1
|
Kotlyarov S. Identification of Important Genes Associated with the Development of Atherosclerosis. Curr Gene Ther 2024; 24:29-45. [PMID: 36999180 DOI: 10.2174/1566523223666230330091241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 12/06/2022] [Accepted: 01/26/2023] [Indexed: 04/01/2023]
Abstract
Atherosclerosis is one of the most important medical problems due to its prevalence and significant contribution to the structure of temporary and permanent disability and mortality. Atherosclerosis is a complex chain of events occurring in the vascular wall over many years. Disorders of lipid metabolism, inflammation, and impaired hemodynamics are important mechanisms of atherogenesis. A growing body of evidence strengthens the understanding of the role of genetic and epigenetic factors in individual predisposition and development of atherosclerosis and its clinical outcomes. In addition, hemodynamic changes, lipid metabolism abnormalities, and inflammation are closely related and have many overlapping links in regulation. A better study of these mechanisms may improve the quality of diagnosis and management of such patients.
Collapse
Affiliation(s)
- Stanislav Kotlyarov
- Department of Nursing, Ryazan State Medical University Named After Academician I.P. Pavlov, Russian Federation
| |
Collapse
|
2
|
Ménégaut L, Laubriet A, Crespy V, Nguyen M, Petit JM, Tarris G, Pilot T, Varin A, Choubley H, Bergas V, de Barros JPP, Thomas C, Steinmetz E, Masson D. Profiling of lipid mediators in atherosclerotic carotid plaques from type 2 diabetic and non-diabetic patients. Prostaglandins Leukot Essent Fatty Acids 2022; 184:102477. [PMID: 35952424 DOI: 10.1016/j.plefa.2022.102477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 07/18/2022] [Accepted: 08/03/2022] [Indexed: 12/29/2022]
Abstract
BACKGROUND AND AIMS Diabetes is associated with an accelerated development of atherosclerosis. Specific mechanisms related to diabetes and hyperglycemia may play a role in this process. In particular, alterations of arachidonic acid (AA) metabolism have been reported. Our main goal was to investigate for differences in the concentration of LTB4 and RvD1 as well as selected cyclooxygenase-derived mediators in carotid plaques from diabetic and non-diabetic patients. We also aimed to analyze the relationship between omega 6 and omega 3 Poly-Unsaturated Fatty acids (PUFAs) content in the plaques and the concentrations of these lipid mediators. METHODS 29 type 2 diabetic patients and 30 control patients admitted for surgical treatment of carotid stenosis were enrolled in the present study. Carotid plaques were harvested for in-depth lipidomic profiling. RESULTS No differences for LTB4 or other lipid mediators were observed between diabetic and non-diabetic patients. RvD1 levels were below the threshold of quantification in most of the samples. A significant correlation was found between LTB4 and 5(S)-HETE levels. Omega 3 enrichment was not significantly different between control and diabetic plaques. There was a negative correlation between DHA/AA ratio and the level of 5(S)-HETE while there was a positive association with TXB2 and PGD2 concentrations. CONCLUSION-PERSPECTIVES Our results does not support the hypothesis of a specific involvement of LTB4 or COX-derived mediators in diabetic atherosclerosis. The relationship between DHA enrichment and the concentrations of specific inflammatory mediators within the plaque is of interest and will need to be confirmed in larger studies.
Collapse
Affiliation(s)
- Louise Ménégaut
- Université Bourgogne Franche-Comté, LNC UMR1231, Dijon, France; INSERM, UMR1231, Dijon, France; FCS Bourgogne-Franche Comté, LipSTIC LabEx, Dijon, France; CHU Dijon, Laboratory of Clinical Chemistry, Dijon, France
| | - Aline Laubriet
- CHU Dijon, Department of Cardiovascular Surgery, Dijon, France
| | - Valentin Crespy
- CHU Dijon, Department of Cardiovascular Surgery, Dijon, France
| | - Maxime Nguyen
- Université Bourgogne Franche-Comté, LNC UMR1231, Dijon, France; INSERM, UMR1231, Dijon, France; FCS Bourgogne-Franche Comté, LipSTIC LabEx, Dijon, France; CHU Dijon Department of Anesthesiology and Intensive Care, Dijon, France
| | - Jean-Michel Petit
- Université Bourgogne Franche-Comté, LNC UMR1231, Dijon, France; INSERM, UMR1231, Dijon, France; FCS Bourgogne-Franche Comté, LipSTIC LabEx, Dijon, France; CHU Dijon, Department of Endocrinology and metabolic diseases, Dijon, France
| | | | - Thomas Pilot
- Université Bourgogne Franche-Comté, LNC UMR1231, Dijon, France; INSERM, UMR1231, Dijon, France; FCS Bourgogne-Franche Comté, LipSTIC LabEx, Dijon, France
| | - Alexis Varin
- Université Bourgogne Franche-Comté, LNC UMR1231, Dijon, France; INSERM, UMR1231, Dijon, France; FCS Bourgogne-Franche Comté, LipSTIC LabEx, Dijon, France; Lipidomic Analytic Platform, Université Bourgogne Franche-Comté, Dijon, France
| | - Hélène Choubley
- Université Bourgogne Franche-Comté, LNC UMR1231, Dijon, France; INSERM, UMR1231, Dijon, France; FCS Bourgogne-Franche Comté, LipSTIC LabEx, Dijon, France; Lipidomic Analytic Platform, Université Bourgogne Franche-Comté, Dijon, France
| | - Victoria Bergas
- Université Bourgogne Franche-Comté, LNC UMR1231, Dijon, France; INSERM, UMR1231, Dijon, France; FCS Bourgogne-Franche Comté, LipSTIC LabEx, Dijon, France; Lipidomic Analytic Platform, Université Bourgogne Franche-Comté, Dijon, France
| | - Jean-Paul Pais de Barros
- Université Bourgogne Franche-Comté, LNC UMR1231, Dijon, France; INSERM, UMR1231, Dijon, France; FCS Bourgogne-Franche Comté, LipSTIC LabEx, Dijon, France; Lipidomic Analytic Platform, Université Bourgogne Franche-Comté, Dijon, France
| | - Charles Thomas
- Université Bourgogne Franche-Comté, LNC UMR1231, Dijon, France; INSERM, UMR1231, Dijon, France; FCS Bourgogne-Franche Comté, LipSTIC LabEx, Dijon, France
| | - Eric Steinmetz
- CHU Dijon, Department of Cardiovascular Surgery, Dijon, France
| | - David Masson
- Université Bourgogne Franche-Comté, LNC UMR1231, Dijon, France; INSERM, UMR1231, Dijon, France; FCS Bourgogne-Franche Comté, LipSTIC LabEx, Dijon, France; CHU Dijon, Laboratory of Clinical Chemistry, Dijon, France.
| |
Collapse
|
3
|
Kotlyarov S. Genetic and Epigenetic Regulation of Lipoxygenase Pathways and Reverse Cholesterol Transport in Atherogenesis. Genes (Basel) 2022; 13:1474. [PMID: 36011386 PMCID: PMC9408222 DOI: 10.3390/genes13081474] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/12/2022] [Accepted: 08/16/2022] [Indexed: 11/16/2022] Open
Abstract
Atherosclerosis is one of the most important medical and social problems of modern society. Atherosclerosis causes a large number of hospitalizations, disability, and mortality. A considerable amount of evidence suggests that inflammation is one of the key links in the pathogenesis of atherosclerosis. Inflammation in the vascular wall has extensive cross-linkages with lipid metabolism, and lipid mediators act as a central link in the regulation of inflammation in the vascular wall. Data on the role of genetics and epigenetic factors in the development of atherosclerosis are of great interest. A growing body of evidence is strengthening the understanding of the significance of gene polymorphism, as well as gene expression dysregulation involved in cross-links between lipid metabolism and the innate immune system. A better understanding of the genetic basis and molecular mechanisms of disease pathogenesis is an important step towards solving the problems of its early diagnosis and treatment.
Collapse
Affiliation(s)
- Stanislav Kotlyarov
- Department of Nursing, Ryazan State Medical University, 390026 Ryazan, Russia
| |
Collapse
|
4
|
Prescott E, Angerås O, Erlinge D, Grove EL, Hedman M, Jensen LO, Pernow J, Saraste A, Åkerblom A, Svedlund S, Rudvik A, Knöchel J, Lindstedt EL, Garkaviy P, Gan LM, Gabrielsen A. Safety and efficacy of the 5-lipoxygenase-activating protein inhibitor AZD5718 in patients with recent myocardial infarction: The phase 2a FLAVOUR study. Int J Cardiol 2022; 365:34-40. [PMID: 35842004 DOI: 10.1016/j.ijcard.2022.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 07/12/2022] [Indexed: 11/05/2022]
Abstract
BACKGROUND Leukotrienes are pro-inflammatory vasoactive lipid mediators implicated in the pathophysiology of atherosclerotic cardiovascular disease. We studied the effect of the 5-lipoxygenase-activating protein inhibitor AZD5718 on leukotriene biosynthesis and coronary microvascular function in a single-blind, phase 2a study. METHODS Patients 7-28 days after myocardial infarction (±ST elevation), with <50% left anterior descending coronary artery stenosis and Thrombolysis in Myocardial Infarction flow grade ≥ 2 after percutaneous coronary intervention, were randomized 2:1:2 to once-daily AZD5718 200 mg or 50 mg, or placebo, in 4- and 12-week cohorts. Change in urine leukotriene E4 (uLTE4) was the primary endpoint, and coronary flow velocity reserve (CFVR; via echocardiography) was the key secondary endpoint. RESULTS Of 129 randomized patients, 128 received treatment (200 mg, n = 52; 50 mg, n = 25; placebo, n = 51). Statistically significant reductions in uLTE4 levels of >80% were observed in both AZD5718 groups versus the placebo group at 4 and 12 weeks. No significant changes in CFVR were observed for AZD5718 versus placebo. Adverse events (AEs) occurred in 12/18, 3/6 and 6/13 patients receiving 200 mg, 50 mg and placebo, respectively, in the 4-week cohort, and in 27/34, 14/19 and 24/38 patients, respectively, in the 12-week cohort. Serious AEs in seven patients receiving AZD5718 and four receiving placebo were not treatment-related, and there were no deaths. CONCLUSIONS In patients with recent myocardial infarction, AZD5718 was well tolerated, and leukotriene biosynthesis was dose-dependently inhibited. No significant changes in CFVR were detected. CLINICALTRIALS gov identifier: NCT03317002.
Collapse
Affiliation(s)
- Eva Prescott
- Department of Cardiology, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark.
| | - Oskar Angerås
- Department of Molecular and Clinical Medicine, Sahlgrenska Academy, University of Gothenburg, and Department of Cardiology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - David Erlinge
- Cardiology, Department of Clinical Sciences, Lund University and Skåne University Hospital, Lund, Sweden
| | - Erik L Grove
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Marja Hedman
- Heart Center and Clinical Imaging Center, Kuopio University Hospital, Kuopio, Finland; Institute of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Lisette O Jensen
- Department of Cardiology, Odense University Hospital, Odense, Denmark
| | - John Pernow
- Division of Cardiology, Department of Medicine, Karolinska Institute, and Department of Cardiology, Karolinska University Hospital, Stockholm, Sweden
| | - Antti Saraste
- University of Turku and Heart Centre, Turku University Hospital, Turku, Finland
| | - Axel Åkerblom
- Department of Medical Sciences - Cardiology, and Uppsala Clinical Research Center, Uppsala University, Uppsala, Sweden
| | - Sara Svedlund
- Department of Clinical Physiology, Sahlgrenska University Hospital and Department of Molecular and Clinical Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anna Rudvik
- Early Biometrics and Statistical Innovation, Data Science & AI, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Jane Knöchel
- Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Eva-Lotte Lindstedt
- Research and Early Clinical Development, Cardiovascular, Renal and Metabolic, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Pavlo Garkaviy
- Research and Early Clinical Development, Cardiovascular, Renal and Metabolic, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Li-Ming Gan
- Department of Molecular and Clinical Medicine, Sahlgrenska Academy, University of Gothenburg, and Department of Cardiology, Sahlgrenska University Hospital, Gothenburg, Sweden; Research and Early Clinical Development, Cardiovascular, Renal and Metabolic, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Anders Gabrielsen
- Research and Early Clinical Development, Cardiovascular, Renal and Metabolic, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| |
Collapse
|
5
|
Kotlyarov S, Kotlyarova A. Involvement of Fatty Acids and Their Metabolites in the Development of Inflammation in Atherosclerosis. Int J Mol Sci 2022; 23:ijms23031308. [PMID: 35163232 PMCID: PMC8835729 DOI: 10.3390/ijms23031308] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/14/2022] [Accepted: 01/21/2022] [Indexed: 02/06/2023] Open
Abstract
Despite all the advances of modern medicine, atherosclerosis continues to be one of the most important medical and social problems. Atherosclerosis is the cause of several cardiovascular diseases, which are associated with high rates of disability and mortality. The development of atherosclerosis is associated with the accumulation of lipids in the arterial intima and the disruption of mechanisms that maintain the balance between the development and resolution of inflammation. Fatty acids are involved in many mechanisms of inflammation development and maintenance. Endothelial cells demonstrate multiple cross-linkages between lipid metabolism and innate immunity. In addition, these processes are linked to hemodynamics and the function of other cells in the vascular wall, highlighting the central role of the endothelium in vascular biology.
Collapse
Affiliation(s)
- Stanislav Kotlyarov
- Department of Nursing, Ryazan State Medical University, 390026 Ryazan, Russia
- Correspondence:
| | - Anna Kotlyarova
- Department of Pharmacology and Pharmacy, Ryazan State Medical University, 390026 Ryazan, Russia;
| |
Collapse
|
6
|
Blauw LL, Noordam R, van der Laan SW, Trompet S, Kooijman S, van Heemst D, Jukema JW, van Setten J, de Borst GJ, Tybjærg-Hansen A, Pasterkamp G, Berbée JFP, Rensen PCN. Common Genetic Variation in MC4R Does Not Affect Atherosclerotic Plaque Phenotypes and Cardiovascular Disease Outcomes. J Clin Med 2021; 10:jcm10050932. [PMID: 33804309 PMCID: PMC7957774 DOI: 10.3390/jcm10050932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/11/2021] [Accepted: 02/23/2021] [Indexed: 12/01/2022] Open
Abstract
We analyzed the effects of the common BMI-increasing melanocortin 4 receptor (MC4R) rs17782313-C allele with a minor allele frequency of 0.22–0.25 on (1) cardiovascular disease outcomes in two large population-based cohorts (Copenhagen City Heart Study and Copenhagen General Population Study, n = 106,018; and UK Biobank, n = 357,426) and additionally in an elderly population at risk for cardiovascular disease (n = 5241), and on (2) atherosclerotic plaque phenotypes in samples of patients who underwent endarterectomy (n = 1439). Using regression models, we additionally analyzed whether potential associations were modified by sex or explained by changes in body mass index. We confirmed the BMI-increasing effects of +0.22 kg/m2 per additional copy of the C allele (p < 0.001). However, we found no evidence for an association of common MC4R genetic variation with coronary artery disease (HR 1.03; 95% CI 0.99, 1.07), ischemic vascular disease (HR 1.00; 95% CI 0.98, 1.03), myocardial infarction (HR 1.01; 95% CI 0.94, 1.08 and 1.02; 0.98, 1.07) or stroke (HR 0.93; 95% CI 0.85, 1.01), nor with any atherosclerotic plaque phenotype. Thus, common MC4R genetic variation, despite increasing BMI, does not affect cardiovascular disease risk in the general population or in populations at risk for cardiovascular disease.
Collapse
Affiliation(s)
- Lisanne L. Blauw
- Department Medicine, Division Endocrinology, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands; (L.L.B.); (S.K.); (J.F.P.B.); (P.C.N.R.)
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| | - Raymond Noordam
- Department Medicine, Division Gerontology and Geriatrics, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands; (S.T.); (D.v.H.)
- Correspondence: ; Tel.: +31-71-52-66640
| | - Sander W. van der Laan
- Central Diagnostics Laboratory, Division Laboratory, Pharmacy and Biomedical Genetics, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands; (S.W.v.d.L.); (G.P.)
| | - Stella Trompet
- Department Medicine, Division Gerontology and Geriatrics, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands; (S.T.); (D.v.H.)
| | - Sander Kooijman
- Department Medicine, Division Endocrinology, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands; (L.L.B.); (S.K.); (J.F.P.B.); (P.C.N.R.)
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| | - Diana van Heemst
- Department Medicine, Division Gerontology and Geriatrics, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands; (S.T.); (D.v.H.)
| | - Johan Wouter Jukema
- Department Cardiology, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands;
| | - Jessica van Setten
- Surgery Specialties, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands;
| | - Gert J. de Borst
- Department Cardiology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands;
| | - Anne Tybjærg-Hansen
- Department Clinical Biochemistry, Rigshospitalet, Blegdamsvej 9, DK-2100 Copenhagen, Denmark;
- The Copenhagen City Heart Study, Frederiksberg Hospital, Nordre Fasanvej 57, DK-2000 Frederiksberg, Denmark
- The Copenhagen General Population Study and Gentofte Hospital, Herlev Ringvej 75, DK-2730 Herlev, Denmark
- Copenhagen University Hospitals and Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Gerard Pasterkamp
- Central Diagnostics Laboratory, Division Laboratory, Pharmacy and Biomedical Genetics, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands; (S.W.v.d.L.); (G.P.)
| | - Jimmy F. P. Berbée
- Department Medicine, Division Endocrinology, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands; (L.L.B.); (S.K.); (J.F.P.B.); (P.C.N.R.)
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| | - Patrick C. N. Rensen
- Department Medicine, Division Endocrinology, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands; (L.L.B.); (S.K.); (J.F.P.B.); (P.C.N.R.)
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| |
Collapse
|
7
|
Zagrapan B, Eilenberg W, Scheuba A, Klopf J, Brandau A, Story J, Dosch K, Hayden H, Domenig CM, Fuchs L, Schernthaner R, Ristl R, Huk I, Neumayer C, Brostjan C. Complement Factor C5a Is Increased in Blood of Patients with Abdominal Aortic Aneurysm and Has Prognostic Potential for Aneurysm Growth. J Cardiovasc Transl Res 2020; 14:761-769. [PMID: 33332020 PMCID: PMC8397625 DOI: 10.1007/s12265-020-10086-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 11/22/2020] [Indexed: 11/24/2022]
Abstract
In this observational case-control study, circulating levels of complement factors C3a and C5a and leukotriene B4 (LTB4) were analysed in abdominal aortic aneurysm (AAA) patients regarding their association with diagnosis and prognosis. Serum C5a was significantly raised in AAA patients compared to healthy controls—median 84.5 ng/ml (IQR = 37.5 ng/ml) vs. 67.7 ng/ml (IQR = 26.2 ng/ml), p = 0.007—but was not elevated in patients with athero-occlusive disease. Serum C5a levels correlated significantly with the increase in maximum AAA diameter over the following 6 months (r = 0.319, p = 0.021). The median growth in the lowest quartile of C5a (< 70 ng/ml) was 50% less compared to the highest C5a quartile (> 101 ng/ml): 1.0 mm/6 months (IQR = 0.8 mm) vs. 2.0 mm/6 months (IQR = 1.5 mm), p = 0.014. A log-linear mixed model predicted AAA expansion based on current diameter and C5a level. To our knowledge, this is the first study linking complement activation, in particular C5a serum level, with AAA progression.
Collapse
Affiliation(s)
- Branislav Zagrapan
- Department of Surgery: Division of Vascular Surgery and Surgical Research Laboratories, Medical University of Vienna, Vienna General Hospital, Vienna, Austria
| | - Wolf Eilenberg
- Department of Surgery: Division of Vascular Surgery and Surgical Research Laboratories, Medical University of Vienna, Vienna General Hospital, Vienna, Austria
| | - Andreas Scheuba
- Department of Surgery: Division of Vascular Surgery and Surgical Research Laboratories, Medical University of Vienna, Vienna General Hospital, Vienna, Austria
| | - Johannes Klopf
- Department of Surgery: Division of Vascular Surgery and Surgical Research Laboratories, Medical University of Vienna, Vienna General Hospital, Vienna, Austria
| | - Annika Brandau
- Department of Surgery: Division of Vascular Surgery and Surgical Research Laboratories, Medical University of Vienna, Vienna General Hospital, Vienna, Austria
| | - Julia Story
- Department of Surgery: Division of Vascular Surgery and Surgical Research Laboratories, Medical University of Vienna, Vienna General Hospital, Vienna, Austria
| | - Katharina Dosch
- Department of Surgery: Division of Vascular Surgery and Surgical Research Laboratories, Medical University of Vienna, Vienna General Hospital, Vienna, Austria
| | - Hubert Hayden
- Department of Surgery: Division of Vascular Surgery and Surgical Research Laboratories, Medical University of Vienna, Vienna General Hospital, Vienna, Austria
| | - Christoph M Domenig
- Department of Surgery: Division of Vascular Surgery and Surgical Research Laboratories, Medical University of Vienna, Vienna General Hospital, Vienna, Austria
| | - Lukas Fuchs
- Department of Surgery: Division of Vascular Surgery and Surgical Research Laboratories, Medical University of Vienna, Vienna General Hospital, Vienna, Austria
| | - Rüdiger Schernthaner
- Department of Biomedical Imaging and Image Guided Therapy: Division of Cardiovascular and Interventional Radiology, Medical University of Vienna, Vienna General Hospital, Vienna, Austria
| | - Robin Ristl
- Center for Medical Statistics, Informatics, and Intelligent Systems, Medical University of Vienna, Vienna, Austria
| | - Ihor Huk
- Department of Surgery: Division of Vascular Surgery and Surgical Research Laboratories, Medical University of Vienna, Vienna General Hospital, Vienna, Austria
| | - Christoph Neumayer
- Department of Surgery: Division of Vascular Surgery and Surgical Research Laboratories, Medical University of Vienna, Vienna General Hospital, Vienna, Austria
| | - Christine Brostjan
- Department of Surgery: Division of Vascular Surgery and Surgical Research Laboratories, Medical University of Vienna, Vienna General Hospital, Vienna, Austria.
| |
Collapse
|
8
|
Common coding variant in SERPINA1 increases the risk for large artery stroke. Proc Natl Acad Sci U S A 2017; 114:3613-3618. [PMID: 28265093 DOI: 10.1073/pnas.1616301114] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Large artery atherosclerotic stroke (LAS) shows substantial heritability not explained by previous genome-wide association studies. Here, we explore the role of coding variation in LAS by analyzing variants on the HumanExome BeadChip in a total of 3,127 cases and 9,778 controls from Europe, Australia, and South Asia. We report on a nonsynonymous single-nucleotide variant in serpin family A member 1 (SERPINA1) encoding alpha-1 antitrypsin [AAT; p.V213A; P = 5.99E-9, odds ratio (OR) = 1.22] and confirm histone deacetylase 9 (HDAC9) as a major risk gene for LAS with an association in the 3'-UTR (rs2023938; P = 7.76E-7, OR = 1.28). Using quantitative microscale thermophoresis, we show that M1 (A213) exhibits an almost twofold lower dissociation constant with its primary target human neutrophil elastase (NE) in lipoprotein-containing plasma, but not in lipid-free plasma. Hydrogen/deuterium exchange combined with mass spectrometry further revealed a significant difference in the global flexibility of the two variants. The observed stronger interaction with lipoproteins in plasma and reduced global flexibility of the Val-213 variant most likely improve its local availability and reduce the extent of proteolytic inactivation by other proteases in atherosclerotic plaques. Our results indicate that the interplay between AAT, NE, and lipoprotein particles is modulated by the gate region around position 213 in AAT, far away from the unaltered reactive center loop (357-360). Collectively, our findings point to a functionally relevant balance between lipoproteins, proteases, and AAT in atherosclerosis.
Collapse
|
9
|
Variants in ALOX5, ALOX5AP and LTA4H are not associated with atherosclerotic plaque phenotypes: the Athero-Express Genomics Study. Atherosclerosis 2015; 239:528-38. [PMID: 25721704 DOI: 10.1016/j.atherosclerosis.2015.01.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 01/07/2015] [Accepted: 01/13/2015] [Indexed: 11/22/2022]
Abstract
BACKGROUND The eicosanoid genes ALOX5, ALOX5AP and LTA4H have been implicated in atherosclerosis. We assessed the impact of common variants in these genes on gene expression, circulating protein levels, and atherosclerotic plaque phenotypes. METHODS We included patients from the Stockholm Atherosclerosis Gene Expression study (STAGE, N = 109), and the Athero-Express Biobank Study (AE, N = 1443). We tested 1453 single-nucleotide variants (SNVs) in ALOX5, ALOX5AP and LTA4H for association with gene expression in STAGE. We also tested these SNVs for association with seven histologically defined plaque phenotypes in the AE (which included calcification, collagen, cellular content, atheroma size, and intraplaque vessel density and hemorrhage). RESULTS We replicate a known cis-eQTL (rs6538697, p = 1.96 × 10(-6)) for LTA4H expression in whole blood of patients from STAGE. We found no significant association for any of the SNVs tested with serum levels of ALOX5 or ALOX5AP (p > 5.79 × 10(-4)). For atherosclerotic plaque phenotypes the strongest associations were found for intraplaque vessel density and smooth muscle cells in the ALOX5AP locus (p > 1.67 × 10(-4)). CONCLUSIONS We replicate a known eQTL for LTA4H expression in whole blood using STAGE data. We found no associations of variants in and around ALOX5, ALOX5AP and LTA4H with serum ALOX5 or ALOX5AP levels, or plaque phenotypes. On the supposition that these genes play a causal role in atherosclerosis, these results suggest that common variants in these loci play a limited role (if any) in influencing advanced atherosclerotic plaque morphology to the extent that it impacts atherosclerotic disease.
Collapse
|
10
|
Azghandi S, Prell C, van der Laan SW, Schneider M, Malik R, Berer K, Gerdes N, Pasterkamp G, Weber C, Haffner C, Dichgans M. Deficiency of the stroke relevant HDAC9 gene attenuates atherosclerosis in accord with allele-specific effects at 7p21.1. Stroke 2014; 46:197-202. [PMID: 25388417 DOI: 10.1161/strokeaha.114.007213] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND AND PURPOSE Recent genome-wide association studies identified the histone deacetylase 9 (HDAC9) gene region as a major risk locus for large-vessel stroke and coronary artery disease. However, the mechanisms linking variants at this locus to vascular risk are poorly understood. In this study, we investigated the candidacy and directionality of HDAC9 in atherosclerosis and analyzed associations between risk alleles at 7p21.1 and plaque characteristics. METHODS Allele-dependent expression of HDAC9 was analyzed in human peripheral blood mononuclear cells of healthy donors. Effects of HDAC9 deficiency on atherosclerotic plaques were investigated in 18- and 28-week-old ApoE(-/-) mice by histology and immunohistochemistry. We further performed detailed plaque phenotyping and genotyping of rs2107595, the lead single-nucleotide polymorphism for large-vessel stroke, in carotid endarterectomy samples of 1858 subjects from the Athero-Express study. RESULTS Gene expression studies in peripheral blood mononuclear cells revealed increased mRNA levels of HDAC9 but not of neighboring genes (TWIST1/FERD3L) in risk allele carriers of rs2107595. Compared with HDAC9(+/+)ApoE(-/-) mice, HDAC9(-/-)ApoE(-/-) mice exhibited markedly reduced lesion sizes throughout atherosclerotic aortas and significantly less advanced lesions. The proportion of Mac3-positive macrophages was higher in plaques from HDAC9(-/-)ApoE(-/-) mice, but this was largely because of a lower proportion of advanced lesions. Analysis of human atherosclerotic plaques revealed no association between rs2107595 and specific plaque characteristics. CONCLUSIONS Our results suggest that HDAC9 represents the disease-relevant gene at the stroke and coronary artery disease risk locus on 7p21.1, and that risk alleles in this region mediate their effects through increased HDAC9 expression. Targeted inhibition of HDAC9 might be a viable strategy to prevent atherosclerosis.
Collapse
Affiliation(s)
- Sepiede Azghandi
- From the Institute for Stroke and Dementia Research, Klinikum der Universität München, Munich, Germany (S.A., C.P., M.S., R.M., C.H., M.D.); Divisions Heart and Lungs and Laboratories and Pharmacy, University Medical Center Utrecht, Utrecht, The Netherlands (S.W.v.d.L., G.P.); Department of Neuroimmunology, Max Planck Institute of Neurobiology, Martinsried, Germany (K.B.); Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, Munich, Germany (N.G., C.W.); and Munich Cluster for Systems Neurology (SyNergy), Munich, Germany (M.D.)
| | - Caroline Prell
- From the Institute for Stroke and Dementia Research, Klinikum der Universität München, Munich, Germany (S.A., C.P., M.S., R.M., C.H., M.D.); Divisions Heart and Lungs and Laboratories and Pharmacy, University Medical Center Utrecht, Utrecht, The Netherlands (S.W.v.d.L., G.P.); Department of Neuroimmunology, Max Planck Institute of Neurobiology, Martinsried, Germany (K.B.); Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, Munich, Germany (N.G., C.W.); and Munich Cluster for Systems Neurology (SyNergy), Munich, Germany (M.D.)
| | - Sander W van der Laan
- From the Institute for Stroke and Dementia Research, Klinikum der Universität München, Munich, Germany (S.A., C.P., M.S., R.M., C.H., M.D.); Divisions Heart and Lungs and Laboratories and Pharmacy, University Medical Center Utrecht, Utrecht, The Netherlands (S.W.v.d.L., G.P.); Department of Neuroimmunology, Max Planck Institute of Neurobiology, Martinsried, Germany (K.B.); Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, Munich, Germany (N.G., C.W.); and Munich Cluster for Systems Neurology (SyNergy), Munich, Germany (M.D.)
| | - Manuela Schneider
- From the Institute for Stroke and Dementia Research, Klinikum der Universität München, Munich, Germany (S.A., C.P., M.S., R.M., C.H., M.D.); Divisions Heart and Lungs and Laboratories and Pharmacy, University Medical Center Utrecht, Utrecht, The Netherlands (S.W.v.d.L., G.P.); Department of Neuroimmunology, Max Planck Institute of Neurobiology, Martinsried, Germany (K.B.); Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, Munich, Germany (N.G., C.W.); and Munich Cluster for Systems Neurology (SyNergy), Munich, Germany (M.D.)
| | - Rainer Malik
- From the Institute for Stroke and Dementia Research, Klinikum der Universität München, Munich, Germany (S.A., C.P., M.S., R.M., C.H., M.D.); Divisions Heart and Lungs and Laboratories and Pharmacy, University Medical Center Utrecht, Utrecht, The Netherlands (S.W.v.d.L., G.P.); Department of Neuroimmunology, Max Planck Institute of Neurobiology, Martinsried, Germany (K.B.); Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, Munich, Germany (N.G., C.W.); and Munich Cluster for Systems Neurology (SyNergy), Munich, Germany (M.D.)
| | - Kerstin Berer
- From the Institute for Stroke and Dementia Research, Klinikum der Universität München, Munich, Germany (S.A., C.P., M.S., R.M., C.H., M.D.); Divisions Heart and Lungs and Laboratories and Pharmacy, University Medical Center Utrecht, Utrecht, The Netherlands (S.W.v.d.L., G.P.); Department of Neuroimmunology, Max Planck Institute of Neurobiology, Martinsried, Germany (K.B.); Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, Munich, Germany (N.G., C.W.); and Munich Cluster for Systems Neurology (SyNergy), Munich, Germany (M.D.)
| | - Norbert Gerdes
- From the Institute for Stroke and Dementia Research, Klinikum der Universität München, Munich, Germany (S.A., C.P., M.S., R.M., C.H., M.D.); Divisions Heart and Lungs and Laboratories and Pharmacy, University Medical Center Utrecht, Utrecht, The Netherlands (S.W.v.d.L., G.P.); Department of Neuroimmunology, Max Planck Institute of Neurobiology, Martinsried, Germany (K.B.); Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, Munich, Germany (N.G., C.W.); and Munich Cluster for Systems Neurology (SyNergy), Munich, Germany (M.D.)
| | - Gerard Pasterkamp
- From the Institute for Stroke and Dementia Research, Klinikum der Universität München, Munich, Germany (S.A., C.P., M.S., R.M., C.H., M.D.); Divisions Heart and Lungs and Laboratories and Pharmacy, University Medical Center Utrecht, Utrecht, The Netherlands (S.W.v.d.L., G.P.); Department of Neuroimmunology, Max Planck Institute of Neurobiology, Martinsried, Germany (K.B.); Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, Munich, Germany (N.G., C.W.); and Munich Cluster for Systems Neurology (SyNergy), Munich, Germany (M.D.)
| | - Christian Weber
- From the Institute for Stroke and Dementia Research, Klinikum der Universität München, Munich, Germany (S.A., C.P., M.S., R.M., C.H., M.D.); Divisions Heart and Lungs and Laboratories and Pharmacy, University Medical Center Utrecht, Utrecht, The Netherlands (S.W.v.d.L., G.P.); Department of Neuroimmunology, Max Planck Institute of Neurobiology, Martinsried, Germany (K.B.); Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, Munich, Germany (N.G., C.W.); and Munich Cluster for Systems Neurology (SyNergy), Munich, Germany (M.D.)
| | - Christof Haffner
- From the Institute for Stroke and Dementia Research, Klinikum der Universität München, Munich, Germany (S.A., C.P., M.S., R.M., C.H., M.D.); Divisions Heart and Lungs and Laboratories and Pharmacy, University Medical Center Utrecht, Utrecht, The Netherlands (S.W.v.d.L., G.P.); Department of Neuroimmunology, Max Planck Institute of Neurobiology, Martinsried, Germany (K.B.); Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, Munich, Germany (N.G., C.W.); and Munich Cluster for Systems Neurology (SyNergy), Munich, Germany (M.D.)
| | - Martin Dichgans
- From the Institute for Stroke and Dementia Research, Klinikum der Universität München, Munich, Germany (S.A., C.P., M.S., R.M., C.H., M.D.); Divisions Heart and Lungs and Laboratories and Pharmacy, University Medical Center Utrecht, Utrecht, The Netherlands (S.W.v.d.L., G.P.); Department of Neuroimmunology, Max Planck Institute of Neurobiology, Martinsried, Germany (K.B.); Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, Munich, Germany (N.G., C.W.); and Munich Cluster for Systems Neurology (SyNergy), Munich, Germany (M.D.).
| |
Collapse
|