1
|
Zhang T, Liu S, He S, Shi L, Ma R. Strategies to Enhance the Therapeutic Efficacy of GLP-1 Receptor Agonists through Structural Modification and Carrier Delivery. Chembiochem 2025:e202400962. [PMID: 39744852 DOI: 10.1002/cbic.202400962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/23/2024] [Indexed: 01/11/2025]
Abstract
Diabetes is a metabolic disorder characterized by insufficient endogenous insulin production or impaired sensitivity to insulin. In recent years, a class of incretin-based hypoglycemic drugs, glucagon-like peptide-1 receptor agonists (GLP-1RAs), have attracted great attention in the management of type 2 diabetes mellitus (T2DM) due to their benefits, including stable glycemic control ability, a low risk of hypoglycemia, and weight reduction for patients. However, like other peptide drugs, GLP-1RAs face challenges such as instability, susceptibility to enzymatic degradation, and immunogenicity, which severely limit their clinical application. In recent years, various strategies have been developed to improve the bioavailability and therapeutic efficacy of GLP-1RAs, including structural modification and carrier-mediated delivery. This article briefly introduces the research and application status of several common GLP-1RAs and their limitations. Taking exendin-4 as an example, we focus on the research progress of improving bioavailability and therapeutic efficacy based on structural modification and carrier delivery strategies, aiming to provide reference for the development of new GLP-1RAs treatment systems.
Collapse
Affiliation(s)
- Tingting Zhang
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 300071, Tianjin, China
| | - Sainan Liu
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 300071, Tianjin, China
| | - Suning He
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 300071, Tianjin, China
| | - Linqi Shi
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 300071, Tianjin, China
| | - Rujiang Ma
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 300071, Tianjin, China
| |
Collapse
|
2
|
Sloop KW, Cox AL, Wainscott DB, White A, Droz BA, Stutsman C, Showalter AD, Suter TM, Dunbar JD, Snider BM, O'Farrell LS, Hewitt N, Ruble JC, Padgett LR, Woerly EM, Peterson JA, Coskun T, Liu Z, Coutant DE, Ai M, Emmerson PJ, Sangwung P, Willard FS. The pharmacological basis for nonpeptide agonism of the GLP-1 receptor by orforglipron. Sci Transl Med 2024; 16:eadp5765. [PMID: 39693407 DOI: 10.1126/scitranslmed.adp5765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/24/2024] [Accepted: 11/20/2024] [Indexed: 12/20/2024]
Abstract
Orally bioavailable, synthetic nonpeptide agonists (NPAs) of the glucagon-like peptide-1 receptor (GLP-1R) may offer an effective, scalable pharmacotherapy to address the metabolic disease epidemic. One of the first molecules in the emerging class of GLP-1R NPAs is orforglipron, which is in clinical development for treating type 2 diabetes and obesity. Here, we characterized the pharmacological properties of orforglipron in comparison with peptide-based GLP-1R agonists and other NPAs. Competition binding experiments using either [125I]GLP-1(7-36)NH2 or [3H]orforglipron indicated that orforglipron is a high-affinity [inhibition constant (Ki) = 1 nM], selective ligand of the human GLP-1R. Signal transduction assays showed that orforglipron has low intrinsic efficacy for effector activation and negligible β-arrestin recruitment. To evaluate GLP-1R engagement in vivo, mice expressing the human GLP-1R were administered orforglipron and subjected to a glucose tolerance test. Predicted receptor occupancy was calculated using the receptor Ki value of orforglipron and its unbound concentration in vivo that reduces hyperglycemia. These experiments revealed that low GLP-1R occupancy by orforglipron is sufficient to yield a full biological response. Moreover, in a model where CRISPR-Cas9 gene editing was used to sensitize the rat GLP-1R (Glp1rS33W) to GLP-1R NPAs, target engagement by orforglipron in the pancreas and brain was consistent with peptide-based GLP-1R agonists. Diet-induced obesity in Glp1rS33W rats enabled studies showing weight loss in animals orally administered orforglipron versus subcutaneous injection of GLP-1R agonist semaglutide. Furthermore, crossover studies indicated oral orforglipron can sustain efficacy initiated by parenteral semaglutide. The pharmacological properties of orforglipron may inform targeting of other peptide receptors with NPAs.
Collapse
Affiliation(s)
- Kyle W Sloop
- Diabetes, Obesity and Complications, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Amy L Cox
- Diabetes, Obesity and Complications, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - David B Wainscott
- Molecular Pharmacology, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indianapolis, IN 46285, USA
| | - Alex White
- Molecular Pharmacology, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indianapolis, IN 46285, USA
| | - Brian A Droz
- Diabetes, Obesity and Complications, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Cynthia Stutsman
- Diabetes, Obesity and Complications, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Aaron D Showalter
- Diabetes, Obesity and Complications, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Todd M Suter
- Diabetes, Obesity and Complications, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - James D Dunbar
- Diabetes, Obesity and Complications, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Brandy M Snider
- Diabetes, Obesity and Complications, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Libbey S O'Farrell
- Diabetes, Obesity and Complications, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Natalie Hewitt
- Molecular Pharmacology, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indianapolis, IN 46285, USA
| | - J Craig Ruble
- Discovery Chemistry Research and Technologies, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Leah R Padgett
- Molecular Pharmacology, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indianapolis, IN 46285, USA
| | - Eric M Woerly
- Discovery Chemistry Research and Technologies, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Jeffrey A Peterson
- Synthetic Molecule Design and Development, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Tamer Coskun
- Diabetes, Obesity and Complications, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Zhaomin Liu
- Drug Disposition, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - David E Coutant
- Drug Disposition, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Minrong Ai
- Diabetes, Obesity and Complications, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Paul J Emmerson
- Diabetes, Obesity and Complications, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Panjamaporn Sangwung
- Molecular Pharmacology, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indianapolis, IN 46285, USA
| | - Francis S Willard
- Molecular Pharmacology, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indianapolis, IN 46285, USA
| |
Collapse
|
3
|
Shafiee F, Yazdani A. Recombinant production of interleukin-1 receptor antagonist in fusion to albumin binding domain with potential affinity to human serum albumin. Res Pharm Sci 2024; 19:356-365. [PMID: 39035819 PMCID: PMC11257196 DOI: 10.4103/rps.rps_41_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 10/18/2023] [Accepted: 06/01/2024] [Indexed: 07/23/2024] Open
Abstract
Background and purpose Anakinra must be injected daily due to its short half-life and this leads to lower patient compliance. Therefore, the aim of this study was to produce an interleukin-1 receptor antagonist (IL-1Ra) with albumin binding domain (ABD) as a novel fusion protein and evaluate its binding ability to albumin and its biological effects. Experimental approach The three-dimensional structure of IL-1Ra-ABD was predicted by MODELLER software and its interaction with IL-1R was evaluated by the HADDOCK server. The expression of IL-1Ra-ABD was performed in E. coli in fusion with intein 1 of pTWIN1 in soluble form and then purified. The affinity of IL-1Ra-ABD to human serum albumin (HSA) was determined on native-PAGE, and its release percent toward time was evaluated. Moreover, an MTT assay was used to determine the antagonizing properties of recombinant IL-1Ra-ABD against IL-1β in A375 and HEK293 cell lines. Findings/Results The stable complex of IL-1Ra-ABD with IL-1R established the absence of steric hindrance due to the addition of ABD to IL-1Ra. The expression induction of intein 1-IL-1Ra-ABD using 0.1 mM IPTG at 15 °C, and its cleavage represented bands approximately in 50 and 23 kDa. Furthermore, about 78% of IL-1Ra-ABD was attached to the HSA after 2 h of incubation, and the MTT assay showed no significant differences between the effects of IL-1Ra-ABD and native IL-1Ra in cell survival. Conclusions and implications The production of soluble IL-1Ra-ABD with no significant differences in IL-1Ra antagonizing effects was successfully performed. IL-1Ra-ABD showed suitable interaction with HSA and was released over time. However, the half-life of IL-1Ra-ABD in vivo must be determined in the subsequent investigations.
Collapse
Affiliation(s)
- Fatemeh Shafiee
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
- Bioinformatics Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ali Yazdani
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
4
|
Wang L, Wang X, Wu Y, Wang J, Zhou W, Wang J, Guo H, Zhang N, Zhang L, Hu X, Zhao Y, Miao J, Zhang Z, Chard Dunmall LS, Zhang D, Lemoine NR, Cheng Z, Wang Y. A novel microenvironment regulated system CAR-T (MRS.CAR-T) for immunotherapeutic treatment of esophageal squamous carcinoma. Cancer Lett 2023; 568:216303. [PMID: 37422126 DOI: 10.1016/j.canlet.2023.216303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/23/2023] [Accepted: 07/04/2023] [Indexed: 07/10/2023]
Abstract
Chimeric antigen receptor T cell immunotherapy has achieved promising therapeutic effects in the treatment of hematological malignancies. However, there are still many obstacles, including on-target off-tumor antigen expression, that prevent successful application to solid tumors. We designed a tumor microenvironment (TME) regulated system chimeric antigen receptor T (MRS.CAR-T) which can only be auto-activated in the solid TME. B7-H3 was selected as the target antigen for esophageal carcinoma. An element comprising a human serum albumin (HSA) binding peptide and a matrix metalloproteases (MMPs) cleavage site was inserted between the 5' terminal signal peptide and single chain fragment variable (scFv) of the CAR skeleton. Upon administration, HSA bound the binding peptide in MRS.B7-H3.CAR-T effectively and promoted proliferation and differentiation into memory cells. MRS.B7-H3.CAR-T was not cytotoxic in normal tissues expressing B7-H3 as the antigen recognition site in the scFv was cloaked by HSA. The anti-tumor function of MRS.B7-H3.CAR-T was recovered once the cleavage site was cleaved by MMPs in the TME. The anti-tumor efficacy associated with MRS.B7-H3.CAR-T cells was improved compared to classic B7-H3.CAR-T cells in vitro and less IFN-γ was released, suggesting a treatment that may induce less extent of cytokine release syndrome-mediated toxicity. In vivo, MRS.B7-H3.CAR-T cells had strong anti-tumor activity and were safe. MRS.CAR-T represents a novel strategy to improve the efficacy and safety of CAR-T therapy in solid tumors.
Collapse
Affiliation(s)
- Lihong Wang
- National Centre for International Research in Cell and Gene Therapy, Sino-British Research Centre for Molecular Oncology, State Key Laboratory of Esophageal Cancer Prevention & Treatment, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Xiaosa Wang
- National Centre for International Research in Cell and Gene Therapy, Sino-British Research Centre for Molecular Oncology, State Key Laboratory of Esophageal Cancer Prevention & Treatment, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yangyang Wu
- National Centre for International Research in Cell and Gene Therapy, Sino-British Research Centre for Molecular Oncology, State Key Laboratory of Esophageal Cancer Prevention & Treatment, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Jingjing Wang
- National Centre for International Research in Cell and Gene Therapy, Sino-British Research Centre for Molecular Oncology, State Key Laboratory of Esophageal Cancer Prevention & Treatment, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Wenping Zhou
- National Centre for International Research in Cell and Gene Therapy, Sino-British Research Centre for Molecular Oncology, State Key Laboratory of Esophageal Cancer Prevention & Treatment, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Jianyao Wang
- National Centre for International Research in Cell and Gene Therapy, Sino-British Research Centre for Molecular Oncology, State Key Laboratory of Esophageal Cancer Prevention & Treatment, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Haoran Guo
- National Centre for International Research in Cell and Gene Therapy, Sino-British Research Centre for Molecular Oncology, State Key Laboratory of Esophageal Cancer Prevention & Treatment, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Na Zhang
- National Centre for International Research in Cell and Gene Therapy, Sino-British Research Centre for Molecular Oncology, State Key Laboratory of Esophageal Cancer Prevention & Treatment, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Lufang Zhang
- National Centre for International Research in Cell and Gene Therapy, Sino-British Research Centre for Molecular Oncology, State Key Laboratory of Esophageal Cancer Prevention & Treatment, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Xuanyu Hu
- National Centre for International Research in Cell and Gene Therapy, Sino-British Research Centre for Molecular Oncology, State Key Laboratory of Esophageal Cancer Prevention & Treatment, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yuanyuan Zhao
- National Centre for International Research in Cell and Gene Therapy, Sino-British Research Centre for Molecular Oncology, State Key Laboratory of Esophageal Cancer Prevention & Treatment, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Jinxin Miao
- Academy of Chinese Medical Sciences, Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Zifang Zhang
- National Centre for International Research in Cell and Gene Therapy, Sino-British Research Centre for Molecular Oncology, State Key Laboratory of Esophageal Cancer Prevention & Treatment, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Louisa S Chard Dunmall
- Centre for Cancer Biomarkers & Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Danhua Zhang
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Nicholas R Lemoine
- National Centre for International Research in Cell and Gene Therapy, Sino-British Research Centre for Molecular Oncology, State Key Laboratory of Esophageal Cancer Prevention & Treatment, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China; Centre for Cancer Biomarkers & Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Zhenguo Cheng
- National Centre for International Research in Cell and Gene Therapy, Sino-British Research Centre for Molecular Oncology, State Key Laboratory of Esophageal Cancer Prevention & Treatment, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China.
| | - Yaohe Wang
- National Centre for International Research in Cell and Gene Therapy, Sino-British Research Centre for Molecular Oncology, State Key Laboratory of Esophageal Cancer Prevention & Treatment, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China; Centre for Cancer Biomarkers & Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom.
| |
Collapse
|
5
|
Xia J, Gao G, Zhang C, Ying J, Li J. Albumin-binding DARPins as scaffold improve the hypoglycemic and anti-obesity effects of exendin-4 in vivo. Eur J Pharm Sci 2023; 185:106422. [PMID: 36906110 DOI: 10.1016/j.ejps.2023.106422] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 02/17/2023] [Accepted: 03/07/2023] [Indexed: 03/11/2023]
Abstract
Type 2 diabetes mellitus (T2DM) and obesity have been considered epidemics and threats to public health worldwide. Exendin-4 (Ex), a GLP-1R agonist, has potential for treating T2DM and obesity. However, Ex has a half-life of only 2.4 h in humans and needs to be administered twice daily, which hampers its clinical application. In this study, we synthesized four new GLP-1R agonists by genetically fusing Ex to the N-terminus of HSA-binding ankyrin repeat proteins (DARPins) via linkers of different lengths, denoted as Ex-DARPin-GSx fusion proteins (x = 0, 1, 2, and 3). The Ex-DARPin fusion proteins were substantially stable, resulting in incomplete denaturation even at 80 °C. The in vitro bioactivity results demonstrated that Ex-DARPin fusion proteins could bind to HSA and activate GLP-1R. The Ex-DARPin fusion proteins had a comparable half-life (29-32 h), which is much longer than that of native Ex (0.5 h in rats). Subcutaneous injection of 25 nmol/kg Ex-DARPin fusion protein normalized blood glucose (BG) levels for at least 72 h in mice. The Ex-DARPin fusion proteins, injected at 25 nmol/kg every three days, significantly lowered BG, inhibited food consumption, and reduced body weight (BW) for 30 days in STZ-induced diabetic mice. Histological analysis of pancreatic tissues using H&E staining revealed that Ex-DARPin fusion proteins significantly improved the survival of pancreatic islets in diabetic mice. The differences in in vivo bioactivity of fusion proteins with different linker lengths were not significant. According to the findings in this study, long-acting Ex-DARPin fusion proteins designed by us hold promise for further development as antidiabetic and antiobesity therapeutic agents. Our findings also indicate that DARPins are a universal platform for generating long-acting therapeutic proteins via genetic fusion, thus broadening the application scope of DARPins.
Collapse
Affiliation(s)
- Jinying Xia
- Department of Endocrinology, Ningbo No. 2 Hospital, Ningbo, China; Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, China
| | - Guosheng Gao
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, China; Department of Clinical Laboratory, Ningbo No. 2 Hospital, Ningbo, China
| | - Changzhen Zhang
- Department of Pharmacy, Ningbo No. 2 Hospital, Ningbo, China
| | - Jingjing Ying
- Department of Pharmacy, Ningbo No. 2 Hospital, Ningbo, China
| | - Jianhui Li
- Department of Endocrinology, Ningbo No. 2 Hospital, Ningbo, China; Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, China.
| |
Collapse
|
6
|
Liu M, Lai W, Chen M, Wang P, Liu J, Fang X, Yang Y, Wang C. Prominent Enhancement of Peptide-mediated Targeting Efficiency for Human Hepatocellular Carcinomas With Composition-engineered Protein Corona on Gold Nanoparticles. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
7
|
Michot N, Guyochin A, Cinier M, Savignard C, Kitten O, Pascual MH, Pouzieux S, Ozoux ML, Verdier P, Vicat P, Dumas J. Albumin binding Nanofitins, a new scaffold to extend half-life of biologics - a case study with exenatide peptide. Peptides 2022; 152:170760. [PMID: 35150805 DOI: 10.1016/j.peptides.2022.170760] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/03/2022] [Accepted: 02/07/2022] [Indexed: 01/01/2023]
Abstract
A new strategy of peptide half-life extension has been evaluated. We investigated libraries of a small and very stable protein scaffold called Nanofitin, capable of high affinity for protein targets. We have identified Nanofitins targeting Human and mouse Serum Albumin, which could significantly improve the pharmacokinetics of an active associated peptide, mobilizing the patient's own albumin without external source. To demonstrate the impact of this approach on half-life extension, a genetic fusion of an Exenatide peptide with an Albumin Binding Nanofitin (ABNF) was performed. Specific activity of Exenatide-ABNF was measured and unaffected by the fusion. In vivo mice results provided convincing data (t½ of 8 min for Exenatide peptide compared to 20 h for Exenatide-ABNF) with sustained pharmacological activity over 3 days. This study constitutes a proof-of-concept of in vivo half-life extension of a biologic using an ABNF. Besides, the absence of cysteine in the Nanofitin scaffold, which is therefore devoid of structuring disulfide bonds, allows manufacturing in microbial cost effective systems.
Collapse
Affiliation(s)
- Nadine Michot
- Sanofi, Biologics Research, Vitry sur Seine, 94430, France
| | | | | | | | | | | | | | | | - Patrick Verdier
- Sanofi, Drug Safety & Animal Research, Alfortville 94430, France
| | - Pascale Vicat
- Sanofi, Drug Safety & Animal Research, Alfortville 94430, France
| | - Jacques Dumas
- Sanofi, Biologics Research, Vitry sur Seine, 94430, France
| |
Collapse
|
8
|
Zhang J, Li S, Dong Y, Tang H, He Y, Hu H, Feng J. Synthesis and biological evaluation of glucagon-like peptide-1 analogs with the C-terminal helix 3 of albumin-binding domain 3. Bioorg Med Chem 2022; 62:116725. [PMID: 35358863 DOI: 10.1016/j.bmc.2022.116725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/07/2022] [Accepted: 03/22/2022] [Indexed: 11/02/2022]
Abstract
Based on peptide 6 (Ser8-GLP-1 [7-35]-GVKALIDEILAA-NH2; GVKALI-DEILAA is the C-terminal helix 3 of albumin-binding domain 3 of protein G from bacterial Streptococcal G strain 148 [G148-ABD3]), a series of its analogs (compounds 0-VI: Aib8-GLP-1 [7-35]-linkers-GVKALIDEILAA-NH2) were designed and synthesized using microwave-assisted solid-phase synthesis. First, to monitor the reaction process and reduce potential risks, the synthesis process of compounds 0-VI was divided into three stages. Next, to explore the effect of these linkers on their albumin-binding rates, albumin-binding assays were performed. Finally, to evaluate their biological activities in vitro and in vivo, receptor potency, surface plasmon resonance (SPR), weight-loss, and glucose-lowering assays were carried out. These results indicated the linkers of different polarities between Aib8-GLP-1 (7-35) and the C-terminal helix 3 of ABD3 can significantly affect the albumin-binding rate of the C-terminal helix 3 of ABD3. And compound IV had the highest albumin-binding rates, weight-loss, and glucose-lowering effects among them.
Collapse
Affiliation(s)
- Jinhua Zhang
- China State Institute of Pharmaceutical Industry, Shanghai, China; Department of Biological Medicines & Shanghai Engineering Research Centre of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai, China
| | - Shanshan Li
- China State Institute of Pharmaceutical Industry, Shanghai, China; Shanghai Duomirui Biotechnology Ltd., Shanghai, China
| | - Yuanzhen Dong
- China State Institute of Pharmaceutical Industry, Shanghai, China; Shanghai Duomirui Biotechnology Ltd., Shanghai, China
| | - Hanqing Tang
- Shanghai Duomirui Biotechnology Ltd., Shanghai, China
| | - Yufeng He
- Shanghai Duomirui Biotechnology Ltd., Shanghai, China
| | - Haifeng Hu
- China State Institute of Pharmaceutical Industry, Shanghai, China.
| | - Jun Feng
- China State Institute of Pharmaceutical Industry, Shanghai, China; Shanghai Duomirui Biotechnology Ltd., Shanghai, China.
| |
Collapse
|
9
|
Ghanbarnezhad MM, Shahsavani MB, Mali PS, Upadhyay M, Kumar A, Albaghlani RM, Niazi A, Yousefi R. Developing a novel exenatide-based incretin mimic (αB-Ex): Expression, purification and structural-functional characterization. Biochim Biophys Acta Gen Subj 2022; 1866:130150. [DOI: 10.1016/j.bbagen.2022.130150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/30/2022] [Accepted: 04/07/2022] [Indexed: 10/18/2022]
|
10
|
Nikravesh FY, Shirkhani S, Bayat E, Talebkhan Y, Mirabzadeh E, Sabzalinejad M, Aliabadi HAM, Nematollahi L, Ardakani YH, Sardari S. Extension of human GCSF serum half-life by the fusion of albumin binding domain. Sci Rep 2022; 12:667. [PMID: 35027593 PMCID: PMC8758692 DOI: 10.1038/s41598-021-04560-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 12/23/2021] [Indexed: 12/16/2022] Open
Abstract
Granulocyte colony stimulating factor (GCSF) can decrease mortality of patients undergo chemotherapy through increasing neutrophil counts. Many strategies have been developed to improve its blood circulating time. Albumin binding domain (ABD) was genetically fused to N-terminal end of GCSF encoding sequence and expressed as cytoplasmic inclusion bodies within Escherichia coli. Biological activity of ABD-GCSF protein was assessed by proliferation assay on NFS-60 cells. Physicochemical properties were analyzed through size exclusion chromatography, circular dichroism, intrinsic fluorescence spectroscopy and dynamic light scattering. Pharmacodynamics and pharmacokinetic properties were also investigated in a neutropenic rat model. CD and IFS spectra revealed that ABD fusion to GCSF did not significantly affect the secondary and tertiary structures of the molecule. DLS and SEC results indicated the absence of aggregation formation. EC50 value of the ABD-GCSF in proliferation of NFS-60 cells was 75.76 pg/ml after 72 h in comparison with control GCSF molecules (Filgrastim: 73.1 pg/ml and PEG-Filgrastim: 44.6 pg/ml). Animal studies of ABD-GCSF represented improved serum half-life (9.3 ± 0.7 h) and consequently reduced renal clearance (16.1 ± 1.4 ml/h.kg) in comparison with Filgrastim (1.7 ± 0.1 h). Enhanced neutrophils count following administration of ABD-GCSF was comparable with Filgrastim and weaker than PEG-Filgrastim treated rats. In vitro and in vivo results suggested the ABD fusion as a potential approach for improving GCSF properties.
Collapse
Affiliation(s)
| | - Samira Shirkhani
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Elham Bayat
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Yeganeh Talebkhan
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| | - Esmat Mirabzadeh
- Department of Molecular Medicine, Pasteur Institute of Iran, Tehran, Iran
| | | | | | - Leila Nematollahi
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Yalda Hosseinzadeh Ardakani
- Biopharmaceutics and Pharmacokinetic Division, Department of Pharmaceutics, Faculty of Pharmacy, Tehran, Iran.
| | - Soroush Sardari
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
11
|
Khodabakhsh F, Salimian M, Hedayati MH, Ahangari Cohan R, Norouzian D. Challenges and advancements in the pharmacokinetic enhancement of therapeutic proteins. Prep Biochem Biotechnol 2021; 51:519-529. [PMID: 33459157 DOI: 10.1080/10826068.2020.1839907] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Nowadays, proteins are frequently administered as therapeutic agents in human diseases. However, the main challenge regarding the clinical application of therapeutic proteins is short circulating plasma half-life that leads to more frequent injections for maintaining therapeutic plasma levels, increased therapy costs, immunogenic reactions, and low patient compliance. So, the development of novel strategies to enhance the pharmacokinetic profile of therapeutic proteins has attracted great attention in pharmaceuticals. So far, several techniques, each with their pros and cons, have been developed including chemical bonding to polymers, hyper glycosylation, Fc fusion, human serum albumin fusion, and recombinant PEG mimetics. These techniques mainly classify into three strategies; (i) the endosomal recycling of neonatal Fc receptor which is observed for immunoglobulins and albumin, (ii) decrease in receptor-mediated clearance, and (iii) increase in hydrodynamic radius through chemical and genetic modifications. Recently, novel PEG mimetic peptides like proline/alanine/serine repeat sequences are designed to overcome pitfalls associated with the previous technologies. Biodegradability, lack of or low immunogenicity, product homogeneity, and a simple production process, currently make these polypeptides as the preferred technology for plasma half-life extension of therapeutic proteins. In this review, challenges and pitfalls in the pharmacokinetic enhancement of therapeutic proteins using PEG-mimetic peptides will be discussed in detail.
Collapse
Affiliation(s)
- Farnaz Khodabakhsh
- Department of Genetics and Advanced Medical Technology, Medical Biotechnology Research Center, Faculty of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Morteza Salimian
- Department of Medical Laboratory, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Hossein Hedayati
- Department of Quality Control, Research and Production Complex, Pasteur Institute of Iran, Tehran, Iran
| | - Reza Ahangari Cohan
- Department of Nanobiotechnology, New Technologies Research Group, Pasteur Institute of Iran, Tehran, Iran
| | - Dariush Norouzian
- Department of Nanobiotechnology, New Technologies Research Group, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
12
|
Yousefpour P, Varanko A, Subrahmanyan R, Chilkoti A. Recombinant Fusion of Glucagon‐Like Peptide‐1 and an Albumin Binding Domain Provides Glycemic Control for a Week in Diabetic Mice. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.202000073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Parisa Yousefpour
- Department of Biomedical Engineering Duke University Durham NC 27708 USA
| | - Anastasia Varanko
- Department of Biomedical Engineering Duke University Durham NC 27708 USA
| | | | - Ashutosh Chilkoti
- Department of Biomedical Engineering Duke University Durham NC 27708 USA
| |
Collapse
|
13
|
Guo J, Sun J, Liu X, Wang Z, Gao W. Head-to-tail macrocyclization of albumin-binding domain fused interferon alpha improves the stability, activity, tumor penetration, and pharmacology. Biomaterials 2020; 250:120073. [DOI: 10.1016/j.biomaterials.2020.120073] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 04/14/2020] [Accepted: 04/22/2020] [Indexed: 12/15/2022]
|
14
|
Lee JY, Park T, Hong E, Amatya R, Park KA, Park YH, Min KA, Jin M, Lee S, Hwang S, Roh GS, Shin MC. Genetic engineering of novel super long-acting Exendin-4 chimeric protein for effective treatment of metabolic and cognitive complications of obesity. Biomaterials 2020; 257:120250. [PMID: 32736262 DOI: 10.1016/j.biomaterials.2020.120250] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 06/21/2020] [Accepted: 07/17/2020] [Indexed: 02/08/2023]
Abstract
A common bottleneck challenge for many therapeutic proteins lies in their short plasma half-lives, which often makes the treatment far less compliant or even disables achieving sufficient therapeutic efficacy. To address this problem, we introduce a novel drug delivery strategy based on the genetic fusion of an albumin binding domain (ABD) and an anti-neonatal Fc receptor (FcRn) affibody (AFF) to therapeutic proteins. This ABD-AFF fusion strategy can provide a synergistic effect on extending the plasma residence time by, on one hand, preventing the rapid glomerular filtration via ABD-mediated albumin binding and, on the other hand, increasing the efficiency of FcRn-mediated recycling by AFF-mediated high-affinity binding to the FcRn. In this research, we explored the feasibility of applying the ABD-AFF fusion strategy to exendin-4 (EX), a clinically available anti-diabetic peptide possessing a short plasma half-life. The EX-ABD-AFF produced from the E. coli displayed a remarkably (241-fold) longer plasma half-life than the SUMO tagged-EX (SUMO-EX) (0.7 h) in mice. Furthermore, in high-fat diet (HFD)-fed obese mice model, the EX-ABD-AFF could provide significant hypoglycemic effects for over 12 days, accompanied by a reduction of body weight. In the long-term study, the EX-ABD-AFF could significantly reverse the obesity-related metabolic complications (hyperglycemia, hyperlipidemia, and hepatic steatosis) and, moreover, improve cognitive deficits. Overall, this study demonstrated that the ABD-AFF fusion could be an effective strategy to greatly increase the plasma half-lives of therapeutic proteins and thus markedly improve their druggability.
Collapse
Affiliation(s)
- Jong Youl Lee
- Department of Anatomy and Convergence Medical Science, Bio Anti-Aging Medical Research Center, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju, Gyeongnam, 52727, Republic of Korea
| | - Taehoon Park
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, 501 Jinju Daero, Jinju, Gyeongnam, 52828, Republic of Korea
| | - Eunmi Hong
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu, 41061, Republic of Korea
| | - Reeju Amatya
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, 501 Jinju Daero, Jinju, Gyeongnam, 52828, Republic of Korea
| | - Kyung-Ah Park
- Department of Anatomy and Convergence Medical Science, Bio Anti-Aging Medical Research Center, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju, Gyeongnam, 52727, Republic of Korea
| | - Young-Hoon Park
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu, 41061, Republic of Korea
| | - Kyoung Ah Min
- College of Pharmacy and Inje Institute of Pharmaceutical Sciences and Research, Inje University, Gimhae, Gyeongnam, 50834, Republic of Korea
| | - Minki Jin
- College of Pharmacy and Inje Institute of Pharmaceutical Sciences and Research, Inje University, Gimhae, Gyeongnam, 50834, Republic of Korea
| | - Sumi Lee
- College of Pharmacy and Inje Institute of Pharmaceutical Sciences and Research, Inje University, Gimhae, Gyeongnam, 50834, Republic of Korea
| | - Seungmi Hwang
- College of Pharmacy and Inje Institute of Pharmaceutical Sciences and Research, Inje University, Gimhae, Gyeongnam, 50834, Republic of Korea
| | - Gu Seob Roh
- Department of Anatomy and Convergence Medical Science, Bio Anti-Aging Medical Research Center, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju, Gyeongnam, 52727, Republic of Korea.
| | - Meong Cheol Shin
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, 501 Jinju Daero, Jinju, Gyeongnam, 52828, Republic of Korea.
| |
Collapse
|
15
|
Lear S, Seo H, Lee C, Lei L, Amso Z, Huang D, Zou H, Zhou Z, Nguyen-Tran VTB, Shen W. Recombinant Expression and Stapling of a Novel Long-Acting GLP-1R Peptide Agonist. Molecules 2020; 25:molecules25112508. [PMID: 32481528 PMCID: PMC7321126 DOI: 10.3390/molecules25112508] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/10/2020] [Accepted: 05/12/2020] [Indexed: 11/16/2022] Open
Abstract
Owing to their pleiotropic metabolic benefits, glucagon-like peptide-1 receptor (GLP-1R) agonists have been successfully utilized for treating metabolic diseases, such as type 2 diabetes and obesity. As part of our efforts in developing long-acting peptide therapeutics, we have previously reported a peptide engineering strategy that combines peptide side chain stapling with covalent integration of a serum protein-binding motif in a single step. Herein, we have used this strategy to develop a second generation extendin-4 analog rigidified with a symmetrical staple, which exhibits an excellent in vivo efficacy in an animal model of diabetes and obesity. To simplify the scale-up manufacturing of the lead GLP-1R agonist, a semisynthesis protocol was successfully developed, which involves recombinant expression of the linear peptide followed by attachment of a polyethylene glycol (PEG)-fatty acid staple in a subsequent chemical reaction step.
Collapse
|
16
|
Amatya R, Park T, Hwang S, Yang J, Lee Y, Cheong H, Moon C, Kwak HD, Min KA, Shin MC. Drug Delivery Strategies for Enhancing the Therapeutic Efficacy of Toxin-Derived Anti-Diabetic Peptides. Toxins (Basel) 2020; 12:toxins12050313. [PMID: 32397648 PMCID: PMC7290885 DOI: 10.3390/toxins12050313] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/04/2020] [Accepted: 05/06/2020] [Indexed: 12/13/2022] Open
Abstract
Toxin peptides derived from the skin secretions of amphibians possess unique hypoglycemic activities. Many of these peptides share cationic and amphipathic structural similarities and appear to possess cell-penetrating abilities. The mechanism of their insulinotropic action is yet not elucidated, but they have shown great potential in regulating the blood glucose levels in animal models. Therefore, they have emerged as potential drug candidates as therapeutics for type 2 diabetes. Despite their anti-diabetic activity, there remain pharmaceutical challenges to be addressed for their clinical applications. Here, we present an overview of recent studies related to the toxin-derived anti-diabetic peptides derived from the skin secretions of amphibians. In the latter part, we introduce the bottleneck challenges for their delivery in vivo and general drug delivery strategies that may be applicable to extend their blood circulation time. We focus our research on the strategies that have been successfully applied to improve the plasma half-life of exendin-4, a clinically available toxin-derived anti-diabetic peptide drug.
Collapse
Affiliation(s)
- Reeju Amatya
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, 501 Jinju Daero, Jinju, Gyeongnam 52828, Korea; (R.A.); (T.P.)
| | - Taehoon Park
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, 501 Jinju Daero, Jinju, Gyeongnam 52828, Korea; (R.A.); (T.P.)
| | - Seungmi Hwang
- College of Pharmacy and Inje Institute of Pharmaceutical Sciences and Research, Inje University, 197 Injero, Gimhae, Gyeongnam 50834, Korea;
| | - JaeWook Yang
- Department of Ophthalmology, Busan Paik Hospital, Inje University College of Medicine, 75 Bokjiro, Busanjin-gu, Busan 47392, Korea; (J.Y.); (H.D.K.)
- T2B Infrastructure Center for Ocular Disease, Inje University Busan Paik Hospital, 81 Jinsaro 83 Beon-gil, Busanjin-gu, Busan 47397, Korea;
| | - Yoonjin Lee
- T2B Infrastructure Center for Ocular Disease, Inje University Busan Paik Hospital, 81 Jinsaro 83 Beon-gil, Busanjin-gu, Busan 47397, Korea;
| | - Heesun Cheong
- Division of Cancer Biology, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang, Gyeonggi-do 10408, Korea;
| | - Cheol Moon
- College of Pharmacy, Sunchon National University, 255 Jungang-ro, Suncheon, Jeonnam 57922, Korea;
| | - Hyun Duck Kwak
- Department of Ophthalmology, Busan Paik Hospital, Inje University College of Medicine, 75 Bokjiro, Busanjin-gu, Busan 47392, Korea; (J.Y.); (H.D.K.)
| | - Kyoung Ah Min
- College of Pharmacy and Inje Institute of Pharmaceutical Sciences and Research, Inje University, 197 Injero, Gimhae, Gyeongnam 50834, Korea;
- Correspondence: (K.A.M.); (M.C.S.); Tel.: +82-55-320-3459 (K.A.M.); +82-55-772-2429 (M.C.S.)
| | - Meong Cheol Shin
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, 501 Jinju Daero, Jinju, Gyeongnam 52828, Korea; (R.A.); (T.P.)
- Correspondence: (K.A.M.); (M.C.S.); Tel.: +82-55-320-3459 (K.A.M.); +82-55-772-2429 (M.C.S.)
| |
Collapse
|
17
|
Targeting Tumors Using Peptides. Molecules 2020; 25:molecules25040808. [PMID: 32069856 PMCID: PMC7070747 DOI: 10.3390/molecules25040808] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/07/2020] [Accepted: 02/10/2020] [Indexed: 12/16/2022] Open
Abstract
To penetrate solid tumors, low molecular weight (Mw < 10 KDa) compounds have an edge over antibodies: their higher penetration because of their small size. Because of the dense stroma and high interstitial fluid pressure of solid tumors, the penetration of higher Mw compounds is unfavored and being small thus becomes an advantage. This review covers a wide range of peptidic ligands—linear, cyclic, macrocyclic and cyclotidic peptides—to target tumors: We describe the main tools to identify peptides experimentally, such as phage display, and the possible chemical modifications to enhance the properties of the identified peptides. We also review in silico identification of peptides and the most salient non-peptidic ligands in clinical stages. We later focus the attention on the current validated ligands available to target different tumor compartments: blood vessels, extracelullar matrix, and tumor associated macrophages. The clinical advances and failures of these ligands and their therapeutic conjugates will be discussed. We aim to present the reader with the state-of-the-art in targeting tumors, by using low Mw molecules, and the tools to identify new ligands.
Collapse
|
18
|
Kim TY, Park JH, Shim HE, Choi DS, Lee DE, Song JJ, Kim HS. Prolonged half-life of small-sized therapeutic protein using serum albumin-specific protein binder. J Control Release 2019; 315:31-39. [PMID: 31654685 DOI: 10.1016/j.jconrel.2019.09.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 09/20/2019] [Accepted: 09/24/2019] [Indexed: 01/20/2023]
Abstract
Many small-sized proteins and peptides, such as cytokines and hormones, are clinically used for the treatment of a variety of diseases. However, their short half-life in blood owing to fast renal clearance usually results in a low therapeutic efficacy and frequent dosing. Here we present the development of a human serum albumin (HSA)-specific protein binder with a binding affinity of 4.3nM through a phage display selection and modular evolution approach to extend the blood half-life of a small-sized therapeutic protein. As a proof-of-concept, the protein binder composed of LRR (Leucine-rich repeat) modules was genetically fused to the N-terminus of Glucagon-like Peptide-1 (GLP-1). The fused GLP-1 was shown to have a significantly improved pharmacokinetic property: The terminal half-life of the fused GLP-1 increased to approximately 10h, and the area under the curve was 5-times higher than that of the control. The utility and potential of our approach was demonstrated by the efficient control of the blood glucose level in type-2 diabetes mouse models using the HSA-specific protein binder-fused GLP-1 over a prolonged time period. The present approach can be effectively used in enhancing the efficacy of small-sized therapeutic proteins and peptides through an enhanced blood circulation time.
Collapse
Affiliation(s)
- Tae Yoon Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Jin Ho Park
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Ha Eun Shim
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute (KAERI), Jeongeup, Jeonbuk, 580-185, Republic of Korea
| | - Dae Seong Choi
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute (KAERI), Jeongeup, Jeonbuk, 580-185, Republic of Korea
| | - Dong-Eun Lee
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute (KAERI), Jeongeup, Jeonbuk, 580-185, Republic of Korea
| | - Ji-Joon Song
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
| | - Hak-Sung Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
| |
Collapse
|
19
|
Pan H, Xie Y, Lu W, Chen Y, Lu Z, Zhen J, Wang W, Shang A. Engineering an enhanced thrombin-based GLP-1 analog with long-lasting glucose-lowering and efficient weight reduction. RSC Adv 2019; 9:30707-30714. [PMID: 35529389 PMCID: PMC9072222 DOI: 10.1039/c9ra06771j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 09/20/2019] [Indexed: 11/21/2022] Open
Abstract
Peptides are considered as potent therapeutic drugs primarily due to the exquisite potency and selectivity to targets. However, the development and clinical application of peptide drugs were severely limited by the poor in vivo lifespans. Here, we designed an improved small albumin-binding polypeptide that can associate with human serum albumin (HSA) and liberate the bioactive peptide. Using glucagon-like peptide-1 (GLP-1) as a model, two new long-lasting GLP-1 analogs (termed XTS1 and XTS2) containing an albumin-binding domain, a protease-cleavable linker and a mutated GLP-1(A8Aib) were designed to demonstrate the sustained release of GLP-1 due to the plasma thrombin (TBN) digestion. Two XTS peptides were prepared of high purity (>99%) and accurate molecular weight determined by reversed high-performance liquid chromatography and mass spectrometry, respectively. In vitro measurements of surface plasmon resonance indicated that XTS1 associate with serum albumins of all species with higher affinity compared with XTS2. Metabolic stability of XTS1 in vitro in human plasma was also better than that of XTS2. Protease cleavage assay results of XTS peptides demonstrated the controlled-release of transient GLP-1 from the XTS1 and XTS2 mixture after thrombin-catalyzed hydrolysis. Then the intraperitoneal glucose tolerance test (IPGTT) showed that the glucose-lowering efficacies of XTS1 were in a dosage-dependent manner within the range of 0.1–0.9 mg kg−1. In addition, XTS1 showed similar hypoglycemic intensity and significantly longer action duration compared to Liraglutide in both multiple IPGTTs and hypoglycemic duration test. Apparently extended plasma half-lives of ∼2.3 and ∼3.5 days were observed after a single subcutaneous administration of XTS1 (0.9 mg kg−1) in rats and cynomolgus monkeys, respectively. Furthermore, twice-weekly subcutaneously dosed XTS1 in db/db mice achieved long-term beneficial effects on body weight, hemoglobin A1C (HbA1C) lowering and the function of pancreatic beta cells. These studies support that XTS1 exerts potential as a therapeutic drug for the treatment of T2DM. Peptides are considered as potent therapeutic drugs primarily due to the exquisite potency and selectivity to targets.![]()
Collapse
Affiliation(s)
- Hongchao Pan
- Department of Laboratory Medicine, Shanghai Simple Gene Medical Laboratory Shanghai 200025 P.R. China
| | - Yini Xie
- Department of Laboratory Medicine, The People's Hospital of Jiedong Jieyang 515500 P. R. China
| | - Wenying Lu
- Department of Experimental Medicine Center, The Sixth People's Hospital of Yancheng City Yancheng 224001 P. R. China
| | - Yin Chen
- Key Laboratory of Biological Medicine, Department of Life Science and Technology, Jinan University 51000 P. R. China
| | - Zhao Lu
- Key Laboratory of Drug Discovery for Metabolic Disease, China Pharmaceutical University Nanjing 210000 P. R. China
| | - Jun Zhen
- Key Laboratory of Drug Discovery for Metabolic Disease, China Pharmaceutical University Nanjing 210000 P. R. China
| | - Weiwei Wang
- Department of Experimental Medicine Center, The Sixth People's Hospital of Yancheng City Yancheng 224001 P. R. China
| | - Anquan Shang
- Department of Laboratory Medicine, Tongji Hospital of Tongji University Shanghai 200065 P. R. China
| |
Collapse
|
20
|
Zorzi A, Linciano S, Angelini A. Non-covalent albumin-binding ligands for extending the circulating half-life of small biotherapeutics. MEDCHEMCOMM 2019; 10:1068-1081. [PMID: 31391879 PMCID: PMC6644573 DOI: 10.1039/c9md00018f] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 06/01/2019] [Indexed: 12/13/2022]
Abstract
Peptides and small protein scaffolds are gaining increasing interest as therapeutics. Similarly to full-length antibodies, they can bind a target with a high binding affinity and specificity while remaining small enough to diffuse into tissues. However, despite their numerous advantages, small biotherapeutics often suffer from a relatively short circulating half-life, thus requiring frequent applications that ultimately restrict their ease of use and user compliance. To overcome this limitation, a large variety of half-life extension strategies have been developed in the last decades. Linkage to ligands that non-covalently bind to albumin, the most abundant serum protein with a circulating half-life of ∼19 days in humans, represents one of the most successful approaches for the generation of long-lasting biotherapeutics with improved pharmacokinetic properties and superior efficacy in the clinic.
Collapse
Affiliation(s)
- Alessandro Zorzi
- Institute of Chemical Sciences and Engineering , School of Basic Sciences , Ecole Polytechnique Fédérale de Lausanne (EPFL) , Lausanne CH-1015 , Switzerland
| | - Sara Linciano
- Department of Molecular Sciences and Nanosystems , Ca' Foscari University of Venice , Via Torino 155 , Venezia Mestre 30172 , Italy
| | - Alessandro Angelini
- Department of Molecular Sciences and Nanosystems , Ca' Foscari University of Venice , Via Torino 155 , Venezia Mestre 30172 , Italy
- European Centre for Living Technologies (ECLT) , San Marco 2940 , Venice 30124 , Italy .
| |
Collapse
|
21
|
Zhao P, Wang P, Dong S, Zhou Z, Cao Y, Yagita H, He X, Zheng SG, Fisher SJ, Fujinami RS, Chen M. Depletion of PD-1-positive cells ameliorates autoimmune disease. Nat Biomed Eng 2019; 3:292-305. [PMID: 30952980 PMCID: PMC6452906 DOI: 10.1038/s41551-019-0360-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 01/23/2019] [Indexed: 12/11/2022]
Abstract
Targeted suppression of autoimmune diseases without collateral suppression of normal immunity remains an elusive yet clinically important goal. Targeted blockade of programmed-cell-death-protein-1 (PD-1)-an immune checkpoint factor expressed by activated T cells and B cells-is an efficacious therapy for potentiating immune activation against tumours. Here we show that an immunotoxin consisting of an anti-PD-1 single-chain variable fragment, an albumin-binding domain and Pseudomonas exotoxin targeting PD-1-expressing cells, selectively recognizes and induces the killing of the cells. Administration of the immunotoxin to mouse models of autoimmune diabetes delays disease onset, and its administration in mice paralysed by experimental autoimmune encephalomyelitis ameliorates symptoms. In all mouse models, the immunotoxin reduced the numbers of PD-1-expressing cells, of total T cells and of cells of an autoreactive T-cell clone found in inflamed organs, while maintaining active adaptive immunity, as evidenced by full-strength immune responses to vaccinations. The targeted depletion of PD-1-expressing cells contingent to the preservation of adaptive immunity might be effective in the treatment of a wide range of autoimmune diseases.
Collapse
Affiliation(s)
- Peng Zhao
- Department of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, University of Utah, Salt Lake City, UT, USA
| | - Peng Wang
- Department of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, University of Utah, Salt Lake City, UT, USA
| | - Shuyun Dong
- Department of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, University of Utah, Salt Lake City, UT, USA
| | - Zemin Zhou
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Yanguang Cao
- Division of Pharmacotherapy and Experimental Therapeutics, The UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Hideo Yagita
- Department of Immunology, Juntendo University School of Medicine, Tokyo, Japan
| | - Xiao He
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Song Guo Zheng
- Division of Rheumatology, Department of Medicine, Penn State Milton S. Hershey Medical Center, Hershey, PA, USA
| | - Simon J Fisher
- Division of Endocrinology, Metabolism, and Diabetes, Department of Internal Medicine, University of Utah, Salt Lake City, UT, USA
| | - Robert S Fujinami
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Mingnan Chen
- Department of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
22
|
Tyagi P, Pechenov S, Anand Subramony J. Oral peptide delivery: Translational challenges due to physiological effects. J Control Release 2018; 287:167-176. [DOI: 10.1016/j.jconrel.2018.08.032] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 08/21/2018] [Accepted: 08/22/2018] [Indexed: 01/15/2023]
|
23
|
Tang D, Tian H, Wu J, Cheng J, Luo C, Sai W, Song X, Gao X, Yao W. C-terminal site-specific PEGylated Exendin-4 analog: A long-acting glucagon like Peptide-1 receptor agonist, on glycemic control and beta cell function in diabetic db/db mice. J Pharmacol Sci 2018; 138:23-30. [PMID: 30309736 DOI: 10.1016/j.jphs.2018.08.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 07/31/2018] [Accepted: 08/03/2018] [Indexed: 12/13/2022] Open
Abstract
PEG modification is a common clinical strategy for prolonging the half-life of therapeutic proteins or polypeptides. In a previous work, we have successfully synthesized PEG-modified Exendin-4 (PE) by conjugating a 20 kDa PEG to the C-terminal of Exendin-4. Then, we introduced an integrative characterization for PE to evaluate its hypoglycemic activity and pharmacokinetic properties. The normoglycemic efficacies and therapeutic activity of PE were investigated in db/db mice. The hypoglycemic time after single administration of PE on db/db mice was prolonged from 8.4 h to 54.9 h. In multiple treatment with PE, the fasting blood glucose in various PE dosages (50, 150, and 250 nmol/kg) were remarkably reduced, and the glycosylated hemoglobin level was decreased to 2.0%. When the in vivo single- and multiple-dose pharmacokinetics of PE were examined in Sprague-Dawley rats, the half-life was prolonged to 31.7 h, and no accumulation effect was observed. Overall, this study provided a novel promising therapeutic approach to improving glucose-controlling ability and extending half-life without accumulation in vivo for long-acting treatment of type-2 diabetes.
Collapse
Affiliation(s)
- Daoqi Tang
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, PR China
| | - Hong Tian
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, PR China
| | - Jicheng Wu
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, PR China
| | - Jiaxiao Cheng
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, PR China
| | - Cheng Luo
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, PR China
| | - Wenbo Sai
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, PR China
| | - Xiaoda Song
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, PR China
| | - Xiangdong Gao
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, PR China.
| | - Wenbing Yao
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, PR China.
| |
Collapse
|
24
|
Wang P, Dong S, Zhao P, He X, Chen M. Direct loading of CTL epitopes onto MHC class I complexes on dendritic cell surface in vivo. Biomaterials 2018; 182:92-103. [PMID: 30107273 DOI: 10.1016/j.biomaterials.2018.08.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 07/27/2018] [Accepted: 08/03/2018] [Indexed: 11/28/2022]
Abstract
Dendritic cell (DC)-based cytotoxic T lymphocyte (CTL) epitope vaccines are effective to induce CTL responses but require complex ex vivo DC preparation and epitope-loading. To take advantage of DC-based epitope vaccines without involving the ex vivo procedures, we aimed to develop carriers to directly load CTL epitopes onto DCs in vivo. Here, we first engineered a carrier consisting of a hydrophilic polypeptide, immune-tolerant elastin-like polypeptide (iTEP) and a substrate peptide of matrix metalloproteinases-9 (sMMP). The iTEP was able to solubilize CTL epitopes. CTL epitopes were connected to the carrier, iTEP-sMMP, through sMMP so that the epitopes can be cleaved from the carrier by MMP-9. iTEP-sMMP was found to release its epitope payloads in the DC culture media, which contained MMP-9 released from DCs. iTEP-sMMP allowed for the direct loading of CTL epitopes onto the surface MHC class I complexes of DCs. Importantly, iTEP-sMMP resulted in greater epitope presentation by DCs both in vitro and in vivo than a control carrier that cannot directly load epitopes. iTEP-sMMP also induced 2-fold stronger immune responses than the control carrier. To further enhance the direct epitope-loading strategy, we furnished iTEP-sMMP with an albumin-binding domain (ABD) and found the new carrier, ABD-iTEP-sMMP, had greater lymph node (LN) accumulation than iTEP-sMMP. ABD-iTEP-sMMP also resulted in greater immune responses than iTEP-sMMP by 1.5-fold. Importantly, ABD-iTEP-sMMP-delivered CTL epitope vaccine induced stronger immune responses than free CTL epitope vaccine. Taken together, these carriers utilized two physiological features of DCs to realize direct epitope-loading in vivo: the accumulation of DCs in LNs and MMP-9 released from DCs. These carriers are a potential substitute for DC-based CTL epitope vaccines.
Collapse
Affiliation(s)
- Peng Wang
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Shuyun Dong
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Peng Zhao
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Xiao He
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Mingnan Chen
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
25
|
Takeuchi M, Okamoto M, Okamoto R, Kinoshita H, Yamaguchi Y, Watanabe N. Discovery of a long-acting glucagon-like peptide-1 analog with enhanced aggregation propensity. Peptides 2018; 102:8-15. [PMID: 29391187 DOI: 10.1016/j.peptides.2018.01.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Revised: 01/24/2018] [Accepted: 01/25/2018] [Indexed: 11/15/2022]
Abstract
In the course of our search for new GLP-1 analogs, we screened a number of [Ser8]-GLP-1 analogs using the C-terminal helix 3 of the albumin binding domain 3 of protein G from bacterial Streptococcal G strain 148 (G148-ABD3) as appendage. Our efforts led to the discovery of [Ser8]-GLP-1 (7-35)-GVKALIDEILAA-NH2, peptide 6, as a long-acting GLP-1 analog with enhanced self-associated aggregation. Peptide 6 showed enhanced stability in rat and human plasma and an extended half-life of 5.4 h with good bioavailability in rats and subsequently prolonged therapeutic effects in diabetic mice. Analytical ultracentrifugation and TLC suggest that 6 remains oligomeric in the circulation, which accounts for its extended in vivo half-life. The present work shows the possible enhancement of medium-sized oligopeptides aggregation propensity and highlights the potential advantages of peptide aggregates for long-acting peptide drugs.
Collapse
Affiliation(s)
- Mitsuaki Takeuchi
- Mie Research Laboratories, Sanwa Kagaku Kenkyusho, Co., Ltd., 363 Shiosaki, Hokusei-cho, Inabe-city, Mie 511-0406, Japan
| | - Masayuki Okamoto
- Mie Research Laboratories, Sanwa Kagaku Kenkyusho, Co., Ltd., 363 Shiosaki, Hokusei-cho, Inabe-city, Mie 511-0406, Japan
| | - Ryuji Okamoto
- Mie Research Laboratories, Sanwa Kagaku Kenkyusho, Co., Ltd., 363 Shiosaki, Hokusei-cho, Inabe-city, Mie 511-0406, Japan
| | - Hiroshi Kinoshita
- Mie Research Laboratories, Sanwa Kagaku Kenkyusho, Co., Ltd., 363 Shiosaki, Hokusei-cho, Inabe-city, Mie 511-0406, Japan
| | - Yu Yamaguchi
- Mie Research Laboratories, Sanwa Kagaku Kenkyusho, Co., Ltd., 363 Shiosaki, Hokusei-cho, Inabe-city, Mie 511-0406, Japan
| | - Nobuhide Watanabe
- Mie Research Laboratories, Sanwa Kagaku Kenkyusho, Co., Ltd., 363 Shiosaki, Hokusei-cho, Inabe-city, Mie 511-0406, Japan; Licensing & Business Development, R&D Strategy Center, Sanwa Kagaku Kenkyusho, Co., Ltd.,Mitsui Building No.2 5F 1-1 Nihonbashi-Muromachi 2-Chome, Chuo-ku, Tokyo 103-0022, Japan.
| |
Collapse
|
26
|
Lee JG, Ryu JH, Kim SM, Park MY, Kim SH, Shin YG, Sohn JW, Kim HH, Park ZY, Seong JY, Kim JI. Replacement of the C-terminal Trp-cage of exendin-4 with a fatty acid improves therapeutic utility. Biochem Pharmacol 2018. [PMID: 29522713 DOI: 10.1016/j.bcp.2018.03.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Exendin-4, a 39 amino acid peptide isolated from the saliva of the Gila monster, plays an important role in regulating glucose homeostasis, and is used clinically for the treatment of type 2 diabetes. Exendin-4 shares 53% sequence identity with the incretin hormone glucagon-like peptide 1 (GLP-1) but, unlike GLP-1, is highly resistant to proteolytic enzymes such as dipeptidyl peptidase IV (DPP-IV) and neutral endopeptidase 24.11 (NEP 24.11). Herein, we focused on the structure and function of the C-terminal Trp-cage of exendin-4, and suggest that it may be structurally required for resistance to proteolysis by NEP 24.11. Using a series of substitutions and truncations of the C-terminal Trp-cage, we found that residues 1-33, including the N-terminal and helical regions of wild-type (WT) exendin-4, is the minimum motif required for both high peptidase resistance and potent activity toward the GLP-1 receptor comparable to WT exendin-4. To improve the therapeutic utility of C-terminally truncated exendin-4, we incorporated various fatty acids into exendin-4(1-33) in which Ser33 was substituted with Lys for acylation. Exendin-4(1-32)K-capric acid exhibited the most well balanced activity, with much improved therapeutic utility for regulating blood glucose and body weight relative to WT exendin-4.
Collapse
Affiliation(s)
- Jung Gi Lee
- School of Life Sciences, Gwangju Institute of Science and Technology, 123, Cheomdangwagiro, Buk-gu, Gwangju 500-712, South Korea
| | - Jae Ha Ryu
- School of Life Sciences, Gwangju Institute of Science and Technology, 123, Cheomdangwagiro, Buk-gu, Gwangju 500-712, South Korea
| | - Seon-Myung Kim
- Rm. 206, Pilot Plant, Anygen, Gwangju Technopark, Cheomdankwagiro 333, Buk-gu, Gwangju 61008, South Korea
| | - Moon-Young Park
- Rm. 206, Pilot Plant, Anygen, Gwangju Technopark, Cheomdankwagiro 333, Buk-gu, Gwangju 61008, South Korea
| | - San-Ho Kim
- Rm. 206, Pilot Plant, Anygen, Gwangju Technopark, Cheomdankwagiro 333, Buk-gu, Gwangju 61008, South Korea
| | - Young G Shin
- College of Pharmacy, Chungnam National University, Daejeon, South Korea
| | - Jong-Woo Sohn
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Daejeon 34141, South Korea
| | - Ha Hyung Kim
- Biotherapeutics and Glycomics Laboratory, College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 156-756, South Korea
| | - Zee-Yong Park
- School of Life Sciences, Gwangju Institute of Science and Technology, 123, Cheomdangwagiro, Buk-gu, Gwangju 500-712, South Korea
| | - Jae Young Seong
- Graduate School of Medicine, Korea University, Anam-dong 5ga, Seongbuk-gu, Seoul 136-701, South Korea
| | - Jae Il Kim
- School of Life Sciences, Gwangju Institute of Science and Technology, 123, Cheomdangwagiro, Buk-gu, Gwangju 500-712, South Korea; Rm. 206, Pilot Plant, Anygen, Gwangju Technopark, Cheomdankwagiro 333, Buk-gu, Gwangju 61008, South Korea.
| |
Collapse
|
27
|
Wang P, Zhao P, Dong S, Xu T, He X, Chen M. An Albumin-binding Polypeptide Both Targets Cytotoxic T Lymphocyte Vaccines to Lymph Nodes and Boosts Vaccine Presentation by Dendritic Cells. Am J Cancer Res 2018; 8:223-236. [PMID: 29290804 PMCID: PMC5743471 DOI: 10.7150/thno.21691] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 09/23/2017] [Indexed: 01/12/2023] Open
Abstract
Rationale: Albumin-binding carriers have been shown to target cytotoxic T lymphocyte (CTL) vaccines to lymph nodes (LNs) and improve the efficacy of the vaccines. However, it was not clear whether the improved efficacy is solely due to the LN targeting, which prompted this study. Methods: First, we generated a fusion protein consisting of an albumin-binding domain (ABD) and an immune-tolerant elastin-like polypeptide (iTEP). Then, we examined the binding between this fusion protein, termed ABD-iTEP, and mouse serum albumin (MSA). Next, we evaluated the accumulation of ABD-iTEP in LNs and dendritic cells (DCs) in the LNs. We also analyzed antigen presentation and in vitro T cell activation of vaccines that were delivered by ABD-iTEP and investigated possible underlying mechanisms of the presentation and activation results. Last, we measured CTL responses induced by ABD-iTEP-delivered vaccines in vivo. Results: ABD-iTEP bound with MSA strongly with an affinity of 1.41 nM. This albumin-binding carrier, ABD-iTEP, accumulated in LNs 3-fold more than iTEP, a control carrier that did not bind with albumin. ABD-iTEP also resulted in 4-fold more accumulation in DCs in the LNs than iTEP. Most importantly, ABD-iTEP drastically enhanced the antigen presentation of its vaccine payloads and the T cell activation induced by its payloads. The enhancement was dependent on the formation of the complex between MSA and ABD-iTEP. Meanwhile, the MSA/ABD-iTEP complex was found to have increased stability in acidic subcellular compartments and increased cytosolic accumulation in DCs, which might explain the enhanced vaccine presentation resulting from the complex. Finally, when ABD-iTEP was used to deliver CTL vaccines derived from both self- and non-self-antigens, it boosted the vaccine-induced responses by 2-fold in either case. Conclusion: ABD-iTEP not only targets vaccines to LNs but also promotes the presentation of the vaccines by DCs. Albumin-binding carriers have more than one mechanism to boost the efficacy of CTL vaccines.
Collapse
|
28
|
Lipophilic siRNA targets albumin in situ and promotes bioavailability, tumor penetration, and carrier-free gene silencing. Proc Natl Acad Sci U S A 2017; 114:E6490-E6497. [PMID: 28739942 DOI: 10.1073/pnas.1621240114] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Clinical translation of therapies based on small interfering RNA (siRNA) is hampered by siRNA's comprehensively poor pharmacokinetic properties, which necessitate molecule modifications and complex delivery strategies. We sought an alternative approach to commonly used nanoparticle carriers by leveraging the long-lived endogenous serum protein albumin as an siRNA carrier. We synthesized siRNA conjugated to a diacyl lipid moiety (siRNA-L2), which rapidly binds albumin in situ. siRNA-L2, in comparison with unmodified siRNA, exhibited a 5.7-fold increase in circulation half-life, an 8.6-fold increase in bioavailability, and reduced renal accumulation. Benchmarked against leading commercial siRNA nanocarrier in vivo jetPEI, siRNA-L2 achieved 19-fold greater tumor accumulation and 46-fold increase in per-tumor-cell uptake in a mouse orthotopic model of human triple-negative breast cancer. siRNA-L2 penetrated tumor tissue rapidly and homogeneously; 30 min after i.v. injection, siRNA-L2 achieved uptake in 99% of tumor cells, compared with 60% for jetPEI. Remarkably, siRNA-L2 achieved a tumor:liver accumulation ratio >40:1 vs. <3:1 for jetPEI. The improved pharmacokinetic properties of siRNA-L2 facilitated significant tumor gene silencing for 7 d after two i.v. doses. Proof-of-concept was extended to a patient-derived xenograft model, in which jetPEI tumor accumulation was reduced fourfold relative to the same formulation in the orthotopic model. The siRNA-L2 tumor accumulation diminished only twofold, suggesting that the superior tumor distribution of the conjugate over nanoparticles will be accentuated in clinical situations. These data reveal the immense promise of in situ albumin targeting for development of translational, carrier-free RNAi-based cancer therapies.
Collapse
|
29
|
Kim D, Jeon H, Ahn S, Choi WI, Kim S, Jon S. An approach for half-life extension and activity preservation of an anti-diabetic peptide drug based on genetic fusion with an albumin-binding aptide. J Control Release 2017; 256:114-120. [DOI: 10.1016/j.jconrel.2017.04.036] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 04/19/2017] [Accepted: 04/25/2017] [Indexed: 10/19/2022]
|
30
|
Abstract
Affibody molecules can be used as tools for molecular recognition in diagnostic and therapeutic applications. There are several preclinical studies reported on diagnostic and therapeutic use of this molecular class of alternative scaffolds, and early clinical evidence is now beginning to accumulate that suggests the Affibody molecules to be efficacious and safe in man. The small size and ease of engineering make Affibody molecules suitable for use in multispecific constructs where AffiMabs is one such that offers the option to potentiate antibodies for use in complex disease.
Collapse
|
31
|
Wang C, Shan B, Wang Q, Xu Q, Zhang H, Lei H. Fusion of Ssm6a with a protein scaffold retains selectivity on Na V 1.7 and improves its therapeutic potential against chronic pain. Chem Biol Drug Des 2017; 89:825-833. [PMID: 27896920 DOI: 10.1111/cbdd.12915] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Revised: 09/30/2016] [Accepted: 11/04/2016] [Indexed: 12/31/2022]
Abstract
Voltage-gated sodium channel NaV 1.7 serves as an attractive target for chronic pain treatment. Several venom peptides were found to selectively inhibit NaV 1.7 but with intrinsic problems. Among them, Ssm6a, a recently discovered centipede venom peptide, shows the greatest selectivity against NaV 1.7, but dissociates from the target too fast and loses bioactivity in synthetic forms. As a disulfide-rich venom peptide, it is difficult to optimize Ssm6a by artificial mutagenesis and produce the peptide with common industrial manufacturing methods. Here, we developed a novel protein scaffold fusion strategy to address these concerns. Instead of directly mutating Ssm6a, we genetically fused Ssm6a with a protein scaffold engineered from human muscle fatty acid-binding protein. The resultant fusion protein, SP-TOX, maintained the selectivity and potency of Ssm6a upon NaV 1.7 but dissociated from target at least 10 times more slowly. SP-TOX dramatically reduced inflammatory pain in a rat model through DRG-targeted delivery. Importantly, SP-TOX can be expressed cytosolically in Escherichia coli and purified in a cost-effective way. In summary, our study provided the first example of cytosolically expressed fusion protein with high potency and selectivity on NaV 1.7. Our protein scaffold fusion approach may have its broad application in optimizing disulfide-rich venom peptides for therapeutic usage.
Collapse
Affiliation(s)
- Chuan Wang
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, China
| | - Bin Shan
- Department of Pharmacy, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Qiong Wang
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, China
| | - Qunyuan Xu
- Department of Neurobiology, Beijing Institute for Brain Disorders, Beijing Center of Neural Regeneration and Repair, Key Laboratory for Neurodegenerative Diseases of the Ministry of Education, Capital Medical University, Beijing, China
| | - Hailin Zhang
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, China
| | - Huimeng Lei
- Department of Neurobiology, Beijing Institute for Brain Disorders, Beijing Center of Neural Regeneration and Repair, Key Laboratory for Neurodegenerative Diseases of the Ministry of Education, Capital Medical University, Beijing, China
| |
Collapse
|
32
|
Zhang L, Thurber GM. Quantitative Impact of Plasma Clearance and Down-regulation on GLP-1 Receptor Molecular Imaging. Mol Imaging Biol 2016; 18:79-89. [PMID: 26194012 DOI: 10.1007/s11307-015-0880-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE Quantitative molecular imaging of beta cell mass (BCM) would enable early detection and treatment monitoring of type 1 diabetes. The glucagon-like peptide-1 (GLP-1) receptor is an attractive target due to its beta cell specificity and cell surface location. We quantitatively investigated the impact of plasma clearance and receptor internalization on targeting efficiency in healthy B6 mice. PROCEDURES Four exenatide-based probes were synthesized that varied in molecular weight, binding affinity, and plasma clearance. The GLP-1 receptor internalization rate and in vivo receptor expression were quantified. RESULTS Receptor internalization (54,000 receptors/cell in vivo) decreased significantly within minutes, reducing the benefit of a slower-clearing agent. The multimers and albumin binding probes had higher kidney and liver uptake, respectively. CONCLUSIONS Slow plasma clearance is beneficial for GLP-1 receptor peptide therapeutics. However, for exendin-based imaging of islets, down-regulation of the GLP-1 receptor and non-specific background uptake result in a higher target-to-background ratio for fast-clearing agents.
Collapse
Affiliation(s)
- Liang Zhang
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Greg M Thurber
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA. .,Department of Biomedical Engineering, University of Michigan, 2800 Plymouth Rd., Ann Arbor, MI, 48109, USA.
| |
Collapse
|
33
|
Zhang L, Navaratna T, Thurber GM. A Helix-Stabilizing Linker Improves Subcutaneous Bioavailability of a Helical Peptide Independent of Linker Lipophilicity. Bioconjug Chem 2016; 27:1663-72. [PMID: 27327034 DOI: 10.1021/acs.bioconjchem.6b00209] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Stabilized peptides address several limitations to peptide-based imaging agents and therapeutics such as poor stability and low affinity due to conformational flexibility. There is also active research in developing these compounds for intracellular drug targeting, and significant efforts have been invested to determine the effects of helix stabilization on intracellular delivery. However, much less is known about the impact on other pharmacokinetic parameters such as plasma clearance and bioavailability. We investigated the effect of different fluorescent helix-stabilizing linkers with varying lipophilicity on subcutaneous (sc) bioavailability using the glucagon-like peptide-1 (GLP-1) receptor ligand exendin as a model system. The stabilized peptides showed significantly higher protease resistance and increased bioavailability independent of linker hydrophilicity, and all subcutaneously delivered conjugates were able to successfully target the islets of Langerhans with high specificity. The lipophilic peptide variants had slower absorption and plasma clearance than their respective hydrophilic conjugates, and the absolute bioavailability was also lower likely due to the longer residence times in the skin. Their ease and efficiency make double-click helix stabilization chemistries a useful tool for increasing the bioavailability of peptide therapeutics, many of which suffer from rapid in vivo protease degradation. Helix stabilization using linkers of varying lipophilicity can further control sc absorption and clearance rates to customize plasma pharmacokinetics.
Collapse
Affiliation(s)
- Liang Zhang
- Department of Chemical Engineering, and ‡Department of Biomedical Engineering University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Tejas Navaratna
- Department of Chemical Engineering, and ‡Department of Biomedical Engineering University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Greg M Thurber
- Department of Chemical Engineering, and ‡Department of Biomedical Engineering University of Michigan , Ann Arbor, Michigan 48109, United States
| |
Collapse
|
34
|
A biomimetic approach for enhancing the in vivo half-life of peptides. Nat Chem Biol 2015; 11:793-8. [PMID: 26344696 PMCID: PMC4575266 DOI: 10.1038/nchembio.1907] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 08/07/2015] [Indexed: 02/03/2023]
Abstract
The tremendous therapeutic potential of peptides has not yet been realized, mainly due to their short in vivo half-life. While conjugation to macromolecules has been a mainstay approach for enhancing the half-life of proteins, the steric hindrance of macromolecules often harms the binding of peptides to target receptors, compromising the in vivo efficacy. Here we report a new strategy for enhancing the in vivo half-life of peptides without compromising their potency. Our approach involves endowing peptides with a small-molecule that binds reversibly to the serum protein, transthyretin. Although there are few reversible albumin-binding molecules, we are unaware of designed small molecules that bind reversibly to other serum proteins and are used for half-life extension in vivo. We show here that our strategy was indeed effective in enhancing the half-life of an agonist for GnRH receptor while maintaining its binding affinity, which was translated into superior in vivo efficacy.
Collapse
|
35
|
Di L. Strategic approaches to optimizing peptide ADME properties. AAPS J 2015; 17:134-43. [PMID: 25366889 PMCID: PMC4287298 DOI: 10.1208/s12248-014-9687-3] [Citation(s) in RCA: 438] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2014] [Accepted: 09/22/2014] [Indexed: 12/21/2022] Open
Abstract
Development of peptide drugs is challenging but also quite rewarding. Five blockbuster peptide drugs are currently on the market, and six new peptides received first marketing approval as new molecular entities in 2012. Although peptides only represent 2% of the drug market, the market is growing twice as quickly and might soon occupy a larger niche. Natural peptides typically have poor absorption, distribution, metabolism, and excretion (ADME) properties with rapid clearance, short half-life, low permeability, and sometimes low solubility. Strategies have been developed to improve peptide drugability through enhancing permeability, reducing proteolysis and renal clearance, and prolonging half-life. In vivo, in vitro, and in silico tools are available to evaluate ADME properties of peptides, and structural modification strategies are in place to improve peptide developability.
Collapse
Affiliation(s)
- Li Di
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc., Groton, Connecticut, 06340, USA,
| |
Collapse
|
36
|
|
37
|
Lindgren J, Eriksson Karlström A. Intramolecular thioether crosslinking of therapeutic proteins to increase proteolytic stability. Chembiochem 2014; 15:2132-8. [PMID: 25204725 DOI: 10.1002/cbic.201400002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Indexed: 11/10/2022]
Abstract
Protein-based pharmaceuticals typically display high selectivity and low toxicity, but are also characterized by low oral availability, mainly because of enzymatic degradation in the gastrointestinal tract and poor permeability across the intestinal wall. One way to increase the proteolytic stability of peptides and proteins is by intramolecular crosslinking, such as the introduction of disulfide bridges. However, disulfide bridges are at risk of thiol-disulfide exchange or reduction during production, purification, and/or therapeutic use, whereas thioether bridges are expected to be stable under the same conditions. In this study, thioether crosslinking was investigated for a 46 aa albumin-binding domain (ABD) derived from streptococcal protein G. ABD binds with high affinity to human serum albumin (HSA) and has been proposed as a fusion partner to increase the in vivo half-lives of therapeutic proteins. In the study, five ABD variants with single or double intramolecular thioether bridges were designed and synthesized. The binding affinity, secondary structure, and thermal stability of each protein was investigated by SPR-based biosensor analysis and CD spectroscopy. The proteolytic stability in the presence of the major intestinal proteases pepsin (found in the stomach) and trypsin in combination with chymotrypsin (found in pancreatin secreted to the duodenum by the pancreas) was also investigated. The most promising crosslinked variant, ABD_CL1, showed high thermal stability, retained high affinity in binding to HSA, and showed dramatically increased stability in the presence of pepsin and trypsin/chymotrypsin, compared to the ABD reference protein. This suggests that the intramolecular thioether crosslinking strategy can be used to increase the stability towards gastrointestinal enzymes.
Collapse
Affiliation(s)
- Joel Lindgren
- KTH Royal Institute of Technology, School of Biotechnology, Division of Protein Technology, AlbaNova University Center, 106 91 Stockholm (Sweden)
| | | |
Collapse
|