Activation and Blocked Differentiation in Cultured Thymocytes. Mol Ther 2016; 24:1090-1099. [PMID: 26957223 PMCID: PMC4923324 DOI: 10.1038/mt.2016.55] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 02/24/2016] [Indexed: 12/20/2022] Open
Abstract
Insertional oncogenesis due to retroviral (RV) vector integration has caused recurrent leukemia in multiple gene therapy trials, predominantly due to vector integration effects at the LMO2 locus. While currently available preclinical safety models have been used for evaluating vector safety, none have predicted or reproduced the recurrent LMO2 integrations seen in previous X-linked severe combined immunodeficiency (X-SCID) and Wiskott-Aldrich clinical gene therapy trials. We now describe a new assay for assessing vector safety that recapitulates naturally occurring insertions into Lmo2 and other T-cell proto-oncogenes leading to a preleukemic developmental arrest in primary murine thymocytes cultured in vitro. This assay was used to compare the relative oncogenic potential of a variety of gamma-RV and lentiviral vectors and to assess the risk conferred by various transcriptional elements contained in these genomes. Gamma-RV vectors that contained full viral long-terminal repeats were most prone to causing double negative 2 (DN2) arrest and led to repeated cases of Lmo2 pathway activation, while lentiviral vectors containing these same elements were significantly less prone to activate proto-oncogenes or cause DN2 arrest. This work provides a new preclinical assay that is especially relevant for assessing safety in SCID disorders and provides a new tool for designing safer RV vectors.
Collapse
Affiliation(s)
- Sheng Zhou
- Division of Experimental Hematology, Department of Hematology, Memphis, Tennessee, USA
| | - Soghra Fatima
- Division of Experimental Hematology, Department of Hematology, Memphis, Tennessee, USA
| | - Zhijun Ma
- Division of Experimental Hematology, Department of Hematology, Memphis, Tennessee, USA
| | - Yong-Dong Wang
- Department of Computational Biology, Memphis, Tennessee, USA
| | - Taihe Lu
- Division of Experimental Hematology, Department of Hematology, Memphis, Tennessee, USA
| | - Laura J Janke
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Yang Du
- Department of Pediatrics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Brian P Sorrentino
- Division of Experimental Hematology, Department of Hematology, Memphis, Tennessee, USA.
| |
Collapse
|
29
|
Loss-of-function mutations of Dynamin 2 promote T-ALL by enhancing IL-7 signalling. Leukemia 2016; 30:1993-2001. [DOI: 10.1038/leu.2016.100] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 02/15/2016] [Accepted: 04/14/2016] [Indexed: 02/07/2023]
|
30
|
Aziz F. The emerging role of miR-223 as novel potential diagnostic and therapeutic target for inflammatory disorders. Cell Immunol 2016; 303:1-6. [PMID: 27129807 DOI: 10.1016/j.cellimm.2016.04.003] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Revised: 04/04/2016] [Accepted: 04/06/2016] [Indexed: 12/18/2022]
Abstract
Since their discovery of more than a decade ago, microRNAs have been demonstrated to have profound effects on almost every aspect of biology. Specific microRNAs have emerged as key players in disease biology by playing crucial role in disease development and progression. This review draws attention to miR-223 that has been reported to be abnormally expressed in several diseases like diabetes-type2, sepsis, rheumatoid arthritis, viral infections likes' human immunodeficiency virus-1 (HIV-1) and inflammatory disorders. It regulates inflammation by targeting different targets, including cytoplasmic activation/proliferation-associated protein-1 (Caprin-1), Insulin-like growth factor-1 receptor (IGF-1R), heat shock protein 90 (Hsp90), STAT5, artemin, EPB41L3, Ect2, Pknox1, C/EBPα, C/EBPβ, E2F1, FOXO1, NFI-A and other transcription factors. In this review, we summarized the recent studies of miR-223, their mechanisms to develop inflammation diseases and its importance role to use as biomarkers for early diagnosis and therapeutic target against inflammation diseases.
Collapse
Affiliation(s)
- Faisal Aziz
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, Dalian, PR China; Immunology and Infectious Diseases Research Laboratory, Department of Microbiology, University of Karachi, Karachi, Pakistan.
| |
Collapse
|
31
|
Gaston K, Tsitsilianos MA, Wadey K, Jayaraman PS. Misregulation of the proline rich homeodomain (PRH/HHEX) protein in cancer cells and its consequences for tumour growth and invasion. Cell Biosci 2016; 6:12. [PMID: 26877867 PMCID: PMC4752775 DOI: 10.1186/s13578-016-0077-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 02/01/2016] [Indexed: 02/07/2023] Open
Abstract
The proline rich homeodomain protein (PRH), also known as haematopoietically expressed homeobox (HHEX), is an essential transcription factor in embryonic development and in the adult. The PRH protein forms oligomeric complexes that bind to tandemly repeated PRH recognition sequences within or at a distance from PRH-target genes and recruit a variety of PRH-interacting proteins. PRH can also bind to other transcription factors and co-regulate specific target genes either directly through DNA binding, or indirectly through effects on the activity of its partner proteins. In addition, like some other homeodomain proteins, PRH can regulate the translation of specific mRNAs. Altered PRH expression and altered PRH intracellular localisation, are associated with breast cancer, liver cancer and thyroid cancer and some subtypes of leukaemia. This is consistent with the involvement of multiple PRH-interacting proteins, including the oncoprotein c-Myc, translation initiation factor 4E (eIF4E), and the promyelocytic leukaemia protein (PML), in the control of cell proliferation and cell survival. Similarly, multiple PRH target genes, including the genes encoding vascular endothelial growth factor (VEGF), VEGF receptors, Endoglin, and Goosecoid, are known to be important in the control of cell proliferation and cell survival and/or the regulation of cell migration and invasion. In this review, we summarise the evidence that implicates PRH in tumourigenesis and we review the data that suggests PRH levels could be useful in cancer prognosis and in the choice of treatment options.
Collapse
Affiliation(s)
- Kevin Gaston
- School of Biochemistry, University Walk, University of Bristol, Bristol, BS8 1TD UK
| | | | - Kerry Wadey
- School of Biochemistry, University Walk, University of Bristol, Bristol, BS8 1TD UK
| | - Padma-Sheela Jayaraman
- Division of Immunity and Infection, School of Medicine, University of Birmingham, Edgbaston, Birmingham, B15 2TT UK
| |
Collapse
|
32
|
Endogenous dendritic cells from the tumor microenvironment support T-ALL growth via IGF1R activation. Proc Natl Acad Sci U S A 2016; 113:E1016-25. [PMID: 26862168 DOI: 10.1073/pnas.1520245113] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Primary T-cell acute lymphoblastic leukemia (T-ALL) cells require stromal-derived signals to survive. Although many studies have identified cell-intrinsic alterations in signaling pathways that promote T-ALL growth, the identity of endogenous stromal cells and their associated signals in the tumor microenvironment that support T-ALL remains unknown. By examining the thymic tumor microenvironments in multiple murine T-ALL models and primary patient samples, we discovered the emergence of prominent epithelial-free regions, enriched for proliferating tumor cells and dendritic cells (DCs). Systematic evaluation of the functional capacity of tumor-associated stromal cells revealed that myeloid cells, primarily DCs, are necessary and sufficient to support T-ALL survival ex vivo. DCs support T-ALL growth both in primary thymic tumors and at secondary tumor sites. To identify a molecular mechanism by which DCs support T-ALL growth, we first performed gene expression profiling, which revealed up-regulation of platelet-derived growth factor receptor beta (Pdgfrb) and insulin-like growth factor I receptor (Igf1r) on T-ALL cells, with concomitant expression of their ligands by tumor-associated DCs. Both Pdgfrb and Igf1r were activated in ex vivo T-ALL cells, and coculture with tumor-associated, but not normal thymic DCs, sustained IGF1R activation. Furthermore, IGF1R signaling was necessary for DC-mediated T-ALL survival. Collectively, these studies provide the first evidence that endogenous tumor-associated DCs supply signals driving T-ALL growth, and implicate tumor-associated DCs and their mitogenic signals as auspicious therapeutic targets.
Collapse
|
33
|
Jevremovic D, Roden AC, Ketterling RP, Kurtin PJ, McPhail ED. LMO2 Is a Specific Marker of T-Lymphoblastic Leukemia/Lymphoma. Am J Clin Pathol 2016; 145:180-90. [PMID: 26796495 DOI: 10.1093/ajcp/aqv024] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVES The diagnosis of T-lymphoblastic leukemia/lymphoma (T-ALL) involving the thymus can be difficult to establish since neoplastic T lymphoblasts show significant phenotypic overlap with both normal thymocytes and thymocytes from epithelial thymic neoplasms (thymomas). LIM Domain Only 2 (LMO2) gene translocations have been implicated in the pathogenesis of a small subset of T-ALLs, and LMO2 protein has recently been reported to be expressed in a large proportion of T-ALLs. METHODS In this study, we tested specificity of LMO2 for distinction between neoplastic and nonneoplastic T-precursor cells in thymus and bone marrow. RESULTS Our findings show that LMO2 is expressed in neoplastic lymphoblasts of T-ALL and is absent in thymocytes of normal thymuses or thymomas. CONCLUSIONS LMO2 is therefore a useful marker for immunophenotypic assessment of thymic neoplasms.
Collapse
Affiliation(s)
- Dragan Jevremovic
- From the Department of Laboratory Medicine and Pathology, Mayo Clinic and Foundation, Rochester, MN.
| | - Anja C Roden
- From the Department of Laboratory Medicine and Pathology, Mayo Clinic and Foundation, Rochester, MN
| | - Rhett P Ketterling
- From the Department of Laboratory Medicine and Pathology, Mayo Clinic and Foundation, Rochester, MN
| | - Paul J Kurtin
- From the Department of Laboratory Medicine and Pathology, Mayo Clinic and Foundation, Rochester, MN
| | - Ellen D McPhail
- From the Department of Laboratory Medicine and Pathology, Mayo Clinic and Foundation, Rochester, MN
| |
Collapse
|
34
|
LMO2 Oncoprotein Stability in T-Cell Leukemia Requires Direct LDB1 Binding. Mol Cell Biol 2015; 36:488-506. [PMID: 26598604 DOI: 10.1128/mcb.00901-15] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 11/16/2015] [Indexed: 12/24/2022] Open
Abstract
LMO2 is a component of multisubunit DNA-binding transcription factor complexes that regulate gene expression in hematopoietic stem and progenitor cell development. Enforced expression of LMO2 causes leukemia by inducing hematopoietic stem cell-like features in T-cell progenitor cells, but the biochemical mechanisms of LMO2 function have not been fully elucidated. In this study, we systematically dissected the LMO2/LDB1-binding interface to investigate the role of this interaction in T-cell leukemia. Alanine scanning mutagenesis of the LIM interaction domain of LDB1 revealed a discrete motif, R(320)LITR, required for LMO2 binding. Most strikingly, coexpression of full-length, wild-type LDB1 increased LMO2 steady-state abundance, whereas coexpression of mutant proteins deficient in LMO2 binding compromised LMO2 stability. These mutant LDB1 proteins also exerted dominant negative effects on growth and transcription in diverse leukemic cell lines. Mass spectrometric analysis of LDB1 binding partners in leukemic lines supports the notion that LMO2/LDB1 function in leukemia occurs in the context of multisubunit complexes, which also protect the LMO2 oncoprotein from degradation. Collectively, these data suggest that the assembly of LMO2 into complexes, via direct LDB1 interaction, is a potential molecular target that could be exploited in LMO2-driven leukemias resistant to existing chemotherapy regimens.
Collapse
|
35
|
Abstract
PURPOSE OF REVIEW Recent genome sequencing studies have identified a broad spectrum of gene mutations in T-cell acute lymphoblastic leukemia (T-ALL). The purpose of this review is to outline the latest advances in our understanding of how these mutations contribute to the formation of T-ALL. RECENT FINDINGS Aberrant expression of transcription factors that control hematopoiesis can induce an aberrant stem cell-like program in T-cell progenitors, allowing the emergence of an ancestral or preleukemic stem cell (pre-LSC). In contrast, gain-of-function mutations of genes involved in signaling pathways regulating T-cell development, such as NOTCH1, interleukin-7, KIT and FLT3, are insufficient per se to initiate T-ALL but promote pre-LSC growth independent of the thymic niche. Loss-of-function mutations of epigenetic regulators, such as DNMT3A, have been identified in T-ALL, but their role in leukemogenesis remains to be defined. SUMMARY Relapse is associated with clonal evolution from a population of pre-LSCs that acquire the whole set of malignant mutations leading to a full-blown T-ALL. Understanding the genetic events that underpin the pre-LSC will be crucial for reducing the risk of relapse.
Collapse
|
36
|
Durinck K, Goossens S, Peirs S, Wallaert A, Van Loocke W, Matthijssens F, Pieters T, Milani G, Lammens T, Rondou P, Van Roy N, De Moerloose B, Benoit Y, Haigh J, Speleman F, Poppe B, Van Vlierberghe P. Novel biological insights in T-cell acute lymphoblastic leukemia. Exp Hematol 2015; 43:625-39. [PMID: 26123366 DOI: 10.1016/j.exphem.2015.05.017] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Accepted: 05/24/2015] [Indexed: 01/07/2023]
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive type of blood cancer that accounts for about 15% of pediatric and 25% of adult acute lymphoblastic leukemia (ALL) cases. It is considered as a paradigm for the multistep nature of cancer initiation and progression. Genetic and epigenetic reprogramming events, which transform T-cell precursors into malignant T-ALL lymphoblasts, have been extensively characterized over the past decade. Despite our comprehensive understanding of the genomic landscape of human T-ALL, leukemia patients are still treated by high-dose multiagent chemotherapy, potentially followed by hematopoietic stem cell transplantation. Even with such aggressive treatment regimens, which are often associated with considerable acute and long-term side effects, about 15% of pediatric and 40% of adult T-ALL patients still relapse, owing to acquired therapy resistance, and present with very dismal survival perspectives. Unfortunately, the molecular mechanisms by which residual T-ALL tumor cells survive chemotherapy and act as a reservoir for leukemic progression and hematologic relapse remain poorly understood. Nevertheless, it is expected that enhanced molecular understanding of T-ALL disease biology will ultimately facilitate a targeted therapy driven approach that can reduce chemotherapy-associated toxicities and improve survival of refractory T-ALL patients through personalized salvage therapy. In this review, we summarize recent biological insights into the molecular pathogenesis of T-ALL and speculate how the genetic landscape of T-ALL could trigger the development of novel therapeutic strategies for the treatment of human T-ALL.
Collapse
Affiliation(s)
- Kaat Durinck
- Center for Medical Genetics, Department for Pediatrics, Ghent, Belgium
| | - Steven Goossens
- Department for Biomedical Molecular Biology, Ghent University, Ghent, Belgium; Unit for Molecular Oncology, VIB Inflammation Research Center, Ghent, Belgium; Mammalian Functional Genetics Laboratory, Division of Blood Cancers, Australian Centre for Blood Diseases, Monash University, Melbourne, Victoria, Australia
| | - Sofie Peirs
- Center for Medical Genetics, Department for Pediatrics, Ghent, Belgium
| | - Annelynn Wallaert
- Center for Medical Genetics, Department for Pediatrics, Ghent, Belgium
| | - Wouter Van Loocke
- Center for Medical Genetics, Department for Pediatrics, Ghent, Belgium
| | | | - Tim Pieters
- Center for Medical Genetics, Department for Pediatrics, Ghent, Belgium; Department for Biomedical Molecular Biology, Ghent University, Ghent, Belgium; Unit for Molecular Oncology, VIB Inflammation Research Center, Ghent, Belgium
| | - Gloria Milani
- Center for Medical Genetics, Department for Pediatrics, Ghent, Belgium
| | - Tim Lammens
- Department of Pediatric Hematology-Oncology and Stem Cell Transplantation, Ghent University Hospital, Ghent, Belgium
| | - Pieter Rondou
- Center for Medical Genetics, Department for Pediatrics, Ghent, Belgium
| | - Nadine Van Roy
- Center for Medical Genetics, Department for Pediatrics, Ghent, Belgium
| | - Barbara De Moerloose
- Department of Pediatric Hematology-Oncology and Stem Cell Transplantation, Ghent University Hospital, Ghent, Belgium
| | - Yves Benoit
- Department of Pediatric Hematology-Oncology and Stem Cell Transplantation, Ghent University Hospital, Ghent, Belgium
| | - Jody Haigh
- Mammalian Functional Genetics Laboratory, Division of Blood Cancers, Australian Centre for Blood Diseases, Monash University, Melbourne, Victoria, Australia
| | - Frank Speleman
- Center for Medical Genetics, Department for Pediatrics, Ghent, Belgium
| | - Bruce Poppe
- Center for Medical Genetics, Department for Pediatrics, Ghent, Belgium
| | | |
Collapse
|
37
|
Goodings C, Smith E, Mathias E, Elliott N, Cleveland SM, Tripathi RM, Layer JH, Chen X, Guo Y, Shyr Y, Hamid R, Du Y, Davé UP. Hhex is Required at Multiple Stages of Adult Hematopoietic Stem and Progenitor Cell Differentiation. Stem Cells 2015; 33:2628-41. [PMID: 25968920 DOI: 10.1002/stem.2049] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 03/03/2015] [Accepted: 04/22/2015] [Indexed: 01/03/2023]
Abstract
Hhex encodes a homeodomain transcription factor that is widely expressed in hematopoietic stem and progenitor cell populations. Its enforced expression induces T-cell leukemia and we have implicated it as an important oncogene in early T-cell precursor leukemias where it is immediately downstream of an LMO2-associated protein complex. Conventional Hhex knockouts cause embryonic lethality precluding analysis of adult hematopoiesis. Thus, we induced highly efficient conditional knockout (cKO) using vav-Cre transgenic mice. Hhex cKO mice were viable and born at normal litter sizes. At steady state, we observed a defect in B-cell development that we localized to the earliest B-cell precursor, the pro-B-cell stage. Most remarkably, bone marrow transplantation using Hhex cKO donor cells revealed a more profound defect in all hematopoietic lineages. In contrast, sublethal irradiation resulted in normal myeloid cell repopulation of the bone marrow but markedly impaired repopulation of T- and B-cell compartments. We noted that Hhex cKO stem and progenitor cell populations were skewed in their distribution and showed enhanced proliferation compared to WT cells. Our results implicate Hhex in the maintenance of LT-HSCs and in lineage allocation from multipotent progenitors especially in stress hematopoiesis.
Collapse
Affiliation(s)
| | | | | | - Natalina Elliott
- MRC Molecular Hematology Unit, University of Oxford, Oxford, United Kingdom
| | | | | | | | - Xi Chen
- Department of Biostatistics, Center for Quantitative Sciences
| | - Yan Guo
- Department of Biostatistics, Center for Quantitative Sciences
| | - Yu Shyr
- Department of Biostatistics, Center for Quantitative Sciences
| | - Rizwan Hamid
- Division of Medical Genetics, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Yang Du
- Department of Pediatrics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Utpal P Davé
- Department of Cancer Biology.,Division of Hematology/Oncology.,Tennessee Valley Healthcare System, Nashville VA, Nashville, Tennessee, USA
| |
Collapse
|
38
|
Kim SH, Kim EJ, Hitomi M, Oh SY, Jin X, Jeon HM, Beck S, Jin X, Kim JK, Park CG, Chang SY, Yin J, Kim T, Jeon YJ, Song J, Lim YC, Lathia JD, Nakano I, Kim H. The LIM-only transcription factor LMO2 determines tumorigenic and angiogenic traits in glioma stem cells. Cell Death Differ 2015; 22:1517-25. [PMID: 25721045 DOI: 10.1038/cdd.2015.7] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 12/30/2014] [Accepted: 01/14/2015] [Indexed: 01/23/2023] Open
Abstract
Glioblastomas (GBMs) maintain their cellular heterogeneity with glioma stem cells (GSCs) producing a variety of tumor cell types. Here we interrogated the oncogenic roles of Lim domain only 2 (LMO2) in GBM and GSCs in mice and human. High expression of LMO2 was found in human patient-derived GSCs compared with the differentiated progeny cells. LMO2 is required for GSC proliferation both in vitro and in vivo, as shRNA-mediated LMO2 silencing attenuated tumor growth derived from human GSCs. Further, LMO2 is sufficient to induce stem cell characteristics (stemness) in mouse premalignant astrocytes, as forced LMO2 expression facilitated in vitro and in vivo growth of astrocytes derived from Ink4a/Arf null mice and acquisition of GSC phenotypes. A subset of mouse and human GSCs converted into vascular endothelial-like tumor cells both in vitro and in vivo, which phenotype was attenuated by LMO2 silencing and promoted by LMO2 overexpression. Mechanistically, the action of LMO2 for induction of glioma stemness is mediated by transcriptional regulation of Jagged1 resulting in activation of the Notch pathway, whereas LMO2 directly occupies the promoter regions of the VE-cadherin gene for a gain of endothelial cellular phenotype. Subsequently, selective ablation of human GSC-derived VE-cadherin-expressing cells attenuated vascular formation in mouse intracranial tumors, thereby significantly prolonging mouse survival. Clinically, LMO2 expression was elevated in GBM tissues and inversely correlated with prognosis of GBM patients. Taken together, our findings describe novel dual roles of LMO2 to induce tumorigenesis and angiogenesis, and provide potential therapeutic targets in GBMs.
Collapse
Affiliation(s)
- S-H Kim
- 1] School of Life Sciences and Biotechnology and Institute of Life Science and Natural Resources, Korea University, Seoul 136-713, Republic of Korea [2] Department of Neurological Surgery, The Ohio State University, Columbus, OH 43210, USA
| | - E-J Kim
- School of Life Sciences and Biotechnology and Institute of Life Science and Natural Resources, Korea University, Seoul 136-713, Republic of Korea
| | - M Hitomi
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - S-Y Oh
- School of Life Sciences and Biotechnology and Institute of Life Science and Natural Resources, Korea University, Seoul 136-713, Republic of Korea
| | - X Jin
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - H-M Jeon
- School of Life Sciences and Biotechnology and Institute of Life Science and Natural Resources, Korea University, Seoul 136-713, Republic of Korea
| | - S Beck
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - X Jin
- School of Life Sciences and Biotechnology and Institute of Life Science and Natural Resources, Korea University, Seoul 136-713, Republic of Korea
| | - J-K Kim
- School of Life Sciences and Biotechnology and Institute of Life Science and Natural Resources, Korea University, Seoul 136-713, Republic of Korea
| | - C G Park
- School of Life Sciences and Biotechnology and Institute of Life Science and Natural Resources, Korea University, Seoul 136-713, Republic of Korea
| | - S-Y Chang
- School of Life Sciences and Biotechnology and Institute of Life Science and Natural Resources, Korea University, Seoul 136-713, Republic of Korea
| | - J Yin
- Specific Organs Cancer Branch, Research Institute and Hospital, National Cancer Center, Goyang 410-769, Republic of Korea
| | - T Kim
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Y-J Jeon
- Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University, Columbus, OH 43210, USA
| | - J Song
- Department of Neurological Surgery, The Ohio State University, Columbus, OH 43210, USA
| | - Y C Lim
- Department of Otorhinolaryngology-Head and Neck Surgery, Research Institute of Medical Science, Konkuk University School of Medicine, Seoul 143-752, Republic of Korea
| | - J D Lathia
- 1] Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA [2] Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Cleveland, OH 44195, USA [3] Case Comprehensive Cancer Center, Cleveland, OH 44195, USA
| | - I Nakano
- 1] Department of Neurological Surgery, The Ohio State University, Columbus, OH 43210, USA [2] James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - H Kim
- School of Life Sciences and Biotechnology and Institute of Life Science and Natural Resources, Korea University, Seoul 136-713, Republic of Korea
| |
Collapse
|
39
|
SCL, LMO1 and Notch1 reprogram thymocytes into self-renewing cells. PLoS Genet 2014; 10:e1004768. [PMID: 25522233 PMCID: PMC4270438 DOI: 10.1371/journal.pgen.1004768] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 09/22/2014] [Indexed: 12/30/2022] Open
Abstract
The molecular determinants that render specific populations of normal cells susceptible to oncogenic reprogramming into self-renewing cancer stem cells are poorly understood. Here, we exploit T-cell acute lymphoblastic leukemia (T-ALL) as a model to define the critical initiating events in this disease. First, thymocytes that are reprogrammed by the SCL and LMO1 oncogenic transcription factors into self-renewing pre-leukemic stem cells (pre-LSCs) remain non-malignant, as evidenced by their capacities to generate functional T cells. Second, we provide strong genetic evidence that SCL directly interacts with LMO1 to activate the transcription of a self-renewal program coordinated by LYL1. Moreover, LYL1 can substitute for SCL to reprogram thymocytes in concert with LMO1. In contrast, inhibition of E2A was not sufficient to substitute for SCL, indicating that thymocyte reprogramming requires transcription activation by SCL-LMO1. Third, only a specific subset of normal thymic cells, known as DN3 thymocytes, is susceptible to reprogramming. This is because physiological NOTCH1 signals are highest in DN3 cells compared to other thymocyte subsets. Consistent with this, overexpression of a ligand-independent hyperactive NOTCH1 allele in all immature thymocytes is sufficient to sensitize them to SCL-LMO1, thereby increasing the pool of self-renewing cells. Surprisingly, hyperactive NOTCH1 cannot reprogram thymocytes on its own, despite the fact that NOTCH1 is activated by gain of function mutations in more than 55% of T-ALL cases. Rather, elevating NOTCH1 triggers a parallel pathway involving Hes1 and Myc that dramatically enhances the activity of SCL-LMO1 We conclude that the acquisition of self-renewal and the genesis of pre-LSCs from thymocytes with a finite lifespan represent a critical first event in T-ALL. Finally, LYL1 and LMO1 or LMO2 are co-expressed in most human T-ALL samples, except the cortical T subtype. We therefore anticipate that the self-renewal network described here may be relevant to a majority of human T-ALL. Deciphering the initiating events in lymphoid leukemia is important for the development of new therapeutic strategies. In this manuscript, we define oncogenic reprogramming as the process through which non-self-renewing progenitors are converted into pre-leukemic stem cells with sustained self-renewal capacities. We provide strong genetic evidence that this step is rate-limiting in leukemogenesis and requires the activation of a self-renewal program by oncogenic transcription factors, as exemplified by SCL and LMO1. Furthermore, NOTCH1 is a pathway that drives cell fate in the thymus. We demonstrate that homeostatic NOTCH1 levels that are highest in specific thymocyte subsets determine their susceptibilities to oncogenic reprogramming by SCL and LMO1. Our data provide novel insight into the acquisition of self-renewal as a critical first step in lymphoid cell transformation, requiring the synergistic interaction of oncogenic transcription factors with a cellular context controlled by high physiological NOTCH1.
Collapse
|
40
|
Goodings C, Tripathi R, Cleveland SM, Elliott N, Guo Y, Shyr Y, Davé UP. Enforced expression of E47 has differential effects on Lmo2-induced T-cell leukemias. Leuk Res 2014; 39:100-9. [PMID: 25499232 DOI: 10.1016/j.leukres.2014.11.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 10/30/2014] [Accepted: 11/22/2014] [Indexed: 11/18/2022]
Abstract
LIM domain only-2 (LMO2) overexpression in T cells induces leukemia but the molecular mechanism remains to be elucidated. In hematopoietic stem and progenitor cells, Lmo2 is part of a protein complex comprised of class II basic helix loop helix proteins, Tal1and Lyl1. The latter transcription factors heterodimerize with E2A proteins like E47 and Heb to bind E boxes. LMO2 and TAL1 or LYL1 cooperate to induce T-ALL in mouse models, and are concordantly expressed in human T-ALL. Furthermore, LMO2 cooperates with the loss of E2A suggesting that LMO2 functions by creating a deficiency of E2A. In this study, we tested this hypothesis in Lmo2-induced T-ALL cell lines. We transduced these lines with an E47/estrogen receptor fusion construct that could be forced to homodimerize with 4-hydroxytamoxifen. We discovered that forced homodimerization induced growth arrest in 2 of the 4 lines tested. The lines sensitive to E47 homodimerization accumulated in G1 and had reduced S phase entry. We analyzed the transcriptome of a resistant and a sensitive line to discern the E47 targets responsible for the cellular effects. Our results suggest that E47 has diverse effects in T-ALL but that functional deficiency of E47 is not a universal feature of Lmo2-induced T-ALL.
Collapse
Affiliation(s)
- Charnise Goodings
- Departments of Cancer Biology and Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Rati Tripathi
- Departments of Cancer Biology and Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Susan M Cleveland
- Departments of Cancer Biology and Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Natalina Elliott
- Departments of Cancer Biology and Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Yan Guo
- Department of Biostatistics and Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Yu Shyr
- Department of Biostatistics and Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Utpal P Davé
- Departments of Cancer Biology and Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
41
|
Hhex regulates Kit to promote radioresistance of self-renewing thymocytes in Lmo2-transgenic mice. Leukemia 2014; 29:927-38. [PMID: 25283843 DOI: 10.1038/leu.2014.292] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 08/25/2014] [Accepted: 09/30/2014] [Indexed: 01/02/2023]
Abstract
Lmo2 is an oncogenic transcription factor that is frequently overexpressed in T-cell acute leukemias, in particular poor prognosis early T-cell precursor-like (ETP-) acute lymphoblastic leukemia (ALL). The primary effect of Lmo2 is to cause self-renewal of developing CD4(-)CD8(-) (double negative, DN) T cells in the thymus, leading to serially transplantable thymocytes that eventually give rise to leukemia. These self-renewing thymocytes are intrinsically radioresistant implying that they may be a source of leukemia relapse after therapy. The homeobox transcription factor, Hhex, is highly upregulated in Lmo2-transgenic thymocytes and can phenocopy Lmo2 in inducing thymocyte self-renewal, implying that Hhex may be a key component of the Lmo2-induced self-renewal program. To test this, we conditionally deleted Hhex in the thymi of Lmo2-transgenic mice. Surprisingly, this did not prevent accumulation of DN thymocytes, nor alter the rate of overt leukemia development. However, deletion of Hhex abolished the transplantation capacity of Lmo2-transgenic thymocytes and overcame their radioresistance. We found that Hhex regulates Kit expression in Lmo2-transgenic thymocytes and that abrogation of Kit signaling phenocopied loss of Hhex in abolishing the transplantation capacity and radioresistance of these cells. Thus, targeting the Kit signaling pathway may facilitate the eradication of leukemia-initiating cells in immature T-cell leukemias in which it is expressed.
Collapse
|
42
|
Yui MA, Rothenberg EV. Developmental gene networks: a triathlon on the course to T cell identity. Nat Rev Immunol 2014; 14:529-45. [PMID: 25060579 PMCID: PMC4153685 DOI: 10.1038/nri3702] [Citation(s) in RCA: 238] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cells acquire their ultimate identities by activating combinations of transcription factors that initiate and sustain expression of the appropriate cell type-specific genes. T cell development depends on the progression of progenitor cells through three major phases, each of which is associated with distinct transcription factor ensembles that control the recruitment of these cells to the thymus, their proliferation, lineage commitment and responsiveness to T cell receptor signals, all before the allocation of cells to particular effector programmes. All three phases are essential for proper T cell development, as are the mechanisms that determine the boundaries between each phase. Cells that fail to shut off one set of regulators before the next gene network phase is activated are predisposed to leukaemic transformation.
Collapse
Affiliation(s)
- Mary A Yui
- Division of Biology 156-29, California Institute of Technology, Pasadena, California 91125, USA
| | - Ellen V Rothenberg
- Division of Biology 156-29, California Institute of Technology, Pasadena, California 91125, USA
| |
Collapse
|
43
|
Cleveland SM, Goodings C, Tripathi RM, Elliott N, Thompson MA, Guo Y, Shyr Y, Davé UP. LMO2 induces T-cell leukemia with epigenetic deregulation of CD4. Exp Hematol 2014; 42:581-93.e5. [PMID: 24792354 PMCID: PMC4241760 DOI: 10.1016/j.exphem.2014.04.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2014] [Revised: 04/18/2014] [Accepted: 04/23/2014] [Indexed: 02/05/2023]
Abstract
In this study, we present a remarkable clonal cell line, 32080, derived from a CD2-Lmo2- transgenic T-cell leukemia with differentiation arrest at the transition from the intermediate single positive to double positive stages of T-cell development. We observed that 32080 cells had a striking variegated pattern in CD4 expression. There was cell-to-cell variability, with some cells expressing no CD4 and others expressing high CD4. The two populations were isogenic and yet differed in their rates of apoptosis and sensitivity to glucocorticoid. We sorted the 32080 line for CD4-positive or CD4-negative cells and observed them in culture. After 1 week, both sorted populations showed variegated CD4 expression, like the parental line, showing that the two populations could interconvert. We determined that cell replication was necessary to transit from CD4(+) to CD4(-) and CD4(-) to CD4(+). Lmo2 knockdown decreased CD4 expression, while inhibition of intracellular NOTCH1 or histone deacetylase activity induced CD4 expression. Enforced expression of RUNX1 repressed CD4 expression. We analyzed the CD4 locus by Histone 3 chromatin immunoprecipitation and found silencing marks in the CD4(-) cells and activating marks in the CD4(+) population. The 32080 cell line is a striking model of intermediate single positive to double positive T-cell plasticity and invokes a novel mechanism for LMO2's oncogenic functions.
Collapse
Affiliation(s)
- Susan M Cleveland
- Tennessee Valley Healthcare System and the Vanderbilt University Medical Center, Departments of Medicine and Cancer Biology, Nashville, Tennessee, USA
| | - Charnise Goodings
- Tennessee Valley Healthcare System and the Vanderbilt University Medical Center, Departments of Medicine and Cancer Biology, Nashville, Tennessee, USA
| | - Rati M Tripathi
- Tennessee Valley Healthcare System and the Vanderbilt University Medical Center, Departments of Medicine and Cancer Biology, Nashville, Tennessee, USA
| | - Natalina Elliott
- Tennessee Valley Healthcare System and the Vanderbilt University Medical Center, Departments of Medicine and Cancer Biology, Nashville, Tennessee, USA
| | - Mary Ann Thompson
- Vanderbilt University Medical Center, Department of Pathology, Microbiology, and Immunology, Nashville, Tennessee, USA
| | - Yan Guo
- Center for Quantitative Sciences, Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Yu Shyr
- Center for Quantitative Sciences, Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Utpal P Davé
- Tennessee Valley Healthcare System and the Vanderbilt University Medical Center, Departments of Medicine and Cancer Biology, Nashville, Tennessee, USA.
| |
Collapse
|