1
|
Islam MS, Molley TG, Hung TT, Sathish CI, Putra VDL, Jalandhra GK, Ireland J, Li Y, Yi J, Kruzic JJ, Kilian KA. Magnetic Nanofibrous Hydrogels for Dynamic Control of Stem Cell Differentiation. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37643902 DOI: 10.1021/acsami.3c07021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
The extracellular matrix in tissue consists of complex heterogeneous soft materials with hierarchical structure and dynamic mechanical properties dictating cell and tissue level function. In many natural matrices, there are nanofibrous structures that serve to guide cell activity and dictate the form and function of tissue. Synthetic hydrogels with integrated nanofibers can mimic the structural properties of native tissue; however, model systems with dynamic mechanical properties remain elusive. Here we demonstrate modular nanofibrous hydrogels that can be reversibly stiffened in response to applied magnetic fields. Iron oxide nanoparticles were incorporated into gelatin nanofibers through electrospinning, followed by chemical stabilization and fragmentation. These magnetoactive nanofibers can be mixed with virtually any hydrogel material and reversibly stiffen the matrix at a low fiber content (≤3%). In contrast to previous work, where a large quantity of magnetic material disallowed cell encapsulation, the low nanofiber content allows matrix stiffening with cells in 3D. Using adipose derived stem cells, we show how nanofibrous matrices are beneficial for both osteogenesis and adipogenesis, where stiffening the hydrogel with applied magnetic fields enhances osteogenesis while discouraging adipogenesis. Skeletal myoblast progenitors were used as a model of tissue morphogenesis with matrix stiffening augmenting myogenesis and multinucleated myotube formation. The ability to reversibly stiffen fibrous hydrogels through magnetic stimulation provides a useful tool for studying nanotopography and dynamic mechanics in cell culture, with a scope for stimuli responsive materials for tissue engineering.
Collapse
Affiliation(s)
- Md Shariful Islam
- School of Materials Science and Engineering, University of New South Wales (UNSW Sydney), Sydney, New South Wales 2052, Australia
| | - Thomas G Molley
- School of Materials Science and Engineering, University of New South Wales (UNSW Sydney), Sydney, New South Wales 2052, Australia
| | - Tzong-Tyng Hung
- Biological Resources Imaging Laboratory, Mark Wainwright Analytical Centre, University of New South Wales (UNSW Sydney), Sydney, New South Wales 2052, Australia
| | - C I Sathish
- School of Engineering, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - Vina D L Putra
- School of Materials Science and Engineering, University of New South Wales (UNSW Sydney), Sydney, New South Wales 2052, Australia
| | - Gagan K Jalandhra
- School of Materials Science and Engineering, University of New South Wales (UNSW Sydney), Sydney, New South Wales 2052, Australia
| | - Jake Ireland
- School of Chemistry, Australian Centre for NanoMedicine, University of New South Wales (UNSW Sydney), Sydney, New South Wales 2052, Australia
| | - Yancheng Li
- School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Jiabao Yi
- School of Engineering, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - Jamie J Kruzic
- School of Mechanical and Manufacturing Engineering, University of New South Wales (UNSW Sydney), Sydney, New South Wales 2052, Australia
| | - Kristopher A Kilian
- School of Materials Science and Engineering, University of New South Wales (UNSW Sydney), Sydney, New South Wales 2052, Australia
- School of Chemistry, Australian Centre for NanoMedicine, University of New South Wales (UNSW Sydney), Sydney, New South Wales 2052, Australia
| |
Collapse
|
2
|
Taninaka A, Kabata T, Hayashi K, Kajino Y, Inoue D, Ohmori T, Ueoka K, Yamamuro Y, Kataoka T, Saiki Y, Yanagi Y, Ima M, Iyobe T, Tsuchiya H. Chondroprotective Effects of Chondrogenic Differentiated Adipose-Derived Mesenchymal Stem Cells Sheet on Degenerated Articular Cartilage in an Experimental Rabbit Model. Bioengineering (Basel) 2023; 10:bioengineering10050574. [PMID: 37237645 DOI: 10.3390/bioengineering10050574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/25/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Adipose-derived stem cells (ADSCs) have been studied for many years as a therapeutic option for osteoarthritis (OA); however, their efficacy remains insufficient. Since platelet-rich plasma (PRP) induces chondrogenic differentiation in ADSCs and the formation of a sheet structure by ascorbic acid can increase the number of viable cells, we hypothesized that the injection of chondrogenic cell sheets combined with the effects of PRP and ascorbic acid may hinder the progression of OA. The effects of induction of differentiation by PRP and formation of sheet structure by ascorbic acid on changes in chondrocyte markers (collagen II, aggrecan, Sox9) in ADSCs were evaluated. Changes in mucopolysaccharide and VEGF-A secretion from cells injected intra-articularly in a rabbit OA model were also evaluated. ADSCs treated by PRP strongly chondrocyte markers, including type II collagen, Sox9, and aggrecan, and their gene expression was maintained even after sheet-like structure formation induced by ascorbic acid. In this rabbit OA model study, the inhibition of OA progression by intra-articular injection was improved by inducing chondrocyte differentiation with PRP and sheet structure formation with ascorbic acid in ADSCs.
Collapse
Affiliation(s)
- Atsushi Taninaka
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Ishikawa 920-8641, Japan
| | - Tamon Kabata
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Ishikawa 920-8641, Japan
| | - Katsuhiro Hayashi
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Ishikawa 920-8641, Japan
| | - Yoshitomo Kajino
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Ishikawa 920-8641, Japan
| | - Daisuke Inoue
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Ishikawa 920-8641, Japan
| | - Takaaki Ohmori
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Ishikawa 920-8641, Japan
| | - Ken Ueoka
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Ishikawa 920-8641, Japan
| | - Yuki Yamamuro
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Ishikawa 920-8641, Japan
| | - Tomoyuki Kataoka
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Ishikawa 920-8641, Japan
| | - Yoshitomo Saiki
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Ishikawa 920-8641, Japan
| | - Yu Yanagi
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Ishikawa 920-8641, Japan
| | - Musashi Ima
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Ishikawa 920-8641, Japan
| | - Takahiro Iyobe
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Ishikawa 920-8641, Japan
| | - Hiroyuki Tsuchiya
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Ishikawa 920-8641, Japan
| |
Collapse
|
3
|
Tu CC, Cheng NC, Yu J, Pan YX, Tai WC, Chen YC, Chang PC. Adipose-derived stem cell spheroid-laden microbial transglutaminase cross-linked gelatin hydrogel for treating diabetic periodontal wounds and craniofacial defects. Stem Cell Res Ther 2023; 14:20. [PMID: 36737813 PMCID: PMC9898981 DOI: 10.1186/s13287-023-03238-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 01/10/2023] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Diabetes mellitus deteriorates the destruction and impairs the healing of periodontal wounds and craniofacial defects. This study is to evaluate the potential of self-assembled adipose-derived stem cell spheroids (ADsp) in microbial transglutaminase cross-linked gelatin hydrogel (mTG) for treating diabetic periodontal wounds and craniofacial defects. METHODS Human adipose-derived stem cells (ADSCs) were isolated by lipoaspiration, pluripotent genes and trilineage differentiation were examined, and the maintenance of ADsp properties in mTG was verified. Oral mucosal wounds and calvarial osseous defects were created in diabetic rats. Gross observation, histologic evaluation, and immunohistochemistry for proliferating cells and keratinization were conducted in the mucosal wounds within 4-28 days. Micro-CT imaging, histologic evaluation, and immunohistochemistry for proliferating cells and osteogenic differentiation were conducted in the osseous defects at 7 and 28 days. RESULTS ADSCs expressed pluripotent genes and were capable of trilineage differentiation. ADsp retained morphology and stemness in mTG. In diabetic mucosal wounds, wound closure, epithelization, and keratinization were accelerated in those with ADsp and ADsp-mTG. In diabetic osseous defects, osteogenic differentiation markers were evidently expressed, cell proliferation was promoted from day 7, and bone formation was significantly promoted at day 28 in those with osteogenically pretreated ADsp-mTG. CONCLUSIONS ADsp-mTG accelerated diabetic oral mucosal wound healing, and osteogenically pretreated ADsp-mTG promoted diabetic osseous defect regeneration, proving that ADsp-mTG facilitated diabetic periodontal wound healing and craniofacial osseous defect regeneration.
Collapse
Affiliation(s)
- Che-Chang Tu
- Graduate Institute of Clinical Dentistry, School of Dentistry, College of Medicine, National Taiwan University, Taipei, Taiwan
- Division of Periodontics, Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan
| | - Nai-Chen Cheng
- Department of Surgery, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | - Jiashing Yu
- Department of Chemical Engineering, College of Engineering, National Taiwan University, Taipei, Taiwan
| | - Yi-Xuan Pan
- Division of Periodontics, Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan
- Department of Surgery, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | - Wei-Chiu Tai
- Graduate Institute of Clinical Dentistry, School of Dentistry, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yin-Chuan Chen
- Department of Chemical Engineering, College of Engineering, National Taiwan University, Taipei, Taiwan
| | - Po-Chun Chang
- Graduate Institute of Clinical Dentistry, School of Dentistry, College of Medicine, National Taiwan University, Taipei, Taiwan.
- Division of Periodontics, Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan.
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
4
|
Kimura M, Nakase J, Takata Y, Shimozaki K, Asai K, Yoshimizu R, Kanayama T, Yanatori Y, Tsuchiya H. Regeneration Using Adipose-Derived Stem Cell Sheets in a Rabbit Meniscal Defect Model Improves Tensile Strength and Load Distribution Function of the Meniscus at 12 Weeks. Arthroscopy 2023; 39:360-370. [PMID: 35995333 DOI: 10.1016/j.arthro.2022.07.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 07/28/2022] [Accepted: 07/28/2022] [Indexed: 02/02/2023]
Abstract
PURPOSE The purpose of this study was to evaluate the mechanical properties, such as the tensile strength and load distribution function, of the meniscus tissue regenerated using adipose-derived stem cell (ADSC) sheets in a rabbit meniscal defect model. METHODS ADSC sheets were prepared from adipose tissue of rabbits. The anterior half of the medial meniscus was removed from both knees. One knee was transplanted with an ADSC sheet; the contralateral knee was closed without transplantation. Mechanical tests were performed at 4 and 12 weeks posttransplantation. In the tensile test, tensile force was applied to the entire medial meniscus, including the normal area (n = 10/group). Compression tests were performed on the entire knee, with soft tissues other than the ligament removed. A pressure-sensitive film was inserted under the medial meniscus and a 40-N load was applied (n = 5/group). RESULTS In the tensile test, the elastic modulus in ADSC-treated knees was higher at 12 weeks (ADSC: 70.30 ± 18.50 MPa, control: 43.71 ± 7.11 MPa, P = .009). The ultimate tensile strength (UTS) in ADSC-treated knees at 12 weeks was also higher (ADSC: 22.69 ± 5.87 N, control: 15.45 ± 4.08 N, P = .038). In the compression test, the contact area was larger in the ADSC group at 4 weeks (ADSC: 31.60 ± 8.17 mm2, control: 20.33 ± 2.86 mm2, P = .024) and 12 weeks (ADSC: 41.07 ± 6.09 mm2, control: 30.53 ± 5.47 mm2, P = .04). Peak pressure was significantly lower in ADSC-treated knees at 12 weeks (ADSC: 11.91 ± 1.03 MPa, control: 15.53 ± 2.3 MPa, P = .002). CONCLUSIONS The regenerated meniscus tissue, 12 weeks after transplantation of the ADSC sheets into the meniscal defect area, had high elastic modulus and UTS. In the meniscus-tibia compartment, the contact area was large and the peak pressure was low. CLINICAL RELEVANCE ADSC sheets promoted regeneration of meniscus. ADSC sheet transplantation for meniscal defects could be an effective regenerative therapy.
Collapse
Affiliation(s)
- Mitsuhiro Kimura
- Department of Orthopedic Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Junsuke Nakase
- Department of Orthopedic Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan.
| | - Yasushi Takata
- Department of Orthopedic Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Kengo Shimozaki
- Department of Orthopedic Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Kazuki Asai
- Department of Orthopedic Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Rikuto Yoshimizu
- Department of Orthopedic Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Tomoyuki Kanayama
- Department of Orthopedic Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Yusuke Yanatori
- Department of Orthopedic Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Hiroyuki Tsuchiya
- Department of Orthopedic Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
5
|
Facilitatory effects of artificial nerve filled with adipose-derived stem cell sheets on peripheral nerve regeneration: An experimental study. J Orthop Sci 2021; 26:1113-1118. [PMID: 33248872 DOI: 10.1016/j.jos.2020.09.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 08/25/2020] [Accepted: 09/16/2020] [Indexed: 01/06/2023]
Abstract
BACKGROUND We evaluated how artificial nerves filled with adipose-derived stem cell (ADSC) sheets could facilitate peripheral nerve regeneration. METHODS We prepared ADSC sheets following previously described protocols. We transected the sciatic nerve in 12-week-old Wistar rats, fixed the nerve ends to the artificial conduit, and prepared three groups: (1) conduits alone (control group); (2) conduits filled with ADSCs (ADSCs group), and (3) conduits filled with ADSC sheets (ADSC sheet group). We assessed the subjects 4 and 12 weeks post-transplantation (n = 24). We investigated βIII-tubulin and anti-S100 expression at 4 and 12 weeks post-transplantation, in longitudinal- and cross-sections of the central portion in the regenerated tissues. The vascular endothelial growth factor A (VEGFA) and neuregulin-1 expressions were analyzed using real-time reverse-transcription polymerase chain reaction (real-time RT-PCR). We evaluated the tibialis anterior muscle wet weight (affected/healthy sides, %) and sciatic function index (SFI) 12 weeks post-transplantation. RESULTS The ADSC sheet group comprised more S100-positive cells than the other groups. The regenerated axon length in the ADSC sheet group was markedly the longest among the studied groups. The immunostaining revealed a positive area in the regenerated tissue center in all groups, tending to be the largest in the ADSC sheet group. The muscle wet weight indicated that the ADSC sheet group exhibited significantly higher weight than the control. The mean SFI showed that the ADSC sheet group exhibited significantly better results than the control. The VEGFA expression was higher both in the ADSC and the ADSC sheet group than in the control. The neuregulin-1 expression was higher both in the ADSC and the ADSC sheet group than in the control. CONCLUSIONS The ADSC sheets could potentially support transplanting an adequate number of ADSCs at the target site. Compared with the conventional method of attaching ADSCs, the use of ADSC sheets promotes accelerated nerve regeneration.
Collapse
|
6
|
Hu T, Zhang H, Yu W, Yu X, Li Z, He L. The Combination of Concentrated Growth Factor and Adipose-Derived Stem Cell Sheet Repairs Skull Defects in Rats. Tissue Eng Regen Med 2021; 18:905-913. [PMID: 34302696 DOI: 10.1007/s13770-021-00371-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND The goal of this study was to create a biomaterial which combines concentrated growth factor (CGF) with an adipose-derived stem cell (ADSC) sheet to promote the repair of skull defects in rats. METHODS We determined the optimal concentration of CGF extract by investigating the effects of different concentrations (0, 5%, 10%, and 20%) on the proliferation and differentiation of ADSCs. Then we created a complex combining CGF with an ADSC sheet, and tested the effects on bone repair in four experimental rat groups: (A) control; (B) ADSC sheet; (C) CGF particles; (D) combination of CGF + ADSCs. Eight weeks after the procedure, osteogenesis was assessed by micro-CT and hematoxylin and eosin staining. RESULTS We found that the concentration of CGF extract that promoted optimal ADSC proliferation and differentiation in vitro was 20%. In turn, bone regeneration was promoted the most by the combination of CGF and ADSCs. CONCLUSION In this study, we determined the optimal ratio of CGF and ADSCs to be used in a biomaterial for bone regeneration. The resulting CGF/ADSCs complex promotes maxillofacial bone defect repair in rats.
Collapse
Affiliation(s)
- Tuqiang Hu
- Department of Stomatology, Renmin Hospital, Hubei University of Medicine, NO.39 Chaoyang Middle Road, Maojian District, Shiyan, 442000, Hubei, China
| | - Hao Zhang
- Department of Stomatology, Renmin Hospital, Hubei University of Medicine, NO.39 Chaoyang Middle Road, Maojian District, Shiyan, 442000, Hubei, China.,School of Dentistry, Hubei University of Medicine, NO.30 Renmin South Road, Maojian District, Shiyan, 442000, Hubei, China
| | - Wei Yu
- Department of Stomatology, Renmin Hospital, Hubei University of Medicine, NO.39 Chaoyang Middle Road, Maojian District, Shiyan, 442000, Hubei, China
| | - Xuezhou Yu
- Department of Stomatology, Renmin Hospital, Hubei University of Medicine, NO.39 Chaoyang Middle Road, Maojian District, Shiyan, 442000, Hubei, China
| | - Zubing Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, NO.237 Luoyu Road, Hongshan District, Wuhan, 430079, Hubei, China
| | - Li He
- Department of Stomatology, Renmin Hospital, Hubei University of Medicine, NO.39 Chaoyang Middle Road, Maojian District, Shiyan, 442000, Hubei, China.
| |
Collapse
|
7
|
Takagi T, Kabata T, Hayashi K, Fang X, Kajino Y, Inoue D, Ohmori T, Ueno T, Yoshitani J, Ueoka K, Yamamuro Y, Tsuchiya H. Periodic injections of adipose-derived stem cell sheets attenuate osteoarthritis progression in an experimental rabbit model. BMC Musculoskelet Disord 2020; 21:691. [PMID: 33076883 PMCID: PMC7574575 DOI: 10.1186/s12891-020-03718-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 10/13/2020] [Indexed: 12/05/2022] Open
Abstract
Background Subcutaneous adipose tissue represents an abundant source of multipotent adult stem cells named as Adipose-derived stem cells (ADSCs). With a cell sheet approach, ADSCs survive longer, and can be delivered in large quantities. We investigated whether intra-articular ADSC sheets attenuated osteoarthritis (OA) progression in a rabbit anterior cruciate ligament transection (ACLT) model. Methods Fabricating medium containing ascorbate-2-phosphate was used to enhance collagen protein secretion by the ADSCs to make ADSC sheets. At 4 weeks after ACLT, autologous ADSC sheets were injected intra-articularly into the right knee (ADSC sheets group), and autologous cell death sheets treated by liquid nitrogen were injected into the left knee (control group). Subsequent injections were administered once weekly. Femoral condyles were compared macroscopically and histologically. Results Macroscopically, OA progression was significantly milder in the ADSC sheets than in the control groups. Histologically, control knees showed obvious erosions in the medial and lateral condyles, while cartilage was retained predominantly in the ADSC sheets group. Immunohistochemically, MMP-1, MMP-13, ADAMTS-4 were less expressive in the ADSC sheets than in the control groups. Conclusions Periodic ADSC sheets injections inhibited articular cartilage degeneration without inducing any adverse effects. A large quantity of autologous ADSCs delivered by cell sheets homed to the synovium and protected chondrocytes.
Collapse
Affiliation(s)
- Tomoharu Takagi
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa university, 13-1 Takara-machi, Kanazawa, 920-8641, Japan
| | - Tamon Kabata
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa university, 13-1 Takara-machi, Kanazawa, 920-8641, Japan.
| | - Katsuhiro Hayashi
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa university, 13-1 Takara-machi, Kanazawa, 920-8641, Japan
| | - Xiang Fang
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa university, 13-1 Takara-machi, Kanazawa, 920-8641, Japan
| | - Yoshitomo Kajino
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa university, 13-1 Takara-machi, Kanazawa, 920-8641, Japan
| | - Daisuke Inoue
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa university, 13-1 Takara-machi, Kanazawa, 920-8641, Japan
| | - Takaaki Ohmori
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa university, 13-1 Takara-machi, Kanazawa, 920-8641, Japan
| | - Takuro Ueno
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa university, 13-1 Takara-machi, Kanazawa, 920-8641, Japan
| | - Junya Yoshitani
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa university, 13-1 Takara-machi, Kanazawa, 920-8641, Japan
| | - Ken Ueoka
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa university, 13-1 Takara-machi, Kanazawa, 920-8641, Japan
| | - Yuki Yamamuro
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa university, 13-1 Takara-machi, Kanazawa, 920-8641, Japan
| | - Hiroyuki Tsuchiya
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa university, 13-1 Takara-machi, Kanazawa, 920-8641, Japan
| |
Collapse
|
8
|
Combinational therapy with antibiotics and antibiotic-loaded adipose-derived stem cells reduce abscess formation in implant-related infection in rats. Sci Rep 2020; 10:11182. [PMID: 32636453 PMCID: PMC7341734 DOI: 10.1038/s41598-020-68184-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 06/19/2020] [Indexed: 02/06/2023] Open
Abstract
Implant-related infection is difficult to treat without extended antibiotic courses. However, the long-term use of antibiotics has led to the development of multidrug- and methicillin-resistant Staphylococcusaureus. Thus, alternatives to conventional antibiotic therapy are needed. Recently, mesenchymal stem cells have been shown to have antimicrobial properties. This study aimed to evaluate the antimicrobial activity and therapeutic effect of local treatment with antibiotic-loaded adipose-derived stem cells (ADSCs) plus an antibiotic in a rat implant-associated infection model. Liquid chromatography/tandem mass spectrometry revealed that ADSCs cultured in the presence of ciprofloxacin for 24 h showed time-dependent antibiotic loading. Next, we studied the therapeutic effects of ADSCs and ciprofloxacin alone or in combination in an implant-related infection rat model. The therapeutic effects of ADSCs plus antibiotics, antibiotics, and ADSCs were compared with no treatment as a control. Rats treated with ADSCs plus ciprofloxacin had the lowest modified osteomyelitis scores, abscess formation, and bacterial burden on the implant among all groups (P < 0.05). Thus, local treatment with ADSCs plus an antibiotic has an antimicrobial effect in implant-related infection and decrease abscess formation. Thus, our findings indicate that local administration of ADSCs with antibiotics represents a novel treatment strategy for implant-associated osteomyelitis.
Collapse
|
9
|
Progress in biological reconstruction and enhanced bone revitalization for bone defects. J Orthop Sci 2019; 24:387-392. [PMID: 30797666 DOI: 10.1016/j.jos.2019.01.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 11/27/2018] [Accepted: 01/09/2019] [Indexed: 11/22/2022]
Abstract
Bone defect reconstruction with artificial materials may produce good functional recovery in the short term. Over time, the durability of artificial materials becomes an issue, and therefore, artificial materials cannot be considered a permanent solution to reconstruction. For long-term outcomes, the goal is to regain function, permanence, and form that are as close to normal as possible. Thus, physiological materials are desirable for use in reconstruction. Biological reconstruction involves the use of materials that are modified in vivo following reconstruction of bone defects. The goal is to achieve bone union, bone revival and remodeling, with biointegration of soft tissue and bone. Allograft use has been the mainstay of bone defect reconstruction in most parts of the world, although in some countries like Japan, allogeneic bone is difficult to obtain due to socio-religious concerns. Therefore, we developed new biological reconstruction techniques to overcome this problem. Bone derived from distraction osteogenesis is autologous bone, which must be an ideal reconstruction material for its biological affinity, strength, resilience, and immunity to infection. When applying this method to patients with malignant disease however, it is important to preserve as much of the local soft tissue as possible, and the clinician must be especially careful of infection and callus formation. Liquid nitrogen treatment of tumor-bearing bone produces equal, if not better, bone revitalization compared to other forms of treatment to date. Reconstruction with liquid nitrogen-treated bone involves resecting the diseased bone and returning it to the body following liquid nitrogen treatment (free-freezing method). Another method involves dislocating the joint proximal to the tumor, or cutting the bone while the distal side remains attached to the body and the limb inverted and treated with liquid nitrogen (pedicle freezing method). When both methods are possible, the pedicle freezing method is preferable since it is performed with minimal osteotomy. Our recent research has looked into the possible role of adipose-derived stem cells in promoting bone fusion and revitalization. This method has produced promising results for the future of biological reconstruction.
Collapse
|
10
|
Yoshida Y, Matsubara H, Fang X, Hayashi K, Nomura I, Ugaji S, Hamada T, Tsuchiya H. Adipose-derived stem cell sheets accelerate bone healing in rat femoral defects. PLoS One 2019; 14:e0214488. [PMID: 30921414 PMCID: PMC6438603 DOI: 10.1371/journal.pone.0214488] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Accepted: 03/13/2019] [Indexed: 12/15/2022] Open
Abstract
In the present study, we investigated whether both adipose-derived stem cell (ADSC) and osteogenic-induced ADSC sheets could promote bone healing in a rat distal femoral metaphysis bone defect model. A through-hole defect of 1 mm diameter was drilled into each distal femur of 12 week old rats. Forty-five rats were randomly assigned to three groups: (1) control group; (2) ADSC sheet group; or (3) osteogenic-induced ADSC sheet group. We evaluated each group by analysis of computerized tomography scans every week after the surgery, histological analysis, and DiI labeling (a method of membrane staining for post implant cell tracing). Radiological and histological evaluations showed that a part of the hole persisted in the control group at four weeks after surgery, whereas the hole was restored almost completely by new bone formation in both sheet groups. The mean value of bone density (in Houndsfield units) for the bone defect area was significantly higher in both sheet groups than that in the control group (p = 0.05) at four weeks postoperative. A large number of osteocalcin positive osteoblasts were observed at the area of bone defect, especially in the osteogenic-induced ADCS sheet group. DiI labeling in the newly formed bone showed that each sheet had differentiated into bone tissue at four weeks after surgery. The ADSC and the osteogenic-induced ADSC sheets promoted significantly quicker bone healing in the bone defect. Moreover, the osteogenic-induced ADSC sheet may be more advantageous for bone healing than the ADSC sheet because of the higher number of osteocalcin positive osteoblasts via the transplantation.
Collapse
Affiliation(s)
- Yasuhisa Yoshida
- Department of Orthopaedic Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Hidenori Matsubara
- Department of Orthopaedic Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Xiang Fang
- Department of Orthopaedic Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Katsuhiro Hayashi
- Department of Orthopaedic Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Issei Nomura
- Department of Orthopaedic Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Shuhei Ugaji
- Department of Orthopaedic Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Tomo Hamada
- Department of Orthopaedic Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Hiroyuki Tsuchiya
- Department of Orthopaedic Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
11
|
Chiarella E, Aloisio A, Scicchitano S, Lucchino V, Montalcini Y, Galasso O, Greco M, Gasparini G, Mesuraca M, Bond HM, Morrone G. ZNF521 Represses Osteoblastic Differentiation in Human Adipose-Derived Stem Cells. Int J Mol Sci 2018; 19:ijms19124095. [PMID: 30567301 PMCID: PMC6321315 DOI: 10.3390/ijms19124095] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 12/11/2018] [Accepted: 12/12/2018] [Indexed: 01/02/2023] Open
Abstract
Human adipose-derived stem cells (hADSCs) are multipotent mesenchymal cells that can differentiate into adipocytes, chondrocytes, and osteocytes. During osteoblastogenesis, the osteoprogenitor cells differentiate into mature osteoblasts and synthesize bone matrix components. Zinc finger protein 521 (ZNF521/Zfp521) is a transcription co-factor implicated in the regulation of hematopoietic, neural, and mesenchymal stem cells, where it has been shown to inhibit adipogenic differentiation. The present study is aimed at determining the effects of ZNF521 on the osteoblastic differentiation of hADSCs to clarify whether it can influence their osteogenic commitment. The enforced expression or silencing of ZNF521 in hADSCs was achieved by lentiviral vector transduction. Cells were cultured in a commercial osteogenic medium for up to 20 days. The ZNF521 enforced expression significantly reduced osteoblast development as assessed by the morphological and molecular criteria, resulting in reduced levels of collagen I, alkaline phosphatase, osterix, osteopontin, and calcium deposits. Conversely, ZNF521 silencing, in response to osteoblastic stimuli, induced a significant increase in early molecular markers of osteogenesis and, at later stages, a remarkable enhancement of matrix mineralization. Together with our previous findings, these results show that ZNF521 inhibits both adipocytic and osteoblastic maturation in hADSCs and suggest that its expression may contribute to maintaining the immature properties of hADSCs.
Collapse
Affiliation(s)
- Emanuela Chiarella
- Department of Clinical and Experimental Medicine, Laboratory of Molecular Haematopoiesis and Stem Cell Biology, University "Magna Græcia", Catanzaro 88100, Italy.
| | - Annamaria Aloisio
- Department of Clinical and Experimental Medicine, Laboratory of Molecular Haematopoiesis and Stem Cell Biology, University "Magna Græcia", Catanzaro 88100, Italy.
| | - Stefania Scicchitano
- Department of Clinical and Experimental Medicine, Laboratory of Molecular Haematopoiesis and Stem Cell Biology, University "Magna Græcia", Catanzaro 88100, Italy.
| | - Valeria Lucchino
- Department of Clinical and Experimental Medicine, Laboratory of Molecular Haematopoiesis and Stem Cell Biology, University "Magna Græcia", Catanzaro 88100, Italy.
- German Center for Neurodegenerative Diseases (DZNE), Bonn 53127, Germany.
| | - Ylenia Montalcini
- Department of Clinical and Experimental Medicine, Laboratory of Molecular Haematopoiesis and Stem Cell Biology, University "Magna Græcia", Catanzaro 88100, Italy.
| | - Olimpio Galasso
- Department of Orthopedic & Trauma Surgery, University "Magna Græcia", Catanzaro 88100, Italy.
| | - Manfredi Greco
- Department of Plastic Surgery, University "Magna Græcia", Catanzaro 88100, Italy.
| | - Giorgio Gasparini
- Department of Orthopedic & Trauma Surgery, University "Magna Græcia", Catanzaro 88100, Italy.
| | - Maria Mesuraca
- Department of Clinical and Experimental Medicine, Laboratory of Molecular Haematopoiesis and Stem Cell Biology, University "Magna Græcia", Catanzaro 88100, Italy.
| | - Heather M Bond
- Department of Clinical and Experimental Medicine, Laboratory of Molecular Haematopoiesis and Stem Cell Biology, University "Magna Græcia", Catanzaro 88100, Italy.
| | - Giovanni Morrone
- Department of Clinical and Experimental Medicine, Laboratory of Molecular Haematopoiesis and Stem Cell Biology, University "Magna Græcia", Catanzaro 88100, Italy.
| |
Collapse
|
12
|
Optimizing Osteogenic Differentiation of Ovine Adipose-Derived Stem Cells by Osteogenic Induction Medium and FGFb, BMP2, or NELL1 In Vitro. Stem Cells Int 2018; 2018:9781393. [PMID: 30356449 PMCID: PMC6178511 DOI: 10.1155/2018/9781393] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 07/25/2018] [Accepted: 08/12/2018] [Indexed: 01/27/2023] Open
Abstract
Although adipose-derived stromal cells (ADSCs) have been a major focus as an alternative to autologous bone graft in orthopedic surgery, bone formation potential of ADSCs is not well known and cytokines as osteogenic inducers on ADSCs are being investigated. This study aimed at isolating ADSCs from ovine adipose tissue (AT) and optimizing osteogenic differentiation of ovine ADSCs (oADSC) by culture medium and growth factors. Four AT samples were harvested from two female ovine (Texel/Gotland breed), and oADSCs were isolated and analyzed by flow cytometry for surface markers CD29, CD44, CD31, and CD45. Osteogenic differentiation was made in vitro by seeding oADSCs in osteogenic induction medium (OIM) containing fibroblast growth factor basic (FGFb), bone morphogenetic protein 2 (BMP2), or NEL-like molecule 1 (NELL1) in 4 different dosages (1, 10, 50, and 100 ng/ml, respectively). Basic medium (DMEM) was used as control. Analysis was made after 14 days by Alizarin red staining (ARS) and quantification. This study successfully harvested AT from ovine and verified isolated cells for minimal criteria for adipose stromal cells which suggests a feasible method for isolation of oADSCs. OIM showed significantly higher ARS to basic medium, and FGFb 10 ng/ml revealed significantly higher ARS to OIM alone after 14 days.
Collapse
|
13
|
Zhang H, Yu N, Zhou Y, Ma H, Wang J, Ma X, Liu J, Huang J, An Y. Construction and characterization of osteogenic and vascular endothelial cell sheets from rat adipose-derived mesenchymal stem cells. Tissue Cell 2016; 48:488-95. [DOI: 10.1016/j.tice.2016.07.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 07/22/2016] [Accepted: 07/22/2016] [Indexed: 12/31/2022]
|
14
|
Hadjicharalambous C, Alexaki VI, Alpantaki K, Chatzinikolaidou M. Effects of NSAIDs on the osteogenic differentiation of human adipose tissue-derived stromal cells. ACTA ACUST UNITED AC 2016; 68:1403-1408. [PMID: 27523985 DOI: 10.1111/jphp.12595] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 05/29/2016] [Indexed: 12/22/2022]
Abstract
OBJECTIVES Non-steroidal anti-inflammatory drugs (NSAIDs), used in the treatment of musculoskeletal pathologies, have been associated with impaired bone healing, possibly through inhibition of osteogenic differentiation. The adipose tissue (AT) is regarded as an attractive source of stromal cells for autologous cell transplantation in the bone. The effects of NSAIDs on human AT-derived stromal cells (hADSCs) are unknown. METHODS We examined the effect of several NSAIDs including meloxicam, parecoxib, lornoxicam, diclofenac and paracetamol on the proliferation of hADSCs by means of the PrestoBlue® viability assay, and the osteogenic differentiation capacity of hADSCs by means of the alkaline phosphatase (ALP) activity, calcium deposition by alizarin red staining and osteogenic gene expression by semi-quantitative PCR. KEY FINDINGS Most of the drugs enhanced hADSC cell growth, while either positively affecting or not influencing alkaline phosphatase (ALP) activity, calcium deposition and osteogenic gene expression. Moreover, selective COX-2 inhibitor NSAIDs, such as meloxicam or parecoxib, were advantageous over the non-selective COX-1 and COX-2 inhibitor NSAIDs lornoxicam and diclofenac. CONCLUSIONS Altogether through this study, we show that NSAIDs, possibly depending on their selectivity for COX inhibition, leave the osteogenic differentiation capacity of hADSCs unaltered or might even enhance it.
Collapse
Affiliation(s)
- Chrystalleni Hadjicharalambous
- Department of Materials Science and Technology, University of Crete, Heraklio, Greece.,Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology Hellas (FORTH), Heraklion, Greece
| | - Vasileia Ismini Alexaki
- Department of Clinical Pathobiochemistry, Medical Faculty, Technische Universität Dresden, Dresden, Germany.
| | - Kalliopi Alpantaki
- Department of Orthopedics and Trauma, University Hospital of Heraklion, Crete, Greece
| | - Maria Chatzinikolaidou
- Department of Materials Science and Technology, University of Crete, Heraklio, Greece. .,Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology Hellas (FORTH), Heraklion, Greece.
| |
Collapse
|
15
|
Feng Z, Liu J, Shen C, Lu N, Zhang Y, Yang Y, Qi F. Biotin-avidin mediates the binding of adipose-derived stem cells to a porous β-tricalcium phosphate scaffold: Mandibular regeneration. Exp Ther Med 2015; 11:737-746. [PMID: 26997987 PMCID: PMC4774400 DOI: 10.3892/etm.2015.2961] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 10/22/2015] [Indexed: 01/15/2023] Open
Abstract
The present study aimed to investigate the properties of a promising bone scaffold for bone repair, which consisted of a novel composite of adipose-derived stem cells (ADSCs) attached to a porous β-tricalcium phosphate (β-TCP) scaffold with platelet-rich plasma (PRP). The β-TCP powder was synthesized and its composition was determined using X-ray diffraction and Fourier transform infrared spectroscopy. The surface morphology and microstructure of the fabricated porous β-TCP scaffold samples were analyzed using light and scanning electron microscopy, and their porosity and compressive strength were also evaluated. In addition, the viability of rabbit ADSCs incubated with various concentrations of the β-TCP extraction fluid was analyzed. The rate of attachment and the morphology of biotinylated ADSCs (Bio-ADSCs) on avidin-coated β-TCP (Avi-β-TCP), and untreated ADSCs on β-TCP, were compared. Furthermore, in vivo bone-forming abilities were determined following the implantation of group 1 (Bio-ADSCs/Avi-β-TCP) and group 2 (Bio-ADSCs/Avi-β-TCP/PRP) constructs using computed tomography, and histological osteocalcin (OCN) and alkaline phosphatase (ALP) expression analyses in a rabbit model of mandibulofacial defects. The β-TCP scaffold exhibited a high porosity (71.26±0.28%), suitable pore size, and good mechanical strength (7.93±0.06 MPa). Following incubation with β-TCP for 72 h, 100% of viable ADSCs remained. The avidin-biotin binding system significantly increased the initial attachment rate of Bio-ADSCs to Avi-β-TCP in the first hour (P<0.01). Following the addition of PRP, group 2 exhibited a bony-union and mandibular body shape, newly formed bone and increased expression levels of OCN and ALP in the mandibulofacial defect area, as compared with group 1 (P<0.05). The results of the present study suggested that the novel Bio-ADSCs/Avi-β-TCP/PRP composite may have potential application in bone repair and bone tissue engineering.
Collapse
Affiliation(s)
- Zihao Feng
- Department of Plastic and Reconstructive Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Jiaqi Liu
- Department of Plastic and Reconstructive Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Congcong Shen
- Department of Plastic and Reconstructive Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Nanhang Lu
- Department of Plastic and Reconstructive Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Yong Zhang
- Department of Plastic and Reconstructive Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Yanwen Yang
- Department of Plastic and Reconstructive Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Fazhi Qi
- Department of Plastic and Reconstructive Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| |
Collapse
|
16
|
Kuroda K, Kabata T, Hayashi K, Maeda T, Kajino Y, Iwai S, Fujita K, Hasegawa K, Inoue D, Sugimoto N, Tsuchiya H. The paracrine effect of adipose-derived stem cells inhibits osteoarthritis progression. BMC Musculoskelet Disord 2015; 16:236. [PMID: 26336958 PMCID: PMC4559871 DOI: 10.1186/s12891-015-0701-4] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 08/28/2015] [Indexed: 12/18/2022] Open
Abstract
Background This study aimed to determine whether intra-articularly injected adipose-derived stem cells (ADSCs) inhibited articular cartilage degeneration during osteoarthritis (OA) development in a rabbit anterior cruciate ligament transection (ACLT) model. The paracrine effects of ADSCs on chondrocytes were investigated using a co-culture system. Methods ACLT was performed on both knee joints of 12 rabbits. ADSCs were isolated from the subcutaneous adipose tissue. ADSCs with hyaluronic acid were intra-articularly injected into the left knee, and hyaluronic acid was injected into the right knee. The knees were compared macroscopically, histologically, and immunohistochemically at 8 and 12 weeks. In addition, cell viability was determined using co-culture system of ADSCs and chondrocytes. Results Macroscopically, osteoarthritis progression was milder in the ADSC-treated knees than in the control knees 8 weeks after ACLT. Histologically, control knees showed obvious erosions in both the medial and lateral condyles at 8 weeks, while cartilage was predominantly retained in the ADSC-treated knees. At 12 weeks, the ADSC-treated knees showed a slight suppression of cartilage degeneration, unlike the control knees. Immunohistochemically, MMP-13 expression was less in the ADSC-treated cartilage than in the control knees. The cell viability of chondrocytes co-cultured with ADSCs was higher than that of chondrocytes cultured alone. TNF-alpha-induced apoptotic stimulation was similar between the two groups. Conclusions Intra-articularly injected ADSCs inhibited cartilage degeneration progression by homing to the synovium and secreting a liquid factor having chondro-protective effects such as chondrocyte proliferation and cartilage matrix protection.
Collapse
Affiliation(s)
- Kazunari Kuroda
- Department of Orthopaedic Surgery, Graduate School of Medical Science, Kanazawa University, 13-1, Takara-machi, Kanazawa, 920-8641, Japan.
| | - Tamon Kabata
- Department of Orthopaedic Surgery, Graduate School of Medical Science, Kanazawa University, 13-1, Takara-machi, Kanazawa, 920-8641, Japan.
| | - Katsuhiro Hayashi
- Department of Orthopaedic Surgery, Graduate School of Medical Science, Kanazawa University, 13-1, Takara-machi, Kanazawa, 920-8641, Japan.
| | - Toru Maeda
- Department of Orthopaedic Surgery, Graduate School of Medical Science, Kanazawa University, 13-1, Takara-machi, Kanazawa, 920-8641, Japan.
| | - Yoshitomo Kajino
- Department of Orthopaedic Surgery, Graduate School of Medical Science, Kanazawa University, 13-1, Takara-machi, Kanazawa, 920-8641, Japan.
| | - Shintaro Iwai
- Department of Orthopaedic Surgery, Graduate School of Medical Science, Kanazawa University, 13-1, Takara-machi, Kanazawa, 920-8641, Japan.
| | - Kenji Fujita
- Department of Orthopaedic Surgery, Graduate School of Medical Science, Kanazawa University, 13-1, Takara-machi, Kanazawa, 920-8641, Japan.
| | - Kazuhiro Hasegawa
- Department of Orthopaedic Surgery, Graduate School of Medical Science, Kanazawa University, 13-1, Takara-machi, Kanazawa, 920-8641, Japan.
| | - Daisuke Inoue
- Department of Orthopaedic Surgery, Graduate School of Medical Science, Kanazawa University, 13-1, Takara-machi, Kanazawa, 920-8641, Japan.
| | - Naotoshi Sugimoto
- Department of Physiology, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan.
| | - Hiroyuki Tsuchiya
- Department of Orthopaedic Surgery, Graduate School of Medical Science, Kanazawa University, 13-1, Takara-machi, Kanazawa, 920-8641, Japan.
| |
Collapse
|
17
|
Adipose-Derived Stem Cells as a Tool for Dental Implant Osseointegration: an Experimental Study in the Dog. INTERNATIONAL JOURNAL OF MOLECULAR AND CELLULAR MEDICINE 2015; 4:197-208. [PMID: 27014644 PMCID: PMC4769597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The biological interaction between the jaw bones and dental implant is fundamental for the long-term success of dental implant placement. Nevertheless, the insufficient bone volume remains a major clinical problem, especially in case of immediate dental implant. Using a canine model, the present study proves the regenerative potential of adipose- derived stem cells (ADSCs) to repair peri-implant bone defects occurring in immediate dental implant placement. In six labradors, all mandibular premolars and the first molars were extracted bilaterally and three months later dental implants were installed with a marginal gap. The marginal defects were filled with hydroxyapatite (HA)-based scaffolds previously seeded with ADSCs. After one month of healing, specimens were prepared for histological and histomorphometric evaluations. Histological analyses of ground sections show that ADSCs significantly increase bone regeneration. Several new vessels, osteoblasts and new bone matrix were detected. By contrast, no inflammatory cells have been revealed. ADSCs could be used to accelerate bone healing in peri- implant defects in case of immediate dental implant placement.
Collapse
|