1
|
Huang P, Yang B, Zhao X, Wang L, Cui C. Enzymatic synthesis of N-succinyl-L-phenylalanine and exploration of its potential as a novel taste enhancer. Food Chem 2024; 460:140747. [PMID: 39121766 DOI: 10.1016/j.foodchem.2024.140747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/06/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024]
Abstract
N-succinyl-L-phenylalanine (SP) has been identified as a taste-active contributor in an array of foods. Despite its recognized importance, the understanding of its synthesis and taste enhancement properties remains rudimentary. The study examined the enzymatic synthesis of SP with 45.58 ± 1.95% yield. This was achieved under optimized conditions: 0.3 mol/L L-phenylalanine, 0.9 mol/L succinic acid, 30,000 U/L of the AY 50C, pH 4 and 55 °C for 24 h. Sensory evaluation and electronic tongue revealed that the incorporation of a mere 1 mg/L SP substantially increased the kokumi, umami, and saltiness intensities, indicating the potential of SP as a potent taste enhancer. Moreover, time-intensity (TI) results demonstrated a significant increase of umami duration in samples containing 1 mg/L of SP (210.0 ± 0 s), a significant extension compared to the control group (150.0 ± 0 s). Notably, the intensity of umami and saltiness in the SP sample were consistently higher than that of control group. The sigmoid curve analysis further confirmed that SP exhibited a synergistic effect on umami and saltiness perceptions. Moreover, the study also illuminated interaction of SP with T1R1, T1R3, TMC4, TRPV1, and CaSR receptors, resulting in significant enhancement in umami, saltiness, and kokumi.
Collapse
Affiliation(s)
- Pimiao Huang
- School of Food Science and Engineering, South China University of Technology, Wushan Road 381, 510640, Guangzhou, Guangdong, China
| | - Bing Yang
- College of Food Science and Technology, Hebei Agricultural University, 289 Lingyusi Road, Baoding, Hebei 071001, PR China
| | - Xu Zhao
- School of Food Science and Engineering, South China University of Technology, Wushan Road 381, 510640, Guangzhou, Guangdong, China
| | - Lu Wang
- School of Food Science and Engineering, South China University of Technology, Wushan Road 381, 510640, Guangzhou, Guangdong, China
| | - Chun Cui
- School of Food Science and Engineering, South China University of Technology, Wushan Road 381, 510640, Guangzhou, Guangdong, China.
| |
Collapse
|
2
|
Rhyu MR, Ozdener MH, Lyall V. Differential Effect of TRPV1 Modulators on Neural and Behavioral Responses to Taste Stimuli. Nutrients 2024; 16:3858. [PMID: 39599644 PMCID: PMC11597080 DOI: 10.3390/nu16223858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 11/06/2024] [Accepted: 11/09/2024] [Indexed: 11/29/2024] Open
Abstract
In our diet, we ingest a variety of compounds that are TRPV1 modulators. It is important to understand if these compounds alter neural and behavioral responses to taste stimuli representing all taste qualities. Here, we will summarize the effects of capsaicin, resiniferatoxin, cetylpyridinium chloride, ethanol, nicotine, N-geranyl cyclopropylcarboxamide, Kokumi taste peptides, pH, and temperature on neural and behavioral responses to taste stimuli in rodent models and on human taste perception. The above TRPV1 agonists produced characteristic biphasic effects on chorda tympani taste nerve responses to NaCl in the presence of amiloride, an epithelial Na+ channel blocker, at low concentrations enhancing and at high concentrations inhibiting the response. Biphasic responses were also observed with KCl, NH4Cl, and CaCl2. In the presence of multiple stimuli, the effect is additive. These responses are blocked by TRPV1 antagonists and are not observed in TRPV1 knockout mice. Some TRPV1 modulators also increase neural responses to glutamate but at concentrations much above the concentrations that enhance salt responses. These modulators also alter human salt and glutamate taste perceptions at different concentration ranges. Glutamate responses are TRPV1-independent. Sweet and bitter responses are TRPV1-independent but the off-taste of sweeteners is TRPV1-dependent. Aversive responses to acids and ethanol are absent in animals in which both the taste system and the TRPV1-trigeminal system are eliminated. Thus, TRPV1 modulators differentially alter responses to taste stimuli.
Collapse
Affiliation(s)
- Mee-Ra Rhyu
- Department of Food Science and Biotechnology, Sejong University, Seoul 05006, Republic of Korea;
| | | | - Vijay Lyall
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, VA 23298, USA
| |
Collapse
|
3
|
Huang P, Wang Z, Cheng Y, Gao W, Cui C. Integrated virtual screening coupled with sensory evaluation identifies N-succinyl-L-tryptophan as a novel compound with multiple taste enhancement properties. Food Chem 2024; 457:140131. [PMID: 38917565 DOI: 10.1016/j.foodchem.2024.140131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/02/2024] [Accepted: 06/14/2024] [Indexed: 06/27/2024]
Abstract
N-Succinyl amino acids (N-Suc-AAs) are garnering attention for their potential as taste-active compounds. The intricate variety of N-Suc-AAs presented considerable challenges in identifying those with taste-active properties. Consequently, we employed structure-based virtual screening to pinpoint taste-active N-Suc-AAs, revealing N-succinyl-L-tryptophan (ST) as a compound with high affinity for different taste receptors. Following this discovery, ST was synthesized through an enzymatic process, achieving a yield of 40.2%, with its structure verified via NMR spectroscopy. Sensory evaluation alongside electronic tongue assessments indicated that ST at a concentration of 1 mg/L significantly enhances umami, kokumi, and saltiness intensities, while concurrently mitigating bitterness from various bitter compounds, whilst itself remaining tasteless. Additionally, time-intensity (TI) results elucidated a marked augmentation in umami duration and a notable diminution in bitterness duration for solutions imbued with 1 mg/L ST. Molecular docking study suggested ST interacted with diverse taste receptors as an agonist or antagonist, primarily through hydrogen bonds and hydrophobic interactions. This study marked the inaugural report on the enzymatic synthesis of ST and its efficacy in improving taste characteristics, underscoring the importance of ST in improving sensory qualities of food products and fostering innovation within the seasoning industry.
Collapse
Affiliation(s)
- Pimiao Huang
- School of Food Science and Engineering, South China University of Technology, Wushan Road 381, 510640 Guangzhou, Guangdong, China
| | - Zhirong Wang
- School of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Yuqing Cheng
- School of Food Science and Engineering, South China University of Technology, Wushan Road 381, 510640 Guangzhou, Guangdong, China
| | - Wenxiang Gao
- School of Food Science and Engineering, South China University of Technology, Wushan Road 381, 510640 Guangzhou, Guangdong, China
| | - Chun Cui
- School of Food Science and Engineering, South China University of Technology, Wushan Road 381, 510640 Guangzhou, Guangdong, China.
| |
Collapse
|
4
|
Rhyu MR, Kim Y, Lyall V. Interactions between Chemesthesis and Taste: Role of TRPA1 and TRPV1. Int J Mol Sci 2021; 22:ijms22073360. [PMID: 33806052 PMCID: PMC8038011 DOI: 10.3390/ijms22073360] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/22/2021] [Accepted: 03/22/2021] [Indexed: 12/20/2022] Open
Abstract
In addition to the sense of taste and olfaction, chemesthesis, the sensation of irritation, pungency, cooling, warmth, or burning elicited by spices and herbs, plays a central role in food consumption. Many plant-derived molecules demonstrate their chemesthetic properties via the opening of transient receptor potential ankyrin 1 (TRPA1) and transient receptor potential vanilloid 1 (TRPV1) channels. TRPA1 and TRPV1 are structurally related thermosensitive cation channels and are often co-expressed in sensory nerve endings. TRPA1 and TRPV1 can also indirectly influence some, but not all, primary taste qualities via the release of substance P and calcitonin gene-related peptide (CGRP) from trigeminal neurons and their subsequent effects on CGRP receptor expressed in Type III taste receptor cells. Here, we will review the effect of some chemesthetic agonists of TRPA1 and TRPV1 and their influence on bitter, sour, and salt taste qualities.
Collapse
Affiliation(s)
- Mee-Ra Rhyu
- Korea Food Research Institute, Wanju-gun 55365, Korea;
- Correspondence: ; Tel.: +82-63-219-9268
| | - Yiseul Kim
- Korea Food Research Institute, Wanju-gun 55365, Korea;
| | - Vijay Lyall
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, VA 23298, USA;
| |
Collapse
|
5
|
Rhyu MR, Song AY, Kim EY, Son HJ, Kim Y, Mummalaneni S, Qian J, Grider JR, Lyall V. Kokumi Taste Active Peptides Modulate Salt and Umami Taste. Nutrients 2020; 12:nu12041198. [PMID: 32344605 PMCID: PMC7254231 DOI: 10.3390/nu12041198] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/21/2020] [Accepted: 04/22/2020] [Indexed: 12/27/2022] Open
Abstract
Kokumi taste substances exemplified by γ-glutamyl peptides and Maillard Peptides modulate salt and umami tastes. However, the underlying mechanism for their action has not been delineated. Here, we investigated the effects of a kokumi taste active and inactive peptide fraction (500-10,000 Da) isolated from mature (FIIm) and immature (FIIim) Ganjang, a typical Korean soy sauce, on salt and umami taste responses in humans and rodents. Only FIIm (0.1-1.0%) produced a biphasic effect in rat chorda tympani (CT) taste nerve responses to lingual stimulation with 100 mM NaCl + 5 μM benzamil, a specific epithelial Na+ channel blocker. Both elevated temperature (42 °C) and FIIm produced synergistic effects on the NaCl + benzamil CT response. At 0.5% FIIm produced the maximum increase in rat CT response to NaCl + benzamil, and enhanced salt taste intensity in human subjects. At 2.5% FIIm enhanced rat CT response to glutamate that was equivalent to the enhancement observed with 1 mM IMP. In human subjects, 0.3% FIIm produced enhancement of umami taste. These results suggest that FIIm modulates amiloride-insensitive salt taste and umami taste at different concentration ranges in rats and humans.
Collapse
Affiliation(s)
- Mee-Ra Rhyu
- Korea Food Research Institute, Wanju-gun, Jeollabuk-do 55365, Korea; (A.-Y.S.); (E.-Y.K.); (H.-J.S.); (Y.K.)
- Correspondence: (M.-R.R.); (V.L.); Tel.: +82-63-219-9268 (M.-R.R.); +1-(804)-828-9759 (V.L.); Fax: +82-63-219-9876 (M.-R.R.); +1-(804)-827-0947 (V.L.)
| | - Ah-Young Song
- Korea Food Research Institute, Wanju-gun, Jeollabuk-do 55365, Korea; (A.-Y.S.); (E.-Y.K.); (H.-J.S.); (Y.K.)
| | - Eun-Young Kim
- Korea Food Research Institute, Wanju-gun, Jeollabuk-do 55365, Korea; (A.-Y.S.); (E.-Y.K.); (H.-J.S.); (Y.K.)
| | - Hee-Jin Son
- Korea Food Research Institute, Wanju-gun, Jeollabuk-do 55365, Korea; (A.-Y.S.); (E.-Y.K.); (H.-J.S.); (Y.K.)
| | - Yiseul Kim
- Korea Food Research Institute, Wanju-gun, Jeollabuk-do 55365, Korea; (A.-Y.S.); (E.-Y.K.); (H.-J.S.); (Y.K.)
| | - Shobha Mummalaneni
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, VA 23298, USA; (S.M.); (J.Q.); (J.R.G.)
| | - Jie Qian
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, VA 23298, USA; (S.M.); (J.Q.); (J.R.G.)
| | - John R. Grider
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, VA 23298, USA; (S.M.); (J.Q.); (J.R.G.)
| | - Vijay Lyall
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, VA 23298, USA; (S.M.); (J.Q.); (J.R.G.)
- Correspondence: (M.-R.R.); (V.L.); Tel.: +82-63-219-9268 (M.-R.R.); +1-(804)-828-9759 (V.L.); Fax: +82-63-219-9876 (M.-R.R.); +1-(804)-827-0947 (V.L.)
| |
Collapse
|
6
|
Abstract
AbstractA major challenge in taste research is to overcome the flavour imperfections in food products and to build nutritious strategies to combat against obesity as well as other related metabolic syndromes. The field of molecular taste research and chemical senses has contributed to an enormous development in understanding the taste receptors and mechanisms of taste perception. Accordingly, the development of taste-modifying compounds or taste modulators that alter the perception of basic taste modalities has gained significant prominence in the recent past. The beneficial aspects of these substances are overwhelming while considering their potential taste-modifying properties. The objective of the present review is to provide an impression about the taste-modulating compounds and their distinctive taste-modifying properties with reference to their targets and proposed mechanisms of action. The present review also makes an effort to discuss the basic mechanism involved in oro-gustatory taste perception as well as on the effector molecules involved in signal transduction downstream to the activation of taste receptors.
Collapse
|
7
|
Kumar N, Shaw P, Razzokov J, Yusupov M, Attri P, Uhm HS, Choi EH, Bogaerts A. Enhancement of cellular glucose uptake by reactive species: a promising approach for diabetes therapy. RSC Adv 2018; 8:9887-9894. [PMID: 35540836 PMCID: PMC9078705 DOI: 10.1039/c7ra13389h] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 03/03/2018] [Indexed: 12/16/2022] Open
Abstract
It is generally known that antidiabetic activity is associated with an increased level of glucose uptake in adipocytes and skeletal muscle cells. However, the role of exogenous reactive oxygen and nitrogen species (RONS) in muscle development and more importantly in glucose uptake is largely unknown. We investigate the effect of RONS generated by cold atmospheric plasma (CAP) in glucose uptake. We show that the glucose uptake is significantly enhanced in differentiated L6 skeletal muscle cells after CAP treatment. We also observe a significant increase of the intracellular Ca++ and ROS level, without causing toxicity. One of the possible reasons for an elevated level of glucose uptake as well as intracellular ROS and Ca++ ions is probably the increased oxidative stress leading to glucose transport. Influenence of biocompatible microsecond dielectric barrier discharge (μs-DBD) plasma in glucose uptake and cell differentiation.![]()
Collapse
Affiliation(s)
- Naresh Kumar
- Department of Chemistry
- University of Antwerp
- Belgium
| | | | | | | | - Pankaj Attri
- Department of Chemistry
- University of Antwerp
- Belgium
| | - Han Sup Uhm
- Plasma Bioscience Research Center/Department of Electrical and Biological Physics
- Kwangwoon University
- Seoul 139-701
- Korea
| | - Eun Ha Choi
- Plasma Bioscience Research Center/Department of Electrical and Biological Physics
- Kwangwoon University
- Seoul 139-701
- Korea
| | | |
Collapse
|
8
|
Oshida M, Matsuura Y, Hotta S, Watanabe J, Mogi Y, Watanabe T. Isolation and identification of a humanTRPV1 activating compound from soy sauce. Biosci Biotechnol Biochem 2017; 81:987-994. [DOI: 10.1080/09168451.2017.1279849] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Abstract
Transient receptor potential vanilloid 1 (TRPV1) was identified as a receptor of capsaicin, which is a pungent ingredient in hot red peppers. Due to its relevance for nociception, a physiological and pharmacological study of TRPV1 has also been developed. Therefore, it is important to enrich scientific knowledge regarding the TRPV1 activating or inhibiting compounds. In this study, we fractionated soy sauce based on the human TRPV1 (hTRPV1) activity using column chromatography and purified 5-(9H-pyrido[3,4-b]indol-1-yl)-2-furanmethanol (perlolyrine) as an hTRPV1-activating compound. Additionally, perlolyrine activates the human transient receptor potential ankyrin 1 (hTRPA1). The EC50 of hTRPV1 and hTRPA1 were 2.87 and 1.67 μmol L−1, respectively. HPLC quantification of soy sauces showed that they contain 2.22–12.13 μmol L−1 of perlolyrine. The sensory evaluation revealed that perlolyrine has taste modification effect. The results of this study, for the first time, suggest that perlolyrine induces the activation of hTRPV1 and hTRPA1.
Collapse
Affiliation(s)
- Mayu Oshida
- Manufacturing Division, Yamasa Corporation, Choshi, Japan
| | | | - Shinnosuke Hotta
- School of Food and Nutritional Sciences, University of Shizuoka, Shizuoka, Japan
| | - Jun Watanabe
- Manufacturing Division, Yamasa Corporation, Choshi, Japan
| | - Yoshinobu Mogi
- Manufacturing Division, Yamasa Corporation, Choshi, Japan
| | - Tatsuo Watanabe
- School of Food and Nutritional Sciences, University of Shizuoka, Shizuoka, Japan
| |
Collapse
|
9
|
Özek G, Schepetkin IA, Utegenova GA, Kirpotina LN, Andrei SR, Özek T, Başer KHC, Abidkulova KT, Kushnarenko SV, Khlebnikov AI, Damron DS, Quinn MT. Chemical composition and phagocyte immunomodulatory activity of Ferula iliensis essential oils. J Leukoc Biol 2017; 101:1361-1371. [PMID: 28258152 DOI: 10.1189/jlb.3a1216-518rr] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 02/08/2017] [Accepted: 02/10/2017] [Indexed: 12/29/2022] Open
Abstract
Essential oil extracts from Ferula iliensis have been used traditionally in Kazakhstan for treatment of inflammation and other illnesses. Because little is known about the biologic activity of these essential oils that contributes to their therapeutic properties, we analyzed their chemical composition and evaluated their phagocyte immunomodulatory activity. The main components of the extracted essential oils were (E)-propenyl sec-butyl disulfide (15.7-39.4%) and (Z)-propenyl sec-butyl disulfide (23.4-45.0%). Ferula essential oils stimulated [Ca2+]i mobilization in human neutrophils and activated ROS production in human neutrophils and murine bone marrow phagocytes. Activation of human neutrophil [Ca2+]i flux by Ferula essential oils was dose-dependently inhibited by capsazepine, a TRPV1 channel antagonist, indicating that TRPV1 channels mediate this response. Furthermore, Ferula essential oils stimulated Ca2+ influx in TRPV1 channel-transfected HEK293 cells and desensitized the capsaicin-induced response in these cells. Additional molecular modeling with known TRPV1 channel agonists suggested that the active component is likely to be (Z)-propenyl sec-butyl disulfide. Our results provide a cellular and molecular basis to explain at least part of the beneficial therapeutic properties of FEOs.
Collapse
Affiliation(s)
- Gulmira Özek
- Department of Pharmacognosy, Faculty of Pharmacy, Anadolu University, Eskisehir, Turkey
| | - Igor A Schepetkin
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana, USA
| | - Gulzhakhan A Utegenova
- Institute of Plant Biology and Biotechnology, Almaty, Republic of Kazakhstan.,Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty, Republic of Kazakhstan
| | - Liliya N Kirpotina
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana, USA
| | - Spencer R Andrei
- Department of Biological Sciences, Kent State University, Kent, Ohio, USA
| | - Temel Özek
- Department of Pharmacognosy, Faculty of Pharmacy, Anadolu University, Eskisehir, Turkey
| | - Kemal Hüsnü Can Başer
- Department of Pharmacognosy, Faculty of Pharmacy, Near East University, Nicosia, North Cyprus
| | - Karime T Abidkulova
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty, Republic of Kazakhstan
| | | | - Andrei I Khlebnikov
- Department of Biotechnology and Organic Chemistry, Tomsk Polytechnic University, Tomsk, Russia; and.,Department of Chemistry, Altai State Technical University, Barnaul, Russia
| | - Derek S Damron
- Department of Biological Sciences, Kent State University, Kent, Ohio, USA
| | - Mark T Quinn
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana, USA;
| |
Collapse
|
10
|
Schepetkin IA, Kushnarenko SV, Özek G, Kirpotina LN, Sinharoy P, Utegenova GA, Abidkulova KT, Özek T, Başer KHC, Kovrizhina AR, Khlebnikov AI, Damron DS, Quinn MT. Modulation of Human Neutrophil Responses by the Essential Oils from Ferula akitschkensis and Their Constituents. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:7156-70. [PMID: 27586050 PMCID: PMC5048753 DOI: 10.1021/acs.jafc.6b03205] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Essential oils were obtained by hydrodistillation of the umbels+seeds and stems of Ferula akitschkensis (FAEOu/s and FAEOstm, respectively) and analyzed by gas chromatography and gas chromatography-mass spectrometry. Fifty-two compounds were identified in FAEOu/s; the primary components were sabinene, α-pinene, β-pinene, terpinen-4-ol, eremophilene, and 2-himachalen-7-ol, whereas the primary components of FAEOstm were myristicin and geranylacetone. FAEOu/s, β-pinene, sabinene, γ-terpinene, geranylacetone, isobornyl acetate, and (E)-2-nonenal stimulated [Ca(2+)]i mobilization in human neutrophils, with the most potent being geranylacetone (EC50 = 7.6 ± 1.9 μM) and isobornyl acetate 6.4 ± 1.7 (EC50 = 7.6 ± 1.9 μM). In addition, treatment of neutrophils with β-pinene, sabinene, γ-terpinene, geranylacetone, and isobornyl acetate desensitized the cells to N-formyl-Met-Leu-Phe (fMLF)- and interleukin-8 (IL-8)-induced [Ca(2+)]i flux and inhibited fMLF-induced chemotaxis. The effects of β-pinene, sabinene, γ-terpinene, geranylacetone, and isobornyl acetate on neutrophil [Ca(2+)]i flux were inhibited by transient receptor potential (TRP) channel blockers. Furthermore, the most potent compound, geranylacetone, activated Ca(2+) influx in TRPV1-transfected HEK293 cells. In contrast, myristicin inhibited neutrophil [Ca(2+)]i flux stimulated by fMLF and IL-8 and inhibited capsaicin-induced Ca(2+) influx in TRPV1-transfected HEK293 cells. These findings, as well as pharmacophore modeling of TRP agonists, suggest that geranylacetone is a TRPV1 agonist, whereas myristicin is a TRPV1 antagonist. Thus, at least part of the medicinal properties of Ferula essential oils may be due to modulatory effects on TRP channels.
Collapse
Affiliation(s)
- Igor A Schepetkin
- Department of Microbiology and Immunology, Montana State University , Bozeman, Montana 59717, United States
| | | | - Gulmira Özek
- Department of Pharmacognosy, Faculty of Pharmacy, Anadolu University , Eskisehir 26470, Turkey
| | - Liliya N Kirpotina
- Department of Microbiology and Immunology, Montana State University , Bozeman, Montana 59717, United States
| | - Pritam Sinharoy
- Department of Biological Sciences, Kent State University , Kent, Ohio 44242, United States
| | - Gulzhakhan A Utegenova
- Institute of Plant Biology and Biotechnology , Almaty 050040, Republic of Kazakhstan
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University , Almaty 050040, Republic of Kazakhstan
| | - Karime T Abidkulova
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University , Almaty 050040, Republic of Kazakhstan
| | - Temel Özek
- Department of Pharmacognosy, Faculty of Pharmacy, Anadolu University , Eskisehir 26470, Turkey
| | - Kemal Hüsnü Can Başer
- Department of Pharmacognosy, Faculty of Pharmacy, Near East University , Nicosia, North Cyprus
| | - Anastasia R Kovrizhina
- Department of Biotechnology and Organic Chemistry, Tomsk Polytechnic University , Tomsk 634050, Russia
| | - Andrei I Khlebnikov
- Department of Biotechnology and Organic Chemistry, Tomsk Polytechnic University , Tomsk 634050, Russia
- Department of Chemistry, Altai State Technical University , Barnaul 656038, Russia
| | - Derek S Damron
- Department of Biological Sciences, Kent State University , Kent, Ohio 44242, United States
| | - Mark T Quinn
- Department of Microbiology and Immunology, Montana State University , Bozeman, Montana 59717, United States
| |
Collapse
|
11
|
Beckett EL, Martin C, Yates Z, Veysey M, Duesing K, Lucock M. Bitter taste genetics--the relationship to tasting, liking, consumption and health. Food Funct 2015; 5:3040-54. [PMID: 25286017 DOI: 10.1039/c4fo00539b] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Bitter is the most complex of human tastes, and is arguably the most important. Aversion to bitter taste is important for detecting toxic compounds in food; however, many beneficial nutrients also taste bitter and these may therefore also be avoided as a consequence of bitter taste. While many polymorphisms in TAS2R genes may result in phenotypic differences that influence the range and sensitivity of bitter compounds detected, the full extent to which individuals differ in their abilities to detect bitter compounds remains unknown. Simple logic suggests that taste phenotypes influence food preferences, intake and consequently health status. However, it is becoming clear that genetics only plays a partial role in predicting preference, intake and health outcomes, and the complex, pleiotropic relationships involved are yet to be fully elucidated.
Collapse
Affiliation(s)
- Emma L Beckett
- School of Environmental and Life Sciences, University of Newcastle, Brush Rd, Ourimbah, NSW 2258, Australia.
| | | | | | | | | | | |
Collapse
|
12
|
Moilanen LJ, Hämäläinen M, Lehtimäki L, Nieminen RM, Moilanen E. Urate crystal induced inflammation and joint pain are reduced in transient receptor potential ankyrin 1 deficient mice--potential role for transient receptor potential ankyrin 1 in gout. PLoS One 2015; 10:e0117770. [PMID: 25658427 PMCID: PMC4319920 DOI: 10.1371/journal.pone.0117770] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 01/02/2015] [Indexed: 12/30/2022] Open
Abstract
Introduction In gout, monosodium urate (MSU) crystals deposit intra-articularly and cause painful arthritis. In the present study we tested the hypothesis that Transient Receptor Poten-tial Ankyrin 1 (TRPA1), an ion channel mediating nociceptive signals and neurogenic in-flammation, is involved in MSU crystal-induced responses in gout by utilizing three experi-mental murine models. Methods The effects of selective pharmacological inhibition (by HC-030031) and genetic depletion of TRPA1 were studied in MSU crystal-induced inflammation and pain by using 1) spontaneous weight-bearing test to assess MSU crystal-induced joint pain, 2) subcutaneous air-pouch model resembling joint inflammation to measure MSU crystal-induced cytokine production and inflammatory cell accumulation, and 3) MSU crystal-induced paw edema to assess acute vascular inflammatory responses and swelling. Results Intra-articularly injected MSU crystals provoked spontaneous weight shift off from the affected limb in wild type but not in TRPA1 knock-out mice referring alleviated joint pain in TRPA1 deficient animals. MSU crystal-induced inflammatory cell infiltration and accumulation of cytokines MCP-1, IL-6, IL-1beta, MPO, MIP-1alpha and MIP-2 into subcu-taneous air-pouch (resembling joint cavity) was attenuated in TRPA1 deficient mice and in mice treated with the selective TRPA1 inhibitor HC-030031 as compared to control animals. Further, HC-030031 treated and TRPA1 deficient mice developed tempered inflammatory edema when MSU crystals were injected into the paw. Conclusions TRPA1 mediates MSU crystal-induced inflammation and pain in experimental models supporting the role of TRPA1 as a potential mediator and a drug target in gout flare.
Collapse
Affiliation(s)
- Lauri J. Moilanen
- The Immunopharmacology Research Group, University of Tampere School of Medicine and Tampere University Hospital, Tampere, Finland
| | - Mari Hämäläinen
- The Immunopharmacology Research Group, University of Tampere School of Medicine and Tampere University Hospital, Tampere, Finland
| | - Lauri Lehtimäki
- The Immunopharmacology Research Group, University of Tampere School of Medicine and Tampere University Hospital, Tampere, Finland
| | - Riina M. Nieminen
- The Immunopharmacology Research Group, University of Tampere School of Medicine and Tampere University Hospital, Tampere, Finland
| | - Eeva Moilanen
- The Immunopharmacology Research Group, University of Tampere School of Medicine and Tampere University Hospital, Tampere, Finland
- * E-mail:
| |
Collapse
|
13
|
Ortar G, Schiano Moriello A, Morera E, Nalli M, Di Marzo V, De Petrocellis L. Effect of acyclic monoterpene alcohols and their derivatives on TRP channels. Bioorg Med Chem Lett 2014; 24:5507-11. [PMID: 25455494 DOI: 10.1016/j.bmcl.2014.10.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 09/30/2014] [Accepted: 10/01/2014] [Indexed: 10/24/2022]
Abstract
A series of thirty-six geraniol, nerol, citronellol, geranylamine, and nerylamine derivatives was synthesized and tested on TRPA1, TRPM8, and TRPV1 channels. Most of them acted as strong modulators of TRPA1 channels with EC50 and/or IC50 values <1 μM. None was able to significantly activate TRPM8 channels, while thirteen of them behaved as 'true' TRPM8 antagonists. Little or no effect was generally observed on TRPV1 channels. Some of the compounds examined, that is, compounds 1d,g,n, 2c,d,h,i,o, 3b,e exhibited an appreciable selectivity for TRPA1 subtype.
Collapse
Affiliation(s)
- Giorgio Ortar
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, piazzale Aldo Moro 5, 00185 Roma, Italy.
| | - Aniello Schiano Moriello
- Endocannabinoid Research Group, Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, via dei Campi Flegrei 34, 80078 Pozzuoli (Napoli), Italy
| | - Enrico Morera
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, piazzale Aldo Moro 5, 00185 Roma, Italy
| | - Marianna Nalli
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, piazzale Aldo Moro 5, 00185 Roma, Italy
| | - Vincenzo Di Marzo
- Endocannabinoid Research Group, Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, via dei Campi Flegrei 34, 80078 Pozzuoli (Napoli), Italy
| | - Luciano De Petrocellis
- Endocannabinoid Research Group, Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, via dei Campi Flegrei 34, 80078 Pozzuoli (Napoli), Italy.
| |
Collapse
|
14
|
Mummalaneni S, Qian J, Phan THT, Rhyu MR, Heck GL, DeSimone JA, Lyall V. Effect of ENaC modulators on rat neural responses to NaCl. PLoS One 2014; 9:e98049. [PMID: 24839965 PMCID: PMC4026388 DOI: 10.1371/journal.pone.0098049] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Accepted: 04/28/2014] [Indexed: 01/31/2023] Open
Abstract
The effects of small molecule ENaC activators N,N,N-trimethyl-2-((4-methyl-2-((4-methyl-1H-indol-3-yl)thio)pentanoyl)oxy)ethanaminium iodide (Compound 1) and N-(2-hydroxyethyl)-4-methyl-2-((4-methyl-1H-indol-3-yl)thio)pentanamide (Compound 2), were tested on the benzamil (Bz)-sensitive NaCl chorda tympani (CT) taste nerve response under open-circuit conditions and under ±60 mV applied lingual voltage-clamp, and compared with the effects of known physiological activators (8-CPT-cAMP, BAPTA-AM, and alkaline pH), and an inhibitor (ionomycin+Ca2+) of ENaC. The NaCl CT response was enhanced at −60 mV and suppressed at +60 mV. In every case the CT response (r) versus voltage (V) curve was linear. All ENaC activators increased the open-circuit response (ro) and the voltage sensitivity (κ, negative of the slope of the r versus V curve) and ionomycin+Ca2+ decreased ro and κ to zero. Compound 1 and Compound 2 expressed a sigmoidal-saturating function of concentration (0.25–1 mM) with a half-maximal response concentration (k) of 0.49 and 1.05 mM, respectively. Following treatment with 1 mM Compound 1, 8-CPT-cAMP, BAPTA-AM and pH 10.3, the Bz-sensitive NaCl CT response to 100 mM NaCl was enhanced and was equivalent to the Bz-sensitive CT response to 300 mM NaCl. Plots of κ versus ro in the absence and presence of the activators or the inhibitor were linear, suggesting that changes in the affinity of Na+ for ENaC under different conditions are fully compensated by changes in the apical membrane potential difference, and that the observed changes in the Bz-sensitive NaCl CT response arise exclusively from changes in the maximum CT response (rm). The results further suggest that the agonists enhance and ionomycin+Ca2+ decreases ENaC function by increasing or decreasing the rate of release of Na+ from its ENaC binding site to the receptor cell cytosol, respectively. Irrespective of agonist type, the Bz-sensitive NaCl CT response demonstrated a maximum response enhancement limit of about 75% over control value.
Collapse
Affiliation(s)
- Shobha Mummalaneni
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Jie Qian
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Tam-Hao T. Phan
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Mee-Ra Rhyu
- Korea Food Research Institute, Bundang-gu, Sungnam-si, Gyeonggi-do, Korea
| | - Gerard L. Heck
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - John A. DeSimone
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Vijay Lyall
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, Virginia, United States of America
- * E-mail:
| |
Collapse
|