1
|
Rodriguez BN, Huang H, Chia JJ, Hoffmann A. The noncanonical NFκB pathway: Regulatory mechanisms in health and disease. WIREs Mech Dis 2024; 16:e1646. [PMID: 38634218 PMCID: PMC11486840 DOI: 10.1002/wsbm.1646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/29/2024] [Accepted: 04/01/2024] [Indexed: 04/19/2024]
Abstract
The noncanonical NFκB signaling pathway mediates the biological functions of diverse cell survival, growth, maturation, and differentiation factors that are important for the development and maintenance of hematopoietic cells and immune organs. Its dysregulation is associated with a number of immune pathologies and malignancies. Originally described as the signaling pathway that controls the NFκB family member RelB, we now know that noncanonical signaling also controls NFκB RelA and cRel. Here, we aim to clarify our understanding of the molecular network that mediates noncanonical NFκB signaling and review the human diseases that result from a deficient or hyper-active noncanonical NFκB pathway. It turns out that dysregulation of RelA and cRel, not RelB, is often implicated in mediating the resulting pathology. This article is categorized under: Immune System Diseases > Molecular and Cellular Physiology Cancer > Molecular and Cellular Physiology Immune System Diseases > Stem Cells and Development.
Collapse
Affiliation(s)
- Benancio N. Rodriguez
- Department of Microbiology, Immunology, and Molecular Genetics, Los Angeles, CA; Molecular Biology Institute, Los Angeles, CA
| | - Helen Huang
- Department of Microbiology, Immunology, and Molecular Genetics, Los Angeles, CA; Institute for Quantitative and Computational Biosciences, Los Angeles, CA
| | - Jennifer J. Chia
- Department of Microbiology, Immunology, and Molecular Genetics, Los Angeles, CA; Molecular Biology Institute, Los Angeles, Calif; Department of Pathology and Laboratory Medicine, University of California, Los Angeles, CA
| | - Alexander Hoffmann
- Department of Microbiology, Immunology, and Molecular Genetics; Molecular Biology Institute; Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, CA
| |
Collapse
|
2
|
Holmberg R, Robinson M, Gilbert SF, Lujano-Olazaba O, Waters JA, Kogan E, Velasquez CLR, Stevenson D, Cruz LS, Alexander LJ, Lara J, Mu EM, Camillo JR, Bitler BG, Huxford T, House CD. TWEAK-Fn14-RelB Signaling Cascade Promotes Stem Cell-like Features that Contribute to Post-Chemotherapy Ovarian Cancer Relapse. Mol Cancer Res 2023; 21:170-186. [PMID: 36214671 PMCID: PMC9890141 DOI: 10.1158/1541-7786.mcr-22-0486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 09/12/2022] [Accepted: 10/06/2022] [Indexed: 02/06/2023]
Abstract
Disease recurrence in high-grade serous ovarian cancer may be due to cancer stem-like cells (CSC) that are resistant to chemotherapy and capable of reestablishing heterogeneous tumors. The alternative NF-κB signaling pathway is implicated in this process; however, the mechanism is unknown. Here we show that TNF-like weak inducer of apoptosis (TWEAK) and its receptor, Fn14, are strong inducers of alternative NF-κB signaling and are enriched in ovarian tumors following chemotherapy treatment. We further show that TWEAK enhances spheroid formation ability, asymmetric division capacity, and expression of SOX2 and epithelial-to-mesenchymal transition genes VIM and ZEB1 in ovarian cancer cells, phenotypes that are enhanced when TWEAK is combined with carboplatin. Moreover, TWEAK in combination with chemotherapy induces expression of the CSC marker CD117 in CD117- cells. Blocking the TWEAK-Fn14-RelB signaling cascade with a small-molecule inhibitor of Fn14 prolongs survival following carboplatin chemotherapy in a mouse model of ovarian cancer. These data provide new insights into ovarian cancer CSC biology and highlight a signaling axis that should be explored for therapeutic development. IMPLICATIONS This study identifies a unique mechanism for the induction of ovarian cancer stem cells that may serve as a novel therapeutic target for preventing relapse.
Collapse
Affiliation(s)
- Ryne Holmberg
- Department of Chemistry, San Diego State University, San Diego, California
| | - Mikella Robinson
- Department of Biology, San Diego State University, San Diego, California
| | - Samuel F. Gilbert
- Department of Biology, San Diego State University, San Diego, California
| | | | - Jennifer A. Waters
- Department of Biology, San Diego State University, San Diego, California
| | - Emily Kogan
- Department of Biology, San Diego State University, San Diego, California
| | | | - Denay Stevenson
- Department of Chemistry, San Diego State University, San Diego, California
| | - Luisjesus S. Cruz
- Department of Biology, San Diego State University, San Diego, California
| | - Logan J. Alexander
- Department of Biology, San Diego State University, San Diego, California
| | - Jacqueline Lara
- Department of Biology, San Diego State University, San Diego, California
| | - Emily M. Mu
- Department of Biology, San Diego State University, San Diego, California
| | | | - Benjamin G. Bitler
- Department of Obstetrics and Gynecology, University of Colorado, Aurora, Colorado
| | - Tom Huxford
- Department of Chemistry, San Diego State University, San Diego, California
| | - Carrie D. House
- Department of Biology, San Diego State University, San Diego, California.,Moores Cancer Center, University of California San Diego, La Jolla, California.,Corresponding Author: Carrie D. House, Biology, San Diego State University, 5500 Campanile Drive, Shiley Bioscience Center 2104, San Diego, CA 92182. Phone: 619-594-3053; E-mail:
| |
Collapse
|
3
|
Secchi M, Lodola C, Garbelli A, Bione S, Maga G. DEAD-Box RNA Helicases DDX3X and DDX5 as Oncogenes or Oncosuppressors: A Network Perspective. Cancers (Basel) 2022; 14:cancers14153820. [PMID: 35954483 PMCID: PMC9367324 DOI: 10.3390/cancers14153820] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/01/2022] [Accepted: 08/04/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary The transformation of a normal cell into a cancerous one is caused by the deregulation of different metabolic pathways, involving a complex network of protein–protein interactions. The cellular enzymes DDX3X and DDX5 play important roles in the maintenance of normal cell metabolism, but their deregulation can accelerate tumor transformation. Both DDX3X and DDX5 interact with hundreds of different cellular proteins, and depending on the specific pathways in which they are involved, both proteins can either act as suppressors of cancer or as oncogenes. In this review, we summarize the current knowledge about the roles of DDX3X and DDX5 in different tumors. In addition, we present a list of interacting proteins and discuss the possible contribution of some of these protein–protein interactions in determining the roles of DDX3X and DDX5 in the process of cancer proliferation, also suggesting novel hypotheses for future studies. Abstract RNA helicases of the DEAD-box family are involved in several metabolic pathways, from transcription and translation to cell proliferation, innate immunity and stress response. Given their multiple roles, it is not surprising that their deregulation or mutation is linked to different pathological conditions, including cancer. However, while in some cases the loss of function of a given DEAD-box helicase promotes tumor transformation, indicating an oncosuppressive role, in other contexts the overexpression of the same enzyme favors cancer progression, thus acting as a typical oncogene. The roles of two well-characterized members of this family, DDX3X and DDX5, as both oncogenes and oncosuppressors have been documented in several cancer types. Understanding the interplay of the different cellular contexts, as defined by the molecular interaction networks of DDX3X and DDX5 in different tumors, with the cancer-specific roles played by these proteins could help to explain their apparently conflicting roles as cancer drivers or suppressors.
Collapse
|
4
|
Qiu M, Chen M, Lan Z, Liu B, Xie J, Li X. Plasmacytoma variant translocation 1 stabilized by EIF4A3 promoted malignant biological behaviors of lung adenocarcinoma by generating circular RNA LMNB2. Bioengineered 2022; 13:10123-10140. [PMID: 35435126 PMCID: PMC9161831 DOI: 10.1080/21655979.2022.2063666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Affiliation(s)
- Minglian Qiu
- Department of Thoracic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Jiangxi, China
| | - Meizhen Chen
- Department of Thoracic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Jiangxi, China
| | - Zhongping Lan
- Department of Thoracic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Jiangxi, China
| | - Bo Liu
- Department of Thoracic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Jiangxi, China
| | - Jinbao Xie
- Department of Thoracic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Jiangxi, China
| | - Xu Li
- Department of Thoracic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Jiangxi, China
| |
Collapse
|
5
|
Xiang J, Alafate W, Wu W, Wang Y, Li X, Xie W, Bai X, Li R, Wang M, Wang J. NEK2 enhances malignancies of glioblastoma via NIK/NF-κB pathway. Cell Death Dis 2022; 13:58. [PMID: 35031599 PMCID: PMC8760305 DOI: 10.1038/s41419-022-04512-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 12/16/2021] [Accepted: 01/06/2022] [Indexed: 02/08/2023]
Abstract
Glioblastoma (GBM) is one of the most lethal primary brain tumor with a poor median survival less than 15 months. Despite the development of the clinical strategies over the decades, the outcomes for GBM patients remain dismal due to the strong proliferation and invasion ability and the acquired resistance to radiotherapy and chemotherapy. Therefore, developing new biomarkers and therapeutic strategies targeting GBM is in urgent need. In this study, gene expression datasets and relevant clinical information were extracted from public cancers/glioma datasets, including TCGA, GRAVENDEEL, REMBRANDT, and GILL datasets. Differentially expressed genes were analyzed and NEK2 was picked as a candidate gene for subsequent validation. Human tissue samples and corresponding data were collected from our center and detected by immunohistochemistry analysis. Molecular biological assays and in vivo xenograft transplantation were performed to confirm the bioinformatic findings. High-throughput RNA sequencing, followed by KEGG analysis, GSEA analysis and GO analysis were conducted to identify potential signaling pathways related to NEK2 expression. Subsequent mechanism assays were used to verify the relationship between NEK2 and NF-κB signaling. Overall, we identified that NEK2 is significantly upregulated in GBM and the higher expression of NEK2 exhibited a poorer prognosis. Functionally, NEK2 knockdown attenuated cell proliferation, migration, invasion, and tumorigenesis of GBM while NEK2 overexpression promoted the GBM progression. Furthermore, High-throughput RNA sequencing and bioinformatics analysis indicated that NEK2 was positively related to the NF-κB signaling pathway in GBM. Mechanically, NEK2 activated the noncanonical NF-κB signaling pathway by phosphorylating NIK and increasing the activity and stability of NIK. In conclusion, NEK2 promoted the progression of GBM through activation of noncanonical NF-κB signaling, indicating that NEK2- NF-κB axis could be a potential drug target for GBM.
Collapse
Affiliation(s)
- Jianyang Xiang
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Center of Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Wahafu Alafate
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Center of Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Wei Wu
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Center of Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Yichang Wang
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Center of Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Xiaodong Li
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Center of Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Wanfu Xie
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Xiaobin Bai
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Ruichun Li
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Maode Wang
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China.
- Center of Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China.
| | - Jia Wang
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China.
- Center of Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China.
| |
Collapse
|
6
|
Dai D, Zhou H, Yin L, Ye F, Yuan X, You T, Zhao X, Long W, Wang D, He X, Feng J, Chen D. PELI1 promotes radiotherapy sensitivity by inhibiting noncanonical NF-κB in esophageal squamous cancer. Mol Oncol 2021; 16:1384-1401. [PMID: 34738714 PMCID: PMC8936515 DOI: 10.1002/1878-0261.13134] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 09/23/2021] [Accepted: 11/03/2021] [Indexed: 11/06/2022] Open
Abstract
The low sensitivity of radiotherapy is the main cause of tumor tolerance against ionizing radiation (IR). However, the molecular mechanisms by which radiosensitivity is controlled remain elusive. Here, we observed that high expression of pellino E3 ubiquitin protein ligase 1 (PELI1) was correlated with improved prognosis in human esophageal squamous cell carcinoma stage III patients that received adjuvant radiotherapy. Moreover, we found PELI1‐mediated IR‐induced tumor cell apoptosis in vivo and in vitro. Mechanistically, PELI1 mediated the lysine 48 (Lys48)–linked polyubiquitination and degradation of NF‐κB–inducing kinase (NIK; also known as MAP3K14), the master kinase of the noncanonical NF‐κB pathway, thereby inhibiting IR‐induced activation of the noncanonical NF‐κB signaling pathway during radiotherapy. As a consequence, PELI1 inhibited the noncanonical NF‐κB–induced expression of the anti‐apoptotic gene BCL2 like 1 (Bclxl; also known as BCL2L1), leading to an enhancement of the IR‐induced apoptosis signaling pathway and ultimately promoting IR‐induced apoptosis in tumor cells. Therefore, Bclxl or NIK knockdown abolished the apoptosis‐resistant effect in PELI1‐knockdown tumor cells after radiotherapy. These findings establish PELI1 as a critical tumor intrinsic regulator in controlling the sensitivity of tumor cells to radiotherapy through modulating IR‐induced noncanonical NF‐κB expression.
Collapse
Affiliation(s)
- Dongfang Dai
- Department of Radiotherapy, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China.,Institute of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Hongping Zhou
- Department of Radiotherapy, The Affiliated BenQ Hospital of Nanjing Medical University, China
| | - Li Yin
- Department of Radiotherapy, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
| | - Fei Ye
- Institute of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Xiao Yuan
- Institute of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Tao You
- Institute of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Xiaohui Zhao
- Institute of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Weiguo Long
- Institute of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Deqiang Wang
- Institute of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Xia He
- Department of Radiotherapy, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
| | - Jifeng Feng
- Department of Radiotherapy, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
| | - Deyu Chen
- Institute of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|
7
|
A Kinase Assay for Measuring the Activity of the NIK-IKK1 Complex Induced via the Noncanonical NF-κB Pathway. Methods Mol Biol 2021; 2366:165-181. [PMID: 34236638 DOI: 10.1007/978-1-0716-1669-7_10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nuclear factor-kappa B (NF-κB) inducing kinase (NIK), a key component of the noncanonical NF-κB pathway, directs a range of physiological processes, such as lymphoid organogenesis, immune cell differentiation, and immune responses. Aberrant noncanonical NF-κΒ signaling also causes human ailments, including autoimmune and neoplastic diseases. As such, NIK is constitutively degraded in resting cells, and accumulates upon noncanonical NF-κB signaling. NIK then associates with and phosphorylates IkappaB kinase 1 (IKK1, alternately IKKα). Subsequently, the NIK-IKK1 complex mediates the phosphorylation of p100 that triggers partial proteolysis of p100 into p52. Typically, accumulation of NIK or processing of p100 is estimated by immunoblot analyses, and these indirect measurements are used as a surrogate for cellular NIK activity. However, studies involving knockout and cancerous cells indicated that the activity of NIK-IKK1 might not always correlate with the abundance of NIK or with the relative level of p52 and p100. In this report, we describe a specific and sensitive assay for direct evaluation of cellular NIK-IKK1 activity. Here, NIK immunoprecipitates are examined for the presence of IKK1-dependent kinase activity toward p100. The NIK-IKK1 assay captured selectively noncanonical NF-κB activation in the context of multiple cell activating stimuli and cell types, including patient-derived myeloma cells. We suggest that our assay may help advance our understanding of the role of NIK in health and diseases.
Collapse
|
8
|
Hufnagel DH, Wilson AJ, Saxon J, Blackwell TS, Watkins J, Khabele D, Crispens MA, Yull FE, Beeghly-Fadiel A. Expression of p52, a non-canonical NF-kappaB transcription factor, is associated with poor ovarian cancer prognosis. Biomark Res 2020; 8:45. [PMID: 32974032 PMCID: PMC7493985 DOI: 10.1186/s40364-020-00227-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 09/07/2020] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND The canonical and non-canonical nuclear factor-kappaB (NF-κB) signaling pathways have key roles in cancer, but studies have previously evaluated only the association of canonical transcription factors and ovarian cancer survival. Although a number of in vitro and in vivo studies have demonstrated mechanisms by which non-canonical NF-κB signaling potentially contributes to ovarian cancer progression, a prognostic association has yet to be shown in the clinical context. METHODS We assayed p65 and p52 (major components of the canonical and non-canonical NF-κB pathways) by immunohistochemistry in epithelial ovarian tumor samples; nuclear and cytoplasmic staining were semi-quantified by H-scores and dichotomized at median values. Associations of p65 and p52 with progression-free survival (PFS) and overall survival (OS) were quantified by Hazard Ratios (HR) from proportional-hazards regression. RESULTS Among 196 cases, median p52 and p65 H-scores were higher in high-grade serous cancers. Multivariable regression models indicated that higher p52 was associated with higher hazards of disease progression (cytoplasmic HR: 1.54; nuclear HR: 1.67) and death (cytoplasmic HR: 1.53; nuclear HR: 1.49), while higher nuclear p65 was associated with only a higher hazard of disease progression (HR: 1.40) in unadjusted models. When cytoplasmic and nuclear staining were combined, p52 remained significantly associated with increased hazards of disease progression (HR: 1.91, p = 0.004) and death (HR: 1.70, p = 0.021), even after adjustment for p65 and in analyses among only high-grade serous tumors. CONCLUSIONS This is the first study to demonstrate that p52, a major component of non-canonical NF-κB signaling, may be an independent prognostic factor for epithelial ovarian cancer, particularly high-grade serous ovarian cancer. Approaches to inhibit non-canonical NF-κB signaling should be explored as novel ovarian cancer therapies are needed.
Collapse
Affiliation(s)
| | - Andrew J. Wilson
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Vanderbilt University Medical Center, Nashville, TN 37232 USA
- Vanderbilt-Ingram Cancer Center, Nashville, TN 37232 USA
| | - Jamie Saxon
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232 USA
| | - Timothy S. Blackwell
- Vanderbilt-Ingram Cancer Center, Nashville, TN 37232 USA
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232 USA
| | - Jaclyn Watkins
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232 USA
| | - Dineo Khabele
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Washington University School of Medicine, St. Louis, MO 63130 USA
| | - Marta A. Crispens
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Vanderbilt University Medical Center, Nashville, TN 37232 USA
- Vanderbilt-Ingram Cancer Center, Nashville, TN 37232 USA
| | - Fiona E. Yull
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Vanderbilt University Medical Center, Nashville, TN 37232 USA
- Vanderbilt-Ingram Cancer Center, Nashville, TN 37232 USA
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232 USA
| | - Alicia Beeghly-Fadiel
- Vanderbilt-Ingram Cancer Center, Nashville, TN 37232 USA
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37203 USA
| |
Collapse
|
9
|
Pache L, Marsden MD, Teriete P, Portillo AJ, Heimann D, Kim JT, Soliman MS, Dimapasoc M, Carmona C, Celeridad M, Spivak AM, Planelles V, Cosford ND, Zack JA, Chanda SK. Pharmacological Activation of Non-canonical NF-κB Signaling Activates Latent HIV-1 Reservoirs In Vivo. Cell Rep Med 2020; 1:100037. [PMID: 33205060 PMCID: PMC7659604 DOI: 10.1016/j.xcrm.2020.100037] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 04/01/2020] [Accepted: 05/27/2020] [Indexed: 02/07/2023]
Abstract
"Shock and kill" strategies focus on purging the latent HIV-1 reservoir by treating infected individuals with therapeutics that activate the latent virus and subsequently eliminating infected cells. We have previously reported that induction of non-canonical nuclear factor κB (NF-κB) signaling through a class of small-molecule antagonists known as Smac mimetics can reverse HIV-1 latency. Here, we describe the development of Ciapavir (SBI-0953294), a molecule specifically optimized for HIV-1 latency reversal that was found to be more efficacious as a latency-reversing agent than other Smac mimetics under clinical development for cancer. Critically, this molecule induced activation of HIV-1 reservoirs in vivo in a bone marrow, liver, thymus (BLT) humanized mouse model without mediating systemic T cell activation. This study provides proof of concept for the in vivo efficacy and safety of Ciapavir and indicates that Smac mimetics can constitute a critical component of a safe and efficacious treatment strategy to eliminate the latent HIV-1 reservoir.
Collapse
Affiliation(s)
- Lars Pache
- Infectious and Inflammatory Disease Center, Immunity and Pathogenesis Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Matthew D. Marsden
- Division of Hematology and Oncology, Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Peter Teriete
- Cell Metabolism and Signaling Networks Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Alex J. Portillo
- Infectious and Inflammatory Disease Center, Immunity and Pathogenesis Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Dominik Heimann
- Cell Metabolism and Signaling Networks Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Jocelyn T. Kim
- Division of Infectious Diseases, Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Mohamed S.A. Soliman
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Melanie Dimapasoc
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Camille Carmona
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Maria Celeridad
- Cell Metabolism and Signaling Networks Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Adam M. Spivak
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Vicente Planelles
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Nicholas D.P. Cosford
- Cell Metabolism and Signaling Networks Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Jerome A. Zack
- Division of Hematology and Oncology, Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Sumit K. Chanda
- Infectious and Inflammatory Disease Center, Immunity and Pathogenesis Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| |
Collapse
|
10
|
Walter CEJ, Durairajan S, Periyandavan K, C GPD, G DJD, A HRV, Johnson T, Zayed H. Bladder neoplasms and NF-κB: an unfathomed association. Expert Rev Mol Diagn 2020; 20:497-508. [PMID: 32228251 DOI: 10.1080/14737159.2020.1743688] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Introduction: Bladder cancer is the second most common genitourinary tract cancer and is often recurrent and/or chemoresistant after tumor resection. Cigarette smoking, exposure to aromatic amines, and chronic infection/inflammation are bladder cancer risk factors. NF-κB is a transcription factor that plays a critical role in normal physiology and bladder cancer. Bladder cancer patients have constitutively active NF-κB triggered by pro-inflammatory cytokines, chemokines, and hypoxia, augmenting carcinogenesis and progression.Areas covered: NF-κB orchestrates protein interactions (PTEN, survivin, VEGF), regulation (CYLD, USP13) and gene expression (Trp 53) resulting in bladder cancer progression, recurrence and resistance to therapy. This review focuses on NF-κB in bladder inflammation, cancer and resistance to therapy.Expert opinion: NF-κB and bladder cancer necessitate further research to develop better diagnostic and treatment regimens that address progression, recurrence and resistance to therapy. NF-κB is a master regulator that can act with or on minimally one cancer hallmark gene or protein, leading to bladder cancer progression (Tp53, PTEN, VEGF, HMGB1, CYLD, USP13), recurrence (PCNA, BcL-2, JUN) and resistance to therapy (P-gp, twist, SETD6). Thus, an understanding of bladder cancer in relation to NF-κB will offer improved strategies and efficacious targeted therapies resulting in minimal progression, recurrence and resistance to therapy.
Collapse
Affiliation(s)
- Charles Emmanuel Jebaraj Walter
- Department of Biotechnology, Faculty of Biomedical Sciences, Technology and Research, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University), Chennai, India
| | - Sankari Durairajan
- Department of Biotechnology, Faculty of Biomedical Sciences, Technology and Research, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University), Chennai, India
| | - Kalaiselvi Periyandavan
- Department of Medical Biochemistry, Dr. ALM PG Institute of Basic Medical Science, University of Madras, Chennai, India
| | - George Priya Doss C
- Department of Integrative Biology, School of Biosciences and Technology, VIT University, Vellore, India
| | - Dicky John Davis G
- Department of Biotechnology, Faculty of Biomedical Sciences, Technology and Research, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University), Chennai, India
| | - Hannah Rachel Vasanthi A
- Department of Biotechnology, School of Life Sciences, Pondicherry University, Pondicherry, India
| | - Thanka Johnson
- Department of Biotechnology, Faculty of Biomedical Sciences, Technology and Research, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University), Chennai, India
| | - Hatem Zayed
- Department of Biomedical Sciences, College of Health Sciences, Qatar University, Doha, Qatar
| |
Collapse
|
11
|
Characterization of a novel compound that promotes myogenesis via Akt and transcriptional co-activator with PDZ-binding motif (TAZ) in mouse C2C12 cells. PLoS One 2020; 15:e0231265. [PMID: 32267872 PMCID: PMC7141682 DOI: 10.1371/journal.pone.0231265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 03/19/2020] [Indexed: 11/19/2022] Open
Abstract
Transcriptional co-activator with PDZ-binding motif (TAZ) plays versatile roles in the regulation of cell proliferation and differentiation. TAZ activity changes in response to the cellular environment such as mechanic and nutritional stimuli, osmolarity, and hypoxia. To understand the physiological roles of TAZ, chemical compounds that activate TAZ in cells are useful as experimental reagents. Kaempferol, TM-25659, and ethacridine are reported as TAZ activators. However, as each TAZ activator has a distinct property in cellular functions, additional TAZ activators are awaiting. We screened for TAZ activators and previously reported IB008738 as a TAZ activator that promotes myogenesis in C2C12 cells. In this study, we have characterized IBS004735 that was obtained in the same screening. IBS004735 also promotes myogenesis in C2C12 cells, but is not similar to IBS008738 in the structure. IBS004735 activates TAZ via Akt and has no effect on TAZ phosphorylation, which is the well-described key modification to regulate TAZ activity. Thus, we introduce IBS004735 as a novel TAZ activator that regulates TAZ in a yet unidentified mechanism.
Collapse
|
12
|
Kim SI, Jung M, Dan K, Lee S, Lee C, Kim HS, Chung HH, Kim JW, Park NH, Song YS, Han D, Lee M. Proteomic Discovery of Biomarkers to Predict Prognosis of High-Grade Serous Ovarian Carcinoma. Cancers (Basel) 2020; 12:cancers12040790. [PMID: 32224886 PMCID: PMC7226362 DOI: 10.3390/cancers12040790] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/21/2020] [Accepted: 03/24/2020] [Indexed: 12/23/2022] Open
Abstract
Initial identification of biomarkers predicting the exact prognosis of high-grade serous ovarian carcinoma (HGSOC) is important in precision cancer medicine. This study aimed to investigate prognostic biomarkers of HGSOC through proteomic analysis. We conducted label-free liquid chromatography-mass spectrometry using chemotherapy-naïve, fresh-frozen primary HGSOC specimens, and compared the results between a favorable prognosis group (progression-free survival (PFS) ≥ 18 months, n = 6) and a poor prognosis group (PFS < 18 months, n = 6). Among 658 differentially expressed proteins, 288 proteins were upregulated in the favorable prognosis group and 370 proteins were upregulated in the poor prognosis group. Using hierarchical clustering, we selected α1-antitrypsin (AAT), nuclear factor-κB (NFKB), phosphomevalonate kinase (PMVK), vascular adhesion protein 1 (VAP1), fatty acid-binding protein 4 (FABP4), platelet factor 4 (PF4), apolipoprotein A1 (APOA1), and α1-acid glycoprotein (AGP) for further validation via immunohistochemical (IHC) staining in an independent set of chemotherapy-naïve primary HGSOC samples (n = 107). Survival analyses revealed that high expression of AAT, NFKB, and PMVK were independent biomarkers for favorable PFS. Conversely, high expression of VAP1, FABP4, and PF4 were identified as independent biomarkers for poor PFS. Furthermore, we constructed models predicting the 18-month PFS by combining clinical variables and IHC results. Through leave-one-out cross-validation, the optimal model was based on initial serum CA-125, germline BRCA1/2 mutations, residual tumors after surgery, International Federation of Gynecology and Obstetrics (FIGO) stage, and expression levels of the six proteins. The present results elucidate the proteomic landscape of HGSOC and six protein biomarkers to predict the prognosis of HGSOC.
Collapse
Affiliation(s)
- Se Ik Kim
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul 03080, Korea; (S.I.K.); (H.S.K.); (H.H.C.); (J.-W.K.); (N.H.P.); (Y.-S.S.)
| | - Minsun Jung
- Department of Pathology, Seoul National University College of Medicine, Seoul 03080, Korea; (M.J.); (C.L.)
| | - Kisoon Dan
- Proteomics Core Facility, Biomedical Research Institute, Seoul National University Hospital, Seoul 03082, Korea;
| | - Sungyoung Lee
- Center for Precision Medicine, Seoul National University Hospital, Seoul 03080, Korea;
| | - Cheol Lee
- Department of Pathology, Seoul National University College of Medicine, Seoul 03080, Korea; (M.J.); (C.L.)
| | - Hee Seung Kim
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul 03080, Korea; (S.I.K.); (H.S.K.); (H.H.C.); (J.-W.K.); (N.H.P.); (Y.-S.S.)
| | - Hyun Hoon Chung
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul 03080, Korea; (S.I.K.); (H.S.K.); (H.H.C.); (J.-W.K.); (N.H.P.); (Y.-S.S.)
| | - Jae-Weon Kim
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul 03080, Korea; (S.I.K.); (H.S.K.); (H.H.C.); (J.-W.K.); (N.H.P.); (Y.-S.S.)
| | - Noh Hyun Park
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul 03080, Korea; (S.I.K.); (H.S.K.); (H.H.C.); (J.-W.K.); (N.H.P.); (Y.-S.S.)
| | - Yong-Sang Song
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul 03080, Korea; (S.I.K.); (H.S.K.); (H.H.C.); (J.-W.K.); (N.H.P.); (Y.-S.S.)
| | - Dohyun Han
- Proteomics Core Facility, Biomedical Research Institute, Seoul National University Hospital, Seoul 03082, Korea;
- Correspondence: (D.H.); (M.L.); Tel.: +82-2-2072-1719 (D.H.); +82-2-2072-2842 (M.L.)
| | - Maria Lee
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul 03080, Korea; (S.I.K.); (H.S.K.); (H.H.C.); (J.-W.K.); (N.H.P.); (Y.-S.S.)
- Correspondence: (D.H.); (M.L.); Tel.: +82-2-2072-1719 (D.H.); +82-2-2072-2842 (M.L.)
| |
Collapse
|
13
|
PI3K-AKT-mTOR and NFκB Pathways in Ovarian Cancer: Implications for Targeted Therapeutics. Cancers (Basel) 2019; 11:cancers11070949. [PMID: 31284467 PMCID: PMC6679095 DOI: 10.3390/cancers11070949] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 06/10/2019] [Accepted: 06/30/2019] [Indexed: 02/07/2023] Open
Abstract
Ovarian cancer is the most lethal gynecologic malignancy in the United States, with an estimated 22,530 new cases and 13,980 deaths in 2019. Recent studies have indicated that the phosphoinositol 3 kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR), as well as the nuclear factor-κ light chain enhancer of activated B cells (NFκB) pathways are highly mutated and/or hyper-activated in a majority of ovarian cancer patients, and are associated with advanced grade and stage disease and poor prognosis. In this review, we will investigate PI3K/AKT/mTOR and their interconnection with NFκB pathway in ovarian cancer cells.
Collapse
|
14
|
Liao X, Zhu Y, Lu L, Li W, Zhang L, Ji C, Lin X, Luo X. Maternal manganese activates anti-apoptotic-related gene expressions via miR-1551 and miR-34c in embryonic hearts from maternal heat stress (Gallus gallus). J Therm Biol 2019; 84:190-199. [PMID: 31466753 DOI: 10.1016/j.jtherbio.2019.07.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/02/2019] [Accepted: 07/02/2019] [Indexed: 01/07/2023]
Abstract
MicroRNAs (miRNAs) expressions are altered by maternal stresses and nutritional status. Our previous study has demonstrated that maternal manganese (Mn) addition could protect chick embryos against maternal heat stress via enhancing anti-apoptotic ability in embryonic hearts. The objective of this study was to investigate whether this protective effect could be achieved via miRNA mechanisms, and also be sustained in offspring broilers. A completely randomized design with a 2 (maternal normal and high temperatures: 21 and 32 °C) × 2 (maternal control basal diet and the basal diet + 120 mg Mn/kg) factorial arrangement of treatments was adopted. Totally 96 broiler breeder hens were allotted to 4 treatments with 6 replicates. Subsequently, 24 hatched chicks from each maternal treatment were divided into 6 replicates. Maternal supplemental 120 mg Mn/kg reduced the increased expressions of miR-1551 and miR-34c in hearts of offspring embryos but not broilers under maternal heat stress. B-cell CLL/lymphoma 2 (BCL2) and NF-κB-inducing kinase (NIK) genes related to anti-apoptotic ability were identified as direct targets for miR-1551 and miR-34c, respectively. Under maternal heat stress, maternal supplemental 120 mg Mn/kg activated target BCL2 expression and NIK-dependent NF-κB pathway via mediating miR-1551 and miR-34c expressions in hearts of offspring embryos rather than broilers.
Collapse
Affiliation(s)
- Xiudong Liao
- Mineral Nutrition Research Division, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yongwen Zhu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Lin Lu
- Mineral Nutrition Research Division, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Wenxiang Li
- College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Liyang Zhang
- Mineral Nutrition Research Division, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Cheng Ji
- College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Xi Lin
- Department of Animal Science, North Carolina State University, Raleigh, NC, 27695, USA
| | - Xugang Luo
- Mineral Nutrition Research Division, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
15
|
Das R, Coupar J, Clavijo PE, Saleh A, Cheng TF, Yang X, Chen J, VanWaes C, Chen Z. Lymphotoxin-β receptor-NIK signaling induces alternative RELB/NF-κB2 activation to promote metastatic gene expression and cell migration in head and neck cancer. Mol Carcinog 2019; 58:411-425. [PMID: 30488488 PMCID: PMC7066987 DOI: 10.1002/mc.22938] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 10/27/2018] [Accepted: 10/29/2018] [Indexed: 01/21/2023]
Abstract
Head and neck squamous cell carcinomas (HNSCC) preferentially spread to regional cervical tissues and lymph nodes. Here, we hypothesized that lymphotoxin-β (LTβ), receptor LTβR, and NF-κB-inducing kinase (NIK), promote the aberrant activation of alternative NF-κB2/RELB pathway and genes, that enhance migration and invasion of HNSCC. Genomic and expression alterations of the alternative NF-kB pathway were examined in 279 HNSCC tumors from The Cancer Genome Atlas (TCGA) and a panel of HNSCC lines. LTβR is amplified or overexpressed in HNSCC of the larynx or oral cavity, while LTβ, NIK, and RELB are overexpressed in cancers arising within lymphoid oropharyngeal and tonsillar sites. Similarly, subsets of HNSCC lines displayed overexpression of LTβR, NIK, and RELB proteins. Recombinant LTβ, and siRNA depletion of endogenous LTβR and NIK, modulated expression of LTβR, NIK, and nuclear translocation of NF-κB2(p52)/RELB as well as functional NF-κB promoter reporter activity. Treatment with a NIK inhibitor (1,3[2H,4H]-Iso-Quinoline Dione) reduced the protein expression of NIK and NF-κB2(p52)/RELB, and blocked LTβ induced nuclear translocation of RELB. NIK and RELB siRNA knockdown or NIK inhibitor slowed HNSCC migration or invation in vitro. LTβ-induces expression of migration and metastasis related genes, including hepatocyte growth/scatter factor receptor MET. Knockdown of NIK or MET similarly inhibited the migration of HNSCC cell lines. This may help explain why HNSCC preferentially migrate to local lymph nodes, where LTβ is expressed. Our findings show that LTβ/LTβR promotes activation of the alternative NIK-NF-κB2/RELB pathway to enhance MET-mediated cell migration in HNSCC, which could be potential therapeutic targets in HNSCC.
Collapse
Affiliation(s)
- Rita Das
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 201892
| | - Jamie Coupar
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 201892
| | - Paul E. Clavijo
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 201892
| | - Anthony Saleh
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 201892
| | - Tsu-Fan Cheng
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 201892
| | - Xinping Yang
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 201892
| | - Jianhong Chen
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 201892
| | - Carter VanWaes
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 201892
- Contributed equally as senior authors
| | - Zhong Chen
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 201892
- Contributed equally as senior authors
| |
Collapse
|
16
|
Zhang H, Li H, Shaikh A, Caudle Y, Yao B, Yin D. Inhibition of MicroRNA-23b Attenuates Immunosuppression During Late Sepsis Through NIK, TRAF1, and XIAP. J Infect Dis 2018; 218:300-311. [PMID: 29506272 PMCID: PMC6009583 DOI: 10.1093/infdis/jiy116] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 02/27/2018] [Indexed: 12/12/2022] Open
Abstract
Background microRNA-23b (miR-23b) is a multiple functional miRNA. We hypothesize that miR-23b plays a role in the pathogenesis of sepsis. Our study investigated the effect of miR-23b on sepsis-induced immunosuppression. Methods Mice were treated with miR-23b inhibitors by tail vein injection 2 days after cecal ligation puncture (CLP)-induced sepsis. Apoptosis in spleens and apoptotic signals were investigated, and survival was monitored. T-cell immunoreactivities were examined during late sepsis. Nuclear factor κB (NF-κB)-inducing kinase (NIK), tumor necrosis factor (TNF)-receptor associated factor 1 (TRAF1), and X-linked inhibitor of apoptosis protein (XIAP), the putative targets of miR-23b, were identified by a dual-luciferase reporter assay. Results miR-23b expression is upregulated and sustained during sepsis. The activation of the TLR4/TLR9/p38 MAPK/STAT3 signal pathway contributes to the production of miR-23b in CLP-induced sepsis. miR-23b inhibitor decreased the number of spleen cells positive by terminal deoxynucleotidyl transferase dUTP nick-end labeling and improved survival. miR-23b inhibitor restored the immunoreactivity by alleviating the development of T-cell exhaustion and producing smaller amounts of immunosuppressive interleukin 10 and interleukin 4 during late sepsis. We demonstrated that miR-23b mediated immunosuppression during late sepsis by inhibiting the noncanonical NF-κB signal and promoting the proapoptotic signal pathway by targeting NIK, TRAF1, and XIAP. Conclusions Inhibition of miR-23b reduces late-sepsis-induced immunosuppression and improves survival. miR-23b might be a target for immunosuppression.
Collapse
Affiliation(s)
- Haiju Zhang
- Department of Internal Medicine, College of Medicine, East Tennessee State University, Johnson City
- Department of Pediatrics, Renmin Hospital of Wuhan University, China
| | - Hui Li
- Department of Internal Medicine, College of Medicine, East Tennessee State University, Johnson City
| | - Aamir Shaikh
- Department of Internal Medicine, College of Medicine, East Tennessee State University, Johnson City
| | - Yi Caudle
- Department of Internal Medicine, College of Medicine, East Tennessee State University, Johnson City
| | - Baozhen Yao
- Department of Pediatrics, Renmin Hospital of Wuhan University, China
| | - Deling Yin
- Department of Internal Medicine, College of Medicine, East Tennessee State University, Johnson City
| |
Collapse
|
17
|
Noncanonical NF-κB in Cancer. Biomedicines 2018; 6:biomedicines6020066. [PMID: 29874793 PMCID: PMC6027307 DOI: 10.3390/biomedicines6020066] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 05/31/2018] [Accepted: 06/04/2018] [Indexed: 12/31/2022] Open
Abstract
The NF-κB pathway is a critical regulator of immune responses and is often dysregulated in cancer. Two NF-κB pathways have been described to mediate these responses, the canonical and the noncanonical. While understudied compared to the canonical NF-κB pathway, noncanonical NF-κB and its components have been shown to have effects, usually protumorigenic, in many different cancer types. Here, we review noncanonical NF-κB pathways and discuss its important roles in promoting cancer. We also discuss alternative NF-κB-independent functions of some the components of noncanonical NF-κB signaling. Finally, we discuss important crosstalk between canonical and noncanonical signaling, which blurs the two pathways, indicating that understanding the full picture of NF-κB regulation is critical to deciphering how this broad pathway promotes oncogenesis.
Collapse
|
18
|
dos Santos Guimarães I, Ladislau-Magescky T, Tessarollo NG, dos Santos DZ, Gimba ERP, Sternberg C, Silva IV, Rangel LBA. Chemosensitizing effects of metformin on cisplatin- and paclitaxel-resistant ovarian cancer cell lines. Pharmacol Rep 2018; 70:409-417. [DOI: 10.1016/j.pharep.2017.11.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Revised: 10/09/2017] [Accepted: 11/20/2017] [Indexed: 12/27/2022]
|
19
|
Wang C, Fok KL, Cai Z, Chen H, Chan HC. CD147 regulates extrinsic apoptosis in spermatocytes by modulating NFκB signaling pathways. Oncotarget 2018; 8:3132-3143. [PMID: 27902973 PMCID: PMC5356870 DOI: 10.18632/oncotarget.13624] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 10/19/2016] [Indexed: 11/25/2022] Open
Abstract
CD147 null mutant male mice are infertile with arrested spermatogenesis and increased apoptotic germ cells. Our previous studies have shown that CD147 prevents apoptosis in mouse spermatocytes but not spermatogonia. However, the underlying mechanism remains elusive. In the present study, we aim to determine the CD147-regulated apoptotic pathway in mouse spermatocytes. Our results showed that immunodepletion of CD147 triggered apoptosis through extrinsic apoptotic pathway in mouse testis and spermatocyte cell line (GC-2 cells), accompanied by activation of non-canonical NFκB signaling and suppression of canonical NFκB signaling. Furthermore, CD147 was found to interact with TRAF2, a factor known to regulate NFκB and extrinsic apoptotic signaling, and interfering CD147 led to the decrease of TRAF2. Consistently, depletion of CD147 by CRISPR/Cas9 technique in GC-2 cells down-regulated TRAF2 and resulted in cell death with suppressed canonical NFκB and activated non-canonical NFκB signaling. On the contrary, interfering of CD147 had no effect on NFκB signaling pathways as well as TRAF2 protein level in mouse spermatogonia cell line (GC-1 cells). Taken together, these results suggested that CD147 plays a key role in reducing extrinsic apoptosis in spermatocytes, but not spermatogonia, through modulating NFκB signaling pathway.
Collapse
Affiliation(s)
- Chaoqun Wang
- Epithelial Cell Biology Research Center, Key Laboratory for Regenerative Medicine of The Ministry of Education of China, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Kin Lam Fok
- Epithelial Cell Biology Research Center, Key Laboratory for Regenerative Medicine of The Ministry of Education of China, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Zhiming Cai
- Department of Gynecology, The Second People's Hospital of Shenzhen, Shenzhen, PR China
| | - Hao Chen
- Epithelial Cell Biology Research Center, Key Laboratory for Regenerative Medicine of The Ministry of Education of China, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong.,Department of Gynecology, The Second People's Hospital of Shenzhen, Shenzhen, PR China
| | - Hsiao Chang Chan
- Epithelial Cell Biology Research Center, Key Laboratory for Regenerative Medicine of The Ministry of Education of China, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong.,Sichuan University - The Chinese University of Hong Kong Joint Laboratory for Reproductive Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
20
|
Ma J, Mi C, Wang KS, Lee JJ, Jin X. Zinc finger protein 91 (ZFP91) activates HIF-1α via NF-κB/p65 to promote proliferation and tumorigenesis of colon cancer. Oncotarget 2017; 7:36551-36562. [PMID: 27144516 PMCID: PMC5095020 DOI: 10.18632/oncotarget.9070] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Accepted: 04/16/2016] [Indexed: 12/14/2022] Open
Abstract
Zinc finger protein 91 (ZFP91) has been reported to be involved in various biological processes. However, the clinical significance and biological role of ZFP91 in colon cancer remains unknown. Here, we show that ZFP91 expression is upregulated in patients with colon cancer. We found that ZFP91 upregulated HIF-1α at the levels of promoter and protein in colon cancer cells. Using chromatin immunoprecipitation, electrophoretic mobility shift assay and luciferase reporter gene assay, we found that NF-κB/p65 is required for the binding of ZFP91 to the HIF-1α promoter at -197/-188 base pairs and for the transcriptional activation of HIF-1α gene mediated by ZFP91. Flow cytometry, 5-ethynyl-2'-deoxyuridine (EdU) incorporation and tumor xenograft assay demonstrated that ZFP91 enhanced cell proliferation of colon cancer through upregulating HIF-1α in vitro and in vivo. Furthermore, ZFP91 is positively associated with HIF-1α in human colon cancer. Thus, we concluded that ZFP91 activates transcriptional coregulatory protein HIF-1α through transcription factor NF-κB/p65 in the promotion of proliferation and tumorigenesis in colon cancer cell. ZFP91 may serve as a driver gene to activate HIF-1α transcription in the development of cancer.
Collapse
Affiliation(s)
- Juan Ma
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Chunliu Mi
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Ke Si Wang
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Jung Joon Lee
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Xuejun Jin
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| |
Collapse
|
21
|
Guan F, Wang L, Hao S, Wu Z, Bai J, Kang Z, Zhou Q, Chang H, Yin H, Li D, Tian K, Ma J, Zhang G, Zhang J. Retinol dehydrogenase-10 promotes development and progression of human glioma via the TWEAK-NF-κB axis. Oncotarget 2017; 8:105262-105275. [PMID: 29285249 PMCID: PMC5739636 DOI: 10.18632/oncotarget.22166] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 09/25/2017] [Indexed: 12/03/2022] Open
Abstract
Retinol dehydrogenase-10 (RDH10) is a member of the short-chain dehydrogenase/reductase family, which plays an important role in retinoic acid (RA) synthesis. Here, we show that RDH10 is highly expressed in human gliomas, and its expression correlates with tumor grade and patient survival times. In vitro, lentivirus-mediated shRNA knockdown of RDH10 suppressed glioma cell proliferation, survival, and invasiveness and cell cycle progression. In vivo, RDH10 knockdown reduced glioma growth in nude mice. Microarray analysis revealed that RDH10 silencing reduces expression of TNFRSF12A (Fn14), TNFSF12 (TWEAK), TRAF3, IKBKB (IKK-β), and BMPR2, while it increases expression of TRAF1, NFKBIA (IκBα), NFKBIE (IκBε), and TNFAIP3. This suggests that RDH10 promotes glioma cell proliferation and survival by regulating the TWEAK-NF-κB axis, and that it could potentially serve as a novel target for human glioma treatment.
Collapse
Affiliation(s)
- Feng Guan
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Liang Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Shuyu Hao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zhen Wu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jian Bai
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Zhuang Kang
- Department of Glioma, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Quan Zhou
- Department of Pathology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Hong Chang
- Department of Pathology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Hui Yin
- Department of Social Medicine and Health Education, School of Public Health, Peking University, Beijing, China
| | - Da Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Kaibin Tian
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Junpeng Ma
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Guijun Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Junting Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
22
|
N-terminally truncated POM121C inhibits HIV-1 replication. PLoS One 2017; 12:e0182434. [PMID: 28873410 PMCID: PMC5584925 DOI: 10.1371/journal.pone.0182434] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 07/18/2017] [Indexed: 11/19/2022] Open
Abstract
Recent studies have identified host cell factors that regulate early stages of HIV-1 infection including viral cDNA synthesis and orientation of the HIV-1 capsid (CA) core toward the nuclear envelope, but it remains unclear how viral DNA is imported through the nuclear pore and guided to the host chromosomal DNA. Here, we demonstrate that N-terminally truncated POM121C, a component of the nuclear pore complex, blocks HIV-1 infection. This truncated protein is predominantly localized in the cytoplasm, does not bind to CA, does not affect viral cDNA synthesis, reduces the formation of 2-LTR and diminished the amount of integrated proviral DNA. Studies with an HIV-1-murine leukemia virus (MLV) chimeric virus carrying the MLV-derived Gag revealed that Gag is a determinant of this inhibition. Intriguingly, mutational studies have revealed that the blockade by N-terminally-truncated POM121C is closely linked to its binding to importin-β/karyopherin subunit beta 1 (KPNB1). These results indicate that N-terminally-truncated POM121C inhibits HIV-1 infection after completion of reverse transcription and before integration, and suggest an important role for KPNB1 in HIV-1 replication.
Collapse
|
23
|
Jia ZH, Jia Y, Guo FJ, Chen J, Zhang XW, Cui MH. Phosphorylation of STAT3 at Tyr705 regulates MMP-9 production in epithelial ovarian cancer. PLoS One 2017; 12:e0183622. [PMID: 28859117 PMCID: PMC5578655 DOI: 10.1371/journal.pone.0183622] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Accepted: 08/08/2017] [Indexed: 01/22/2023] Open
Abstract
Ovarian cancer's poor progression is closely associated with overexpression of matrix metalloproteinase 9 (MMP-9), which belongs to the class of enzymes believed to be involved in the degradation of extracellular matrix. However, the mechanisms underlying regulation of MMP-9 are not completely understood. STAT (signal transducer and activator of transcription) family of transcription factors is well known to be engaged in diverse cellular functions. Activation of STAT3 has been observed in a number of cancers, promoting tumorigenesis and metastasis via transcriptional activation of its target genes. In this study, we tested our hypothesis that STAT3 regulates MMP-9 gene expression in epithelial ovarian cancer. Using epithelial ovarian cancer cell lines as in vitro model, we show an abundance of phosphorylated STAT3 at Tyr705 (p-STAT3) in SKOV3 cell line. We further show that MMP-9 gene promoter was significantly enriched by p-STAT3, and IL-6 treatment led to a significant increase of MMP-9 at mRNA and protein levels, in addition to an association of p-STAT3 with MMP-9 gene. By using luciferase reporter assay, we determined that the STAT3 DNA responsive element of MMP-9 was sufficient to regulate transcriptional activity of a heterologous promoter. These results suggest that the phosphorylation of STAT3 regulates MMP-9 production in ovarian cancer, which might be responsible for its invasiveness and metastasis.
Collapse
Affiliation(s)
- Zan-Hui Jia
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, Jilin Province, People’s Republic of China
- * E-mail:
| | - Yan Jia
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, Jilin Province, People’s Republic of China
| | - Feng-Jun Guo
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, Jilin Province, People’s Republic of China
| | - Jun Chen
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, Jilin Province, People’s Republic of China
| | - Xi-Wen Zhang
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, Jilin Province, People’s Republic of China
| | - Man-Hua Cui
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, Jilin Province, People’s Republic of China
| |
Collapse
|
24
|
Lin CC, Lin WN, Cho RL, Wang CY, Hsiao LD, Yang CM. TNF-α-Induced cPLA 2 Expression via NADPH Oxidase/Reactive Oxygen Species-Dependent NF-κB Cascade on Human Pulmonary Alveolar Epithelial Cells. Front Pharmacol 2016; 7:447. [PMID: 27932980 PMCID: PMC5122718 DOI: 10.3389/fphar.2016.00447] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 11/08/2016] [Indexed: 01/13/2023] Open
Abstract
Tumor necrosis factor-α (TNF-α) triggers activation of cytosolic phospholipase A2 (cPLA2) and then enhancing the synthesis of prostaglandin (PG) in inflammatory diseases. However, the detailed mechanisms of TNF-α induced cPLA2 expression were not fully defined in human pulmonary alveolar epithelial cells (HPAEpiCs). We found that TNF-α-stimulated increases in cPLA2 mRNA (5.2 folds) and protein (3.9 folds) expression, promoter activity (4.3 folds), and PGE2 secretion (4.7 folds) in HPAEpiCs, determined by Western blot, real-time PCR, promoter activity assay and PGE2 ELISA kit. These TNF-α-mediated responses were abrogated by the inhibitors of NADPH oxidase [apocynin (APO) and diphenyleneiodonium chloride (DPI)], ROS [N-acetyl cysteine, (NAC)], NF-κB (Bay11-7082) and transfection with siRNA of ASK1, p47 phox , TRAF2, NIK, IKKα, IKKβ, or p65. TNF-α markedly stimulated NADPH oxidase activation and ROS including superoxide and hydrogen peroxide production which were inhibited by pretreatment with a TNFR1 neutralizing antibody, APO, DPI or transfection with siRNA of TRAF2, ASK1, or p47 phox . In addition, TNF-α also stimulated p47 phox phosphorylation and translocation in a time-dependent manner. On the other hand, TNF-α induced TNFR1, TRAF2, ASK1, and p47 phox complex formation in HPAEpiCs, which were attenuated by a TNF-α neutralizing antibody. We found that pretreatment with NAC, DPI, or APO also attenuated the TNF-α-stimulated IKKα/β and NF-κB p65 phosphorylation, NF-κB (p65) translocation, and NF-κB promoter activity in HPAEpiCs. Finally, we observed that TNF-α-stimulated NADPH oxidase activation and ROS generation activates NF-κB through the NIK/IKKα/β pathway. Taken together, our results demonstrated that in HPAEpiCs, up-regulation of cPLA2 by TNF-α is, at least in part, mediated through the cooperation of TNFR1, TRAF2, ASK1, and NADPH oxidase leading to ROS generation and ultimately activates NF-κB pathway.
Collapse
Affiliation(s)
- Chih-Chung Lin
- Department of Anesthetics, Chang Gung Memorial Hospital at Linkou and College of Medicine, Chang Gung University Tao-Yuan, Taiwan
| | - Wei-Ning Lin
- Graduate Institute of Basic Medicine, Fu Jen Catholic University New Taipei City, Taiwan
| | - Rou-Ling Cho
- Department of Physiology and Pharmacology and Health Aging Research Center, College of Medicine, Chang Gung University Tao-Yuan, Taiwan
| | - Chen-Yu Wang
- Department of Physiology and Pharmacology and Health Aging Research Center, College of Medicine, Chang Gung University Tao-Yuan, Taiwan
| | - Li-Der Hsiao
- Department of Anesthetics, Chang Gung Memorial Hospital at Linkou and College of Medicine, Chang Gung University Tao-Yuan, Taiwan
| | - Chuen-Mao Yang
- Department of Anesthetics, Chang Gung Memorial Hospital at Linkou and College of Medicine, Chang Gung UniversityTao-Yuan, Taiwan; Department of Physiology and Pharmacology and Health Aging Research Center, College of Medicine, Chang Gung UniversityTao-Yuan, Taiwan; Research Center for Industry of Human Ecology, Research Center for Chinese Herbal Medicine, and Graduate Institute of Health Industry Technology, Chang Gung University of Science and TechnologyTao-Yuan, Taiwan
| |
Collapse
|
25
|
Fry CS, Nayeem SZ, Dillon EL, Sarkar PS, Tumurbaatar B, Urban RJ, Wright TJ, Sheffield-Moore M, Tilton RG, Choudhary S. Glucocorticoids increase skeletal muscle NF-κB inducing kinase (NIK): links to muscle atrophy. Physiol Rep 2016; 4:e13014. [PMID: 27905294 PMCID: PMC5112493 DOI: 10.14814/phy2.13014] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 09/28/2016] [Accepted: 10/02/2016] [Indexed: 12/13/2022] Open
Abstract
Glucocorticoids (GC) are a frontline therapy for numerous acute and chronic diseases because of their demonstrated efficacy at reducing systemic inflammation. An unintended side effect of GC therapy is the stimulation of skeletal muscle atrophy. Pathophysiological mechanisms responsible for GC-induced skeletal muscle atrophy have been extensively investigated, and the ability to treat patients with GC without unintended muscle atrophy has yet to be realized. We have reported that a single, standard-of-care dose of Methylprednisolone increases in vivo expression of NF-κB-inducing kinase (NIK), an important upstream regulatory kinase controlling NF-κB activation, along with other key muscle catabolic regulators such as Atrogin-1 and MuRF1 that induce skeletal muscle proteolysis. Here, we provide experimental evidence that overexpressing NIK by intramuscular injection of recombinant human NIK via adenoviral vector in mouse tibialis anterior muscle induces a 30% decrease in the average fiber cross-sectional area that is associated with increases in mRNA expression of skeletal muscle atrophy biomarkers MuRF1, Atrogin-1, myostatin and Gadd45. A single injection of GC induced NIK mRNA and protein within 2 h, with the increased NIK localized to nuclear and sarcolemmal locations within muscle fibers. Daily GC injections induced skeletal muscle fore limb weakness as early as 3 days with similar atrophy of muscle fibers as observed with NIK overexpression. NIK overexpression in primary human skeletal muscle myotubes increased skeletal muscle atrophy biomarkers, while NIK knockdown significantly attenuated GC-induced increases in NIK and Atrogin-1. These results suggest that NIK may be a novel, previously unrecognized mediator of GC-induced skeletal muscle atrophy.
Collapse
Affiliation(s)
- Christopher S Fry
- Department of Nutrition and Metabolism, The University of Texas Medical Branch (UTMB), Galveston, Texas
| | - Syed Z Nayeem
- Department of Internal Medicine, Division of Endocrinology, The University of Texas Medical Branch (UTMB), Galveston, Texas
| | - Edgar L Dillon
- Department of Internal Medicine, Division of Endocrinology, The University of Texas Medical Branch (UTMB), Galveston, Texas
| | - Partha S Sarkar
- Department of Neurology, The University of Texas Medical Branch (UTMB), Galveston, Texas
| | - Batbayar Tumurbaatar
- Department of Internal Medicine, Division of Endocrinology, The University of Texas Medical Branch (UTMB), Galveston, Texas
| | - Randall J Urban
- Department of Internal Medicine, Division of Endocrinology, The University of Texas Medical Branch (UTMB), Galveston, Texas
| | - Traver J Wright
- Department of Internal Medicine, Division of Endocrinology, The University of Texas Medical Branch (UTMB), Galveston, Texas
| | - Melinda Sheffield-Moore
- Department of Internal Medicine, Division of Endocrinology, The University of Texas Medical Branch (UTMB), Galveston, Texas
| | - Ronald G Tilton
- Department of Internal Medicine, Division of Endocrinology, The University of Texas Medical Branch (UTMB), Galveston, Texas
| | - Sanjeev Choudhary
- Department of Internal Medicine, Division of Endocrinology, The University of Texas Medical Branch (UTMB), Galveston, Texas
| |
Collapse
|
26
|
Zhang B, Wang H, Yang L, Zhang Y, Wang P, Huang G, Zheng J, Ren H, Qin S. OTUD7B and NIK expression in non-small cell lung cancer: Association with clinicopathological features and prognostic implications. Pathol Res Pract 2016; 212:893-898. [PMID: 27499151 DOI: 10.1016/j.prp.2016.07.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Revised: 07/09/2016] [Accepted: 07/19/2016] [Indexed: 12/21/2022]
Abstract
PURPOSE To investigate the correlation among OTUD7B and NIK expression and the clinicopathological characteristics in NSCLC patients. METHODS One hundred and twenty patients were involved in this study. We detected OTUD7B and NIK expression by immunohistochemistry and analyzed their correlation with clinicopathological data. RESULTS The expression of OTUD7B and NIK were negatively correlated in NSCLC tumor samples (rs=-0.421, P<0.001). The higher expression of OTUD7B was associated with smaller tumor size(P=0.018), less lymph node metastasis (P=0.012) and earlier TNM stage(P=0.039), while the higher expression of NIK was only related to more lymph node metastasis(P=0.031) and later TNM stage(P=0.011). MMP-9 was negatively correlated with OTUD7B and positively correlated with NIK. In addition, the high expression of OTUD7B was associated with good prognosis of NSCLC patients (log-rank=6.714, P=0.0096), and a high OTUD7B/low NIK index can predict an even better prognosis (log-rank=11.794, P=0.0006). Moreover, the multivariate Cox regression analysis showed that OTUD7B rather than NIK is an independent marker of overall survival in NSCLC patients(HR=1.602, 95% CI 1.009-2.544, P=0.046). CONCLUSIONS OTUD7B and NIK may play important roles in the development of lung cancer. The combination of OTUD7B and NIK expression may be a good index for predicting the prognosis of NSCLC.
Collapse
Affiliation(s)
- Boxiang Zhang
- Department Two of Thoracic Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China
| | - Huangzhen Wang
- Department Two of Thoracic Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China
| | - Litao Yang
- Department Two of Thoracic Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China
| | - Yiwen Zhang
- Department Two of Thoracic Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China
| | - Peili Wang
- Department Two of Thoracic Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China
| | - Guanghong Huang
- Department Two of Thoracic Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China
| | - Jie Zheng
- Clinical Research Center,the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China
| | - Hong Ren
- Department Two of Thoracic Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China.
| | - Sida Qin
- Department Two of Thoracic Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China.
| |
Collapse
|
27
|
Duran CL, Lee DW, Jung JU, Ravi S, Pogue CB, Toussaint LG, Bayless KJ, Sitcheran R. NIK regulates MT1-MMP activity and promotes glioma cell invasion independently of the canonical NF-κB pathway. Oncogenesis 2016; 5:e231. [PMID: 27270613 PMCID: PMC4945740 DOI: 10.1038/oncsis.2016.39] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 05/03/2016] [Indexed: 12/25/2022] Open
Abstract
A growing body of evidence implicates the noncanonical NF-κB pathway as a key driver of glioma invasiveness and a major factor underlying poor patient prognoses. Here, we show that NF-κB-inducing kinase (NIK/MAP3K14), a critical upstream regulator of the noncanonical NF-κB pathway, is both necessary and sufficient for cell-intrinsic invasion, as well as invasion induced by the cytokine TWEAK, which is strongly associated with tumor pathogenicity. NIK promotes dramatic alterations in glioma cell morphology that are characterized by extensive membrane branching and elongated pseudopodial protrusions. Correspondingly, NIK increases the phosphorylation, enzymatic activity and pseudopodial localization of membrane type-1 matrix metalloproteinase (MT1-MMP/MMP14), which is associated with enhanced tumor cell invasion of three-dimensional collagen matrices. Moreover, NIK regulates MT1-MMP activity in cells lacking the canonical NF-κB p65 and cRel proteins. Finally, increased expression of NIK is associated with elevated MT1-MMP phosphorylation in orthotopic xenografts and co-expression of NIK and MT1-MMP in human tumors is associated with poor glioma patient survival. These data reveal a novel role of NIK to enhance pseudopodia formation, MT1-MMP enzymatic activity and tumor cell invasion independently of p65. Collectively, our findings underscore the therapeutic potential of approaches targeting NIK in highly invasive tumors.
Collapse
Affiliation(s)
- C L Duran
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, TX, USA
- Interdisciplinary Program in Genetics, Texas A&M University, College Station, TX, USA
| | - D W Lee
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, TX, USA
| | - J-U Jung
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, TX, USA
- Medical Sciences Graduate Program, Texas A&M Health Science Center, College Station, TX, USA
| | - S Ravi
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, TX, USA
| | - C B Pogue
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, TX, USA
| | - L G Toussaint
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, College Station, TX, USA
- The Texas Brain and Spine Institute, Bryan, TX, USA
| | - K J Bayless
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, TX, USA
- Interdisciplinary Program in Genetics, Texas A&M University, College Station, TX, USA
- Medical Sciences Graduate Program, Texas A&M Health Science Center, College Station, TX, USA
| | - R Sitcheran
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, TX, USA
- Interdisciplinary Program in Genetics, Texas A&M University, College Station, TX, USA
- Medical Sciences Graduate Program, Texas A&M Health Science Center, College Station, TX, USA
- The Texas Brain and Spine Institute, Bryan, TX, USA
| |
Collapse
|
28
|
Cildir G, Low KC, Tergaonkar V. Noncanonical NF-κB Signaling in Health and Disease. Trends Mol Med 2016; 22:414-429. [PMID: 27068135 DOI: 10.1016/j.molmed.2016.03.002] [Citation(s) in RCA: 205] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 03/14/2016] [Accepted: 03/16/2016] [Indexed: 12/18/2022]
Abstract
Noncanonical NF-κB signaling differs from canonical NF-κB signaling by being activated through different cell surface receptors, cytoplasmic adaptors, and NF-κB dimers. Under normal physiological conditions, this noncanonical pathway has been implicated in diverse biological processes, including lymphoid organogenesis, B cell maturation, osteoclast differentiation, and various functions of other immune cells. Recently, dysfunction of this pathway has also been causally associated with numerous immune-mediated pathologies and human malignancies. Here, we summarize the core elements as well as the recently identified novel regulators of the noncanonical NF-κB signaling pathway. The involvement of this pathway in different pathologies and the potential therapeutic options that are currently envisaged are also discussed.
Collapse
Affiliation(s)
- Gökhan Cildir
- Laboratory of NF-κB Signaling, Institute of Molecular and Cell Biology (IMCB), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore 117597, Singapore
| | - Kee Chung Low
- Laboratory of NF-κB Signaling, Institute of Molecular and Cell Biology (IMCB), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Vinay Tergaonkar
- Laboratory of NF-κB Signaling, Institute of Molecular and Cell Biology (IMCB), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore 117597, Singapore; Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA 5000, Australia.
| |
Collapse
|
29
|
Rinkenbaugh AL, Baldwin AS. The NF-κB Pathway and Cancer Stem Cells. Cells 2016; 5:cells5020016. [PMID: 27058560 PMCID: PMC4931665 DOI: 10.3390/cells5020016] [Citation(s) in RCA: 178] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 03/30/2016] [Accepted: 03/31/2016] [Indexed: 02/07/2023] Open
Abstract
The NF-κB transcription factor pathway is a crucial regulator of inflammation and immune responses. Additionally, aberrant NF-κB signaling has been identified in many types of cancer. Downstream of key oncogenic pathways, such as RAS, BCR-ABL, and Her2, NF-κB regulates transcription of target genes that promote cell survival and proliferation, inhibit apoptosis, and mediate invasion and metastasis. The cancer stem cell model posits that a subset of tumor cells (cancer stem cells) drive tumor initiation, exhibit resistance to treatment, and promote recurrence and metastasis. This review examines the evidence for a role for NF-κB signaling in cancer stem cell biology.
Collapse
Affiliation(s)
- Amanda L Rinkenbaugh
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA.
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA.
| | - Albert S Baldwin
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|
30
|
Hu J, Meng Y, Yu T, Hu L, Mao M. Ubiquitin E3 ligase MARCH7 promotes ovarian tumor growth. Oncotarget 2016; 6:12174-87. [PMID: 25895127 PMCID: PMC4494930 DOI: 10.18632/oncotarget.3650] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 02/28/2015] [Indexed: 12/12/2022] Open
Abstract
Ubiquitin E3 ligase MARCH7 is involved in T cell proliferation and neuronal development. We found that expression of MARCH7 was higher in ovarian cancer tissues than normal ovarian tissues. Silencing MARCH7 decreased cell proliferation, migration, and invasion. Ectopic expression of MARCH7 increased cell proliferation, migration and invasion. Silencing MARCH7 prevented ovarian cancer growth in mice. Silencing MARCH7 inhibited NFkB and Wnt/β-catenin pathway. In agreement, ectopically expressed MARCH7 activated NFkB and Wnt/β-catenin pathways. Finally, MARCH7 was regulated by miR-101. Thus, MARCH7 is oncogenic and a potential target (oncotarget) for ovarian cancer therapy.
Collapse
Affiliation(s)
- Jianguo Hu
- Department of Obstetrics and Gynecology, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Ying Meng
- Department of Obstetrics and Gynecology, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Tinghe Yu
- Department of Obstetrics and Gynecology, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Lina Hu
- Department of Obstetrics and Gynecology, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Ming Mao
- Department of Obstetrics and Gynecology, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| |
Collapse
|
31
|
Normal human CD4(+) helper T cells express Kv1.1 voltage-gated K(+) channels, and selective Kv1.1 block in T cells induces by itself robust TNFα production and secretion and activation of the NFκB non-canonical pathway. J Neural Transm (Vienna) 2015; 123:137-57. [PMID: 26611796 DOI: 10.1007/s00702-015-1446-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 08/16/2015] [Indexed: 10/22/2022]
Abstract
TNFα is a very potent and pleiotropic pro-inflammatory cytokine, essential to the immune system for eradicating cancer and microorganisms, and to the nervous system, for brain development and ongoing function. Yet, excess and/or chronic TNFα secretion causes massive tissue damage in autoimmune, inflammatory and neurological diseases and injuries. Therefore, many patients with autoimmune/inflammatory diseases receive anti-TNFα medications. TNFα is secreted primarily by CD4(+) T cells, macrophages, monocytes, neutrophils and NK cells, mainly after immune stimulation. Yet, the cause for the pathologically high and chronic TNFα secretion is unknown. Can blocking of a particular ion channel in T cells induce by itself TNFα secretion? Such phenomenon was never revealed or even hypothesized. In this interdisciplinary study we discovered that: (1) normal human T cells express Kv1.1 voltage-gated potassium channel mRNA, and the Kv1.1 membrane-anchored protein channel; (2) Kv1.1 is expressed in most CD4(+)CD3(+) helper T cells (mean CD4(+)CD3(+)Kv1.1(+) T cells of 7 healthy subjects: 53.09 ± 22.17 %), but not in CD8(+)CD3(+) cytotoxic T cells (mean CD8(+)CD3(+)Kv1.1(+) T cells: 4.12 ± 3.04 %); (3) electrophysiological whole-cell recordings in normal human T cells revealed Kv currents; (4) Dendrotoxin-K (DTX-K), a highly selective Kv1.1 blocker derived from snake toxin, increases the rate of rise and decay of Kv currents in both resting and activated T cells, without affecting the peak current; (5) DTX-K by itself induces robust TNFα production and secretion by normal human T cells, without elevating IFNγ, IL-4 and IL-10; (6) intact Ca(2+) channels are required for DTX-induced TNFα secretion; (7) selective anti-Kv1.1 antibodies also induce by themselves TNFα secretion; (8) DTX-K activates NFκB in normal human T cells via the unique non-canonical-pathway; (9) injection of Kv1.1-blocked human T cells to SCID mice, causes recruitment of resident mouse cells into the liver, alike reported after TNFα injection into the brain. Based on our discoveries we speculate that abnormally blocked Kv1.1 in T cells (and other immune cells?), due to either anti-Kv1.1 autoimmune antibodies, or Kv1.1-blocking toxins alike DTX-K, or Kv1.1-blocking genetic mutations, may be responsible for the chronic/excessive TNFα in autoimmune/inflammatory diseases. Independently, we also hypothesize that selective block of Kv1.1 in CD4(+) T cells of patients with cancer or chronic infectious diseases could be therapeutic, since it may: a. augment beneficial secretion and delivery of TNFα to the disease-affected sites; b. induce recruitment and extravasation of curative immune cells and factors; c. improve accessibility of drugs to the brain and few peripheral organs thanks to TNFα-induced increased permeability of organ's barriers.
Collapse
|
32
|
Katakam AK, Brightbill H, Franci C, Kung C, Nunez V, Jones C, Peng I, Jeet S, Wu LC, Mellman I, Delamarre L, Austin CD. Dendritic cells require NIK for CD40-dependent cross-priming of CD8+ T cells. Proc Natl Acad Sci U S A 2015; 112:14664-9. [PMID: 26561586 PMCID: PMC4664370 DOI: 10.1073/pnas.1520627112] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Dendritic cells (DCs) link innate and adaptive immunity and use a host of innate immune and inflammatory receptors to respond to pathogens and inflammatory stimuli. Although DC maturation via canonical NF-κB signaling is critical for many of these functions, the role of noncanonical NF-κB signaling via the serine/threonine kinase NIK (NF-κB-inducing kinase) remains unclear. Because NIK-deficient mice lack secondary lymphoid organs, we generated transgenic mice with targeted NIK deletion in CD11c(+) cells. Although these mice exhibited normal lymphoid organs, they were defective in cross-priming naive CD8(+) T cells following vaccination, even in the presence of anti-CD40 or polyinosinic:polycytidylic acid to induce DC maturation. This impairment reflected two intrinsic defects observed in splenic CD8(+) DCs in vitro, namely antigen cross-presentation to CD8(+) T cells and secretion of IL-12p40, a cytokine known to promote cross-priming in vivo. In contrast, antigen presentation to CD4(+) T cells was not affected. These findings reveal that NIK, and thus probably the noncanonical NF-κB pathway, is critical to allow DCs to acquire the capacity to cross-present antigen and prime CD8 T cells after exposure to licensing stimuli, such as an agonistic anti-CD40 antibody or Toll-like receptor 3 ligand.
Collapse
Affiliation(s)
- Anand K Katakam
- Department of Pathology, Genentech Inc., South San Francisco, CA 94080
| | - Hans Brightbill
- Department of Immunology, Genentech Inc., South San Francisco, CA 94080
| | - Christian Franci
- Department of Cancer Immunology, Genentech Inc., South San Francisco, CA 94080
| | - Chung Kung
- Department of Mouse Genetics, Genentech Inc., South San Francisco, CA 94080
| | - Victor Nunez
- Department of Pathology, Genentech Inc., South San Francisco, CA 94080
| | - Charles Jones
- Department of Pathology, Genentech Inc., South San Francisco, CA 94080
| | - Ivan Peng
- Department of Immunology, Genentech Inc., South San Francisco, CA 94080
| | - Surinder Jeet
- Department of Immunology, Genentech Inc., South San Francisco, CA 94080
| | - Lawren C Wu
- Department of Immunology, Genentech Inc., South San Francisco, CA 94080
| | - Ira Mellman
- Department of Cancer Immunology, Genentech Inc., South San Francisco, CA 94080;
| | - Lélia Delamarre
- Department of Cancer Immunology, Genentech Inc., South San Francisco, CA 94080
| | - Cary D Austin
- Department of Pathology, Genentech Inc., South San Francisco, CA 94080;
| |
Collapse
|
33
|
Tan L, Liu SQ, Qin MB, Li SY, Liu BY, Zhu-Ge CF, Xu CY, Liang MZ, Peng P, Huang JA. Relationship between expression of NIBP and noncanonical NF-κB signaling: Clinical significance in colon carcinoma. Shijie Huaren Xiaohua Zazhi 2015; 23:1238-1246. [DOI: 10.11569/wcjd.v23.i8.1238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
AIM: To investigate the expression of NIK, IKKβ binding protein (NIBP), phosphorylated p100 (p-p100), p52, CD44, Vimentin and E-cadherin in colon carcinoma and to explore their clinical significance.
METHODS: Immunohistochemistry was used to detect the expression of NIBP, p-p100, p52, CD44, E-cadherin and Vimentin in 114 paraffin-embedded colon carcinoma tissues, 20 colon adenoma tissues and 50 normal colon mucosa tissues.
RESULTS: The positive expression of NIBP, p-p100, p52, CD44 and Vimentin in colon cancer tissues with metastasis was much higher than that in colon cancer tissues without metastasis, colon adenoma tissues and normal colon mucosa tissues, while the expression of E-cadherin showed a reverse trend (P < 0.05). The expression of NIBP, p-p100, p52, CD44, Vimentin and E-cadherin in colon cancer tissues was related with depth of invasion, TNM stage, lymph node metastasis and distant metastasis (P < 0.05). There were significant correlations between the expression of p-p100 and p52 or NIBP, and between the expression of CD44 and p52, E-cadherin, or Vimentin.
CONCLUSION: NIBP may regulate the epithelial-mesenchymal transition process by activating the noncanonical nuclear factor-κB (NF-κB) signal pathway and thus play an important role in the development, invasion and metastasis of colon cancer.
Collapse
|
34
|
Cherry EM, Lee DW, Jung JU, Sitcheran R. Tumor necrosis factor-like weak inducer of apoptosis (TWEAK) promotes glioma cell invasion through induction of NF-κB-inducing kinase (NIK) and noncanonical NF-κB signaling. Mol Cancer 2015; 14:9. [PMID: 25622756 PMCID: PMC4320546 DOI: 10.1186/s12943-014-0273-1] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 12/22/2014] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND High-grade gliomas are one of the most invasive and therapy-resistant cancers. We have recently shown that noncanonical NF-κB/RelB signaling is a potent driver of tumorigenesis and invasion in the aggressive, mesenchymal subtype of glioma. However, the relevant signals that induce activation of noncanonical NF-κB signaling in glioma and its function relative to the canonical NF-κB pathway remain elusive. METHODS The ability of tumor necrosis factor (TNF)-like weak inducer of apoptosis (TWEAK) to regulate NF-κB signaling and promote tumor progression was investigated in both established and primary high-grade glioma tumor lines using a three-dimensional (3-D) collagen invasion assay. The roles of specific NF-κB proteins in regulating glioma cell invasion and expression of Matrix Metalloproteinase 9 (MMP9) in response to TWEAK were evaluated using shRNA-mediated loss-of-function studies. The ability of NF-κB-inducing kinase (NIK) to promote glioma growth in vivo was investigated using an orthotopic xenograft mouse model. RESULTS In glioma cells that display elevated noncanonical NF-κB signaling, loss of RelB attenuates invasion without affecting RelA expression or phosphorylation and RelB is sufficient to promote invasion in the absence of RelA. The cytokine TWEAK preferentially activates the noncanonical NF-κB pathway through induction of p100 processing to p52 and nuclear accumulation of both RelB and p52 without activating the canonical NF-κB pathway. Moreover, TWEAK, but not TNFα, significantly increases NIK mRNA levels. TWEAK also promotes noncanonical NFκB-dependent MMP9 expression and glioma cell invasion. Finally, expression of NIK is sufficient to increase gliomagenesis in vivo. CONCLUSIONS Our data establish a key role for NIK and noncanonical NF-κB in mediating TWEAK-induced, MMP-dependent glioma cell invasion. The findings also demonstrate that TWEAK induces noncanonical NF-κB signaling and signal-specific regulation of NIK mRNA expression. Together, these studies reveal the important role of noncanonical NF-κB signaling in regulating glioma invasiveness and highlight the therapeutic potential of targeting activation of NIK in this deadly disease.
Collapse
Affiliation(s)
- Evan M Cherry
- Department of Molecular and Cellular Medicine, Texas A&M University College of Medicine, College Station, TX, USA.
- Medical Science Graduate 588 Program, Texas A&M University College of Medicine, College Station, TX, USA.
| | - Dong W Lee
- Department of Molecular and Cellular Medicine, Texas A&M University College of Medicine, College Station, TX, USA.
| | - Ji-Ung Jung
- Department of Molecular and Cellular Medicine, Texas A&M University College of Medicine, College Station, TX, USA.
- Medical Science Graduate 588 Program, Texas A&M University College of Medicine, College Station, TX, USA.
| | - Raquel Sitcheran
- Department of Molecular and Cellular Medicine, Texas A&M University College of Medicine, College Station, TX, USA.
- The Texas Brain and Spine Institute, Bryan, TX, USA.
| |
Collapse
|
35
|
LIU TIANFENG, LIU PEISHU, DING FENG, YU NINA, LI SHIHONG, WANG SURONG, ZHANG XIAOFEI, SUN XIANGXIU, CHEN YING, WANG FENG, ZHAO YUNHE, LI BO. Ampelopsin reduces the migration and invasion of ovarian cancer cells via inhibition of epithelial-to-mesenchymal transition. Oncol Rep 2014; 33:861-7. [DOI: 10.3892/or.2014.3672] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 11/19/2014] [Indexed: 11/06/2022] Open
|
36
|
Sukegawa S, Sakuma R, Ohmine S, Takeuchi H, Ikeda Y, Yamaoka S. Suppressor of cytokine signaling 1 counteracts rhesus macaque TRIM5α-induced inhibition of human immunodeficiency virus type-1 production. PLoS One 2014; 9:e109640. [PMID: 25310711 PMCID: PMC4195675 DOI: 10.1371/journal.pone.0109640] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 09/09/2014] [Indexed: 11/18/2022] Open
Abstract
Old world monkey TRIM5α is a host factor that restricts human immunodeficiency virus type-1 (HIV-1) infection. Previously, we reported that rhesus macaque TRIM5α (RhTRIM5α) restricts HIV-1 production by inducing degradation of precursor Gag. Since suppressor of cytokine signaling 1 (SOCS1) is known to enhance HIV-1 production by rescuing Gag from lysosomal degradation, we examined if SOCS1 is involved in RhTRIM5α-mediated late restriction. Over-expression of SOCS1 restored HIV-1 production in the presence of RhTRIM5α to a level comparable to that in the absence of RhTRIM5α in terms of titer and viral protein expression. Co-immunoprecipitation studies revealed that SOCS1 physically interacted with RhTRIM5α. Over-expression of SOCS1 affected RhTRIM5α expression in a dose-dependent manner, which was not reversed by proteasome inhibitors. In addition, SOCS1 and RhTRIM5α were detected in virus-like particles. These results suggest that SOCS1 alleviates RhTRIM5α-mediated regulation in the late phase of HIV-1 life cycle probably due to the destabilization of RhTRIM5α.
Collapse
Affiliation(s)
- Sayaka Sukegawa
- Department of Molecular Virology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Ryuta Sakuma
- Department of Molecular Virology, Tokyo Medical and Dental University, Tokyo, Japan
- * E-mail: (RS); (SY)
| | - Seiga Ohmine
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Hiroaki Takeuchi
- Department of Molecular Virology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yasuhiro Ikeda
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Shoji Yamaoka
- Department of Molecular Virology, Tokyo Medical and Dental University, Tokyo, Japan
- * E-mail: (RS); (SY)
| |
Collapse
|