1
|
Chen X, Yang C, Wang W, He X, Sun H, Lyu W, Zou K, Fang S, Dai Z, Dong H. Exploration of prognostic genes and risk signature in breast cancer patients based on RNA binding proteins associated with ferroptosis. Front Genet 2023; 14:1025163. [PMID: 36911389 PMCID: PMC9998954 DOI: 10.3389/fgene.2023.1025163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 01/23/2023] [Indexed: 03/14/2023] Open
Abstract
Background: Breast cancer (BRCA) is a life-threatening malignancy in women with an unsatisfactory prognosis. The purpose of this study was to explore the prognostic biomarkers and a risk signature based on ferroptosis-related RNA-binding proteins (FR-RBPs). Methods: FR-RBPs were identified using Spearman correlation analysis. Differentially expressed genes (DEGs) were identified by the "limma" R package. The univariate Cox and multivariate Cox analyses were executed to determine the prognostic genes. The risk signature was constructed and verified with the training set, testing set, and validation set. Mutation analysis, immune checkpoint expression analysis in high- and low-risk groups, and correlation between risk signature and chemotherapeutic agents were conducted using the "maftools" package, "ggplot2" package, and the CellMiner database respectively. The Human Protein Atlas (HPA) database was employed to confirm protein expression trends of prognostic genes in BRCA and normal tissues. The expression of prognostic genes in cell lines was verified by Real-time quantitative polymerase chain reaction (RT-qPCR). Kaplan-meier (KM) plotter database analysis was applied to predict the correlation between the expression levels of signature genes and survival statuses. Results: Five prognostic genes (GSPT2, RNASE1, TIPARP, TSEN54, and SAMD4A) to construct an FR-RBPs-related risk signature were identified and the risk signature was validated by the International Cancer Genome Consortium (ICGC) cohort. Univariate and multivariate Cox regression analysis demonstrated the risk score was a robust independent prognostic factor in overall survival prediction. The Tumor Mutational Burden (TMB) analysis implied that the high- and low-risk groups responded differently to immunotherapy. Drug sensitivity analysis suggested that the risk signature may serve as a chemosensitivity predictor. The results of GSEA suggested that five prognostic genes might be related to DNA replication and the immune-related pathways. RT-qPCR results demonstrated that the expression trends of prognostic genes in cell lines were consistent with the results from public databases. KM plotter database analysis suggested that high expression levels of GSPT2, RNASE1, and SAMD4A contributed to poor prognoses. Conclusion: In conclusion, this study identified the FR-RBPs-related prognostic genes and developed an FR-RBPs-related risk signature for the prognosis of BRCA, which will be of great significance in developing new therapeutic targets and prognostic molecular biomarkers for BRCA.
Collapse
Affiliation(s)
- Xiang Chen
- Department of General Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Changcheng Yang
- Department of Medical Oncology, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Wei Wang
- Department of General Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Xionghui He
- Department of General Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Hening Sun
- Department of General Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Wenzhi Lyu
- Department of General Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Kejian Zou
- Department of General Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Shuo Fang
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong SAR, China.,Department of Oncology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Zhijun Dai
- Department of Breast Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Huaying Dong
- Department of General Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| |
Collapse
|
2
|
Jie W, Rui-Fen Z, Zhong-Xiang H, Yan W, Wei-Na L, Yong-Ping M, Jing S, Jing-Yi C, Wan-Hong L, Xiao-Hua H, Zhi L, Yan S. Inhibition of cell proliferation by Tas of foamy viruses through cell cycle arrest or apoptosis underlines the different mechanisms of virus-host interactions. Virulence 2022; 13:342-354. [PMID: 35132916 PMCID: PMC8837258 DOI: 10.1080/21505594.2022.2029329] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/22/2021] [Accepted: 01/11/2022] [Indexed: 11/22/2022] Open
Abstract
Foamy viruses belong to the Spumaretrovirinae subfamily member of the Retroviridae family and produce nonpathogenic infection to hosts in the natural conditions. However, infections of foamy viruses can dramatically cause severe cytopathic effects in vitro. To date, the exact molecular mechanism has remained unclear which implied the tremendous importance of virus-host cell immune reactions. In this study, we found that the transactivator Tas in two foamy viruses isolated from Old World Monkey (OWM) induced obvious inhibition of cell proliferation via the upregulation of Foxo3a expression. It was mediated by the generation of ROS and the initiation of ER stress, and ultimately, the mitochondrial apoptosis pathway was triggered. Notably, PFV Tas contributed to the accumulation of G0/G1 phase cycle arrest induced by the activation of the p53 signaling pathway and the nuclear transportation of HDAC4 via upregulating PPM1E expression. Together, these results demonstrated the different survival strategies by which foamy virus can hijack host cell cytokines and regulate virus-host cell interactions.
Collapse
Affiliation(s)
- Wei Jie
- College of Life Sciences, Shaanxi Normal University, Xi’an, P. R. China
| | - Zhang Rui-Fen
- College of Life Sciences, Shaanxi Normal University, Xi’an, P. R. China
| | - Hu Zhong-Xiang
- College of Life Sciences, Shaanxi Normal University, Xi’an, P. R. China
| | - Wu Yan
- College of Life Sciences, Shaanxi Normal University, Xi’an, P. R. China
| | - Liu Wei-Na
- College of Life Sciences, Shaanxi Normal University, Xi’an, P. R. China
| | - Ma Yong-Ping
- College of Life Sciences, Shaanxi Normal University, Xi’an, P. R. China
| | - Song Jing
- College of Life Sciences, Shaanxi Normal University, Xi’an, P. R. China
| | - Chen Jing-Yi
- College of Life Sciences, Shaanxi Normal University, Xi’an, P. R. China
| | - Liu Wan-Hong
- School of Medicine, Wuhan University, Wuhan, P. R. China
| | - He Xiao-Hua
- School of Medicine, Wuhan University, Wuhan, P. R. China
| | - Li Zhi
- College of Life Sciences, Shaanxi Normal University, Xi’an, P. R. China
| | - Sun Yan
- College of Life Sciences, Shaanxi Normal University, Xi’an, P. R. China
| |
Collapse
|
3
|
Noninvasive urinary protein signatures associated with colorectal cancer diagnosis and metastasis. Nat Commun 2022; 13:2757. [PMID: 35589723 PMCID: PMC9119985 DOI: 10.1038/s41467-022-30391-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 04/25/2022] [Indexed: 12/24/2022] Open
Abstract
Currently, imaging, fecal immunochemical tests (FITs) and serum carcinoembryonic antigen (CEA) tests are not adequate for the early detection and evaluation of metastasis and recurrence in colorectal cancer (CRC). To comprehensively identify and validate more accurate noninvasive biomarkers in urine, we implement a staged discovery-verification-validation pipeline in 657 urine and 993 tissue samples from healthy controls and CRC patients with a distinct metastatic risk. The generated diagnostic signature combined with the FIT test reveals a significantly increased sensitivity (+21.2% in the training set, +43.7% in the validation set) compared to FIT alone. Moreover, the generated metastatic signature for risk stratification correctly predicts over 50% of CEA-negative metastatic patients. The tissue validation shows that elevated urinary protein biomarkers reflect their alterations in tissue. Here, we show promising urinary protein signatures and provide potential interventional targets to reliably detect CRC, although further multi-center external validation is needed to generalize the findings. More sensitive and specific non-invasive biomarkers are desired for early detection of cancer. Here, the authors show a protein signature in the urine that increases sensitivity for colorectal cancer detection when combined with fecal immunochemical tests and corrects diagnosis in some fecal immunochemical tests-negative patients.
Collapse
|
4
|
Ren Y, Yang L, Li M, Wang J, Yan H, Ma N, Liu W, Wang L, Gao X, Gao P, Li T, Liu D. 4210 Da and 1866 Da polypeptides as potential biomarkers of liver disease progression in hepatitis B virus patients. Sci Rep 2021; 11:16982. [PMID: 34417517 PMCID: PMC8379215 DOI: 10.1038/s41598-021-96581-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 08/12/2021] [Indexed: 12/18/2022] Open
Abstract
HBV infection is recognized as a serious global health problem, and hepatitis B virus infection is a complicated chronic disease leading to liver cirrhosis (LC) and hepatocellular carcinoma (HCC). New biochemical serum markers could be used to advance the diagnosis and prognosis of HBV-associated liver diseases during the progression of chronic hepatitis B into cirrhosis and HCC. We determined whether the 4210 Da and 1866 Da polypeptides are serum metabolite biomarkers of hepatopathy with hepatitis B virus. A total of 570 subjects were divided into five groups: healthy controls, those with natural clearance, and patients with CHB, LC, and HCC. The 1866 Da and 4210 Da polypeptides were measured by Clin-ToF II MALDI-TOF-MS. There were significant differences in 4210 Da and 1866 Da levels among the five groups (P < 0.001). For the differential diagnosis of CHB from normal liver, the areas under the receiver operating characteristic (ROC) curve of 4210 Da and 1866 Da and their combination via logistic regression were 0.961, 0.849 and 0.967. For the differential diagnosis of LC from CHB, the areas under the ROC curve were 0.695, 0.841 and 0.826. For the differential diagnosis of HCC from CHB, the areas under the ROC curve were 0.744, 0.710 and 0.761, respectively. For the differential diagnosis of HCC from LC, the areas under the ROC curve of 4210 Da and 1866 Da were 0.580 and 0.654. The positive rate of 1866 Da was 45.5% and 69.0% in AFP-negative HCC patients and that of 4210 Da was 60.6% 58.6% in AFP-negative HCC patients of the study HCC vs. CHB and HCC vs. LC. The 4210 Da and 1866 Da polypeptide levels were positively correlated with HBV DNA levels (P < 0.001, r = 0.269; P < 0.001, r = 0.285). The 4210 Da and 1866 Da polypeptides had good diagnostic value for the occurrence and progression of HBV-related chronic hepatitis, liver cirrhosis and hepatocellular carcinoma and could serve to accurately guide treatment management and predict clinical outcomes.
Collapse
Affiliation(s)
- Yuanyuan Ren
- Hebei Key Laboratory of Environment and Human Health, Department of Epidemiology and Statistics, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, China
- Department of Food Quality and Safety, College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang, 050018, China
| | - Lei Yang
- Hebei Key Laboratory of Environment and Human Health, Department of Epidemiology and Statistics, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, China
| | - Man Li
- Hebei Key Laboratory of Environment and Human Health, Department of Epidemiology and Statistics, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, China
| | - Jian Wang
- Department of Epidemiology, Hebei North University, Zhangjiakou, 075000, China
| | - Huimin Yan
- Clinical Research Center, Shijiazhuang Fifth Hospital, Shijiazhuang, 050021, China
| | - Ning Ma
- Hebei Key Laboratory of Environment and Human Health, Department of Epidemiology and Statistics, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, China
| | - Wenxuan Liu
- Hebei Key Laboratory of Environment and Human Health, Department of Epidemiology and Statistics, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, China
| | - Liqin Wang
- Hebei Key Laboratory of Environment and Human Health, Department of Epidemiology and Statistics, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, China
| | - Xia Gao
- Hebei Key Laboratory of Environment and Human Health, Department of Epidemiology and Statistics, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, China
| | - Ping Gao
- Hebei Key Laboratory of Environment and Human Health, Department of Epidemiology and Statistics, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, China
| | - Tao Li
- Hebei Key Laboratory of Environment and Human Health, Department of Epidemiology and Statistics, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, China
| | - Dianwu Liu
- Hebei Key Laboratory of Environment and Human Health, Department of Epidemiology and Statistics, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, China.
| |
Collapse
|
5
|
Cao W, Zheng D, Wang G, Zhang J, Ge S, Singh M, Wang H, Song M, Li D, Wang W, Xu X, Wang Y. Modelling biological age based on plasma peptides in Han Chinese adults. Aging (Albany NY) 2020; 12:10676-10686. [PMID: 32501290 PMCID: PMC7346055 DOI: 10.18632/aging.103286] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 04/27/2020] [Indexed: 12/18/2022]
Abstract
Age-related disease burdens increased over time, and whether plasma peptides can be used to accurately predict age in order to explain the variation in biological indicators remains inadequately understood. Here we first developed a biological age model based on plasma peptides in 1890 Chinese Han adults. Based on mass spectrometry, 84 peptides were detected with masses in the range of 0.6-10.0 kDa, and 13 of these peptides were identified as known amino acid sequences. Five of these thirteen plasma peptides, including fragments of apolipoprotein A-I (m/z 2883.99), fibrinogen alpha chain (m/z 3060.13), complement C3 (m/z 2190.59), complement C4-A (m/z 1898.21), and breast cancer type 2 susceptibility protein (m/z 1607.84) were finally included in the final model by performing a multivariate linear regression with stepwise selection. This biological age model accounted for 72.3% of the variation in chronological age. Furthermore, the linear correlation between the actual age and biological age was 0.851 (95% confidence interval: 0.836-0.864) and 0.842 (95% confidence interval: 0.810-0.869) in the training and validation sets, respectively. The biological age based on plasma peptides has potential positive effects on primary prevention, and its biological meaning warrants further investigation.
Collapse
Affiliation(s)
- Weijie Cao
- Department of Epidemiology and Health Statistics, School of Public Health, Beijing Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing 100069, China
| | - Deqiang Zheng
- Department of Epidemiology and Health Statistics, School of Public Health, Beijing Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing 100069, China
| | - Guohua Wang
- The Second Affiliated Hospital of Shandong First Medical University, Tai'an 271000, China
| | - Jie Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Beijing Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing 100069, China
| | - Siqi Ge
- Beijing Neurosurgical Institute, Beijing 100070, China
| | - Manjot Singh
- School of Medical and Health Sciences, Edith Cowan University, Perth 6027, Australia
| | - Hao Wang
- Department of Epidemiology and Health Statistics, School of Public Health, Beijing Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing 100069, China.,School of Medical and Health Sciences, Edith Cowan University, Perth 6027, Australia
| | - Manshu Song
- School of Medical and Health Sciences, Edith Cowan University, Perth 6027, Australia
| | - Dong Li
- School of Public Health, Shandong First Medical University and Academy of Medical Sciences of Shandong Province, Tai'an 271016, China
| | - Wei Wang
- Department of Epidemiology and Health Statistics, School of Public Health, Beijing Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing 100069, China.,School of Medical and Health Sciences, Edith Cowan University, Perth 6027, Australia.,School of Public Health, Shandong First Medical University and Academy of Medical Sciences of Shandong Province, Tai'an 271016, China
| | - Xizhu Xu
- School of Public Health, Shandong First Medical University and Academy of Medical Sciences of Shandong Province, Tai'an 271016, China
| | - Youxin Wang
- Department of Epidemiology and Health Statistics, School of Public Health, Beijing Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing 100069, China.,School of Medical and Health Sciences, Edith Cowan University, Perth 6027, Australia
| |
Collapse
|
6
|
Rutkovsky AC, Yeh ES, Guest ST, Findlay VJ, Muise-Helmericks RC, Armeson K, Ethier SP. Eukaryotic initiation factor 4E-binding protein as an oncogene in breast cancer. BMC Cancer 2019; 19:491. [PMID: 31122207 PMCID: PMC6533768 DOI: 10.1186/s12885-019-5667-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 05/01/2019] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Eukaryotic Initiation Factor 4E-Binding Protein (EIF4EBP1, 4EBP1) is overexpressed in many human cancers including breast cancer, yet the role of 4EBP1 in breast cancer remains understudied. Despite the known role of 4EBP1 as a negative regulator of cap-dependent protein translation, 4EBP1 is predicted to be an essential driving oncogene in many cancer cell lines in vitro, and can act as a driver of cancer cell proliferation. EIF4EBP1 is located within the 8p11-p12 genomic locus, which is frequently amplified in breast cancer and is known to predict poor prognosis and resistance to endocrine therapy. METHODS Here we evaluated the effect of 4EBP1 targeting using shRNA knock-down of expression of 4EBP1, as well as response to the mTORC targeted drug everolimus in cell lines representing different breast cancer subtypes, including breast cancer cells with the 8p11-p12 amplicon, to better define a context and mechanism for oncogenic 4EBP1. RESULTS Using a genome-scale shRNA screen on the SUM panel of breast cancer cell lines, we found 4EBP1 to be a strong hit in the 8p11 amplified SUM-44 cells, which have amplification and overexpression of 4EBP1. We then found that knock-down of 4EBP1 resulted in dramatic reductions in cell proliferation in 8p11 amplified breast cancer cells as well as in other luminal breast cancer cell lines, but had little or no effect on the proliferation of immortalized but non-tumorigenic human mammary epithelial cells. Kaplan-Meier analysis of EIF4EBP1 expression in breast cancer patients demonstrated that overexpression of this gene was associated with reduced relapse free patient survival across all breast tumor subtypes. CONCLUSIONS These results are consistent with an oncogenic role of 4EBP1 in luminal breast cancer and suggests a role for this protein in cell proliferation distinct from its more well-known role as a regulator of cap-dependent translation.
Collapse
Affiliation(s)
- Alexandria C. Rutkovsky
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, 171 Ashley Avenue, MSC 908, Charleston, SC 29425 USA
- Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425 USA
| | - Elizabeth S. Yeh
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, 173 Ashley Avenue, BSB 358, MSC 509, Charleston, SC 29425 USA
- Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425 USA
| | - Stephen T. Guest
- Department of Computational Medicine and Bioinformatics, University of Michigan, 500 S. State Street, Ann Arbor, MI 48109 USA
| | - Victoria J. Findlay
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, 171 Ashley Avenue, MSC 908, Charleston, SC 29425 USA
| | - Robin C. Muise-Helmericks
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, 173 Ashley Avenue, BSB 601, MSC 508, Charleston, SC 29425 USA
| | - Kent Armeson
- Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425 USA
- Department of Public Health Sciences, Medical University of South Carolina, 135 Cannon Street Suite 303 MSC 835, Charleston, USA
| | - Stephen P. Ethier
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, 171 Ashley Avenue, MSC 908, Charleston, SC 29425 USA
- Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425 USA
| |
Collapse
|
7
|
Role of GSPT1 and GSPT2 polymorphisms in different outcomes upon Hepatitis B virus infection and prognosis to lamivudine therapy. Biosci Rep 2019; 39:BSR20181668. [PMID: 30867251 PMCID: PMC6438872 DOI: 10.1042/bsr20181668] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 01/12/2019] [Accepted: 03/05/2019] [Indexed: 02/06/2023] Open
Abstract
Purpose. ERF3, having been found expressing differently in liver tissues in our previous work, including eRF3a and eRF3b, which are structural homologs named GSPT1 and GSPT2 Recent studies have indicated that eRF3b involved in the development and proliferation of HepG2 cell, and eRF3a may be associated with tumor susceptibility. Based on this, we tested the effects of GSPT1 and GSPT2 single-nucleotide polymorphisms for all major Hepatitis B virus (HBV) outcomes and lamivudine (LAM) treatment in Han Chinese. Method. A total of 1649 samples were enrolled, and peripheral blood samples were collected in the present study. The single-nucleotide polymorphisms in the GSPT1 and GSPT2 region were genotyped using MALDI-TOF MS. Results. Our study demonstrated there was no obvious relevance of either GSPT1-rs33635 or GSPT2-rs974285 polymorphisms with HBV susceptibility, spontaneous recovery, and development of HBV-related diseases. However, we showed for the first time to our knowledge that GSPT1-rs33635C was a predictor for LAM therapy (viral response: odds ratio (OR) = 2.436, P=0.022; biochemical response: OR = 3.328, P=1.73 × 10-4). Conclusions. These findings might provide potential implications for therapeutic guidance.
Collapse
|
8
|
Shores DR, Everett AD. Children as Biomarker Orphans: Progress in the Field of Pediatric Biomarkers. J Pediatr 2018; 193:14-20.e31. [PMID: 29031860 PMCID: PMC5794519 DOI: 10.1016/j.jpeds.2017.08.077] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 08/04/2017] [Accepted: 08/30/2017] [Indexed: 12/20/2022]
Affiliation(s)
- Darla R Shores
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD.
| | - Allen D Everett
- Division of Cardiology, Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD
| |
Collapse
|
9
|
Cha YL, Li PD, Yuan LJ, Zhang MY, Zhang YJ, Rao HL, Zhang HZ, Zheng XFS, Wang HY. EIF4EBP1 overexpression is associated with poor survival and disease progression in patients with hepatocellular carcinoma. PLoS One 2015; 10:e0117493. [PMID: 25658620 PMCID: PMC4319970 DOI: 10.1371/journal.pone.0117493] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2014] [Accepted: 12/24/2014] [Indexed: 01/20/2023] Open
Abstract
Objective EIF4EBP1 acts as a crucial effector in mTOR signaling pathway. Studies have suggested that EIF4EBP1 plays a critical role in carcinogenesis. However, the clinical significance and biological role of EIF4EBP1 in hepatocellular carcinoma (HCC) have not been elucidated. Therefore, we aimed to investigate the clinical significance of EIF4EBP1 in HCC. Methods Total 128 cases of HCCs were included in this study. EIF4EBP1 expression in HCC tissues was detected by qRT-PCR, Western blot and immunohistochemistry, respectively. Then the relationships between EIF4EBP1 expression and clinical features as well as survival were analyzed. Results The expression level of EIF4EBP1 mRNA is significantly higher in 60% (24/40) of fresh HCC tissues than that in the matched adjacent nontumor liver (NCL) tissues (P = 0.044). Similarly, EIF4EBP1 protein is notably upregulated in 8 HCC tissues (randomly selected from the 40 HCCs) measured by Western blot and is significantly increased in another 88 paraffin-embedded HCCs (53%, 47/88) by immunohistochemistry compared with the matched NCLs (P < 0.001). EIF4EBP1 protein expression in HCC tissues is significantly correlated with serum AFP (P = 0.003) and marginally significantly associated with pathological grade (P = 0.085), tumor number (P = 0.084), tumor embolus (P = 0.084) and capsulation (P = 0.073). Patients with higher EIF4EBP1 protein expression have a much worse 5-year overall survival (40.3% vs 73.6%) and 5-year disease-free survival (33.0% vs 49.0%) than those with low expression. Furthermore, Cox regression analysis shows that EIF4EBP1 protein is an independent prognostic factor for overall survival (HR, 2.285; 95% CI, 1.154–4.527; P = 0.018) and disease-free survival (HR, 1.901; 95% CI, 1.067–3.386; P = 0.029) in HCC patients. Conclusions Our results demonstrate for the first time that EIF4EBP1 mRNA and protein are markedly up-regulated in HCC tissues, and the protein overexpression is significantly associated with poor survival and progression, which provide a potential new prognostic marker and therapeutic target for HCC patients.
Collapse
Affiliation(s)
- Yin-Lian Cha
- State Key Laboratory of Oncology in Southern China, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
- National Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Pin-Dong Li
- State Key Laboratory of Oncology in Southern China, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
- National Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Lin-Jing Yuan
- State Key Laboratory of Oncology in Southern China, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
- National Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Mei-Yin Zhang
- State Key Laboratory of Oncology in Southern China, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
- National Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Yao-Jun Zhang
- Department of Hepatobiliary Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Hui-Lan Rao
- Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Hui-Zhong Zhang
- Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - X. F. Steven Zheng
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, New Jersey, United States of America
| | - Hui-Yun Wang
- State Key Laboratory of Oncology in Southern China, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
- National Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
- * E-mail:
| |
Collapse
|