1
|
Swift SK, Purdy AL, Buddell T, Lovett JJ, Chanjeevaram SV, Arkatkar A, O'Meara CC, Patterson M. A broadly applicable method for quantifying cardiomyocyte cell division identifies proliferative events following myocardial infarction. CELL REPORTS METHODS 2024; 4:100860. [PMID: 39255794 PMCID: PMC11440799 DOI: 10.1016/j.crmeth.2024.100860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/12/2024] [Accepted: 08/15/2024] [Indexed: 09/12/2024]
Abstract
Cardiomyocyte proliferation is a challenging metric to assess. Current methodologies have limitations in detecting the generation of new cardiomyocytes and technical challenges that reduce widespread applicability. Here, we describe an improved cell suspension and imaging-based methodology that can be broadly employed to assess cardiomyocyte cell division in standard laboratories across a multitude of model organisms and experimental conditions. We highlight additional metrics that can be gathered from the same cell preparations to enable additional relevant analyses to be performed. We incorporate additional antibody stains to address potential technical concerns of miscounting. Finally, we employ this methodology with a dual-thymidine analog-labeling approach to a post-infarction murine model, which allowed us to robustly identify unique cycling events, such as cardiomyocytes undergoing multiple rounds of cell division.
Collapse
Affiliation(s)
- Samantha K Swift
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Alexandra L Purdy
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Tyler Buddell
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Jerrell J Lovett
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Smrithi V Chanjeevaram
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Anooj Arkatkar
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Caitlin C O'Meara
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Michaela Patterson
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| |
Collapse
|
2
|
Hilko DH, Fisher GM, Addison RS, Andrews KT, Poulsen SA. Thymidine Kinase-Independent Click Chemistry DNADetect Probes for DNA Proliferation Assessment in Malaria Parasites. ACS Chem Biol 2023; 18:2535-2543. [PMID: 38050717 DOI: 10.1021/acschembio.3c00530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
Metabolic chemical probes are small-molecule reagents that utilize naturally occurring biosynthetic enzymes for in situ incorporation into biomolecules of interest. These reagents can be used to label, detect, and track important biological processes within living cells including protein synthesis, protein glycosylation, and nucleic acid proliferation. A limitation of current chemical probes, which have largely focused on mammalian cells, is that they often cannot be applied to other organisms due to metabolic differences. For example, the thymidine derivative 5-ethynyl-2'-deoxyuridine (EdU) is a gold standard metabolic chemical probe for assessing DNA proliferation in mammalian cells; however, it is unsuitable for the study of malaria parasites due to Plasmodium species lacking the thymidine kinase enzyme that is essential for metabolism of EdU. Herein, we report the design and synthesis of new thymidine-based probes that sidestep the requirement for a thymidine kinase enzyme in Plasmodium. Two of these DNADetect probes exhibit robust labeling of replicating asexual intraerythrocytic Plasmodium falciparum parasites, as determined by flow cytometry and fluorescence microscopy using copper-catalyzed azide-alkyne cycloaddition to a fluorescent azide. The DNADetect chemical probes are synthetically accessible and thus can be made widely available to researchers as tools to further understand the biology of different Plasmodium species, including laboratory lines and clinical isolates.
Collapse
Affiliation(s)
- David H Hilko
- Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland 4111, Australia
| | - Gillian M Fisher
- Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland 4111, Australia
| | - Russell S Addison
- Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland 4111, Australia
| | - Katherine T Andrews
- Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland 4111, Australia
| | - Sally-Ann Poulsen
- Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland 4111, Australia
- School of Environment and Science, Griffith University, Nathan, Brisbane, Queensland 4111, Australia
| |
Collapse
|
3
|
Mousavi SE, Grützner F, Patil JG. Enhanced mitotic arrest and chromosome resolution for cytogenetic analysis in the eastern mosquitofish, Gambusia holbrooki. Acta Histochem 2023; 125:152029. [PMID: 37062122 DOI: 10.1016/j.acthis.2023.152029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 04/18/2023]
Abstract
Maximising the number of cells arrested at metaphase and their resolution is fundamentally important for molecular cytogenetic investigations, particularly in fish, which typically yield low mitotic index and have highly condensed chromosomes. To overcome these limitations, fish were injected with a mitotic stimulator (the yeast, Saccharomyces cerevisiae) to improve the mitotic index, and the intercalating agent ethidium bromide to produce elongated chromosomes. Specifically, adults were injected with activated yeast and then Colcemid (0.025 µg/µl solution, 10 µl per 1 g of body weight) at 24-96 h post yeast injections, followed by chromosome preparations from multiple tissues. Results showed that gill tissue had the highest number of dividing cells at 72 h post yeast exposure with no significant (p > 0.05) differences between the sexes. Nonetheless, sex-specific differences in the mitotic index were observed in spleen, kidney, and liver, which may be attributed to sex-specific differences in immune responses. For elongation of mitotic chromosomes, individuals (both sexes) were first injected with activated yeast and after 48 h with ethidium bromide (2 or 4 µg/ml) and Colcemid (0.05 µg/µl solution, 10 µl per 1 g of body weight). Following which, animals were sampled at three time points (1, 4 and 8 h) for chromosome preparations. The results show that the optimum elongation of metaphase chromosomes of males and females was achieved by using 2 µg/ml and 4 µg/ml, respectively, for 1 h. Interestingly, the average mitotic chromosome length (μm) of males and females post-ethidium bromide exposure was significantly different (p < 0.05) for both concentrations, except at 1 h exposure for 2 µg/ml EtBr. Such differences can be attributed to overall chromosomal condensation differences between sexes. Regardless, the increased mitotic index and chromosome resolution could benefit cytogenetic studies in other fish species.
Collapse
Affiliation(s)
- Seyed Ehsan Mousavi
- Laboratory of Molecular Biology, Institute for Marine and Antarctic Studies, University of Tasmania, Taroona, TAS 7053, Australia; School of Medicine, University of Tasmania, Hobart, TAS 7000, Australia.
| | - Frank Grützner
- School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Jawahar G Patil
- Laboratory of Molecular Biology, Institute for Marine and Antarctic Studies, University of Tasmania, Taroona, TAS 7053, Australia
| |
Collapse
|
4
|
Tashiro R, Sugiyama H. Photoreaction of DNA Containing 5-Halouracil and its Products. Photochem Photobiol 2022; 98:532-545. [PMID: 34543451 PMCID: PMC9197447 DOI: 10.1111/php.13521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/13/2021] [Indexed: 11/30/2022]
Abstract
5-Halouracil, which is a DNA base analog in which the methyl group at the C5 position of thymine is replaced with a halogen atom, has been used in studies of DNA damage. In DNA strands, the uracil radical generated from 5-halouracil causes DNA damage via a hydrogen-abstraction reaction. We analyzed the photoreaction of 5-halouracil in various DNA structures and revealed that the reaction is DNA structure-dependent. In this review, we summarize the results of the analysis of the reactivity of 5-halouracil in various DNA local structures. Among the 5-halouracil molecules, 5-bromouracil has been used as a probe in the analysis of photoinduced electron transfer through DNA. The analysis of groove-binder/DNA and protein/DNA complexes using a 5-bromouracil-based electron transfer system is also described.
Collapse
Affiliation(s)
- Ryu Tashiro
- Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, 3500-3 Minamitamagaki-Cyo, Suzuka, Mie, 513-8670, Japan
| | - Hiroshi Sugiyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
- Institute for Integrated Cell-Material Science (WPI-iCeMS), Kyoto University, Sakyo, Kyoto 606-8501, Japan
| |
Collapse
|
5
|
Anda S, Boye E, Schink KO, Grallert B. Cosegregation of asymmetric features during cell division. Open Biol 2021; 11:210116. [PMID: 34343465 PMCID: PMC8331232 DOI: 10.1098/rsob.210116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Cellular asymmetry plays a major role in the ageing and evolution of multicellular organisms. However, it remains unknown how the cell distinguishes 'old' from 'new' and whether asymmetry is an attribute of highly specialized cells or a feature inherent in all cells. Here, we investigate the segregation of three asymmetric features: old and new DNA, the spindle pole body (SPB, the centrosome analogue) and the old and new cell ends, using a simple unicellular eukaryote, Schizosaccharomyces pombe. To our knowledge, this is the first study exploring three asymmetric features in the same cells. We show that of the three chromosomes of S. pombe, chromosome I containing the new parental strand, preferentially segregated to the cells inheriting the old cell end. Furthermore, the new SPB also preferentially segregated to the cells inheriting the old end. Our results suggest that the ability to distinguish 'old' from 'new' and to segregate DNA asymmetrically are inherent features even in simple unicellular eukaryotes.
Collapse
Affiliation(s)
- Silje Anda
- Department of Radiation Biology, Oslo University Hospital, Oslo, Norway
| | - Erik Boye
- Department of Radiation Biology, Oslo University Hospital, Oslo, Norway,Department of Biosciences, University of Oslo, Oslo, Norway
| | - Kay Oliver Schink
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Beata Grallert
- Department of Radiation Biology, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
6
|
Kubikova L, Polomova J, Mikulaskova V, Lukacova K. Effectivity of Two Cell Proliferation Markers in Brain of a Songbird Zebra Finch. BIOLOGY 2020; 9:biology9110356. [PMID: 33113793 PMCID: PMC7694046 DOI: 10.3390/biology9110356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 10/22/2020] [Indexed: 12/13/2022]
Abstract
Simple Summary The present study compared the effectivity of two cell proliferation markers, BrdU and EdU, in the brain neurogenic zone of the songbird zebra finch. It shows their saturation doses, that BrdU labels more cells than the equimolar dose of EdU, and that both markers can be reliably detected in the same brain. Abstract There are two most heavily used markers of cell proliferation, thymidine analogues 5-bromo-2′-deoxyuridine (BrdU) and 5-ethynyl-2′-deoxyuridine (EdU) that are incorporated into the DNA during its synthesis. In neurosciences, they are often used consecutively in the same animal to detect neuronal populations arising at multiple time points, their migration and incorporation. The effectivity of these markers, however, is not well established. Here, we studied the effectivity of equimolar doses of BrdU and EdU to label new cells and looked for the dose that will label the highest number of proliferating cells in the neurogenic ventricular zone (VZ) of adult songbirds. We found that, in male zebra finches (Taeniopygia guttata), the equimolar doses of BrdU and EdU did not label the same number of cells, with BrdU being more effective than EdU. Similarly, in liver, BrdU was more effective. The saturation of the detected brain cells occurred at 50 mg/kg BrdU and above 41 mg/kg EdU. Higher dose of 225 mg/kg BrdU or the equimolar dose of EdU did not result in any further significant increases. These results show that both markers are reliable for the detection of proliferating cells in birds, but the numbers obtained with BrdU and EdU should not be compared.
Collapse
Affiliation(s)
- Lubica Kubikova
- Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dubravska Cesta 9, 840 05 Bratislava, Slovakia; (J.P.); (V.M.); (K.L.)
- Correspondence:
| | - Justina Polomova
- Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dubravska Cesta 9, 840 05 Bratislava, Slovakia; (J.P.); (V.M.); (K.L.)
| | - Viktoria Mikulaskova
- Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dubravska Cesta 9, 840 05 Bratislava, Slovakia; (J.P.); (V.M.); (K.L.)
- Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 812 37 Bratislava, Slovakia
| | - Kristina Lukacova
- Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dubravska Cesta 9, 840 05 Bratislava, Slovakia; (J.P.); (V.M.); (K.L.)
| |
Collapse
|
7
|
Haskins JS, Su C, Maeda J, Walsh KD, Haskins AH, Allum AJ, Froning CE, Kato TA. Evaluating the Genotoxic and Cytotoxic Effects of Thymidine Analogs, 5-Ethynyl-2'-Deoxyuridine and 5-Bromo-2'-Deoxyurdine to Mammalian Cells. Int J Mol Sci 2020; 21:E6631. [PMID: 32927807 PMCID: PMC7555307 DOI: 10.3390/ijms21186631] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/02/2020] [Accepted: 09/08/2020] [Indexed: 12/23/2022] Open
Abstract
BrdU (bromodeoxyuridine) and EdU (ethynyldeoxyuridine) have been largely utilized as the means of monitoring DNA replication and cellular division. Although BrdU induces gene and chromosomal mutations and induces sensitization to photons, EdU's effects have not been extensively studied yet. Therefore, we investigated EdU's potential cytotoxic and mutagenic effects and its related underlying mechanisms when administered to Chinese hamster ovary (CHO) wild type and DNA repair-deficient cells. EdU treatment displayed a higher cytotoxicity and genotoxicity than BrdU treatment. Cells with defective homologous recombination repair displayed a greater growth delay and severe inhibition of clonogenicity with EdU compared to wild type and other DNA repair-deficient cells. Inductions of sister chromatid exchange and hypoxanthine phosphorybosyl transferase (HPRT) mutation were observed in EdU-incorporated cells as well. Interestingly, on the other hand, EdU did not induce sensitization to photons to the same degree as BrdU. Our results demonstrate that elevated concentrations (similar to manufacturers suggested concentration; >5-10 μM) of EdU treatment were toxic to the cell cultures, particularly in cells with a defect in homologous recombination repair. Therefore, EdU should be administered with additional precautions.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Takamitsu A. Kato
- Department of Environmental & Radiological Health Sciences, Colorado State University, Fort Collins, CO 80526, USA; (J.S.H.); (C.S.); (J.M.); (K.D.W.); (A.H.H.); (A.J.A.); (C.E.F.)
| |
Collapse
|
8
|
Sharma RB, Darko C, Zheng X, Gablaski B, Alonso LC. DNA Damage Does Not Cause BrdU Labeling of Mouse or Human β-Cells. Diabetes 2019; 68:975-987. [PMID: 30833468 PMCID: PMC6477907 DOI: 10.2337/db18-0761] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 02/23/2019] [Indexed: 12/26/2022]
Abstract
Pancreatic β-cell regeneration, the therapeutic expansion of β-cell number to reverse diabetes, is an important goal. Replication of differentiated insulin-producing cells is the major source of new β-cells in adult mice and juvenile humans. Nucleoside analogs such as BrdU, which are incorporated into DNA during S-phase, have been widely used to quantify β-cell proliferation. However, reports of β-cell nuclei labeling with both BrdU and γ-phosphorylated H2A histone family member X (γH2AX), a DNA damage marker, have raised questions about the fidelity of BrdU to label S-phase, especially during conditions when DNA damage is present. We performed experiments to clarify the causes of BrdU-γH2AX double labeling in mouse and human β-cells. BrdU-γH2AX colabeling is neither an age-related phenomenon nor limited to human β-cells. DNA damage suppressed BrdU labeling and BrdU-γH2AX colabeling. In dispersed islet cells, but not in intact islets or in vivo, pro-proliferative conditions promoted both BrdU and γH2AX labeling, which could indicate DNA damage, DNA replication stress, or cell cycle-related intrinsic H2AX phosphorylation. Strategies to increase β-cell number must not only tackle the difficult challenge of enticing a quiescent cell to enter the cell cycle, but also achieve safe completion of the cell division process.
Collapse
Affiliation(s)
- Rohit B Sharma
- Diabetes Center of Excellence in the Department of Medicine, University of Massachusetts Medical School, Worcester, MA
| | - Christine Darko
- Diabetes Center of Excellence in the Department of Medicine, University of Massachusetts Medical School, Worcester, MA
| | - Xiaoying Zheng
- Diabetes Center of Excellence in the Department of Medicine, University of Massachusetts Medical School, Worcester, MA
| | - Brian Gablaski
- Diabetes Center of Excellence in the Department of Medicine, University of Massachusetts Medical School, Worcester, MA
| | - Laura C Alonso
- Diabetes Center of Excellence in the Department of Medicine, University of Massachusetts Medical School, Worcester, MA
| |
Collapse
|
9
|
Matatall KA, Kadmon CS, King KY. Detecting Hematopoietic Stem Cell Proliferation Using BrdU Incorporation. Methods Mol Biol 2018; 1686:91-103. [PMID: 29030815 PMCID: PMC6020038 DOI: 10.1007/978-1-4939-7371-2_7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Cellular quiescence is a key component of hematopoietic stem cell (HSC) homeostasis; therefore, a reliable method to measure HSC cell division is critical in many studies. However, measuring the proliferation rate of largely quiescent and rare populations of cells can be challenging. Bromo-deoxyuridine (BrdU) incorporation into replicating DNA is a commonly used and highly reproducible method to detect cell division history. Here, we describe a protocol for BrdU incorporation analysis in hematopoietic stem and progenitor cells that can provide a sensitive measure of cell division even in rare cell populations. In combination with flow cytometry, this method can be generalized to analyze other cell populations and other tissues as identified by cell surface markers.
Collapse
Affiliation(s)
- Katie A Matatall
- Pediatric Infectious Diseases, Stem Cells and Regenerative Medicine Center, Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
| | - Claudine S Kadmon
- Pediatric Infectious Diseases, Stem Cells and Regenerative Medicine Center, Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
| | - Katherine Y King
- Pediatric Infectious Diseases, Stem Cells and Regenerative Medicine Center, Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA.
- Texas Children's Hospital, 1102 Bates Street, Suite 1150, Houston, TX, 77030, USA.
| |
Collapse
|
10
|
Molina V, Rodríguez-Vázquez L, Owen D, Valero O, Martí J. Cell cycle analysis in the rat external granular layer evaluated by several bromodeoxyuridine immunoperoxidase staining protocols. Histochem Cell Biol 2017; 148:477-488. [PMID: 28681271 DOI: 10.1007/s00418-017-1593-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2017] [Indexed: 10/19/2022]
Abstract
An important step in bromodeoxyuridine (BrdU) immunohistochemistry is the production of single-stranded DNA to make the incorporated BrdU accessible to the antibodies. This paper examines the effect of distinct DNA denaturation pretreatments (DNase I, sodium citrate buffer, endonuclease Eco RI and exonuclease III, and HCl hydrolysis) on detection of BrdU. We found that all the methods used in the partial denaturation of DNA combined good nuclear immunostaining with acceptable tissue integrity. We also observed that these immunohistochemical protocols revealed a spatial pattern in the distribution of DNA-synthesizing cells within the cerebellar external granular layer (EGL) of 10-day-old rats, allowing us to estimate the fraction of S-phase cells. Our results indicate that detection of BrdU-stained cells is affected by the distinct histological procedures used in such detection. Additionally, as the duration and phases of the cell cycle in EGL neuroblasts are estimated in accordance with BrdU detection, an effect on this detection can render the measurement of cell cycle inaccurate. The present work shows that DNase I and citrate buffer, at appropriate conditions, may be good alternatives for acid denaturation. However, they are less sensitive than autoradiographic techniques that use 3H-thymidine administration. Finally, current data reveal that short survival times after a single BrdU exposure do not seem to affect the cell cycle progression of the EGL neuroblasts.
Collapse
Affiliation(s)
- Vanesa Molina
- Unidad de Citología e Histología, Facultad de Biociencias, Universidad Autónoma de Barcelona, Bellaterra, 08193, Barcelona, Spain
| | - Lucía Rodríguez-Vázquez
- Unidad de Citología e Histología, Facultad de Biociencias, Universidad Autónoma de Barcelona, Bellaterra, 08193, Barcelona, Spain
| | - David Owen
- Departament de Filologia Anglesa i de Germanística, Àrea de Filologia Anglesa, Bellaterra, 08193, Barcelona, Spain
| | - Oliver Valero
- Servei d'Estadística Aplicada, Universidad Autónoma de Barcelona, Bellaterra, 08193, Barcelona, Spain
| | - Joaquín Martí
- Unidad de Citología e Histología, Facultad de Biociencias, Universidad Autónoma de Barcelona, Bellaterra, 08193, Barcelona, Spain.
| |
Collapse
|
11
|
Fennessy RT, Owen-Hughes T. Establishment of a promoter-based chromatin architecture on recently replicated DNA can accommodate variable inter-nucleosome spacing. Nucleic Acids Res 2016; 44:7189-203. [PMID: 27106059 PMCID: PMC5009725 DOI: 10.1093/nar/gkw331] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 04/15/2016] [Indexed: 12/18/2022] Open
Abstract
Nucleosomes, the fundamental subunits of eukaryotic chromatin, are organized with respect to transcriptional start sites. A major challenge to the persistence of this organization is the disassembly of nucleosomes during DNA replication. Here, we use complimentary approaches to map the locations of nucleosomes on recently replicated DNA. We find that nucleosomes are substantially realigned with promoters during the minutes following DNA replication. As a result, the nucleosomal landscape is largely re-established before newly replicated chromosomes are partitioned into daughter cells and can serve as a platform for the re-establishment of gene expression programmes. When the supply of histones is disrupted through mutation of the chaperone Caf1, a promoter-based architecture is generated, but with increased inter-nucleosomal spacing. This indicates that the chromatin remodelling enzymes responsible for spacing nucleosomes are capable of organizing nucleosomes with a range of different linker DNA lengths.
Collapse
Affiliation(s)
- Ross T Fennessy
- Centre for Gene Regulation and Expression, School of Life Sceinces, University of Dundee, Dundee, DD1 5EH, UK
| | - Tom Owen-Hughes
- Centre for Gene Regulation and Expression, School of Life Sceinces, University of Dundee, Dundee, DD1 5EH, UK
| |
Collapse
|
12
|
Endaya B, Cavanagh B, Alowaidi F, Walker T, de Pennington N, Ng JMA, Lam PYP, Mackay-Sim A, Neuzil J, Meedeniya ACB. Isolating dividing neural and brain tumour cells for gene expression profiling. J Neurosci Methods 2015; 257:121-33. [PMID: 26432933 DOI: 10.1016/j.jneumeth.2015.09.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 09/21/2015] [Accepted: 09/23/2015] [Indexed: 12/24/2022]
Abstract
BACKGROUND The characterisation of dividing brain cells is fundamental for studies ranging from developmental and stem cell biology, to brain cancers. Whilst there is extensive anatomical data on these dividing cells, limited gene transcription data is available due to technical constraints. NEW METHOD We focally isolated dividing cells whilst conserving RNA, from culture, primary neural tissue and xenografted glioma tumours, using a thymidine analogue that enables gene transcription analysis. RESULTS 5-ethynyl-2-deoxyuridine labels the replicating DNA of dividing cells. Once labelled, cultured cells and tissues were dissociated, fluorescently tagged with a revised click chemistry technique and the dividing cells isolated using fluorescence-assisted cell sorting. RNA was extracted and analysed using real time PCR. Proliferation and maturation related gene expression in neurogenic tissues was demonstrated in acutely and 3 day old labelled cells, respectively. An elevated expression of marker and pathway genes was demonstrated in the dividing cells of xenografted brain tumours, with the non-dividing cells showing relatively low levels of expression. COMPARISON WITH EXISTING METHOD BrdU "immune-labelling", the most frequently used protocol for detecting cell proliferation, causes complete denaturation of RNA, precluding gene transcription analysis. This EdU labelling technique, maintained cell integrity during dissociation, minimized copper exposure during labelling and used a cell isolation protocol that avoided cell lysis, thus conserving RNA. CONCLUSIONS The technique conserves RNA, enabling the definition of cell proliferation-related changes in gene transcription of neural and pathological brain cells in cells harvested immediately after division, or following a period of maturation.
Collapse
Affiliation(s)
- Berwini Endaya
- Griffith Health Institute, Griffith University, Southport, QLD 4222, Australia; Eskitis Institute for Drug Discovery, Griffith University, Nathan, QLD 4111, Australia
| | - Brenton Cavanagh
- Eskitis Institute for Drug Discovery, Griffith University, Nathan, QLD 4111, Australia
| | - Faisal Alowaidi
- Griffith Health Institute, Griffith University, Southport, QLD 4222, Australia; Eskitis Institute for Drug Discovery, Griffith University, Nathan, QLD 4111, Australia
| | - Tom Walker
- Griffith Health Institute, Griffith University, Southport, QLD 4222, Australia; Eskitis Institute for Drug Discovery, Griffith University, Nathan, QLD 4111, Australia
| | - Nicholas de Pennington
- Human Adult Neural Stem Cell Facility, Nuffield Department of Surgery, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, United Kingdom
| | - Jin-Ming A Ng
- Eskitis Institute for Drug Discovery, Griffith University, Nathan, QLD 4111, Australia
| | - Paula Y P Lam
- National Cancer Centre Singapore, 11 Hospital Drive, Singapore 169610, Singapore
| | - Alan Mackay-Sim
- Eskitis Institute for Drug Discovery, Griffith University, Nathan, QLD 4111, Australia
| | - Jiri Neuzil
- Griffith Health Institute, Griffith University, Southport, QLD 4222, Australia; Institute of Biotechnology, Academy of Sciences of the Czech Republic, Videnska 1083, 142 20 Prague 4-Krc, Czech Republic
| | - Adrian C B Meedeniya
- Griffith Health Institute, Griffith University, Southport, QLD 4222, Australia; Eskitis Institute for Drug Discovery, Griffith University, Nathan, QLD 4111, Australia.
| |
Collapse
|
13
|
Choi JS, Berdis AJ. Visualizing nucleic acid metabolism using non-natural nucleosides and nucleotide analogs. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1864:165-76. [PMID: 26004088 DOI: 10.1016/j.bbapap.2015.05.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Revised: 05/14/2015] [Accepted: 05/15/2015] [Indexed: 12/17/2022]
Abstract
Nucleosides and their corresponding mono-, di-, and triphosphates play important roles in maintaining cellular homeostasis. In addition, perturbations in this homeostasis can result in dysfunctional cellular processes that cause pathological conditions such as cancer and autoimmune diseases. This review article discusses contemporary research areas applying nucleoside analogs to probe the mechanistic details underlying the complexities of nucleoside metabolism at the molecular and cellular levels. The first area describes classic and contemporary approaches used to quantify the activity of nucleoside transporters, an important class of membrane proteins that mediate the influx and efflux of nucleosides and nucleobases. A focal point of this section is describing how biophotonic nucleosides are replacing conventional assays employing radiolabeled substrates to study the mechanism of these proteins. The second section describes approaches to understand the utilization of nucleoside triphosphates by cellular DNA polymerases during DNA synthesis. Emphasis here is placed on describing how novel nucleoside analogs such as 5-ethynyl-2'-deoxyuridine are being used to quantify DNA synthesis during normal replication as well as during the replication of damaged DNA. In both sections, seminal research articles relevant to these areas are described to highlight how these novel probes are improving our understanding of these biological processes. This article is part of a Special Issue entitled: Physiological Enzymology and Protein Functions.
Collapse
Affiliation(s)
- Jung-Suk Choi
- Department of Chemistry, Cleveland State University, 2351 Euclid Avenue, Cleveland, OH 44115, USA; The Center for Gene Regulation in Health and Disease, Cleveland State University, 2351 Euclid Avenue, Cleveland, OH 44115, USA
| | - Anthony J Berdis
- Department of Chemistry, Cleveland State University, 2351 Euclid Avenue, Cleveland, OH 44115, USA; The Center for Gene Regulation in Health and Disease, Cleveland State University, 2351 Euclid Avenue, Cleveland, OH 44115, USA; Case Comprehensive Cancer Center, 11000 Euclid Avenue, Cleveland, OH 44106, USA; Red5 Pharmaceuticals, LLC, 10000 Euclid Avenue, Cleveland, OH 44106, USA.
| |
Collapse
|