1
|
Lu P, ElMallah MK, Liu Z, Wu C, Chen J, Lifshitz LM, ZhuGe R. Genetic deletion of the Tas2r143/Tas2r135/Tas2r126 cluster reveals that TAS2Rs may not mediate bitter tastant-induced bronchodilation. J Cell Physiol 2021; 236:6407-6423. [PMID: 33559206 PMCID: PMC8223514 DOI: 10.1002/jcp.30315] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 01/19/2021] [Accepted: 01/27/2021] [Indexed: 11/09/2022]
Abstract
Bitter taste receptors (TAS2Rs) and their signaling elements are detected throughout the body, and bitter tastants induce a wide variety of biological responses in tissues and organs outside the mouth. However, the roles of TAS2Rs in these responses remain to be tested and established genetically. Here, we employed the CRISPR/Cas9 gene-editing technique to delete three bitter taste receptors-Tas2r143/Tas2r135/Tas2r126 (i.e., Tas2r triple knockout [TKO]) in mice. The fidelity and effectiveness of the Tas2r deletions were validated genetically at DNA and messenger RNA levels and functionally based on the tasting of TAS2R135 and TAS2R126 agonists. Bitter tastants are known to relax airways completely. However, TAS2R135 or TAS2R126 agonists either failed to induce relaxation of pre-contracted airways in wild-type mice and Tas2r TKO mice or relaxed them dose-dependently, but to the same extent in both types of mice. These results indicate that TAS2Rs are not required for bitter tastant-induced bronchodilation. The Tas2r TKO mice also provide a valuable model to resolve whether TAS2Rs mediate bitter tastant-induced responses in many other extraoral tissues.
Collapse
Affiliation(s)
- Ping Lu
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Mai K ElMallah
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Zeyu Liu
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Chan Wu
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Jun Chen
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Lawrence M Lifshitz
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Ronghua ZhuGe
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
2
|
Zhu X, Zhang W, Jin L, Zhang G, Yang H, Yu B. Inhibitory activities of curzerenone, curdione, furanodienone, curcumol and germacrone on Ca 2+-activated chloride channels. Fitoterapia 2020; 147:104736. [PMID: 33010370 DOI: 10.1016/j.fitote.2020.104736] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/30/2020] [Accepted: 09/25/2020] [Indexed: 02/06/2023]
Abstract
Calcium-activated chloride channels (CaCCs) as a kind of widely expressed ion channels play crucial roles in a variety of physiological regulation. TMEM16A has been identified as the molecular basis of CaCCs in numerous cell types and is considered a new drug target for many diseases. Regulating the function of TMEM16A through small molecule modulators has become a new strategy to improve respiratory and digestive dysfunction and even tumor therapy. Herein, we obtained 5 sesquiterpenoids, named curzerenone, curdione, furanodienone, curcumol and germacrone with TMEM16A inhibition and revealed their mechanism of action by fluorescent and electrophysiological assays. Cell-based YFP fluorescence data demonstrated that 5 compounds inhibited TMEM16A-mediated I- influx in a dose-dependent manner. To explore the mechanism of 5 compounds on CaCCs, FRT cells with high expression of TMEM16A, HBE, HT-29 and T84 cells and mouse colons were used in short-circuit current assay. Our results showed that 5 compounds inhibited the Ca2+-activated Cl- currents generated by the Eact, ATP and UTP stimulation, and this inhibitory effect was related not only to the direct inhibition of channel opening, but also the inhibition of intracellular Ca2+ concentration and K+ channel activity. In addition to CaCCs, these 5 compounds also had definite inhibitory activities against cystic fibrosis transmembrane regulator (CFTR) at the cellular level. In summary, these compounds have the potential to regulate the activites of TMEM16A/CaCCs and CFTR channels in vitro, providing a new class of lead compounds for the development of drugs for diseases related to chloride channel dysfunction.
Collapse
Affiliation(s)
- Xiaojuan Zhu
- School of Life Sciences, Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian 116081, PR China
| | - Wanting Zhang
- School of Life Sciences, Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian 116081, PR China
| | - Lingling Jin
- College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, PR China
| | - Guangping Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, PR China
| | - Hong Yang
- School of Life Sciences, Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian 116081, PR China.
| | - Bo Yu
- School of Life Sciences, Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian 116081, PR China.
| |
Collapse
|
3
|
Kok BP, Galmozzi A, Littlejohn NK, Albert V, Godio C, Kim W, Kim SM, Bland JS, Grayson N, Fang M, Meyerhof W, Siuzdak G, Srinivasan S, Behrens M, Saez E. Intestinal bitter taste receptor activation alters hormone secretion and imparts metabolic benefits. Mol Metab 2018; 16:76-87. [PMID: 30120064 PMCID: PMC6158035 DOI: 10.1016/j.molmet.2018.07.013] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 07/23/2018] [Accepted: 07/31/2018] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVES Extracts of the hops plant have been shown to reduce weight and insulin resistance in rodents and humans, but elucidation of the mechanisms responsible for these benefits has been hindered by the use of heterogeneous hops-derived mixtures. Because hop extracts are used as flavoring agents for their bitter properties, we hypothesized that bitter taste receptors (Tas2rs) could be mediating their beneficial effects in metabolic disease. Studies have shown that exposure of cultured enteroendocrine cells to bitter tastants can stimulate release of hormones, including glucagon-like peptide 1 (GLP-1). These findings have led to the suggestion that activation of Tas2rs may be of benefit in diabetes, but this tenet has not been tested. Here, we have assessed the ability of a pure derivative of a hops isohumulone with anti-diabetic properties, KDT501, to signal through Tas2rs. We have further used this compound as a tool to systematically assess the impact of bitter taste receptor activation in obesity-diabetes. METHODS KDT501 was tested in a panel of bitter taste receptor signaling assays. Diet-induced obese mice (DIO) were dosed orally with KDT501 and acute effects on glucose homeostasis determined. A wide range of metabolic parameters were evaluated in DIO mice chronically treated with KDT501 to establish the full impact of activating gut bitter taste signaling. RESULTS We show that KDT501 signals through Tas2r108, one of 35 mouse Tas2rs. In DIO mice, acute treatment stimulated GLP-1 secretion and enhanced glucose tolerance. Chronic treatment caused weight and fat mass loss, increased energy expenditure, enhanced glucose tolerance and insulin sensitivity, normalized plasma lipids, and induced broad suppression of inflammatory markers. Chronic KDT501 treatment altered enteroendocrine hormone levels and bile acid homeostasis and stimulated sustained GLP-1 release. Combined treatment with a dipeptidyl peptidase IV inhibitor amplified the incretin-based benefits of this pure isohumulone. CONCLUSIONS Activation of Tas2r108 in the gut results in a remodeling of enteroendocrine hormone release and bile acid metabolism that ameliorates multiple features of metabolic syndrome. Targeting extraoral bitter taste receptors may be useful in metabolic disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jeffrey S Bland
- Kindex Pharmaceuticals, 800 Fifth Avenue, Seattle, WA, 98104, USA
| | - Neile Grayson
- Kindex Pharmaceuticals, 800 Fifth Avenue, Seattle, WA, 98104, USA
| | - Mingliang Fang
- Center for Metabolomics, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Wolfgang Meyerhof
- Department of Molecular Genetics, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany
| | - Gary Siuzdak
- Center for Metabolomics, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | | | - Maik Behrens
- Department of Molecular Genetics, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany; Leibniz-Institute for Food Systems Biology at the Technical University of Munich, Lise-Meitner-Str. 34, 85354, Freising, Germany
| | | |
Collapse
|
4
|
Prandi S, Voigt A, Meyerhof W, Behrens M. Expression profiling of Tas2r genes reveals a complex pattern along the mouse GI tract and the presence of Tas2r131 in a subset of intestinal Paneth cells. Cell Mol Life Sci 2018; 75:49-65. [PMID: 28801754 PMCID: PMC11105753 DOI: 10.1007/s00018-017-2621-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 08/02/2017] [Accepted: 08/04/2017] [Indexed: 12/18/2022]
Abstract
The chemical variability of the intestinal lumen requires the presence of molecular receptors detecting the various substances naturally occurring in the diet and as a result of the activity of the microbiota. Despite their early discovery, intestinal bitter taste receptors (Tas2r) have not yet been assigned an unambiguous physiological function. Recently, using a CRE-recombinant approach we showed that the Tas2r131 gene is expressed in a subset of mucin-producing goblet cells in the colon of mice. Moreover, we also demonstrated that the expression of the Tas2r131 locus is not restricted to this region. In the present study we aimed at characterizing the presence of positive cells also in other gastrointestinal regions. Our results show that Tas2r131+ cells appear in the jejunum and the ileum, and are absent from the stomach and the duodenum. We identified the positive cells as a subpopulation of deep-crypt Paneth cells in the ileum, strengthening the notion of a defensive role for Tas2rs in the gut. To get a broader perspective on the expression of bitter taste receptors in the alimentary canal, we quantified the expression of all 35 Tas2r genes along the gastrointestinal tract by qRT-PCR. We discovered that the number and expression level of Tas2r genes profoundly vary along the alimentary canal, with the stomach and the colon expressing the largest subsets.
Collapse
Affiliation(s)
- Simone Prandi
- Department of Molecular Genetics, German Institute for Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Anja Voigt
- Department of Molecular Genetics, German Institute for Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Wolfgang Meyerhof
- Department of Molecular Genetics, German Institute for Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Maik Behrens
- Department of Molecular Genetics, German Institute for Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany.
| |
Collapse
|
5
|
Behrens M, Gu M, Fan S, Huang C, Meyerhof W. Bitter substances from plants used in traditional Chinese medicine exert biased activation of human bitter taste receptors. Chem Biol Drug Des 2017; 91:422-433. [PMID: 28834122 DOI: 10.1111/cbdd.13089] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 07/20/2017] [Accepted: 08/06/2017] [Indexed: 12/22/2022]
Abstract
The number and variety of bitter compounds originating from plants are vast. Whereas some bitter chemicals are toxic and should not be ingested, other compounds exhibit health beneficial effects, which is manifest in the cross-cultural believe that the bitterness of medicine is correlated with the desired medicinal activity. The bitter taste receptors in the oral cavity serve as sensors for bitter compounds and, as they are expressed in numerous extraoral tissues throughout the body, may also be responsible for some physiological effects exerted by bitter compounds. Chinese herbal medicine uses bitter herbs since ancient times for the treatment of various diseases; however, the routes by which these herbs modify physiology are frequently not well understood. We therefore screened 26 bitter substances extracted from medical herbs for the activation of the 25 human bitter taste receptors. We identified six receptors activated by in total 17 different bitter compounds. Interestingly, we observed a bias in bitter taste receptor activation with 10 newly identified agonists for the broadly tuned receptor TAS2R46, seven agonists activating the TAS2R14 and two compounds activating narrowly tuned receptors, suggesting that these receptors play dominant roles in the evaluation and perhaps physiological activities of Chinese herbal medicines.
Collapse
Affiliation(s)
- Maik Behrens
- Department of Molecular Genetics, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Ming Gu
- School of Pharmacy, Drug Discovery Lab, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shengjie Fan
- School of Pharmacy, Drug Discovery Lab, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Cheng Huang
- School of Pharmacy, Drug Discovery Lab, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wolfgang Meyerhof
- Department of Molecular Genetics, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| |
Collapse
|
6
|
Modulating Ca²⁺ signals: a common theme for TMEM16, Ist2, and TMC. Pflugers Arch 2015; 468:475-90. [PMID: 26700940 DOI: 10.1007/s00424-015-1767-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 11/24/2015] [Accepted: 11/26/2015] [Indexed: 12/21/2022]
Abstract
Since the discovery of TMEM16A (anoctamin 1, ANO1) as Ca(2+)-activated Cl(-) channel, the protein was found to serve different physiological functions, depending on the type of tissue. Subsequent reports on other members of the anoctamin family demonstrated a broad range of yet poorly understood properties. Compromised anoctamin function is causing a wide range of diseases, such as hearing loss (ANO2), bleeding disorder (ANO6), ataxia and dystonia (ANO3, 10), persistent borrelia and mycobacteria infection (ANO10), skeletal syndromes like gnathodiaphyseal dysplasia and limb girdle muscle dystrophy (ANO5), and cancer (ANO1, 6, 7). Animal models demonstrate CF-like airway disease, asthma, and intestinal hyposecretion (ANO1). Although present data indicate that ANO1 is a Ca(2+)-activated Cl(-) channel, it remains unclear whether all anoctamins form plasma membrane-localized or intracellular chloride channels. We find Ca(2+)-activated Cl(-) currents appearing by expression of most anoctamin paralogs, including the Nectria haematococca homologue nhTMEM16 and the yeast homologue Ist2. As recent studies show a role of anoctamins, Ist2, and the related transmembrane channel-like (TMC) proteins for intracellular Ca(2+) signaling, we will discuss the role of these proteins in generating compartmentalized Ca(2+) signals, which may give a hint as to the broad range of cellular functions of anoctamins.
Collapse
|