1
|
Alibrandi L, Lionetti V. Interspecies differences in mitochondria: Implications for cardiac and vascular translational research. Vascul Pharmacol 2025; 159:107476. [PMID: 40037508 DOI: 10.1016/j.vph.2025.107476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 02/09/2025] [Accepted: 02/28/2025] [Indexed: 03/06/2025]
Abstract
Mitochondria are essential organelles that regulate cellular energy metabolism, redox balance, and signaling pathways related to proliferation, aging and survival. So far, significant interspecies differences exist in mitochondrial structure, function, and dynamics, which have critical implications for cardiovascular physiology and pharmacology. This review explores the main differences in mitochondrial properties across species of animals that are commonly used for translational research, emphasizing their cardiac and vascular relevance. By addressing key interspecies differences, including mitochondrial DNA (mtDNA) variation, bioenergetic profile, oxidative stress response, epigenetic regulation, mitochondrial biogenesis, and adaptive mechanisms, we aim to provide insights into the challenges and opportunities in translating preclinical findings to clinical applications. Understanding these interspecies differences is essential for optimizing the design and interpretation of preclinical studies and for developing effective mitochondrial-targeted therapies.
Collapse
Affiliation(s)
- Lisa Alibrandi
- TrancriLab, Laboratory of Basic and Applied Medical Research, Interdisciplinary Research Center "Health Science", Scuola Superiore Sant'Anna, Pisa, Italy
| | - Vincenzo Lionetti
- TrancriLab, Laboratory of Basic and Applied Medical Research, Interdisciplinary Research Center "Health Science", Scuola Superiore Sant'Anna, Pisa, Italy; UOSVD Anesthesia and Intensive Care, Fondazione Toscana G. Monasterio, Pisa, Italy.
| |
Collapse
|
2
|
Stroethoff M, Schneider N, Sung L, Wübbolt J, Heinen A, Raupach A. Cardioprotection by Preconditioning with Intralipid Is Sustained in a Model of Endothelial Dysfunction for Isolated-Perfused Hearts. Int J Mol Sci 2024; 25:10975. [PMID: 39456757 PMCID: PMC11507275 DOI: 10.3390/ijms252010975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
Endothelial dysfunction (ED) is closely associated with most cardiovascular diseases. Experimental models are needed to analyze the potential impact of ED on cardioprotection in constant pressure Langendorff systems (CPLS). One cardioprotective strategy against ischemia/reperfusion injury (I/RI) is conditioning with the lipid emulsion Intralipid (IL). Whether ED modulates the cardioprotective effect of IL remains unknown. The aim of the study was to transfer a protocol using a constant flow Langendorff system for the induction of ED into a CPLS, without the loss of smooth muscle cell functionality, and to analyze the cardioprotective effect of IL against I/RI under ED. In isolated hearts of male Wistar rats, ED was induced by 10 min perfusion of a Krebs-Henseleit buffer containing 60 mM KCl (K+), and the vasodilatory response to the vasodilators histamine (endothelial-dependent) and sodium-nitroprusside (SNP, endothelial-independent) was measured. A CPLS was employed to determine cardioprotection of pre- or postconditioning with 1% IL against I/RI. The constant flow perfusion of K+ reduced endothelial response to histamine but not to SNP, indicating reduced vasodilatory functionality of endothelial cells but not smooth muscle cells. Preconditioning with IL reduced infarct size and improved cardiac function while postconditioning with IL had no effect. The induction of ED neither influenced infarct size nor affected the cardioprotective effect by preconditioning with IL. This protocol allows for studies of cardioprotective strategies under ED in CLPS. The protection by preconditioning with IL seems to be mediated independently of a functional endothelium.
Collapse
Affiliation(s)
- Martin Stroethoff
- Department of Anesthesiology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany (J.W.)
| | - Natalie Schneider
- Department of Anesthesiology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany (J.W.)
| | - Lea Sung
- Department of Anesthesiology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany (J.W.)
| | - Jan Wübbolt
- Department of Anesthesiology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany (J.W.)
| | - André Heinen
- Institute for Cardiovascular Physiology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Annika Raupach
- Department of Anesthesiology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany (J.W.)
| |
Collapse
|
3
|
Hadebe N, Cour M, Imamdin A, Petersen T, Pennel T, Scherman J, Snowball J, Ntsekhe M, Zilla P, Swanevelder J, Lecour S. Cardioprotection with Intralipid During Coronary Artery Bypass Grafting Surgery on Cardiopulmonary Bypass: A Randomized Clinical Trial. Cardiovasc Drugs Ther 2024:10.1007/s10557-024-07594-w. [PMID: 38864969 DOI: 10.1007/s10557-024-07594-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/30/2024] [Indexed: 06/13/2024]
Abstract
PURPOSE Coronary artery bypass grafting (CABG) on cardiopulmonary bypass (CPB) is associated with myocardial ischemia-reperfusion injury (IRI), which may limit the benefit of the surgery. Both experimental and clinical studies suggest that Intralipid, a lipid emulsion commonly used for parenteral nutrition, can limit myocardial IRI. We therefore aimed to investigate whether Intralipid administered at reperfusion can reduce myocardial IRI in patients undergoing CABG on CPB. METHODS We conducted a randomized, double-blind, pilot trial in which 29 adult patients scheduled for CABG were randomly assigned (on a 1:1 basis) to receive either 1.5 ml/kg Intralipid 20% or Ringer's Lactate 3 min before aortic cross unclamping. The primary endpoint was the 72-h area under the curve (AUC) for troponin I. RESULTS Of the 29 patients randomized, 26 were included in the study (two withdrew consent and one was excluded before surgery). The 72-h AUC for troponin I did not significantly differ between the control and Intralipid group (546437 ± 205518 versus 487561 ± 115724 arbitrary units, respectively; P = 0.804). Other outcomes (including 72-h AUC for CK-MB, C-reactive protein, need for defibrillation, time to extubation, length of ICU and hospital stay, and serious adverse events) were similar between the two groups. CONCLUSION In patients undergoing CABG on CPB, Intralipid did not limit myocardial IRI compared to placebo. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT02807727 (registration date: 16 June 2016).
Collapse
Affiliation(s)
- Nkanyiso Hadebe
- Cardioprotection Group, Faculty of Health Sciences, Cape Heart Institute, University of Cape Town, Anzio Road, Cape Town, 7925, Observatory, South Africa
- Department of Anaesthesia, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Martin Cour
- Cardioprotection Group, Faculty of Health Sciences, Cape Heart Institute, University of Cape Town, Anzio Road, Cape Town, 7925, Observatory, South Africa
| | - Aqeela Imamdin
- Cardioprotection Group, Faculty of Health Sciences, Cape Heart Institute, University of Cape Town, Anzio Road, Cape Town, 7925, Observatory, South Africa
| | - Tarra Petersen
- Cardioprotection Group, Faculty of Health Sciences, Cape Heart Institute, University of Cape Town, Anzio Road, Cape Town, 7925, Observatory, South Africa
| | - Timothy Pennel
- Chris Barnard Division of Cardiothoracic Surgery, University of Cape Town, Cape Town, South Africa
| | - Jacques Scherman
- Chris Barnard Division of Cardiothoracic Surgery, University of Cape Town, Cape Town, South Africa
| | - Jane Snowball
- Cardioprotection Group, Faculty of Health Sciences, Cape Heart Institute, University of Cape Town, Anzio Road, Cape Town, 7925, Observatory, South Africa
| | - Mpiko Ntsekhe
- Division of Cardiology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Peter Zilla
- Chris Barnard Division of Cardiothoracic Surgery, University of Cape Town, Cape Town, South Africa
| | - Justiaan Swanevelder
- Department of Anaesthesia, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Sandrine Lecour
- Cardioprotection Group, Faculty of Health Sciences, Cape Heart Institute, University of Cape Town, Anzio Road, Cape Town, 7925, Observatory, South Africa.
| |
Collapse
|
4
|
Heys R, Angelini GD, Joyce K, Smartt H, Culliford L, Maishman R, de Jesus SE, Emanueli C, Suleiman MS, Punjabi P, Rogers CA, Gibbison B. Efficacy of propofol-supplemented cardioplegia on biomarkers of organ injury in patients having cardiac surgery using cardiopulmonary bypass: A protocol for a randomised controlled study (ProMPT2). Perfusion 2024; 39:722-732. [PMID: 36794486 PMCID: PMC7617284 DOI: 10.1177/02676591231157269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
INTRODUCTION Cardiac surgery with cardiopulmonary bypass and cardioplegic arrest is known to be responsible for ischaemia and reperfusion organ injury. In a previous study, ProMPT, in patients undergoing coronary artery bypass or aortic valve surgery we demonstrated improved cardiac protection when supplementing the cardioplegia solution with propofol (6 mcg/ml). The aim of the ProMPT2 study is to determine whether higher levels of propofol added to the cardioplegia could result in increased cardiac protection. METHODS AND ANALYSIS The ProMPT2 study is a multi-centre, parallel, three-group, randomised controlled trial in adults undergoing non-emergency isolated coronary artery bypass graft surgery with cardiopulmonary bypass. A total of 240 patients will be randomised in a 1:1:1 ratio to receive either cardioplegia supplementation with high dose of propofol (12 mcg/ml), low dose of propofol (6 mcg/ml) or placebo (saline). The primary outcome is myocardial injury, assessed by serial measurements of myocardial troponin T up to 48 hours after surgery. Secondary outcomes include biomarkers of renal function (creatinine) and metabolism (lactate). ETHICS AND DISSEMINATION The trial received research ethics approval from South Central - Berkshire B Research Ethics Committee and Medicines and Healthcare products Regulatory Agency in September 2018. Any findings will be shared though peer-reviewed publications and presented at international and national meetings. Participants will be informed of results through patient organisations and newsletters. TRIAL REGISTRATION ISRCTN15255199. Registered in March 2019.
Collapse
Affiliation(s)
- Rachael Heys
- Bristol Trials Centre, Bristol Medical School, University of Bristol, Bristol, UK
| | | | - Katherine Joyce
- Bristol Trials Centre, Bristol Medical School, University of Bristol, Bristol, UK
| | - Helena Smartt
- Bristol Trials Centre, Bristol Medical School, University of Bristol, Bristol, UK
| | - Lucy Culliford
- Bristol Trials Centre, Bristol Medical School, University of Bristol, Bristol, UK
| | - Rachel Maishman
- Bristol Trials Centre, Bristol Medical School, University of Bristol, Bristol, UK
| | - Samantha E de Jesus
- Bristol Trials Centre, Bristol Medical School, University of Bristol, Bristol, UK
| | | | | | - Prakash Punjabi
- National Heart and Lung Institute, Hammersmith Hospital, London, UK
| | - Chris A Rogers
- Bristol Trials Centre, Bristol Medical School, University of Bristol, Bristol, UK
| | - Ben Gibbison
- Department of Anaesthesia, University Hospitals Bristol and Weston NHS Foundation Trust, Bristol, UK
| |
Collapse
|
5
|
Zhang L, Gong X, Tan J, Zhang R, Li M, Liu C, Wu C, Li X. Lactobacillus reuteri mitigates hepatic ischemia/reperfusion injury by modulating gut microbiota and metabolism through the Nrf2/HO-1 signaling. Biol Direct 2024; 19:23. [PMID: 38500127 PMCID: PMC10946149 DOI: 10.1186/s13062-024-00462-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 02/27/2024] [Indexed: 03/20/2024] Open
Abstract
BACKGROUND This study seeks to investigate the impacts of Lactobacillus reuteri (L. reuteri) on hepatic ischemia-reperfusion (I/R) injury and uncover the mechanisms involved. METHODS Mice in the I/R groups were orally administered low and high doses of L.reuteri (L.reuteri-low and L. reuteri-hi; 1 × 1010 CFU/d and 1 × 1011 CFU/d), for 4 weeks prior to surgery. Following this, mice in the model group were treated with an Nrf2 inhibitor (ML-385), palmitoylcarnitine, or a combination of both. RESULTS After treatment with L. reuteri, mice exhibited reduced levels of serum aminotransferase (ALT), aspartate aminotransferase (AST), and myeloperoxidase (MPO) activity, as well as a lower Suzuki score and apoptosis rate. L. reuteri effectively reversed the I/R-induced decrease in Bcl2 expression, and the significant increases in the levels of Bax, cleaved-Caspase3, p-p65/p65, p-IκB/IκB, p-p38/p38, p-JNK/JNK, and p-ERK/ERK. Furthermore, the administration of L. reuteri markedly reduced the inflammatory response and oxidative stress triggered by I/R. This treatment also facilitated the activation of the Nrf2/HO-1 pathway. L. reuteri effectively counteracted the decrease in levels of beneficial gut microbiota species (such as Blautia, Lachnospiraceae NK4A136, and Muribaculum) and metabolites (including palmitoylcarnitine) induced by I/R. Likewise, the introduction of exogenous palmitoylcarnitine demonstrated a beneficial impact in mitigating hepatic injury induced by I/R. However, when ML-385 was administered prior to palmitoylcarnitine treatment, the previously observed effects were reversed. CONCLUSION L. reuteri exerts protective effects against I/R-induced hepatic injury, and its mechanism may be related to the promotion of probiotic enrichment, differential metabolite homeostasis, and the Nrf2/HO-1 pathway, laying the foundation for future clinical applications.
Collapse
Affiliation(s)
- Leiyi Zhang
- Department of General Surgery, The Second Xiangya Hospital, Central South University, No. 139 Renmin Middle Road, Furong District, 410011, Changsha, China
| | - Xiaoxiang Gong
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, 410011, Changsha, China
| | - Juan Tan
- Research Associate Department of Pathology, The Xiangya Third Hospital, Central South University, 410013, Changsha, China
| | - Rongsen Zhang
- Department of Ultrasound Diagnosis, The Second Xiangya Hospital, Central South University, 410011, Changsha, China
| | - Mingxia Li
- Department of Anesthesiology, Wuhan Third Hospital, Tongren Hospital of Wuhan University, 430061, Wuhan, China
| | - Cong Liu
- Department of General Surgery, The Second Xiangya Hospital, Central South University, No. 139 Renmin Middle Road, Furong District, 410011, Changsha, China
| | - Chenhao Wu
- Department of General Surgery, The Second Xiangya Hospital, Central South University, No. 139 Renmin Middle Road, Furong District, 410011, Changsha, China
| | - Xiaojing Li
- Department of General Surgery, The Second Xiangya Hospital, Central South University, No. 139 Renmin Middle Road, Furong District, 410011, Changsha, China.
| |
Collapse
|
6
|
Krause J, Nickel A, Madsen A, Aitken-Buck HM, Stoter AMS, Schrapers J, Ojeda F, Geiger K, Kern M, Kohlhaas M, Bertero E, Hofmockel P, Hübner F, Assum I, Heinig M, Müller C, Hansen A, Krause T, Park DD, Just S, Aïssi D, Börnigen D, Lindner D, Friedrich N, Alhussini K, Bening C, Schnabel RB, Karakas M, Iacoviello L, Salomaa V, Linneberg A, Tunstall-Pedoe H, Kuulasmaa K, Kirchhof P, Blankenberg S, Christ T, Eschenhagen T, Lamberts RR, Maack C, Stenzig J, Zeller T. An arrhythmogenic metabolite in atrial fibrillation. J Transl Med 2023; 21:566. [PMID: 37620858 PMCID: PMC10464005 DOI: 10.1186/s12967-023-04420-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 08/07/2023] [Indexed: 08/26/2023] Open
Abstract
BACKGROUND Long-chain acyl-carnitines (ACs) are potential arrhythmogenic metabolites. Their role in atrial fibrillation (AF) remains incompletely understood. Using a systems medicine approach, we assessed the contribution of C18:1AC to AF by analysing its in vitro effects on cardiac electrophysiology and metabolism, and translated our findings into the human setting. METHODS AND RESULTS Human iPSC-derived engineered heart tissue was exposed to C18:1AC. A biphasic effect on contractile force was observed: short exposure enhanced contractile force, but elicited spontaneous contractions and impaired Ca2+ handling. Continuous exposure provoked an impairment of contractile force. In human atrial mitochondria from AF individuals, C18:1AC inhibited respiration. In a population-based cohort as well as a cohort of patients, high C18:1AC serum concentrations were associated with the incidence and prevalence of AF. CONCLUSION Our data provide evidence for an arrhythmogenic potential of the metabolite C18:1AC. The metabolite interferes with mitochondrial metabolism, thereby contributing to contractile dysfunction and shows predictive potential as novel circulating biomarker for risk of AF.
Collapse
Affiliation(s)
- Julia Krause
- University Center of Cardiovascular Science, Department of Cardiology, University Heart and Vascular Center Hamburg, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Alexander Nickel
- Comprehensive Heart Failure Center, University Clinic Würzburg, Würzburg, Germany
| | - Alexandra Madsen
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hamish M Aitken-Buck
- Department of Physiology, HeartOtago, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - A M Stella Stoter
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jessica Schrapers
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Francisco Ojeda
- Department of Cardiology, University Heart and Vascular Center Hamburg, Hamburg, Germany
| | - Kira Geiger
- Comprehensive Heart Failure Center, University Clinic Würzburg, Würzburg, Germany
| | - Melanie Kern
- Comprehensive Heart Failure Center, University Clinic Würzburg, Würzburg, Germany
| | - Michael Kohlhaas
- Comprehensive Heart Failure Center, University Clinic Würzburg, Würzburg, Germany
| | - Edoardo Bertero
- Comprehensive Heart Failure Center, University Clinic Würzburg, Würzburg, Germany
| | - Patrick Hofmockel
- Comprehensive Heart Failure Center, University Clinic Würzburg, Würzburg, Germany
| | - Florian Hübner
- Institute of Food Chemistry, University of Münster, Münster, Germany
| | - Ines Assum
- Institute of Computational Biology, Helmholtz Zentrum München, Munich, Germany
- Department of Informatics, Technical University Munich, Munich, Germany
| | - Matthias Heinig
- Institute of Computational Biology, Helmholtz Zentrum München, Munich, Germany
- Department of Informatics, Technical University Munich, Munich, Germany
| | - Christian Müller
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
- Department of Cardiology, University Heart and Vascular Center Hamburg, Hamburg, Germany
| | - Arne Hansen
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tobias Krause
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Deung-Dae Park
- Molecular Cardiology, Department of Internal Medicine II, University of Ulm, Ulm, Germany
| | - Steffen Just
- Molecular Cardiology, Department of Internal Medicine II, University of Ulm, Ulm, Germany
| | - Dylan Aïssi
- Department of Cardiology, University Heart and Vascular Center Hamburg, Hamburg, Germany
| | - Daniela Börnigen
- Department of Cardiology, University Heart and Vascular Center Hamburg, Hamburg, Germany
| | - Diana Lindner
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
- Department of Cardiology, University Heart and Vascular Center Hamburg, Hamburg, Germany
- Department of Cardiology and Angiology, Faculty of Medicine, University Heart Center Freiburg-Bad Krozingen, Medical Center - University of Freiburg, University of Freiburg, 79106, Freiburg, Germany
| | - Nele Friedrich
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany
| | - Khaled Alhussini
- Department of Thoracic and Cardiovascular Surgery, University Clinic Würzburg, Würzburg, Germany
| | - Constanze Bening
- Department of Thoracic and Cardiovascular Surgery, University Clinic Würzburg, Würzburg, Germany
| | - Renate B Schnabel
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
- Department of Cardiology, University Heart and Vascular Center Hamburg, Hamburg, Germany
| | - Mahir Karakas
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
- Department of Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Licia Iacoviello
- Department of Epidemiology and Prevention, IRCCS Neuromed, Pozzilli, Italy
- Department of Medicine and Surgery, Research Center in Epidemiology and Preventive Medicine (EPIMED), University of Insubria, Varese, Italy
| | - Veikko Salomaa
- Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Allan Linneberg
- Center for Clinical Research and Prevention, Bispebjerg and Frederiksberg Hospital, Capital Region of Denmark, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Hugh Tunstall-Pedoe
- Cardiovascular Epidemiology Unit, Institute of Cardiovascular Research, University of Dundee, Dundee, UK
| | - Kari Kuulasmaa
- Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Paulus Kirchhof
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
- Department of Cardiology, University Heart and Vascular Center Hamburg, Hamburg, Germany
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
| | - Stefan Blankenberg
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
- Department of Cardiology, University Heart and Vascular Center Hamburg, Hamburg, Germany
| | - Torsten Christ
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thomas Eschenhagen
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Regis R Lamberts
- Department of Physiology, HeartOtago, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Christoph Maack
- Comprehensive Heart Failure Center, University Clinic Würzburg, Würzburg, Germany
| | - Justus Stenzig
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tanja Zeller
- University Center of Cardiovascular Science, Department of Cardiology, University Heart and Vascular Center Hamburg, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany.
| |
Collapse
|
7
|
Jaffal K, Chevillard L, Mégarbane B. Lipid Emulsion to Treat Acute Poisonings: Mechanisms of Action, Indications, and Controversies. Pharmaceutics 2023; 15:pharmaceutics15051396. [PMID: 37242638 DOI: 10.3390/pharmaceutics15051396] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
Biodetoxification using intravenous lipid emulsion (ILE) in acute poisoning is of growing interest. As well as for local anesthetics, ILE is currently used to reverse toxicity caused by a broad-spectrum of lipophilic drugs. Both pharmacokinetic and pharmacodynamic mechanisms have been postulated to explain its possible benefits, mainly combining a scavenging effect called "lipid sink" and cardiotonic activity. Additional mechanisms based on ILE-attributed vasoactive and cytoprotective properties are still under investigation. Here, we present a narrative review on lipid resuscitation, focusing on the recent literature with advances in understanding ILE-attributed mechanisms of action and evaluating the evidence supporting ILE administration that enabled the international recommendations. Many practical aspects are still controversial, including the optimal dose, the optimal administration timing, and the optimal duration of infusion for clinical efficacy, as well as the threshold dose for adverse effects. Present evidence supports the use of ILE as first-line therapy to reverse local anesthetic-related systemic toxicity and as adjunct therapy in lipophilic non-local anesthetic drug overdoses refractory to well-established antidotes and supportive care. However, the level of evidence is low to very low, as for most other commonly used antidotes. Our review presents the internationally accepted recommendations according to the clinical poisoning scenario and provides the precautions of use to optimize the expected efficacy of ILE and limit the inconveniences of its futile administration. Based on their absorptive properties, the next generation of scavenging agents is additionally presented. Although emerging research shows great potential, several challenges need to be overcome before parenteral detoxifying agents could be considered as an established treatment for severe poisonings.
Collapse
Affiliation(s)
- Karim Jaffal
- Department of Medical and Toxicological Critical Care, Federation of Toxicology, Lariboisière Hospital, 75010 Paris, France
- INSERM UMRS-1144, Paris-Cité University, 75006 Paris, France
| | - Lucie Chevillard
- Department of Medical and Toxicological Critical Care, Federation of Toxicology, Lariboisière Hospital, 75010 Paris, France
- INSERM UMRS-1144, Paris-Cité University, 75006 Paris, France
| | - Bruno Mégarbane
- Department of Medical and Toxicological Critical Care, Federation of Toxicology, Lariboisière Hospital, 75010 Paris, France
- INSERM UMRS-1144, Paris-Cité University, 75006 Paris, France
| |
Collapse
|
8
|
García-Ramos S, Fernandez I, Zaballos M. Lipid emulsions in the treatment of intoxications by local anesthesics and other drugs. Review of mechanisms of action and recommendations for use. REVISTA ESPANOLA DE ANESTESIOLOGIA Y REANIMACION 2022; 69:421-432. [PMID: 35871141 DOI: 10.1016/j.redare.2021.03.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 03/25/2021] [Indexed: 06/15/2023]
Abstract
Intravenous lipid emulsions (ILEs) have been used widely for the treatment of local anesthetic (LA) poisoning and have been proposed as a treatment for intoxication by other drugs. However, the degree of evidence for this kind of therapy is not strong, as it comes mostly from clinical cases. The aim of this narrative review is to describe the proposed mechanisms of action for ILEs in poisoning by LA and other drugs and to evaluate recent studies in animals that support the recommendations for their use and the experience in humans that support the use of ILESs in both LA and other drug poisoning. For this purpose, a search was performed in the Embase, Medline and Google Scholar databases covering relevant articles over the last 10 years. In the case of AL poisoning, we recommend applying the protocols dictated by international guidelines, knowing that the degree of evidence is not very high. In poisoning by other drugs, ILEs are recommended in serious situations induced by liposoluble xenobiotics that do not respond to standard treatment.
Collapse
Affiliation(s)
- S García-Ramos
- Servicio de Anestesia y Reanimación, Hospital Universitario Gregorio Marañón, Madrid, Spain.
| | - I Fernandez
- Servicio de Anestesia y Reanimación, Hospital Universitario Gregorio Marañón, Madrid, Spain
| | - M Zaballos
- Servicio de Anestesia y Reanimación, Hospital Universitario Gregorio Marañón, Madrid, Spain; Departamento de Toxicología, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
9
|
Long B, Chavez S, Gottlieb M, Montrief T, Brady WJ. Local anesthetic systemic toxicity: A narrative review for emergency clinicians. Am J Emerg Med 2022; 59:42-48. [PMID: 35777259 DOI: 10.1016/j.ajem.2022.06.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/31/2022] [Accepted: 06/05/2022] [Indexed: 02/07/2023] Open
Abstract
INTRODUCTION Emergency clinicians utilize local anesthetics for a variety of procedures in the emergency department (ED) setting. Local anesthetic systemic toxicity (LAST) is a potentially deadly complication. OBJECTIVE This narrative review provides emergency clinicians with the most current evidence regarding the pathophysiology, evaluation, and management of patients with LAST. DISCUSSION LAST is an uncommon but potentially life-threatening complication of local anesthetic use that may be encountered in the ED. Patients at extremes of age or with organ dysfunction are at higher risk. Inadvertent intra-arterial or intravenous injection, as well as repeated doses and higher doses of local anesthetics are associated with greater risk of developing LAST. Neurologic and cardiovascular manifestations can occur. Early recognition and intervention, including supportive care and intravenous lipid emulsion 20%, are the mainstays of treatment. Using ultrasound guidance, aspirating prior to injection, and utilizing the minimal local anesthetic dose needed are techniques that can reduce the risk of LAST. CONCLUSIONS This focused review provides an update for the emergency clinician to manage patients with LAST.
Collapse
Affiliation(s)
- Brit Long
- SAUSHEC, Emergency Medicine, Brooke Army Medical Center, USA.
| | - Summer Chavez
- Department of Emergency Medicine, UT Health Houston, Houston, TX, USA
| | - Michael Gottlieb
- Department of Emergency Medicine, Rush University Medical Center, Chicago, IL, USA
| | - Tim Montrief
- Department of Emergency Medicine, Jackson Memorial Health System, Miami, FL, USA
| | - William J Brady
- Department of Emergency Medicine, University of Virginia School of Medicine, Charlottesville, VA, USA.
| |
Collapse
|
10
|
Zheng XM, Yang Z, Yang GL, Huang Y, Peng JR, Wu MJ. Lung injury after cardiopulmonary bypass: Alternative treatment prospects. World J Clin Cases 2022; 10:753-761. [PMID: 35127892 PMCID: PMC8790450 DOI: 10.12998/wjcc.v10.i3.753] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/29/2021] [Accepted: 12/23/2021] [Indexed: 02/06/2023] Open
Abstract
Although the lung injury caused by cardiopulmonary bypass (CPB) has been extensively investigated, the incidence and mortality of lung injury after CPB remain a prominent clinical problem. The poor outcome has been attributed to multifactorial etiology, including the systemic inflammatory response and ischemia reperfusion (I/R) injury during CPB. Lung injury after CPB is a complex pathophysiological process and has many clinical manifestations of mild to severe disease. Which is associated with prognosis. To alleviate this lung injury, interventions that address the pathogenesis are particularly important. This review summarizes the pathogenesis, mechanism and treatment options of lung injury after CPB, such as lung protection with intralipid.
Collapse
Affiliation(s)
- Xue-Mei Zheng
- School of Medicine, University of Electronic Science and Technology of China, Chengdu 610000, Sichuan Province, China
| | - Zhuo Yang
- Department of Pharmacy, Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610000, Sichuan Province, China
| | - Guang-Li Yang
- Department of Medical Administration, Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610000, Sichuan Province, China
| | - Yan Huang
- National Institute of Drug Clinical Trial, Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610000, Sichuan Province, China
| | - Jie-Ru Peng
- Department of Medical Records Statistics, Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610000, Sichuan Province, China
| | - Meng-Jun Wu
- Department of Anesthesiology, The Affiliated Hospital, School of Medicine, Chengdu Women's and Children's Central Hospital, University of Electronic Science and Technology, Chengdu 610000, Sichuan Province, China
| |
Collapse
|
11
|
Quan W, Liu HX, Zhang W, Lou WJ, Gong YZ, Yuan C, Shao Q, Wang N, Guo C, Liu F. Cardioprotective effect of rosmarinic acid against myocardial ischaemia/reperfusion injury via suppression of the NF-κB inflammatory signalling pathway and ROS production in mice. PHARMACEUTICAL BIOLOGY 2021; 59:222-231. [PMID: 33600735 PMCID: PMC7894452 DOI: 10.1080/13880209.2021.1878236] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 01/11/2021] [Accepted: 01/15/2021] [Indexed: 05/04/2023]
Abstract
CONTEXT Rosmarinic acid (RosA), a natural poly-phenolic compound isolated from a variety of Labiatae herbs, has been reported to have a range of biological effects. OBJECTIVE To investigate the cardioprotective effects of RosA against myocardial ischaemia/reperfusion (I/R) injury. MATERIALS AND METHODS Male C57BL/6J mice were given RosA (100 mg/kg) via intragastric administration. After 1 week of administration, the mice were subjected to 30 min/24 h myocardial I/R injury. The mice were randomly subdivided into 4 groups: Vehicle, RosA, Vehicle + I/R, and RosA + I/R. Infarct size (IS), cardiac function (including EF, FS), histopathology, serum enzyme activities, ROS changes, cis aconitase (ACO) activity, and specific mRNA and protein levels were assessed in vivo. HL-1 cells were pre-treated with or without RosA (50 μM), followed by stimulation with 9 h/6 h of oxygen and glucose deprivation/re-oxygenation (OGD/R). The cells were randomly subdivided into 4 groups: Vehicle, RosA, Vehicle + OGD/R, and RosA + OGD/R. Lactate dehydrogenase (LDH) levels, ACO activity, ROS changes and protein levels were measured in vitro. RESULTS Treatment with RosA reduced the following indicators in vivo (p < 0.05): (1) IS (14.5%); (2) EF (-23.4%) and FS (-18.4%); (3) the myocardial injury enzymes CK-MB (20.8 ng/mL) and cTnI (7.7 ng/mL); (4) DHE-ROS: (94.1%); (5) ACO activity (-2.1 mU/mg protein); (6) ogdh mRNA level (122.9%); and (7) OGDH protein level (69.9%). Moreover, treatment with RosA attenuated the following indicators in vitro (p < 0.05): (1) LDH level (191 U/L); (2) DHE-ROS: (165.2%); (3) ACO activity (-3.2 mU/mg protein); (4) ogdh mRNA level (70.0%); and (5) OGDH (110.1%), p-IκB-a (56.8%), and p-NF-κB (57.7%) protein levels. CONCLUSIONS RosA has the potential to treat myocardial I/R injury with potential application in the clinic.
Collapse
Affiliation(s)
- Wei Quan
- Xi’an Mental Health Center, School of Medicine, Xi’an Jiaotong University, Xi’an, China
| | - Hui-xian Liu
- College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Wei Zhang
- Department of Pharmacy, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Wei-juan Lou
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yang-ze Gong
- Xi’an Mental Health Center, School of Medicine, Xi’an Jiaotong University, Xi’an, China
| | - Chong Yuan
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Qing Shao
- Xi’an Mental Health Center, School of Medicine, Xi’an Jiaotong University, Xi’an, China
| | - Na Wang
- Xi’an Mental Health Center, School of Medicine, Xi’an Jiaotong University, Xi’an, China
| | - Chao Guo
- Department of Pharmacy, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Fei Liu
- Xi’an Mental Health Center, School of Medicine, Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
12
|
Song N, Li X, Cui Y, Zhang T, Xu S, Li S. Hydrogen sulfide exposure induces pyroptosis in the trachea of broilers via the regulatory effect of circRNA-17828/miR-6631-5p/DUSP6 crosstalk on ROS production. JOURNAL OF HAZARDOUS MATERIALS 2021; 418:126172. [PMID: 34098264 DOI: 10.1016/j.jhazmat.2021.126172] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/08/2021] [Accepted: 05/17/2021] [Indexed: 06/12/2023]
Abstract
Hydrogen sulfide (H2S) is an air pollutant to cause tracheal injury. Pyroptosis is responsible for tissue injury through reactive oxygen species (ROS) production. Competitive endogenous RNAs (ceRNAs) chelate microRNAs and reduce their inhibitory effect on other transcripts, thus affecting ROS levels and pyroptosis. However, it is not clear how H2S regulates pyroptosis via the ceRNA axis. Therefore, we established a broilers model of H2S exposure for 42 days to assess pyroptosis and obtain a ceRNA network by immunohistochemistry and RNA sequencing. We detected pyroptosis induced by H2S and verified circRNA-IGLL1-17828/miR-6631-5p/DUSP6 axis by a double luciferase reporter assay. We also measured ROS levels and the expression of pyroptotic indicators such as (Caspase1) Casp-1, Interleukin 1β (IL-1β) and Interleukin 1β (IL-18). miR-6631-5p knockdown decreased pyroptotic indicators induced by H2S. Overexpression of miR-6631-5p or DUSP6 knockdown stimulated ROS generation and upregulated pyroptotic indicators. N-acetyl-L-cysteine (NAC) decreased pyroptotic indicators and ROS levels both induced by miR-6631-5p. Moreover, circRNA-IGLL1-17828, participated in intermolecular competition as a ceRNA of DUSP6. In conclusion, circRNA-IGLL1-17828/miR-6631-5p/DUSP6 crosstalk regulated H2S-induced pyroptosis in broilers trachea via ROS generation. This is the first study to reveal regulation mechanism of circRNA-related CeRNAs on pyroptosis induced by H2S, providing important reference for environmental toxicology.
Collapse
Affiliation(s)
- Nuan Song
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Xiaojing Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Yuan Cui
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Tianyi Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China.
| | - Shu Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
13
|
García-Ramos S, Fernandez I, Zaballos M. Lipid emulsions in the treatment of intoxications by local anesthesics and other drugs. Review of mechanisms of action and recommendations for use. REVISTA ESPANOLA DE ANESTESIOLOGIA Y REANIMACION 2021; 69:S0034-9356(21)00143-2. [PMID: 34140161 DOI: 10.1016/j.redar.2021.03.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 01/24/2021] [Accepted: 03/25/2021] [Indexed: 11/21/2022]
Abstract
Intravenous lipid emulsions (ILEs) have been used widely for the treatment of local anesthetic (LA) poisoning and have been proposed as a treatment for intoxication by other drugs. However, the degree of evidence for this kind of therapy is not strong, as it comes mostly from clinical cases. The aim of this narrative review is to describe the proposed mechanisms of action for ILEs in poisoning by LA and other drugs and to evaluate recent studies in animals that support the recommendations for their use and the experience in humans that support the use of ILESs in both LA and other drug poisoning. For this purpose, a search was performed in the Embase, Medline and Google Scholar databases covering relevant articles over the last 10 years. In the case of AL poisoning, we recommend applying the protocols dictated by international guidelines, knowing that the degree of evidence is not very high. In poisoning by other drugs, ILEs are recommended in serious situations induced by liposoluble xenobiotics that do not respond to standard treatment.
Collapse
Affiliation(s)
- S García-Ramos
- Servicio de Anestesia y Reanimación, Hospital Universitario Gregorio Marañón, Madrid, España.
| | - I Fernandez
- Servicio de Anestesia y Reanimación, Hospital Universitario Gregorio Marañón, Madrid, España
| | - M Zaballos
- Servicio de Anestesia y Reanimación, Hospital Universitario Gregorio Marañón, Madrid, España; Departamento de Toxicología, Universidad Complutense de Madrid, Madrid, España
| |
Collapse
|
14
|
Cobey FC, Kawabori M, Schumann R, Couper G, Bonney I, Fettiplace MR, Weinberg G. Intravenous Lipid Emulsion During Heart Transplantation. J Cardiothorac Vasc Anesth 2021; 35:3139-3141. [PMID: 33771441 DOI: 10.1053/j.jvca.2021.02.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 02/15/2021] [Indexed: 11/11/2022]
Affiliation(s)
- Frederick C Cobey
- Department of Anesthesiology and Perioperative Medicine, Tufts Medical Center, Boston, MA.
| | - Masashi Kawabori
- CardioVascular Center, Cardiac Surgery, Tufts Medical Center, Boston, MA
| | - Roman Schumann
- Department of Anesthesiology, VA Boston Healthcare System, West Roxbury, MA
| | - Gregory Couper
- CardioVascular Center, Cardiac Surgery, Tufts Medical Center, Boston, MA
| | - Iwona Bonney
- Department of Anesthesiology and Perioperative Medicine, Tufts Medical Center, Boston, MA
| | - Michael R Fettiplace
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA
| | - Guy Weinberg
- Department of Anesthesiology, University of Illinois and Jesse Brown VA Medical Center, Chicago, IL
| |
Collapse
|
15
|
Torregroza C, Raupach A, Feige K, Weber NC, Hollmann MW, Huhn R. Perioperative Cardioprotection: General Mechanisms and Pharmacological Approaches. Anesth Analg 2020; 131:1765-1780. [PMID: 33186163 DOI: 10.1213/ane.0000000000005243] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cardioprotection encompasses a variety of strategies protecting the heart against myocardial injury that occurs during and after inadequate blood supply to the heart during myocardial infarction. While restoring reperfusion is crucial for salvaging myocardium from further damage, paradoxically, it itself accounts for additional cell death-a phenomenon named ischemia/reperfusion injury. Therefore, therapeutic strategies are necessary to render the heart protected against myocardial infarction. Ischemic pre- and postconditioning, by short periods of sublethal cardiac ischemia and reperfusion, are still the strongest mechanisms to achieve cardioprotection. However, it is highly impractical and far too invasive for clinical use. Fortunately, it can be mimicked pharmacologically, for example, by volatile anesthetics, noble gases, opioids, propofol, dexmedetomidine, and phosphodiesterase inhibitors. These substances are all routinely used in the clinical setting and seem promising candidates for successful translation of cardioprotection from experimental protocols to clinical trials. This review presents the fundamental mechanisms of conditioning strategies and provides an overview of the most recent and relevant findings on different concepts achieving cardioprotection in the experimental setting, specifically emphasizing pharmacological approaches in the perioperative context.
Collapse
Affiliation(s)
- Carolin Torregroza
- From the Department of Anesthesiology, University Hospital Duesseldorf, Duesseldorf, Germany.,Department of Anesthesiology, Amsterdam University Medical Centers (AUMC), Amsterdam, the Netherlands
| | - Annika Raupach
- From the Department of Anesthesiology, University Hospital Duesseldorf, Duesseldorf, Germany
| | - Katharina Feige
- From the Department of Anesthesiology, University Hospital Duesseldorf, Duesseldorf, Germany
| | - Nina C Weber
- Department of Anesthesiology, Amsterdam University Medical Centers (AUMC), Amsterdam, the Netherlands
| | - Markus W Hollmann
- Department of Anesthesiology, Amsterdam University Medical Centers (AUMC), Amsterdam, the Netherlands
| | - Ragnar Huhn
- From the Department of Anesthesiology, University Hospital Duesseldorf, Duesseldorf, Germany
| |
Collapse
|
16
|
Holody C, Anfray A, Mast H, Lessard M, Han WH, Carpenter R, Bourque S, Sauvé Y, Lemieux H. Differences in relative capacities of oxidative phosphorylation pathways may explain sex- and tissue-specific susceptibility to vision defects due to mitochondrial dysfunction. Mitochondrion 2020; 56:102-110. [PMID: 33271347 DOI: 10.1016/j.mito.2020.11.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 10/09/2020] [Accepted: 11/18/2020] [Indexed: 01/03/2023]
Abstract
Mitochondrial dysfunction is a major cause and/or contributor to the development and progression of vision defects in many ophthalmologic and mitochondrial diseases. Despite their mechanistic commonality, these diseases exhibit an impressive variety in sex- and tissue-specific penetrance, incidence, and severity. Currently, there is no functional explanation for these differences. We measured the function, relative capacities, and patterns of control of various oxidative phosphorylation pathways in the retina, the eyecup, the extraocular muscles, the optic nerve, and the sciatic nerve of adult male and female rats. We show that the control of mitochondrial respiratory pathways in the visual system is sex- and tissue-specific and that this may be an important factor in determining susceptibility to mitochondrial dysfunction between these groups. The optic nerve showed a low relative capacity of the NADH pathway, depending on complex I, compared to other tissues relying mainly on mitochondria for energy production. Furthermore, NADH pathway capacity is higher in females compared to males, and this sexual dimorphism occurs only in the optic nerve. Our results propose an explanation for Leber's hereditary optic neuropathy, a mitochondrial disease more prevalent in males where the principal tissue affected is the optic nerve. To our knowledge, this is the first study to identify and provide functional explanations for differences in the occurrence and severity of visual defects between tissues and between sexes. Our results highlight the importance of considering sex- and tissue-specific mitochondrial function in elucidating pathophysiological mechanisms of visual defects.
Collapse
Affiliation(s)
- Claudia Holody
- Faculty Saint-Jean, University of Alberta, Edmonton, Alberta, Canada; Dept. of Pediatrics, University of Alberta, Edmonton, Alberta, Canada; Women and Children Research Health Institute, University of Alberta, Edmonton, Alberta, Canada; Dept. of Anesthesiology & Pain Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Anaïs Anfray
- Faculty Saint-Jean, University of Alberta, Edmonton, Alberta, Canada
| | - Heather Mast
- Faculty Saint-Jean, University of Alberta, Edmonton, Alberta, Canada
| | - Martin Lessard
- Faculty Saint-Jean, University of Alberta, Edmonton, Alberta, Canada
| | - Woo Hyun Han
- Faculty Saint-Jean, University of Alberta, Edmonton, Alberta, Canada
| | - Rowan Carpenter
- Faculty Saint-Jean, University of Alberta, Edmonton, Alberta, Canada
| | - Stephane Bourque
- Dept. of Pediatrics, University of Alberta, Edmonton, Alberta, Canada; Women and Children Research Health Institute, University of Alberta, Edmonton, Alberta, Canada; Dept. of Anesthesiology & Pain Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Yves Sauvé
- Dept. of Ophthalmology and Visual Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Hélène Lemieux
- Faculty Saint-Jean, University of Alberta, Edmonton, Alberta, Canada; Women and Children Research Health Institute, University of Alberta, Edmonton, Alberta, Canada; Dept. of Medicine, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
17
|
Intralipid postconditioning in patients of cardiac surgery undergoing cardiopulmonary bypass (iCPB): study protocol for a randomized controlled trial. Trials 2020; 21:953. [PMID: 33228739 PMCID: PMC7686691 DOI: 10.1186/s13063-020-04854-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 11/01/2020] [Indexed: 02/08/2023] Open
Abstract
Background Intralipid is a necessary fatty acid carrier that has been safely used as an energy supplier in the clinic. It has played an important role in rescuing the cardiac arrest caused by local anesthetic toxicity. In recent years, experimental studies have shown that intralipid postconditioning (ILPC) could reduce myocardial ischemic/reperfusion (I/R) injuries. Our research group has innovatively conducted a pilot randomized controlled trial (RCT), and the results showed that ILPC could reduce the release of cTnT and CK-MB, biomarkers of myocardial I/R injury, in valve replacement surgery. However, the potential effects of ILPC on the clinical outcome of adult cardiac surgery patients are unclear. Intralipid postconditioning in patients of cardiac surgery undergoing cardiopulmonary bypass (iCPB) trial is aimed to further study whether ILPC could improve short-term and long-term clinical outcome, as well as cardiac function in adult cardiac surgery patients. Methods The iCPB trial is an ongoing, single-center, prospective, double-blinded, large sample RCT. In total, 1000 adults undergoing cardiac surgery will be randomly allocated to either the ILPC group or the control group. The intervention group received an intravenous infusion of 2 mL/kg of 20% intralipid (medium-chain and long-chain fat emulsion injection C6~C24, Pharmaceutical) within 10 min before aortic cross-unclamping, and the control group received an equivalent volume of normal saline. The primary endpoints are complex morbidity of major complications during hospitalization and all-cause mortality within 30 days after surgery. The secondary endpoints include (1) all-cause mortality 6 months and 1 year postoperatively; (2) the quality of life within 1 year after surgery, using the QoR-15 questionnaire; (3) the postoperative cardiac function evaluated by LVEF, LVEDS, and LVEDD, and the myocardial injury evaluated by CK-MB, cTnT, and BNP; and (4) short-term clinical outcomes during hospitalization and total cost are also detailed evaluated. Discussion The iCPB trial is the first to explore ILPC on the clinical outcome of adult cardiac surgery patients. The results are expected to provide potential evidences about whether ILPC could reduce the morbidity and mortality and improve the cardiac function and quality of life. Therefore, the results will provide a rationale for the evaluation of the potentially clinically relevant benefit of intralipid therapy. Trial registration Chictr.org.cn ChiCTR1900024387. Prospectively registered on 9 July 2019.
Collapse
|
18
|
Lipid Emulsion Improves Functional Recovery in an Animal Model of Stroke. Int J Mol Sci 2020; 21:ijms21197373. [PMID: 33036206 PMCID: PMC7582956 DOI: 10.3390/ijms21197373] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/29/2020] [Accepted: 10/03/2020] [Indexed: 12/16/2022] Open
Abstract
Stroke is a life-threatening condition that leads to the death of many people around the world. Reperfusion injury after ischemic stroke is a recurrent problem associated with various surgical procedures that involve the removal of blockages in the brain arteries. Lipid emulsion was recently shown to attenuate ischemic reperfusion injury in the heart and to protect the brain from excitotoxicity. However, investigations on the protective mechanisms of lipid emulsion against ischemia in the brain are still lacking. This study aimed to determine the neuroprotective effects of lipid emulsion in an in vivo rat model of ischemic reperfusion injury through middle cerebral artery occlusion (MCAO). Under sodium pentobarbital anesthesia, rats were subjected to MCAO surgery and were administered with lipid emulsion through intra-arterial injection during reperfusion. The experimental animals were assessed for neurological deficit wherein the brains were extracted at 24 h after reperfusion for triphenyltetrazolium chloride staining, immunoblotting and qPCR. Neuroprotection was found to be dosage-dependent and the rats treated with 20% lipid emulsion had significantly decreased infarction volumes and lower Bederson scores. Phosphorylation of Akt and glycogen synthase kinase 3-β (GSK3-β) were increased in the 20% lipid-emulsion treated group. The Wnt-associated signals showed a marked increase with a concomitant decrease in signals of inflammatory markers in the group treated with 20% lipid emulsion. The protective effects of lipid emulsion and survival-related expression of genes such as Akt, GSK-3β, Wnt1 and β-catenin were reversed by the intra-peritoneal administration of XAV939 through the inhibition of the Wnt/β-catenin signaling pathway. These results suggest that lipid emulsion has neuroprotective effects against ischemic reperfusion injury in the brain through the modulation of the Wnt signaling pathway and may provide potential insights for the development of therapeutic targets.
Collapse
|
19
|
Ungerman E, Khoche S, Subramani S, Bartels S, Fritz AV, Martin AK, Subramanian H, Devarajan J, Knight J, Boisen ML, Gelzinis TA. The Year in Cardiothoracic Transplantation Anesthesia: Selected Highlights from 2019. J Cardiothorac Vasc Anesth 2020; 34:2889-2905. [PMID: 32782193 DOI: 10.1053/j.jvca.2020.06.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 06/08/2020] [Indexed: 11/11/2022]
Abstract
The highlights in cardiothoracic transplantation focus on the recent research pertaining to heart and lung transplantation, including expansion of the donor pool, the optimization of donors and recipients, the use of mechanical support, the perioperative and long-term outcomes in these patient populations, and the use of transthoracic echocardiography to diagnose rejection.
Collapse
Affiliation(s)
- Elizabeth Ungerman
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Swapnil Khoche
- Department of Anesthesiology, University of California San Diego, San Diego, CA
| | - Sudhakar Subramani
- Department of Anesthesiology, University of Iowa Hospitals and Clinics, Iowa City, IA
| | - Steven Bartels
- Anesthesiology Institute, Cleveland Clinic, Cleveland, OH
| | - Ashley Virginia Fritz
- Division of Cardiovascular and Thoracic Anesthesiology, Mayo Clinic Florida, Jacksonville, FL
| | - Archer Kilbourne Martin
- Division of Cardiovascular and Thoracic Anesthesiology, Mayo Clinic Florida, Jacksonville, FL
| | - Harikesh Subramanian
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, PA
| | | | - Joshua Knight
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Michael L Boisen
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Theresa A Gelzinis
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, PA.
| |
Collapse
|
20
|
Lucchinetti E, Lou PH, Hersberger M, Clanachan AS, Zaugg M. Diabetic Rat Hearts Show More Favorable Metabolic Adaptation to Omegaven Containing High Amounts of n3 Fatty Acids Than Intralipid Containing n6 Fatty Acids. Anesth Analg 2020; 131:943-954. [PMID: 32398434 DOI: 10.1213/ane.0000000000004838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND While Omegaven, an omega-3 (n3) fatty acid-based lipid emulsion, fosters insulin signaling in healthy hearts, it is unknown whether beneficial metabolic effects occur in insulin-resistant diabetic hearts. METHODS Diabetic hearts from fructose-fed Sprague-Dawley rats were perfused in the working mode for 90 minutes in the presence of 11 mM glucose and 1.2 mM palmitate bound to albumin, the first 30 minutes without insulin followed by 60 minutes with insulin (50 mU/L). Hearts were randomly allocated to Intralipid (25 and 100 µM), Omegaven (25 and 100 µM), or no emulsion (insulin alone) for 60 minutes. Glycolysis, glycogen synthesis, and glucose oxidation were measured with the radioactive tracers [5-H]glucose and [U-C]glucose. Central carbon metabolites, acyl-coenzyme A species (acyl-CoAs), ketoacids, purines, phosphocreatine, acylcarnitines, and acyl composition of phospholipids were measured with mass spectrometry. RESULTS Diabetic hearts showed no response to insulin with regard to glycolytic flux, consistent with insulin resistance. Addition of either lipid emulsion did not alter this response but unexpectedly increased glucose oxidation (ratio of treatment/baseline, ie, fold change): no insulin 1.3 (0.3) [mean (standard deviation)], insulin alone 1.4 (0.4), insulin + 25 µM Intralipid 1.8 (0.5), insulin + 100 µM Intralipid 2.2 (0.4), P < .001; no insulin 1.3 (0.3), insulin alone 1.4 (0.4), insulin + 25 µM Omegaven 2.3 (0.5) insulin + 100 µM Omegaven 1.9 (0.4), P < .001. Intralipid treatment led to accumulation of acylcarnitines as a result of the released linoleic acid (C18:2-n6) and enhanced its integration into phospholipids, consistent with incomplete or impaired β-oxidation necessitating a compensatory increase in glucose oxidation. Accumulation of acylcarnitines was also associated with a higher nicotinamide adenine dinucleotide reduced/oxidized (NADH/NAD) ratio, which inhibited pyruvate dehydrogenase (PDH), and resulted in excess lactate production. In contrast, Omegaven-treated hearts showed no acylcarnitine accumulation, low malonyl-CoA concentrations consistent with activated β-oxidation, and elevated PDH activity and glucose oxidation, together indicative of a higher metabolic rate possibly by substrate cycling. CONCLUSIONS Omegaven is the preferred lipid emulsion for insulin-resistant diabetic hearts.
Collapse
Affiliation(s)
| | - Phing-How Lou
- Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Martin Hersberger
- Division of Clinical Chemistry and Biochemistry, University Children's Hospital, Zurich, Switzerland
| | | | - Michael Zaugg
- Anesthesiology & Pain Medicine, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
21
|
Feng X, Zhang H, Shi M, Chen Y, Yang T, Fan H. Toxic effects of hydrogen sulfide donor NaHS induced liver apoptosis is regulated by complex IV subunits and reactive oxygen species generation in rats. ENVIRONMENTAL TOXICOLOGY 2020; 35:322-332. [PMID: 31680430 DOI: 10.1002/tox.22868] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 10/15/2019] [Accepted: 10/16/2019] [Indexed: 06/10/2023]
Abstract
In recent years, the protective effect of hydrogensulfide donor sodium hydrosulfide(NaHS) on multiple organs has been widely reported. The study aimed to explorethe effect of commonly used concentration of NaHS on theliver and its potential damage mechanism. Rats divided into 4 groups: control, NaHS I (1 mg/kg), II (3 mg/kg) and III(5 mg/kg) groups, and each group is divided into four-timepoints (2, 6, 12, and 24 hours). Results showed that H2S concentration increased, mitochondrial complex IV activity inhibited, the COX I and IV subunits and mitochondrial apoptosis pathway-related proteins expression increased in atime- and dose-dependent manner. We confirmed that 1 mg/kg NaHS had no injuryeffect on the liver, 3 and 5 mg/kg NaHS inhibitsthe activity of mitochondrial complex IV by promoting COX I and IV subunits expression, leading to the increase in ROS and ultimately inducing apoptosis and liver injury.
Collapse
Affiliation(s)
- Xiujing Feng
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Haiyang Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Mingxian Shi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yongping Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Tianyuan Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Honggang Fan
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| |
Collapse
|
22
|
Lou PH, Lucchinetti E, Hersberger M, Clanachan AS, Zaugg M. Lipid Emulsion Containing High Amounts of n3 Fatty Acids (Omegaven) as Opposed to n6 Fatty Acids (Intralipid) Preserves Insulin Signaling and Glucose Uptake in Perfused Rat Hearts. Anesth Analg 2020; 130:37-48. [DOI: 10.1213/ane.0000000000004295] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
23
|
Abstract
OBJECTIVES Propofol may adversely affect the function of mitochondria and the clinical features of propofol infusion syndrome suggest that this may be linked to propofol-related bioenergetic failure. We aimed to assess the effect of therapeutic propofol concentrations on energy metabolism in human skeletal muscle cells. DESIGN In vitro study on human skeletal muscle cells. SETTINGS University research laboratories. SUBJECTS Patients undergoing hip surgery and healthy volunteers. INTERVENTIONS Vastus lateralis biopsies were processed to obtain cultured myotubes, which were exposed to a range of 1-10 μg/mL propofol for 96 hours. MEASUREMENTS AND MAIN RESULTS Extracellular flux analysis was used to measure global mitochondrial functional indices, glycolysis, fatty acid oxidation, and the functional capacities of individual complexes of electron transfer chain. In addition, we used [1-C]palmitate to measure fatty acid oxidation and spectrophotometry to assess activities of individual electron transfer chain complexes II-IV. Although cell survival and basal oxygen consumption rate were only affected by 10 μg/mL of propofol, concentrations as low as 1 μg/mL reduced spare electron transfer chain capacity. Uncoupling effects of propofol were mild, and not dependent on concentration. There was no inhibition of any respiratory complexes with low dose propofol, but we found a profound inhibition of fatty acid oxidation. Addition of extra fatty acids into the media counteracted the propofol effects on electron transfer chain, suggesting inhibition of fatty acid oxidation as the causative mechanism of reduced spare electron transfer chain capacity. Whether these metabolic in vitro changes are observable in other organs and at the whole-body level remains to be investigated. CONCLUSIONS Concentrations of propofol seen in plasma of sedated patients in ICU cause a significant inhibition of fatty acid oxidation in human skeletal muscle cells and reduce spare capacity of electron transfer chain in mitochondria.
Collapse
|
24
|
Lucchinetti E, Lou PH, Gandhi M, Clanachan AS, Zaugg M. Differential Effects of Anesthetics and Opioid Receptor Activation on Cardioprotection Elicited by Reactive Oxygen Species-Mediated Postconditioning in Sprague-Dawley Rat Hearts. Anesth Analg 2019; 126:1739-1746. [PMID: 29256935 DOI: 10.1213/ane.0000000000002676] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Despite an array of cardioprotective interventions identified in preclinical models of ischemia-reperfusion (IR) injury, successful clinical translation has not been achieved. This study investigated whether drugs routinely used in clinical anesthesia influence cardioprotective effectiveness by reducing effects of reactive oxygen species (ROS), upstream triggers of cardioprotective signaling. Effects of propofol, sevoflurane, or remifentanil were compared on postischemic functional recovery induced by ROS-mediated postconditioning with Intralipid. METHODS Recovery of left ventricular (LV) work, an index of IR injury, was measured in isolated Sprague-Dawley rat hearts subjected to global ischemia (20 minutes) and reperfusion (30 minutes). Hearts were either untreated or were treated with postconditioning with Intralipid (1%, throughout reperfusion). Propofol (10 μM), sevoflurane (2 vol%), remifentanil (3 nM), or combinations thereof were administered peri-ischemically (before and during IR). The effects of anesthetics on ROS production were measured in LV cardiac fibers by Amplex Red assay under phosphorylating and nonphosphorylating conditions. RESULTS Recovery of LV work (expressed as percentage of the preischemic value ± standard deviation) in untreated hearts was poor (20% ± 7%) and was improved by Intralipid postconditioning (58% ± 8%, P = .001). In the absence of Intralipid postconditioning, recovery of LV work was enhanced by propofol (28% ± 9%, P = .049), sevoflurane (49% ± 5%, P < .001), and remifentanil (51% ± 6%, P < .001). The benefit of Intralipid postconditioning was abolished by propofol (33% ± 10%, P < .001), but enhanced by sevoflurane (80% ± 7%, P < .001) or remifentanil (80% ± 9%, P < .001). ROS signaling in LV fibers was abolished by propofol, but unaffected by sevoflurane or remifentanil. We conclude that propofol abolishes ROS-mediated Intralipid postconditioning by acting as a ROS scavenger. Sevoflurane and remifentanil are protective per se and provide additive cardioprotection to ROS-mediated cardioprotection. CONCLUSIONS These divergent effects of routinely used drugs in clinical anesthesia may influence the translatability of cardioprotective therapies such as Intralipid postconditioning.
Collapse
Affiliation(s)
| | | | - Manoj Gandhi
- Department of Pharmacology, University of Alberta, Edmonton, Canada
| | | | - Michael Zaugg
- From the Department of Anesthesiology and Pain Medicine.,Department of Pharmacology, University of Alberta, Edmonton, Canada
| |
Collapse
|
25
|
The Effects of Lipid Emulsion, Magnesium Sulphate and Metoprolol in Amitriptyline-Induced Cardiovascular Toxicity in Rats. Cardiovasc Toxicol 2019; 18:547-556. [PMID: 29873021 DOI: 10.1007/s12012-018-9466-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The aim of this study was to evaluate the effects of metoprolol, lipid emulsion and MgSO4 which can be recommended for prevention of long QT that is one of the lethal consequences of amitriptyline intoxication. Thirty Sprague-Dawley male rats were included. Five groups respectively received the following: saline intraperitoneally (i.p.); amitriptyline (AMT) 100 mg/kg per os (p.o.) and saline i.p.; AMT 100 mg/kg p.o. and 5 mg/kg metoprolol i.p.; AMT 100 mg/kg p.o. and 20 ml/kg lipid emulsion i.p.; AMT 100 mg/kg p.o. and 75 mg/kg MgSO4 i.p. After 1 h, all groups were analysed by ECG recordings in DII lead; their blood was taken for biochemical examination and euthanasia was performed. For histological examination, cardiac tissues were removed and sections were prepared. QTc was significantly reduced in treatment groups compared to the AMT+saline group. When compared with the AMT+saline, lipid emulsion did not affect pro-BNP and troponin levels in biochemical analysis, but it significantly reduced Caspase 3 expression in histological examination. In the group treated with AMT and metoprolol, there was no significant effect on Caspase 3 expression. In MgSO4-treated group, there was a significant decrease in troponin, pro-BNP and urea levels biochemically and significant decrease in Caspase 3 expression histologically when compared with the control group. With further studies including clinical studies, MgSO4, lipid emulsion or metoprolol may be used to improve AMT-induced cardiotoxicity. They can possibly become alternative approaches in the future for suicidal or accidental intoxication of tricyclic antidepressant in emergency departments.
Collapse
|
26
|
Enhanced myocardial protection in cardiac donation after circulatory death using Intralipid® postconditioning in a porcine model. Can J Anaesth 2019; 66:672-685. [DOI: 10.1007/s12630-019-01322-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 10/23/2018] [Accepted: 12/14/2018] [Indexed: 01/07/2023] Open
|
27
|
In Reply. Anesthesiology 2019; 130:519-521. [PMID: 30762648 DOI: 10.1097/aln.0000000000002566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
28
|
Metabolite Palmitoylcarnitine Mediates Intralipid Cardioprotection Rather Than Membrane Receptors. Anesthesiology 2019; 130:518-519. [PMID: 30762647 DOI: 10.1097/aln.0000000000002565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
29
|
Free Fatty Acid Receptor G-protein-coupled Receptor 40 Mediates Lipid Emulsion-induced Cardioprotection. Anesthesiology 2019; 129:154-162. [PMID: 29620570 DOI: 10.1097/aln.0000000000002195] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND We have previously shown that intralipid (lipid emulsion) protects the heart against ischemia/reperfusion injury and bupivacaine-induced cardiotoxicity. However, the precise underlying mechanisms are not fully understood. Here we explored the hypothesis that free fatty acid receptor-1 or G-protein-coupled receptor 40 is expressed in the heart and that cardioprotective effects of lipid emulsion are mediated through G-protein-coupled receptor 40 in two animal models of ischemia/reperfusion injury and bupivacaine-induced cardiotoxicity. METHODS Langendorff-perfused male mouse hearts were subjected to ischemia/reperfusion with lipid emulsion alone (1%) or with G-protein-coupled receptor 40 antagonist (GW1100, 10 µM). Additionally, cardiotoxicity was achieved in male rats with bupivacaine bolus (10 mg/kg, IV) followed by lipid emulsion alone (20%, 5 ml/kg bolus, and 0.5 ml · kg · min maintenance, IV) or with GW1100 pretreatment (2.5 mg/kg, IV). RESULTS G-protein-coupled receptor 40 is expressed in rodent hearts. GW1100 abolished lipid emulsion-induced cardioprotection against ischemia/reperfusion in mice because rate pressure product and left ventricular developed pressure were lower than lipid emulsion alone (rate pressure product: 2,186 ± 1,783 [n = 7] vs. 11,607 ± 4,347 [n = 8]; left ventricular developed pressure: 22.6 ± 10.4 vs. 63.8 ± 20; P < 0.0001). Lipid emulsion + GW1100 also demonstrated reduced LV dP/dtmax and LV dP/dtmin (dP/dtmax = 749 ± 386 vs. 2,098 ± 792, P < 0.001; dP/dtmin = -443 ± 262 vs. -1,447 ± 546, P < 0.001). In bupivacaine-induced cardiotoxicity rat model, GW1100 pretreatment had no significant effect on heart rate (HR) and ejection fraction after 30 min (HR: 302 ± 17 vs. 312 ± 38; ejection fraction: 69 ± 3% vs. 73 ± 4%). GW1100 pretreatment, however, prevented lipid-rescue, with no recovery after 10 min. In the control group, lipid emulsion improved HR (215 ± 16 at 10 min) and fully rescued left ventricle function at 10 min (ejection fraction = 67 ± 8%, fractional shortening = 38 ± 6%). CONCLUSIONS G-protein-coupled receptor 40 is expressed in the rodent heart and is involved in cardioprotection mediated by lipid emulsion against ischemia/reperfusion injury and bupivacaine-induced cardiotoxicity.
Collapse
|
30
|
Abstract
The experimental use of lipid emulsion for local anesthetic toxicity was originally identified in 1998. It was then translated to clinical practice in 2006 and expanded to drugs other than local anesthetics in 2008. Our understanding of lipid resuscitation therapy has progressed considerably since the previous update from the American Society of Regional Anesthesia and Pain Medicine, and the scientific evidence has coalesced around specific discrete mechanisms. Intravenous lipid emulsion therapy provides a multimodal resuscitation benefit that includes both scavenging (eg, the lipid shuttle) and nonscavenging components. The intravascular lipid compartment scavenges drug from organs susceptible to toxicity and accelerates redistribution to organs where drug (eg, bupivacaine) is stored, detoxified, and later excreted. In addition, lipid exerts nonscavenging effects that include postconditioning (via activation of prosurvival kinases) along with cardiotonic and vasoconstrictive benefits. These effects protect tissue from ischemic damage and increase tissue perfusion during recovery from toxicity. Other mechanisms have diminished in favor based on lack of evidence; these include direct effects on channel currents (eg, calcium) and mass-effect overpowering a block in mitochondrial metabolism. In this narrative review, we discuss these proposed mechanisms and address questions left to answer in the field. Further work is needed, but the field has made considerable strides towards understanding the mechanisms.
Collapse
|
31
|
El-Boghdadly K, Pawa A, Chin KJ. Local anesthetic systemic toxicity: current perspectives. Local Reg Anesth 2018; 11:35-44. [PMID: 30122981 PMCID: PMC6087022 DOI: 10.2147/lra.s154512] [Citation(s) in RCA: 255] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Local anesthetic systemic toxicity (LAST) is a life-threatening adverse event that may occur after the administration of local anesthetic drugs through a variety of routes. Increasing use of local anesthetic techniques in various healthcare settings makes contemporary understanding of LAST highly relevant. Recent data have demonstrated that the underlying mechanisms of LAST are multifactorial, with diverse cellular effects in the central nervous system and cardiovascular system. Although neurological presentation is most common, LAST often presents atypically, and one-fifth of the reported cases present with isolated cardiovascular disturbance. There are several risk factors that are associated with the drug used and the administration technique. LAST can be mitigated by targeting the modifiable risk factors, including the use of ultrasound for regional anesthetic techniques and restricting drug dosage. There have been significant developments in our understanding of LAST treatment. Key advances include early administration of lipid emulsion therapy, prompt seizure management, and careful selection of cardiovascular supportive pharmacotherapy. Cognizance of the mechanisms, risk factors, prevention, and therapy of LAST is vital to any practitioner using local anesthetic drugs in their clinical practice.
Collapse
Affiliation(s)
- Kariem El-Boghdadly
- Department of Anaesthesia, Guy's and St Thomas' NHS Foundation Trust, London, UK, .,School of Medicine, King's College London, London, UK,
| | - Amit Pawa
- Department of Anaesthesia, Guy's and St Thomas' NHS Foundation Trust, London, UK,
| | - Ki Jinn Chin
- Department of Anesthesia, Toronto Western Hospital, University of Toronto, Ontario, Canada
| |
Collapse
|
32
|
The Third American Society of Regional Anesthesia and Pain Medicine Practice Advisory on Local Anesthetic Systemic Toxicity. Reg Anesth Pain Med 2018; 43:113-123. [DOI: 10.1097/aap.0000000000000720] [Citation(s) in RCA: 166] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
33
|
Postconditioning with Intralipid emulsion protects against reperfusion injury in post-infarct remodeled rat hearts by activation of ROS-Akt/Erk signaling. Transl Res 2017. [PMID: 28641075 DOI: 10.1016/j.trsl.2017.05.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The clinically used lipid emulsion Intralipid (ILE) reduces ischemia reperfusion injury in healthy rodent hearts. We tested whether ILE is cardioprotective in postinfarct remodeled hearts. Post-infarct remodeled and sham Sprague-Dawley rat hearts were perfused in working mode and subjected to ischemia (15 minutes) and reperfusion (30 minutes). Left ventricular (LV) work was measured in hearts that were untreated or that received ILE (1%) postconditioning administered at the onset of reperfusion, or the reactive oxygen species (ROS) scavenger N-(2-mercaptopropionyl)-glycine (10 μM) alone or in combination with ILE. Mitochondrial O2 consumption was measured in LV muscle fibers. Acetyl CoA production was calculated from the oxidation of [U-14C]glucose and [9,10-3H]palmitate. ROS production was assessed by loss of aconitase activity as well as by release of hydrogen peroxide. Phosphorylation of Akt, Erk1/2, and STAT3 were used to evaluate protection signaling. Remodeled hearts exhibited LV dysfunction and signs of hypertrophy consistent with significant postinfarct remodeling. ILE postconditioning enhanced the recovery of postischemic LV function in remodeled hearts, preserved energy metabolism in mitochondria, accelerated palmitate oxidation and acetyl CoA production, and activated Akt/Erk/STAT3 in a ROS-dependent manner. Protection by ILE postconditioning evolved rapidly within the first minutes of reperfusion without evidence of additional cardiotonic effects due to provision of supplementary energy substrates potentially released from ILE during reperfusion. ILE represents a novel and clinically feasible cardioprotective strategy that is highly effective in remodeled hearts. Our data provide a rationale for the clinical evaluation of ILE postconditioning where ILE is administered as a bolus at the onset of reperfusion.
Collapse
|
34
|
Ye Q, Liu L, Wu Y, Yeh F, Li W, Tseng L, Ho C. Intralipid ® attenuates acute cardiac allograft rejection in relation to promoting CD4 + CD25 + Foxp3 + regulatory T-cells and inhibiting toll-like receptor 4 expression. TRANSPLANTATION REPORTS 2017. [DOI: 10.1016/j.tpr.2017.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
35
|
Aumailley L, Warren A, Garand C, Dubois MJ, Paquet ER, Le Couteur DG, Marette A, Cogger VC, Lebel M. Vitamin C modulates the metabolic and cytokine profiles, alleviates hepatic endoplasmic reticulum stress, and increases the life span of Gulo-/- mice. Aging (Albany NY) 2017; 8:458-83. [PMID: 26922388 PMCID: PMC4833140 DOI: 10.18632/aging.100902] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Suboptimal intake of dietary vitamin C (ascorbate) increases the risk of several chronic diseases but the exact metabolic pathways affected are still unknown. In this study, we examined the metabolic profile of mice lacking the enzyme gulonolactone oxidase (Gulo) required for the biosynthesis of ascorbate. Gulo−/− mice were supplemented with 0%, 0.01%, and 0.4% ascorbate (w/v) in drinking water and serum was collected for metabolite measurements by targeted mass spectrometry. We also quantified 42 serum cytokines and examined the levels of different stress markers in liver. The metabolic profiles of Gulo−/− mice treated with ascorbate were different from untreated Gulo−/− and normal wild type mice. The cytokine profiles of Gulo−/− mice, in return, overlapped the profile of wild type animals upon 0.01% or 0.4% vitamin C supplementation. The life span of Gulo−/− mice increased with the amount of ascorbate in drinking water. It also correlated significantly with the ratios of serum arginine/lysine, tyrosine/phenylalanine, and the ratio of specific species of saturated/unsaturated phosphatidylcholines. Finally, levels of hepatic phosphorylated endoplasmic reticulum associated stress markers IRE1α and eIF2α correlated inversely with serum ascorbate and life span suggesting that vitamin C modulates endoplasmic reticulum stress response and longevity in Gulo−/− mice.
Collapse
Affiliation(s)
- Lucie Aumailley
- Centre de Recherche du CHU de Québec, Faculty of Medicine, Université Laval, Quebec City, Quebec, Canada
| | - Alessandra Warren
- Centre for Education and Research on Aging and ANZAC Research Institute, University of Sydney and Concord Hospital, New South Wales, Australia
| | - Chantal Garand
- Centre de Recherche du CHU de Québec, Faculty of Medicine, Université Laval, Quebec City, Quebec, Canada
| | - Marie Julie Dubois
- Quebec Heart and Lung Institute, Faculty of Medicine, Université Laval, Quebec City, Quebec, Canada
| | - Eric R Paquet
- Centre de Recherche sur le Cancer de l'Université Laval, Hôpital Hôtel-Dieu de Québec, Quebec City, Quebec, Canada
| | - David G Le Couteur
- Centre for Education and Research on Aging and ANZAC Research Institute, University of Sydney and Concord Hospital, New South Wales, Australia
| | - André Marette
- Quebec Heart and Lung Institute, Faculty of Medicine, Université Laval, Quebec City, Quebec, Canada
| | - Victoria C Cogger
- Centre for Education and Research on Aging and ANZAC Research Institute, University of Sydney and Concord Hospital, New South Wales, Australia
| | - Michel Lebel
- Centre de Recherche du CHU de Québec, Faculty of Medicine, Université Laval, Quebec City, Quebec, Canada
| |
Collapse
|
36
|
Li J, Ruffenach G, Kararigas G, Cunningham CM, Motayagheni N, Barakai N, Umar S, Regitz-Zagrosek V, Eghbali M. Intralipid protects the heart in late pregnancy against ischemia/reperfusion injury via Caveolin2/STAT3/GSK-3β pathway. J Mol Cell Cardiol 2016; 102:108-116. [PMID: 27847332 DOI: 10.1016/j.yjmcc.2016.11.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 11/08/2016] [Accepted: 11/11/2016] [Indexed: 12/12/2022]
Abstract
BACKGROUND We recently demonstrated that the heart of late pregnant (LP) rodents is more prone to ischemia/reperfusion (I/R) injury compared to non-pregnant rodents. Lipids, particularly polyunsaturated fatty acids, have received special attention in the field of cardiovascular research. Here, we explored whether Intralipid (ITLD) protects the heart against I/R injury in LP rodents and investigated the mechanisms underlying this protection. METHODS AND RESULTS In-vivo female LP rat hearts or ex-vivo isolated Langendorff-perfused LP mouse hearts were subjected to ischemia followed by reperfusion with PBS or ITLD (one bolus of 5mg/kg of 20% in in-vivo and 1% in ex-vivo). Myocardial infarct size, mitochondrial calcium retention capacity, genome-wide expression profiling, pharmacological inhibition and co-immunoprecipitation were performed. One bolus of ITLD at reperfusion significantly reduced the in-vivo myocardial infarct size in LP rats (23.3±2% vs. 55.5±3.4% in CTRL, p<0.01). Postischemic administration of ITLD also protected the LP hearts against I/R injury ex-vivo. ITLD significantly increased the threshold for the opening of the mitochondrial permeability transition pore in response to calcium overload (nmol-calcium/mg-mitochondrial protein: 290±17 vs. 167±10 in CTRL, p<0.01) and significantly increased phosphorylation of STAT3 (1.8±0.08 vs. 1±0.16 in CTRL, p<0.05) and GSK-3β (2.63±0.55 vs. 1±0.0.34 in CTRL, p<0.05). The ITLD-induced cardioprotection was fully abolished by Stattic, a specific inhibitor of STAT3. Transcriptome analysis revealed caveolin 2 (Cav2) was significantly upregulated by ITLD in hearts of LP rats under I/R injury. Co-immunoprecipitation experiments showed that Cav2 interacts with STAT3. CONCLUSIONS ITLD protects the heart in late pregnancy against I/R injury by inhibiting the mPTP opening through Cav2/STAT3/GSK-3β pathway.
Collapse
Affiliation(s)
- Jingyuan Li
- Department of Anesthesiology, Division of Molecular Medicine, Cardiovascular Research Laboratory, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095-1778, United States
| | - Gregoire Ruffenach
- Department of Anesthesiology, Division of Molecular Medicine, Cardiovascular Research Laboratory, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095-1778, United States
| | - Georgios Kararigas
- Institute of Gender in Medicine, Center for Cardiovascular Research, Charite University Hospital, Germany; DZHK (German Centre for Cardiovascular Research), Berlin Partner Site, Germany
| | - Christine M Cunningham
- Department of Anesthesiology, Division of Molecular Medicine, Cardiovascular Research Laboratory, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095-1778, United States
| | - Negar Motayagheni
- Department of Anesthesiology, Division of Molecular Medicine, Cardiovascular Research Laboratory, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095-1778, United States
| | - Neusha Barakai
- Department of Anesthesiology, Division of Molecular Medicine, Cardiovascular Research Laboratory, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095-1778, United States
| | - Soban Umar
- Department of Anesthesiology, Division of Molecular Medicine, Cardiovascular Research Laboratory, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095-1778, United States
| | - Vera Regitz-Zagrosek
- Institute of Gender in Medicine, Center for Cardiovascular Research, Charite University Hospital, Germany; DZHK (German Centre for Cardiovascular Research), Berlin Partner Site, Germany
| | - Mansoureh Eghbali
- Department of Anesthesiology, Division of Molecular Medicine, Cardiovascular Research Laboratory, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095-1778, United States.
| |
Collapse
|
37
|
Kalantari S, Nafar M, Samavat S, Parvin M, Nobakht M Gh BF, Barzi F. 1 H NMR-based metabolomics exploring urinary biomarkers correlated with proteinuria in focal segmental glomerulosclerosis: a pilot study. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2016; 54:821-826. [PMID: 27320161 DOI: 10.1002/mrc.4460] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 04/22/2016] [Accepted: 05/10/2016] [Indexed: 05/24/2023]
Abstract
Focal segmental glomerulosclerosis (FSGS) is a common glomerulonephritis, and its rates of occurrence are increasing worldwide. Proteinuria is a clinical defining feature of FSGS which correlates with the severity of podocyte injury in patients with nephrotic-range protein excretion. Metabolite biomarkers corresponding with the level of proteinuria could be considered as non-invasive complementary prognostic factors to proteinuria. The urine samples of 15 patients (n = 6 women and n = 9 men) with biopsy-proven FSGS were collected and subjected to nuclear magnetic resonance (NMR) analysis for metabolite profiling. Multivariate statistical analyses, including principal component analysis and orthogonal projection to latent structure discriminant analysis, were applied to construct a predictive model based on patients with proteinuria >3000 mg/day and <3000 mg/day. In addition, random forest was performed to predict differential metabolites, and pathway analysis was performed to find the defective pathways responsible for proteinuria. Ten metabolites, significant in both statistical methods (orthogonal projection to latent structure discriminant analysis and random forest), were considered as prognostic biomarkers for FSGS: citrulline, dimethylamine, proline, acetoacetate, alpha-ketoisovaleric acid, valine, isobutyrate, D-Palmitylcarnitine, histidine, and N-methylnicotinamide. Pathway analysis revealed impairment of the branched-chain amino acid degradation pathways in patients with massive proteinuria. This study shows that metabolomics can reveal the molecular changes corresponding with disease progression in patients with FSGS and provide a new insight for pathogenic pathways. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Shiva Kalantari
- Chronic Kidney Disease Research Center, Labbafinejad Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohsen Nafar
- Chronic Kidney Disease Research Center, Labbafinejad Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shiva Samavat
- Department of Nephrology, Shahid Labbafinejad Medical Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahmoud Parvin
- Department of Pathology, Shahid Labbafinejad Medical Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - B Fatemeh Nobakht M Gh
- Department of Basic Science, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farnaz Barzi
- Department of Nephrology, Emam Hosein Medical Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
38
|
Perez V, D'Annunzio V, Valdez LB, Zaobornyj T, Bombicino S, Mazo T, Carbajosa NL, Gironacci MM, Boveris A, Sadoshima J, Gelpi RJ. Thioredoxin-1 Attenuates Ventricular and Mitochondrial Postischemic Dysfunction in the Stunned Myocardium of Transgenic Mice. Antioxid Redox Signal 2016; 25:78-88. [PMID: 27000416 DOI: 10.1089/ars.2015.6459] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
AIM We evaluated the effect of thioredoxin1 (Trx1) system on postischemic ventricular and mitochondrial dysfunction using transgenic mice overexpressing cardiac Trx1 and a dominant negative (DN-Trx1) mutant (C32S/C35S) of Trx1. Langendorff-perfused hearts were subjected to 15 min of ischemia followed by 30 min of reperfusion (R). We measured left ventricular developed pressure (LVDP, mmHg), left ventricular end diastolic pressure (LVEDP, mmHg), and t63 (relaxation index, msec). Mitochondrial respiration, SERCA2a, phospholamban (PLB), and phospholamban phosphorylation (p-PLB) Thr17 expression (Western blot) were also evaluated. RESULTS At 30 min of reperfusion, Trx1 improved contractile state (LVDP: Trx1: 57.4 ± 4.9 vs. Wt: 27.1 ± 6.3 and DN-Trx1: 29.2 ± 7.1, p < 0.05); decreased myocardial stiffness (LVEDP: Wt: 24.5 ± 4.8 vs. Trx1: 11.8 ± 2.9, p < 0.05); and improved the isovolumic relaxation (t63: Wt: 63.3 ± 3.2 vs. Trx1: 51.4 ± 1.9, p < 0.05). DN-Trx1 mice aggravated the myocardial stiffness and isovolumic relaxation. Only the expression of p-PLB Thr17 increased at 1.5 min R in Wt and DN-Trx1 groups. At 30 min of reperfusion, state 3 mitochondrial O2 consumption was impaired by 13% in Wt and by 33% in DN-Trx1. ADP/O ratios for Wt and DN-Trx1 decrease by 25% and 28%, respectively; whereas the Trx1 does not change after ischemia and reperfusion (I/R). Interestingly, baseline values of complex I activity were increased in Trx1 mice; they were 24% and 47% higher than in Wt and DN-Trx1 mice, respectively (p < 0.01). INNOVATION AND CONCLUSION These results strongly suggest that Trx1 ameliorates the myocardial effects of I/R by improving the free radical-mediated damage in cardiac and mitochondrial function, opening the possibility of new therapeutic strategies in coronary artery disease. Antioxid. Redox Signal. 25, 78-88.
Collapse
Affiliation(s)
- Virginia Perez
- 1 Institute of Biochemistry and Molecular Medicine (IBIMOL , UBA-CONICET), Buenos Aires, Argentina .,2 Department of Pathology, Faculty of Medicine, Institute of Cardiovascular Physiopathology, University of Buenos Aires , Buenos Aires, Argentina
| | - Veronica D'Annunzio
- 1 Institute of Biochemistry and Molecular Medicine (IBIMOL , UBA-CONICET), Buenos Aires, Argentina .,2 Department of Pathology, Faculty of Medicine, Institute of Cardiovascular Physiopathology, University of Buenos Aires , Buenos Aires, Argentina
| | - Laura B Valdez
- 1 Institute of Biochemistry and Molecular Medicine (IBIMOL , UBA-CONICET), Buenos Aires, Argentina .,3 School of Pharmacy and Biochemistry, University of Buenos Aires , Buenos Aires, Argentina
| | - Tamara Zaobornyj
- 1 Institute of Biochemistry and Molecular Medicine (IBIMOL , UBA-CONICET), Buenos Aires, Argentina .,3 School of Pharmacy and Biochemistry, University of Buenos Aires , Buenos Aires, Argentina
| | - Silvina Bombicino
- 1 Institute of Biochemistry and Molecular Medicine (IBIMOL , UBA-CONICET), Buenos Aires, Argentina .,3 School of Pharmacy and Biochemistry, University of Buenos Aires , Buenos Aires, Argentina
| | - Tamara Mazo
- 1 Institute of Biochemistry and Molecular Medicine (IBIMOL , UBA-CONICET), Buenos Aires, Argentina .,2 Department of Pathology, Faculty of Medicine, Institute of Cardiovascular Physiopathology, University of Buenos Aires , Buenos Aires, Argentina
| | - Nadia Longo Carbajosa
- 4 Department of Biological Chemistry and IQUIFIB, School of Pharmacy and Biochemistry, University of Buenos Aires , Buenos Aires, Argentina
| | - Mariela M Gironacci
- 4 Department of Biological Chemistry and IQUIFIB, School of Pharmacy and Biochemistry, University of Buenos Aires , Buenos Aires, Argentina
| | - Alberto Boveris
- 1 Institute of Biochemistry and Molecular Medicine (IBIMOL , UBA-CONICET), Buenos Aires, Argentina .,3 School of Pharmacy and Biochemistry, University of Buenos Aires , Buenos Aires, Argentina
| | - Junichi Sadoshima
- 5 Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers University , Newark, New Jersey
| | - Ricardo J Gelpi
- 1 Institute of Biochemistry and Molecular Medicine (IBIMOL , UBA-CONICET), Buenos Aires, Argentina .,2 Department of Pathology, Faculty of Medicine, Institute of Cardiovascular Physiopathology, University of Buenos Aires , Buenos Aires, Argentina
| |
Collapse
|
39
|
Insulin Signaling in Bupivacaine-induced Cardiac Toxicity: Sensitization during Recovery and Potentiation by Lipid Emulsion. Anesthesiology 2016; 124:428-42. [PMID: 26646023 DOI: 10.1097/aln.0000000000000974] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND The impact of local anesthetics on the regulation of glucose homeostasis by protein kinase B (Akt) and 5'-adenosine monophosphate-activated protein kinase (AMPK) is unclear but important because of the implications for both local anesthetic toxicity and its reversal by IV lipid emulsion (ILE). METHODS Sprague-Dawley rats received 10 mg/kg bupivacaine over 20 s followed by nothing or 10 ml/kg ILE (or ILE without bupivacaine). At key time points, heart and kidney were excised. Glycogen content and phosphorylation levels of Akt, p70 s6 kinase, s6, insulin receptor substrate-1, glycogen synthase kinase-3β, AMPK, acetyl-CoA carboxylase, and tuberous sclerosis 2 were quantified. Three animals received Wortmannin to irreversibly inhibit phosphoinositide-3-kinase (Pi3k) signaling. Isolated heart studies were conducted with bupivacaine and LY294002-a reversible Pi3K inhibitor. RESULTS Bupivacaine cardiotoxicity rapidly dephosphorylated Akt at S473 to 63 ± 5% of baseline and phosphorylated AMPK to 151 ± 19%. AMPK activation inhibited targets downstream of mammalian target of rapamycin complex 1 via tuberous sclerosis 2. Feedback dephosphorylation of IRS1 to 31 ± 8% of baseline sensitized Akt signaling in hearts resulting in hyperphosphorylation of Akt at T308 and glycogen synthase kinase-3β to 390 ± 64% and 293 ± 50% of baseline, respectively. Glycogen accumulated to 142 ± 7% of baseline. Irreversible inhibition of Pi3k upstream of Akt exacerbated bupivacaine cardiotoxicity, whereas pretreating with a reversible inhibitor delayed the onset of toxicity. ILE rapidly phosphorylated Akt at S473 and T308 to 150 ± 23% and 167 ± 10% of baseline, respectively, but did not interfere with AMPK or targets of mammalian target of rapamycin complex 1. CONCLUSION Glucose handling by Akt and AMPK is integral to recovery from bupivacaine cardiotoxicity and modulation of these pathways by ILE contributes to lipid resuscitation.
Collapse
|
40
|
Kolwicz SC. Response to Comment on Kolwicz et al. Enhancing Cardiac Triacylglycerol Metabolism Improves Recovery From Ischemic Stress. Diabetes 2015;64:2817-2827. Diabetes 2016; 65:e19-20. [PMID: 27208029 DOI: 10.2337/dbi15-0043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Stephen C Kolwicz
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA
| |
Collapse
|
41
|
Zaugg M, Lucchinetti E, Clanachan AS. Comment on Kolwicz et al. Enhancing Cardiac Triacylglycerol Metabolism Improves Recovery From Ischemic Stress. Diabetes 2015;64:2817-2827. Diabetes 2016; 65:e18. [PMID: 27208028 DOI: 10.2337/db15-1640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Michael Zaugg
- Department of Anesthesiology & Pain Medicine, University of Alberta, Edmonton, Canada Department of Pharmacology, University of Alberta, Edmonton, Canada
| | - Eliana Lucchinetti
- Department of Anesthesiology & Pain Medicine, University of Alberta, Edmonton, Canada
| | | |
Collapse
|
42
|
Soraya H, Masoud WGT, Gandhi M, Garjani A, Clanachan AS. Myocardial mechanical dysfunction following endotoxemia: role of changes in energy substrate metabolism. Basic Res Cardiol 2016; 111:24. [DOI: 10.1007/s00395-016-0544-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 02/17/2016] [Indexed: 01/06/2023]
|
43
|
Eisenkraft A, Falk A. The possible role of intravenous lipid emulsion in the treatment of chemical warfare agent poisoning. Toxicol Rep 2016; 3:202-210. [PMID: 28959540 PMCID: PMC5615427 DOI: 10.1016/j.toxrep.2015.12.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 11/29/2015] [Accepted: 12/24/2015] [Indexed: 12/19/2022] Open
Abstract
Organophosphates (OPs) are cholinesterase inhibitors that lead to a characteristic toxidrome of hypersecretion, miosis, dyspnea, respiratory insufficiency, convulsions and, without proper and early antidotal treatment, death. Most of these compounds are highly lipophilic. Sulfur mustard is a toxic lipophilic alkylating agent, exerting its damage through alkylation of cellular macromolecules (e.g., DNA, proteins) and intense activation of pro-inflammatory pathways. Currently approved antidotes against OPs include the peripheral anticholinergic drug atropine and an oxime that reactivates the inhibited cholinesterase. Benzodiazepines are used to stop organophosphate-induced seizures. Despite these approved drugs, efforts have been made to introduce other medical countermeasures in order to attenuate both the short-term and long-term clinical effects following exposure. Currently, there is no antidote against sulfur mustard poisoning. Intravenous lipid emulsions are used as a source of calories in parenteral nutrition. In recent years, efficacy of lipid emulsions has been shown in the treatment of poisoning by fat-soluble compounds in animal models as well as clinically in humans. In this review we discuss the usefulness of intravenous lipid emulsions as an adjunct to the in-hospital treatment of chemical warfare agent poisoning.
Collapse
Affiliation(s)
- Arik Eisenkraft
- NBC Protection Division, IMOD, Israel.,Israel Defense Forces Medical Corps, Israel.,The Institute for Research in Military Medicine, The Faculty of Medicine, The Hebrew University, Jerusalem, Israel
| | | |
Collapse
|
44
|
Buys M, Scheepers PA, Levin AI. Lipid emulsion therapy: non-nutritive uses of lipid emulsions in anaesthesia and intensive care. SOUTHERN AFRICAN JOURNAL OF ANAESTHESIA AND ANALGESIA 2015. [DOI: 10.1080/22201181.2015.1095470] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
45
|
Fettiplace MR, Weinberg G. Past, Present, and Future of Lipid Resuscitation Therapy. JPEN J Parenter Enteral Nutr 2015; 39:72S-83S. [DOI: 10.1177/0148607115595979] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 06/22/2015] [Indexed: 01/18/2023]
Affiliation(s)
- Michael R. Fettiplace
- Department of Anesthesiology, University of Illinois College of Medicine, Chicago, Illinois
- Research & Development Service, Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois
- Neuroscience Program, University of Illinois at Chicago, Chicago, Illinois
| | - Guy Weinberg
- Department of Anesthesiology, University of Illinois College of Medicine, Chicago, Illinois
- Research & Development Service, Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois
| |
Collapse
|
46
|
Fettiplace MR, Lis K, Ripper R, Kowal K, Pichurko A, Vitello D, Rubinstein I, Schwartz D, Akpa BS, Weinberg G. Multi-modal contributions to detoxification of acute pharmacotoxicity by a triglyceride micro-emulsion. J Control Release 2015; 198:62-70. [PMID: 25483426 PMCID: PMC4293282 DOI: 10.1016/j.jconrel.2014.11.018] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 11/12/2014] [Accepted: 11/17/2014] [Indexed: 11/16/2022]
Abstract
Triglyceride micro-emulsions such as Intralipid® have been used to reverse cardiac toxicity induced by a number of drugs but reservations about their broad-spectrum applicability remain because of the poorly understood mechanism of action. Herein we report an integrated mechanism of reversal of bupivacaine toxicity that includes both transient drug scavenging and a cardiotonic effect that couple to accelerate movement of the toxin away from sites of toxicity. We thus propose a multi-modal therapeutic paradigm for colloidal bio-detoxification whereby a micro-emulsion both improves cardiac output and rapidly ferries the drug away from organs subject to toxicity. In vivo and in silico models of toxicity were combined to test the contribution of individual mechanisms and reveal the multi-modal role played by the cardiotonic and scavenging actions of the triglyceride suspension. These results suggest a method to predict which drug toxicities are most amenable to treatment and inform the design of next-generation therapeutics for drug overdose.
Collapse
Affiliation(s)
- Michael R Fettiplace
- Department of Anesthesiology, University of Illinois College of Medicine, 1740 West Taylor Street, Suite 3200 W, MC515, Chicago, IL 60612, United States; Research & Development Service, Jesse Brown Veterans Affairs Medical Center, 820 S. Damen Avenue, 60612, United States
| | - Kinga Lis
- Department of Anesthesiology, University of Illinois College of Medicine, 1740 West Taylor Street, Suite 3200 W, MC515, Chicago, IL 60612, United States; Research & Development Service, Jesse Brown Veterans Affairs Medical Center, 820 S. Damen Avenue, 60612, United States
| | - Richard Ripper
- Department of Anesthesiology, University of Illinois College of Medicine, 1740 West Taylor Street, Suite 3200 W, MC515, Chicago, IL 60612, United States; Research & Development Service, Jesse Brown Veterans Affairs Medical Center, 820 S. Damen Avenue, 60612, United States
| | - Katarzyna Kowal
- Department of Anesthesiology, University of Illinois College of Medicine, 1740 West Taylor Street, Suite 3200 W, MC515, Chicago, IL 60612, United States; Research & Development Service, Jesse Brown Veterans Affairs Medical Center, 820 S. Damen Avenue, 60612, United States
| | - Adrian Pichurko
- Department of Anesthesiology, University of Illinois College of Medicine, 1740 West Taylor Street, Suite 3200 W, MC515, Chicago, IL 60612, United States; Research & Development Service, Jesse Brown Veterans Affairs Medical Center, 820 S. Damen Avenue, 60612, United States
| | - Dominic Vitello
- Department of Anesthesiology, University of Illinois College of Medicine, 1740 West Taylor Street, Suite 3200 W, MC515, Chicago, IL 60612, United States
| | - Israel Rubinstein
- Research & Development Service, Jesse Brown Veterans Affairs Medical Center, 820 S. Damen Avenue, 60612, United States; Section of Pulmonary, Critical Care, Sleep and Allergy Medicine, Department of Medicine, University of Illinois College of Medicine, 840 South Wood Street (MC 719), Room 920-N CSB, Chicago, IL 60612, United States
| | - David Schwartz
- Department of Anesthesiology, University of Illinois College of Medicine, 1740 West Taylor Street, Suite 3200 W, MC515, Chicago, IL 60612, United States
| | - Belinda S Akpa
- Department of Chemical Engineering, University of Illinois at Chicago, 810 S. Clinton Street, Chicago, IL 60607, United States.
| | - Guy Weinberg
- Department of Anesthesiology, University of Illinois College of Medicine, 1740 West Taylor Street, Suite 3200 W, MC515, Chicago, IL 60612, United States; Research & Development Service, Jesse Brown Veterans Affairs Medical Center, 820 S. Damen Avenue, 60612, United States.
| |
Collapse
|
47
|
Lipid emulsion rapidly restores contractility in stunned mouse cardiomyocytes: a comparison with therapeutic hypothermia. Crit Care Med 2015; 42:e734-40. [PMID: 25402294 DOI: 10.1097/ccm.0000000000000656] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVES Cooling following cardiac arrest can improve survival significantly. However, delays in achieving target temperature may decrease the overall benefits of cooling. Here, we test whether lipid emulsion, a clinically approved drug reported to exert cardioprotection, can rescue heart contractility in the setting of delayed cooling in stunned mouse cardiomyocytes. DESIGN Cell culture study. SETTING Academic research laboratory. SUBJECTS Cardiomyocytes isolated from 1- to 2-day-old C57BL6 mice. INTERVENTIONS Cardiomyocytes were exposed to 30 minutes of ischemia followed by 90 minutes of reperfusion and 10 minutes of isoproterenol with nine interventions: 1) no additional treatment; 2) intraischemic cooling at 32 °C initiated 10 minutes prior to reperfusion; 3) delayed cooling started 20 minutes after reperfusion; 4) lipid emulsion + delayed cooling; 5) lipid emulsion (0.25%) administered at reperfusion; 6) lipid emulsion + intraischemic cooling; 7) delayed lipid emulsion; 8) lipid emulsion + delayed cooling + Akt inhibitor (API-2, 10 µM); and 9) lipid emulsion + delayed cooling + Erk inhibitor (U0126, 10 µM). Inhibitors were given to cells 1 hour prior to ischemia. MEASUREMENTS AND MAIN RESULTS Contractility was recorded by real-time phase-contrast imaging and analyzed with pulse image velocimetry in MATLAB (Mathworks, Natick, MA). Ischemia diminished cell contraction. The cardioprotective effect of cooling was diminished when delayed but was rescued by lipid emulsion. Further, lipid emulsion on its own improved recovery of the contractility to a greater extent as intraischemic cooling. However, cotreatment of lipid emulsion and intraischemic cooling did not further improve the recovery compared to either treatment alone. Furthermore, Akt and Erk inhibitors blocked lipid emulsion-induced protection. CONCLUSIONS Lipid emulsion improved contractility and rescued contractility in the context of delayed cooling. This protective effect required Akt and Erk signaling. Lipid emulsion might serve as a treatment or adjunct to cooling in ameliorating myocardial ischemia/reperfusion injury.
Collapse
|
48
|
Zirpoli H, Abdillahi M, Quadri N, Ananthakrishnan R, Wang L, Rosario R, Zhu Z, Deckelbaum RJ, Ramasamy R. Acute administration of n-3 rich triglyceride emulsions provides cardioprotection in murine models after ischemia-reperfusion. PLoS One 2015; 10:e0116274. [PMID: 25559887 PMCID: PMC4283969 DOI: 10.1371/journal.pone.0116274] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 12/08/2014] [Indexed: 11/19/2022] Open
Abstract
Dietary n-3 fatty acids (FAs) may reduce cardiovascular disease risk. We questioned whether acute administration of n-3 rich triglyceride (TG) emulsions could preserve cardiac function and decrease injury after ischemia/reperfusion (I/R) insult. We used two different experimental models: in vivo, C57BL/6 mice were exposed to acute occlusion of the left anterior descending coronary artery (LAD), and ex-vivo, C57BL/6 murine hearts were perfused using Langendorff technique (LT). In the LAD model, mice treated with n-3 TG emulsion (1.5g/kg body weight), immediately after ischemia and 1h later during reperfusion, significantly reduced infarct size and maintained cardiac function (p<0.05). In the LT model, administration of n-3 TG emulsion (300mgTG/100ml) during reperfusion significantly improved functional recovery (p<0.05). In both models, lactate dehydrogenase (LDH) levels, as a marker of injury, were significantly reduced by n-3 TG emulsion. To investigate the mechanisms by which n-3 FAs protects hearts from I/R injury, we investigated changes in key pathways linked to cardioprotection. In the ex-vivo model, we showed that n-3 FAs increased phosphorylation of AKT and GSK3β proteins (p<0.05). Acute n-3 TG emulsion treatment also increased Bcl-2 protein level and reduced an autophagy marker, Beclin-1 (p<0.05). Additionally, cardioprotection by n-3 TG emulsion was linked to changes in PPARγ protein expression (p<0.05). Rosiglitazone and p-AKT inhibitor counteracted the positive effect of n-3 TG; GSK3β inhibitor plus n-3 TG significantly inhibited LDH release. We conclude that acute n-3 TG injection during reperfusion provides cardioprotection. This may prove to be a novel acute adjunctive reperfusion therapy after treating patients with myocardial infarction.
Collapse
Affiliation(s)
- Hylde Zirpoli
- Institute of Human Nutrition, College of Physicians and Surgeons, Columbia University, New York, New York, United States of America
- Department of Pediatrics, College of Physicians and Surgeons, Columbia University, New York, New York, United States of America
| | - Mariane Abdillahi
- Institute of Human Nutrition, College of Physicians and Surgeons, Columbia University, New York, New York, United States of America
- Department of Medicine, New York University School of Medicine, New York, New York, United States of America
| | - Nosirudeen Quadri
- Department of Medicine, New York University School of Medicine, New York, New York, United States of America
| | - Radha Ananthakrishnan
- Department of Medicine, New York University School of Medicine, New York, New York, United States of America
| | - Lingjie Wang
- Department of Medicine, New York University School of Medicine, New York, New York, United States of America
| | - Rosa Rosario
- Department of Medicine, New York University School of Medicine, New York, New York, United States of America
| | - Zhengbin Zhu
- Department of Medicine, New York University School of Medicine, New York, New York, United States of America
| | - Richard J. Deckelbaum
- Institute of Human Nutrition, College of Physicians and Surgeons, Columbia University, New York, New York, United States of America
- Department of Pediatrics, College of Physicians and Surgeons, Columbia University, New York, New York, United States of America
- * E-mail: (R. Ramasamy); (RJD)
| | - Ravichandran Ramasamy
- Department of Medicine, New York University School of Medicine, New York, New York, United States of America
- * E-mail: (R. Ramasamy); (RJD)
| |
Collapse
|
49
|
Lou PH, Lucchinetti E, Zhang L, Affolter A, Gandhi M, Hersberger M, Warren BE, Lemieux H, Sobhi HF, Clanachan AS, Zaugg M. Loss of Intralipid®- but not sevoflurane-mediated cardioprotection in early type-2 diabetic hearts of fructose-fed rats: importance of ROS signaling. PLoS One 2014; 9:e104971. [PMID: 25127027 PMCID: PMC4134246 DOI: 10.1371/journal.pone.0104971] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 07/15/2014] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Insulin resistance and early type-2 diabetes are highly prevalent. However, it is unknown whether Intralipid® and sevoflurane protect the early diabetic heart against ischemia-reperfusion injury. METHODS Early type-2 diabetic hearts from Sprague-Dawley rats fed for 6 weeks with fructose were exposed to 15 min of ischemia and 30 min of reperfusion. Intralipid® (1%) was administered at the onset of reperfusion. Peri-ischemic sevoflurane (2 vol.-%) served as alternative protection strategy. Recovery of left ventricular function was recorded and the activation of Akt and ERK 1/2 was monitored. Mitochondrial function was assessed by high-resolution respirometry and mitochondrial ROS production was measured by Amplex Red and aconitase activity assays. Acylcarnitine tissue content was measured and concentration-response curves of complex IV inhibition by palmitoylcarnitine were obtained. RESULTS Intralipid® did not exert protection in early diabetic hearts, while sevoflurane improved functional recovery. Sevoflurane protection was abolished by concomitant administration of the ROS scavenger N-2-mercaptopropionyl glycine. Sevoflurane, but not Intralipid® produced protective ROS during reperfusion, which activated Akt. Intralipid® failed to inhibit respiratory complex IV, while sevoflurane inhibited complex I. Early diabetic hearts exhibited reduced carnitine-palmitoyl-transferase-1 activity, but palmitoylcarnitine could not rescue protection and enhance postischemic functional recovery. Cardiac mitochondria from early diabetic rats exhibited an increased content of subunit IV-2 of respiratory complex IV and of uncoupling protein-3. CONCLUSIONS Early type-2 diabetic hearts lose complex IV-mediated protection by Intralipid® potentially due to a switch in complex IV subunit expression and increased mitochondrial uncoupling, but are amenable to complex I-mediated sevoflurane protection.
Collapse
Affiliation(s)
- Phing-How Lou
- Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Eliana Lucchinetti
- Department of Anesthesiology & Pain Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Liyan Zhang
- Department of Anesthesiology & Pain Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Andreas Affolter
- Department of Clinical Chemistry, University Children's Hospital Zurich, Zurich, Switzerland
| | - Manoj Gandhi
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
| | - Martin Hersberger
- Department of Clinical Chemistry, University Children's Hospital Zurich, Zurich, Switzerland
| | - Blair E. Warren
- Campus Saint-Jean, University of Alberta, Edmonton, Alberta, Canada
| | - Hélène Lemieux
- Campus Saint-Jean, University of Alberta, Edmonton, Alberta, Canada
| | - Hany F. Sobhi
- Coppin Center for Organic Synthesis, Coppin State University, Baltimore, Maryland, United States of America
| | | | - Michael Zaugg
- Department of Anesthesiology & Pain Medicine, University of Alberta, Edmonton, Alberta, Canada
- * E-mail:
| |
Collapse
|
50
|
Plummer ZE, Baos S, Rogers CA, Suleiman MS, Bryan AJ, Angelini GD, Hillier J, Downes R, Nicholson E, Reeves BC. The effects of propofol cardioplegia on blood and myocardial biomarkers of stress and injury in patients with isolated coronary artery bypass grafting or aortic valve replacement using cardiopulmonary bypass: protocol for a single-center randomized controlled trial. JMIR Res Protoc 2014; 3:e35. [PMID: 25004932 PMCID: PMC4115261 DOI: 10.2196/resprot.3353] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 06/09/2014] [Indexed: 11/21/2022] Open
Abstract
Background Despite improved myocardial protection strategies, cardioplegic arrest and ischemia still result in reperfusion injury. We have previously published a study describing the effects of propofol (an anesthetic agent commonly used in cardiac surgery) on metabolic stress, cardiac function, and injury in a clinically relevant animal model. We concluded that cardioplegia supplementation with propofol at a concentration relevant to the human clinical setting resulted in improved hemodynamic function, reduced oxidative stress, and reduced reperfusion injury when compared to standard cardioplegia. Objective The Propofol cardioplegia for Myocardial Protection Trial (ProMPT) aims to translate the successful animal intervention to the human clinical setting. We aim to test the hypothesis that supplementation of the cardioplegic solution with propofol will be cardioprotective for patients undergoing isolated coronary artery bypass graft or aortic valve replacement surgery with cardiopulmonary bypass. Methods The trial is a single-center, placebo-controlled, randomized trial with blinding of participants, health care staff, and the research team. Patients aged between 18 and 80 years undergoing nonemergency isolated coronary artery bypass graft or aortic valve replacement surgery with cardiopulmonary bypass at the Bristol Heart Institute are being invited to participate. Participants are randomly assigned in a 1:1 ratio to either cardioplegia supplementation with propofol (intervention) or cardioplegia supplementation with intralipid (placebo) using a secure, concealed, Internet-based randomization system. Randomization is stratified by operation type and minimized by diabetes mellitus status. Biomarkers of cardiac injury and metabolism are being assessed to investigate any cardioprotection conferred. The primary outcome is myocardial injury, studied by measuring myocardial troponin T. The trial is designed to test hypotheses about the superiority of the intervention within each surgical stratum. The sample size of 96 participants has been chosen to achieve 80% power to detect standardized differences of 0.5 at a significance level of 5% (2-tailed) assuming equal numbers in each surgical stratum. Results A total of 96 patients have been successfully recruited over a 2-year period. Results are to be published in late 2014. Conclusions Designing a practicable method for delivering a potentially protective dose of propofol to the heart during cardiac surgery was challenging. If our approach confirms the potential of propofol to reduce damage during cardiac surgery, we plan to design a larger multicenter trial to detect differences in clinical outcomes. Trial Registration International Standard Randomized Controlled Trial Number (ISRCTN): 84968882; http://www.controlled-trials.com/ISRCTN84968882/ProMPT (Archived by WebCite at http://www.webcitation.org/6Qi8A51BS).
Collapse
Affiliation(s)
- Zoe E Plummer
- Clinical Trials and Evaluation Unit, University of Bristol, Bristol, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|