1
|
Kemfack AM, Hernandez-Morato I, Moayedi Y, Pitman MJ. An optimized method for high-quality RNA extraction from distinctive intrinsic laryngeal muscles in the rat model. Sci Rep 2022; 12:21665. [PMID: 36522411 PMCID: PMC9755529 DOI: 10.1038/s41598-022-25643-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 12/02/2022] [Indexed: 12/23/2022] Open
Abstract
Challenges related to high-quality RNA extraction from post-mortem tissue have limited RNA-sequencing (RNA-seq) application in certain skeletal muscle groups, including the intrinsic laryngeal muscles (ILMs). The present study identified critical factors contributing to substandard RNA extraction from the ILMs and established a suitable method that permitted high-throughput analysis. Here, standard techniques for tissue processing were adapted, and an effective means to control confounding effects during specimen preparation was determined. The experimental procedure consistently provided sufficient intact total RNA (N = 68) and RIN ranging between 7.0 and 8.6, which was unprecedented using standard RNA purification protocols. This study confirmed the reproducibility of the workflow through repeated trials at different postnatal time points and across the distinctive ILMs. High-throughput diagnostics from 90 RNA samples indicated no sequencing alignment scores below 70%, validating the extraction strategy. Significant differences between the standard and experimental conditions suggest circumvented challenges and broad applicability to other skeletal muscles. This investigation remains ongoing given the prospect of therapeutic insights to voice, swallowing, and airway disorders. The present methodology supports pioneering global transcriptome investigations in the larynx previously unfounded in literature.
Collapse
Affiliation(s)
- Angela M Kemfack
- Department of Otolaryngology-Head & Neck Surgery, Columbia University College of Physicians and Surgeons, New York, NY, 10032, USA
| | - Ignacio Hernandez-Morato
- Department of Otolaryngology-Head & Neck Surgery, Columbia University College of Physicians and Surgeons, New York, NY, 10032, USA.
| | - Yalda Moayedi
- Department of Otolaryngology-Head & Neck Surgery, Columbia University College of Physicians and Surgeons, New York, NY, 10032, USA
- Department of Neurology, Irving Medical Center, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Michael J Pitman
- Department of Otolaryngology-Head & Neck Surgery, Columbia University College of Physicians and Surgeons, New York, NY, 10032, USA
| |
Collapse
|
2
|
Wang H, Wang H, Li X, Xu W. Characteristics of Early Internal Laryngeal Muscle Atrophy After Recurrent Laryngeal Nerve Injuries in Rats. Laryngoscope 2020; 131:E1256-E1264. [PMID: 33098577 DOI: 10.1002/lary.29210] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 10/09/2020] [Accepted: 10/15/2020] [Indexed: 11/10/2022]
Abstract
OBJECTIVES/HYPOTHESIS The present study investigated the characteristics of early internal laryngeal muscle atrophy in recurrent laryngeal nerve injury (RLNI) rats. STUDY DESIGN To observe the characteristics of early internal laryngeal muscle atrophy post RLNI. METHODS Rats were divided into three groups: sham-operated control group (n = 20), recurrent laryngeal nerve transverse injury group (RLNTI, n = 50), and recurrent laryngeal nerve blunt contusion group (RLNBC, n = 50). Five weeks after RLNI, certain rats were sacrificed weekly, and their laryngeal tissues were harvested. The atrophic features of internal laryngeal muscles were detected using hematoxylin and eosin. NF-κB and MuRF-1 levels were tested using IHC. RESULTS The atrophic degree and fibrosis of thyroarytenoid, posterior cricoarytenoid, and lateral cricoarytenoid muscles were related to the type of RLNI. The average myofiber cross-sectional areas increased before an obvious decrease in the RLNTI and RLNBC groups. Muscle recovery occurred in the RLNBC group starting 4 weeks after RLNI, but only a weak trend was observed in the RLNTI group in the 5th week. During the muscle atrophy process, MuRF-1 and NF-κB were upregulated early and were maintained at a high level, which showed a trend similar to muscle atrophy. However, NF-κB expression was opposite to MuRF-1 expression and muscle atrophy when the muscles recovered. CONCLUSION The atrophy degree of internal laryngeal muscles was associated with the type of RLNI. The NF-κB/MuRF-1 signaling pathway was involved in internal laryngeal muscle atrophy after RLNI, which is different from skeletal muscle after denervation. LEVEL OF EVIDENCE NA Laryngoscope, 131:E1256-E1264, 2021.
Collapse
Affiliation(s)
- Hong Wang
- Department of Otolaryngology-Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China.,Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical University, Beijing, China
| | - Haizhou Wang
- Department of Otolaryngology-Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China.,Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical University, Beijing, China
| | - Xueyan Li
- Department of Otolaryngology-Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China.,Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical University, Beijing, China
| | - Wen Xu
- Department of Otolaryngology-Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China.,Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical University, Beijing, China
| |
Collapse
|
3
|
Files DC, Liu C, Pereyra A, Wang ZM, Aggarwal NR, D'Alessio FR, Garibaldi BT, Mock JR, Singer BD, Feng X, Yammani RR, Zhang T, Lee AL, Philpott S, Lussier S, Purcell L, Chou J, Seeds M, King LS, Morris PE, Delbono O. Therapeutic exercise attenuates neutrophilic lung injury and skeletal muscle wasting. Sci Transl Med 2015; 7:278ra32. [PMID: 25761888 PMCID: PMC4820823 DOI: 10.1126/scitranslmed.3010283] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Early mobilization of critically ill patients with the acute respiratory distress syndrome (ARDS) has emerged as a therapeutic strategy that improves patient outcomes, such as the duration of mechanical ventilation and muscle strength. Despite the apparent efficacy of early mobility programs, their use in clinical practice is limited outside of specialized centers and clinical trials. To evaluate the mechanisms underlying mobility therapy, we exercised acute lung injury (ALI) mice for 2 days after the instillation of lipopolysaccharides into their lungs. We found that a short duration of moderate intensity exercise in ALI mice attenuated muscle ring finger 1 (MuRF1)-mediated atrophy of the limb and respiratory muscles and improved limb muscle force generation. Exercise also limited the influx of neutrophils into the alveolar space through modulation of a coordinated systemic neutrophil chemokine response. Granulocyte colony-stimulating factor (G-CSF) concentrations were systemically reduced by exercise in ALI mice, and in vivo blockade of the G-CSF receptor recapitulated the lung exercise phenotype in ALI mice. Additionally, plasma G-CSF concentrations in humans with acute respiratory failure (ARF) undergoing early mobility therapy showed greater decrements over time compared to control ARF patients. Together, these data provide a mechanism whereby early mobility therapy attenuates muscle wasting and limits ongoing alveolar neutrophilia through modulation of systemic neutrophil chemokines in lung-injured mice and humans.
Collapse
Affiliation(s)
- D Clark Files
- Department of Internal Medicine-Pulmonary, Critical Care, Allergy and Immunologic Diseases, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA. Wake Forest Critical Illness, Injury and Recovery Research Center, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA.
| | - Chun Liu
- Department of Internal Medicine-Pulmonary, Critical Care, Allergy and Immunologic Diseases, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Andrea Pereyra
- Department of Internal Medicine-Gerontology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA. National Scientific and Technical Research Council (CONICET) and School of Medicine, National University of La Plata, 1900 La Plata, Argentina
| | - Zhong-Min Wang
- Department of Internal Medicine-Gerontology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Neil R Aggarwal
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins Asthma and Allergy Center, Baltimore, MD 21205, USA
| | - Franco R D'Alessio
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins Asthma and Allergy Center, Baltimore, MD 21205, USA
| | - Brian T Garibaldi
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins Asthma and Allergy Center, Baltimore, MD 21205, USA
| | - Jason R Mock
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins Asthma and Allergy Center, Baltimore, MD 21205, USA
| | - Benjamin D Singer
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins Asthma and Allergy Center, Baltimore, MD 21205, USA
| | - Xin Feng
- Department of Otolaryngology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Raghunatha R Yammani
- Department of Internal Medicine-Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Tan Zhang
- Department of Internal Medicine-Gerontology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Amy L Lee
- Department of Internal Medicine-Pulmonary, Critical Care, Allergy and Immunologic Diseases, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Sydney Philpott
- Department of Internal Medicine-Pulmonary, Critical Care, Allergy and Immunologic Diseases, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Stephanie Lussier
- Department of Internal Medicine-Pulmonary, Critical Care, Allergy and Immunologic Diseases, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Lina Purcell
- Department of Internal Medicine-Pulmonary, Critical Care, Allergy and Immunologic Diseases, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Jeff Chou
- Division of Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Michael Seeds
- Department of Internal Medicine-Pulmonary, Critical Care, Allergy and Immunologic Diseases, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA. Wake Forest Critical Illness, Injury and Recovery Research Center, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Landon S King
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins Asthma and Allergy Center, Baltimore, MD 21205, USA
| | - Peter E Morris
- Department of Internal Medicine-Pulmonary, Critical Care, Allergy and Immunologic Diseases, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA. Wake Forest Critical Illness, Injury and Recovery Research Center, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Osvaldo Delbono
- Department of Internal Medicine-Gerontology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| |
Collapse
|