1
|
Bulić M, Nikolić I, Mitrović M, Muškinja J, Todorović T, Anđelković M. Four newly synthesized enones induce mitochondrial-mediated apoptosis and G2/M cell cycle arrest in colorectal and cervical cancer cells. RSC Adv 2024; 14:33987-34004. [PMID: 39463485 PMCID: PMC11505670 DOI: 10.1039/d4ra06529h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 10/20/2024] [Indexed: 10/29/2024] Open
Abstract
Over the last few decades, we have gained insight into how researchers attempted to modify some natural molecules to be utilized as prospective agents for cancer treatment. Many scientists synthesized new natural compounds by incorporating specific functional groups and metals that improved their antitumor activity while reducing undesirable side effects. In this investigation, we synthesized four novel structurally modified enones that differ in the functional groups attached to the carbonyl group of the enone system (methyl - E1; isopropyl - E2; isobutyl - E3; and cyclopropyl - E4) and explored their anticancer potential against human carcinoma of the colon HCT-116, the cervical HeLa, and normal lung cells MRC-5. From the findings, all the newly synthesized enones exhibited potent cytotoxic activity against the cancer cells while normal cells remained unharmed, with varying potencies among the various enones. We employed the MTT assay to assess enones's (E1-E4) cytotoxic effects, IC50 values and selectivity index in tumor cells. Furthermore, the newly synthesized enones induced cell death in cancer cells through apoptosis by promoting changes in cellular morphology, activating apoptotic regulators Bax and caspase 3, and inhibiting Bcl-2. The enones induced changes in the mitochondrial membrane potential, a release of cytochrome c, and a cell cycle arrest at the G2/M phase, thus inhibiting the growth of cancer cells. In conclusion, we demonstrated the anticancer potential of newly synthesized enones as promising candidates for future cancer treatments, especially for colon cancer, due to their selective cytotoxicity against these cancer cells. Further, in vivo studies are warranted to explore their full therapeutic potential.
Collapse
Affiliation(s)
- Marija Bulić
- University Clinical Centre of Serbia, Centre of Medical Biochemistry Pasterova 2 Belgrade 11000 Serbia
| | - Ivana Nikolić
- Department of Biochemistry, University of Kragujevac, Faculty of Medical Sciences Svetozara Markovića 69 Kragujevac 34000 Serbia +381 65 84 777 68
- Centre for Research on Harmful Effects of Biological and Chemical Hazards Kragujevac Serbia
| | - Marina Mitrović
- Department of Biochemistry, University of Kragujevac, Faculty of Medical Sciences Svetozara Markovića 69 Kragujevac 34000 Serbia +381 65 84 777 68
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac Svetozara Markovica 69 Kragujevac 34000 Serbia
| | - Jovana Muškinja
- Department of Science, University of Kragujevac, Institute for Information Technologies Jovana Cvijica bb Kragujevac 34000 Serbia
| | - Tamara Todorović
- Department of Science, University of Kragujevac, Institute for Information Technologies Jovana Cvijica bb Kragujevac 34000 Serbia
| | - Marija Anđelković
- Department of Biochemistry, University of Kragujevac, Faculty of Medical Sciences Svetozara Markovića 69 Kragujevac 34000 Serbia +381 65 84 777 68
- Centre for Research on Harmful Effects of Biological and Chemical Hazards Kragujevac Serbia
| |
Collapse
|
2
|
Li Q, Wang C, Xiao H, Zhang Y, Xie Y. 2-Hydroxy-4-methoxybenzaldehyde, a more effective antifungal aroma than vanillin and its derivatives against Fusarium graminearum, destroys cell membranes, inhibits DON biosynthesis, and performs a promising antifungal effect on wheat grains. Front Microbiol 2024; 15:1359947. [PMID: 38468857 PMCID: PMC10925628 DOI: 10.3389/fmicb.2024.1359947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/13/2024] [Indexed: 03/13/2024] Open
Abstract
Fusarium graminearum (F. graminearum) is a severe pathogen threatening the safety of agriculture and food. This study aimed to explore the antifungal efficacies of several plant-derived natural compounds (vanillin and its derivatives) against the growth of F. graminearum and investigate the antifungal mechanism of 2-hydroxy-4-methoxybenzaldehyde (HMB), the strongest one. The minimum inhibitory concentration (MIC) of HMB in inhibiting mycelial growth was 200 μg/mL. HMB at MIC damaged cell membranes by increasing the permeability by about 6-fold (p < 0.05) as evidenced by propidium iodide (PI) staining. Meanwhile, the content of malondialdehyde (MDA) and glycerol was increased by 45.91 and 576.19% by HMB treatment at MIC, respectively, indicating that lipid oxidation and osmotic stress occurred in the cell membrane. Furthermore, HMB exerted a strong antitoxigenic role as the content of deoxynivalenol (DON) was remarkably reduced by 93.59% at MIC on 7th day. At last, the antifungal effect of HMB against F. graminearum was also confirmed on wheat grains. These results not only revealed the antifungal mechanism of HMB but also suggested that HMB could be applied as a promising antifungal agent in the preservation of agricultural products.
Collapse
Affiliation(s)
- Qian Li
- Grain, Oil and Food Engineering Technology Research Center of the State Grain and Reserves Administration/Key Laboratory of Henan Province, Henan University of Technology, Zhengzhou, Henan, China
- Henan Key laboratory of Cereal and Oil Food Safety and Nutrition, College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan, China
| | - Chong Wang
- Grain, Oil and Food Engineering Technology Research Center of the State Grain and Reserves Administration/Key Laboratory of Henan Province, Henan University of Technology, Zhengzhou, Henan, China
- Henan Key laboratory of Cereal and Oil Food Safety and Nutrition, College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan, China
| | - Hongying Xiao
- Grain, Oil and Food Engineering Technology Research Center of the State Grain and Reserves Administration/Key Laboratory of Henan Province, Henan University of Technology, Zhengzhou, Henan, China
- Henan Key laboratory of Cereal and Oil Food Safety and Nutrition, College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan, China
| | - Yiming Zhang
- Grain, Oil and Food Engineering Technology Research Center of the State Grain and Reserves Administration/Key Laboratory of Henan Province, Henan University of Technology, Zhengzhou, Henan, China
- Henan Key laboratory of Cereal and Oil Food Safety and Nutrition, College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan, China
| | - Yanli Xie
- Grain, Oil and Food Engineering Technology Research Center of the State Grain and Reserves Administration/Key Laboratory of Henan Province, Henan University of Technology, Zhengzhou, Henan, China
- Henan Key laboratory of Cereal and Oil Food Safety and Nutrition, College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan, China
| |
Collapse
|
3
|
Sri VP, Srinivasan S, Muthukumar S, Chellaswamy S, Nachiappan NN, Thamilselvan S. Evaluation of antifungal activity of vanilla pods silver nanoparticles against various oral candidal species: An in-vitro study. J Oral Maxillofac Pathol 2023; 27:693-699. [PMID: 38304524 PMCID: PMC10829453 DOI: 10.4103/jomfp.jomfp_273_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/01/2023] [Accepted: 09/01/2023] [Indexed: 02/03/2024] Open
Abstract
Background The oral health of individuals is undoubtedly affected by the fact that fungal microorganisms are currently resistant to the conventional antifungal drugs used. Still, there are numerous emerging therapeutic alternatives available like phytotherapy. The phytochemistry of various plant species has indicated that phytochemicals could be a better source of medicine with outstanding antifungal, healing, anti-inflammatory spectrum, and antioxidant properties. Aim To evaluate the antifungal efficacy of silver nanoparticles of vanilla pods against Candida albicans, Candida glabrata, and Candida krusei and to compare with Fluconazole. Materials and Methods The vanilla pods were procured from the organic store. The aqueous extracts were prepared. Ten percent of the vanilla extract was utilized to generate the silver nanoparticles. The generated silver nanoparticles were characterized visually based on color change and confirmed by UV spectroscopy. Disk diffusion method was used to determine the antifungal activity of the vanilla pods reinforced silver nanoparticles at different concentrations (20 μl, 40 μ, 40n μ, and 80 μand 80ratioC. albicans, C. glabrata, and C. krusei. The antifungal efficacy of the produced nanoparticles was evaluated against a standard of ketoconazole (30 μ30. Results Vanillin silver nanoparticles exhibit commendable antifungal activity against C. albicans, C. glabrata which is equivalent to that of ketoconazole, and amplified activity against drug-resistant C. krusei was evident. Conclusion Silver nanoparticles from vanilla pods were studied and their wider zones of inhibition indicated exemplary antifungal efficacy compared with conventional antifungal drugs like ketoconazole. Clinical significance Future research on vanillin nanocarrier systems might enhance their stability, bioavailability, and bioactivity. As an outcome, with some promising advances in this area, it would be captivating to pursue a systematic investigation into the potential effects of vanillin at the cellular and molecular levels. This will enable us to further assess its applicability as an active biopharmaceutical ingredient in mouthwashes, probiotic lozenges, and denture resin for use as an effective strategy against the biofilm growth of various Candida species.
Collapse
Affiliation(s)
- V.L Premika Sri
- Department of Oral and Maxillofacial Pathology, Chettinad Dental College and Research Institute, Chennai, Tamil Nadu, India
| | - Samyukta Srinivasan
- Department of Oral and Maxillofacial Pathology, Chettinad Dental College and Research Institute, Chennai, Tamil Nadu, India
| | - Sathish Muthukumar
- Department of Oral and Maxillofacial Pathology, Chettinad Dental College and Research Institute, Chennai, Tamil Nadu, India
| | - Sreeja Chellaswamy
- Department of Oral and Maxillofacial Pathology, Chettinad Dental College and Research Institute, Chennai, Tamil Nadu, India
| | - N. Nachiammai Nachiappan
- Department of Oral and Maxillofacial Pathology, Chettinad Dental College and Research Institute, Chennai, Tamil Nadu, India
| | - Snega Thamilselvan
- Department of Oral and Maxillofacial Pathology, Chettinad Dental College and Research Institute, Chennai, Tamil Nadu, India
| |
Collapse
|
4
|
Gazolla PAR, de Aguiar AR, Costa MCA, Oliveira OV, Costa AV, da Silva CM, do Nascimento CJ, Junker J, Ferreira RS, de Oliveira FM, Vaz BG, do Carmo PHF, Santos DA, Ferreira MMC, Teixeira RR. Synthesis of vanillin derivatives with 1,2,3-triazole fragments and evaluation of their fungicide and fungistatic activities. Arch Pharm (Weinheim) 2023:e202200653. [PMID: 36922908 DOI: 10.1002/ardp.202200653] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 03/18/2023]
Abstract
Vanillin is the main component of natural vanilla extract and is responsible for its flavoring properties. Besides its well-known applications as an additive in food and cosmetics, it has also been reported that vanillin can inhibit fungi of clinical interest, such as Candida spp., Cryptococcus spp., Aspergillus spp., as well as dermatophytes. Thus, the present work approaches the synthesis of a series of vanillin derivatives with 1,2,3-triazole fragments and the evaluation of their antifungal activities against Candida albicans, Candida glabrata, Candida parapsilosis, Candida tropicalis, Cryptococcus neoformans, Cryptococcus gattii, Trichophyton rubrum, and Trichophyton interdigitale strains. Twenty-two vanillin derivatives were obtained, with yields in the range of 60%-91%, from copper(I)-catalyzed alkyne-azide cycloaddition (CuAAC) click reaction between two terminal alkynes prepared from vanillin and different benzyl azides. In general, the evaluated compounds showed moderate activity against the microorganisms tested, with minimum inhibitory concentration (MIC) values ranging from 32 to >512 µg mL-1 . Except for compound 3b against the C. gattii R265 strain, all vanillin derivatives showed fungicidal activity for the yeasts tested. The predicted physicochemical and ADMET (absorption, distribution, metabolism, excretion, and toxicity) properties for the compounds indicated favorable profiles for drug development. In addition, a four-dimensional structure-activity relationship (4D-SAR) analysis was carried out and provided useful insights concerning the structures of the compounds and their biological profile. Finally, molecular docking calculations showed that all compounds bind favorably at the lanosterol 14α-demethylase enzyme active site with binding energies ranging from -9.1 to -12.2 kcal/mol.
Collapse
Affiliation(s)
- Poliana A R Gazolla
- Departamento de Química, Grupo de Síntese e Pesquisa de Compostos Bioativos (GSPCB), Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Alex R de Aguiar
- Departamento de Química, Grupo de Síntese e Pesquisa de Compostos Bioativos (GSPCB), Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Maria C A Costa
- Laboratório de Quimiometria Teórica e Aplicada (LQTA), Universidade Estadual de Campinas - Unicamp, São Paulo, Campinas, Brazil
| | - Osmair V Oliveira
- Instituto Federal de São Paulo - Campus Catanduva, São Paulo, Catanduva, Brazil
| | - Adilson V Costa
- Departamento de Química e Física, Universidade Federal do Espírito Santo, Alto Universitário, Alegre, Espírito Santo, Brazil
| | - Cleiton M da Silva
- Departmento de Química, ICEx, Universidade Federal de Minas Gerais, Campus Pampulha, Belo Horizonte, Minas Gerais, Brazil
| | - Claudia J do Nascimento
- Universidade Federal do Estado do Rio de Janeiro, Instituto de Biociências, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jochen Junker
- Fundação Oswaldo Cruz/CDTS, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rafaela S Ferreira
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Campus Pampulha, Minas Gerais, Belo Horizonte, Brazil
| | - Fabrício M de Oliveira
- Instituto Federal de Minas Gerais (IFMG), Campus Ouro Branco, Ouro Branco, Minas Gerais, Brazil
| | - Boniek G Vaz
- Instituto de Química, Universidade Federal de Goiás, Campus Samambaia, Goiânia, Goiás, Brazil
| | - Paulo H F do Carmo
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Campus Pampulha, Belo Horizonte, Minas Gerais, Brazil
| | - Daniel A Santos
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Campus Pampulha, Belo Horizonte, Minas Gerais, Brazil
| | - Márcia M C Ferreira
- Laboratório de Quimiometria Teórica e Aplicada (LQTA), Universidade Estadual de Campinas - Unicamp, São Paulo, Campinas, Brazil
| | - Róbson R Teixeira
- Departamento de Química, Grupo de Síntese e Pesquisa de Compostos Bioativos (GSPCB), Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| |
Collapse
|
5
|
Mitochondria in Cryptococcus: an update of mitochondrial transcriptional regulation in Cryptococcus. Curr Genet 2023; 69:1-6. [PMID: 36729179 DOI: 10.1007/s00294-023-01261-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/19/2023] [Accepted: 01/19/2023] [Indexed: 02/03/2023]
Abstract
Encapsulated Cryptococcus species are responsible for approximately 15% of AIDS-related mortality. Numerous intriguing investigations have demonstrated that mitochondria play a crucial role in the pathogen-host axis of microorganisms. Mitochondria are vital energy-generating organelles, but they also regulate a variety of cellular activities, such as fungal adaptability in the host and drug resistance. Mitochondria are also the source of reactive oxygen species, which serve as intracellular messengers but are harmful when produced in excess. Thus, precise and stringent regulation of mitochondrial activity, including oxidative phosphorylation and the ROS detoxification process, is essential to ensure that only the amount required to maintain basic biological activities and prevent ROS toxicity in the cell is maintained. However, the relationship between mitochondria and the pathogenicity of Cryptococcus remains poorly understood. In this review, we focus on transcription regulation and maintenance of mitochondrial function along the pathogen-host interaction axis, as well as prospective antifungal strategies that target mitochondria.
Collapse
|
6
|
Banik A, Ahmed SR, Sajib EH, Deb A, Sinha S, Azim KF. Identification of potential inhibitory analogs of metastasis tumor antigens (MTAs) using bioactive compounds: revealing therapeutic option to prevent malignancy. Mol Divers 2022; 26:2473-2502. [PMID: 34743299 DOI: 10.1007/s11030-021-10345-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 10/24/2021] [Indexed: 12/31/2022]
Abstract
The deeper understanding of metastasis phenomenon and detection of drug targets could be a potential approach to minimize cancer mortality. In this study, attempts were taken to unmask novel therapeutics to prevent metastasis and cancer progression. Initially, we explored the physiochemical, structural and functional insights of three metastasis tumor antigens (MTAs) and evaluated some plant-based bioactive compounds as potent MTA inhibitors. From 50 plant metabolites screened, isoflavone, gingerol, citronellal and asiatic acid showed maximum binding affinity with all three MTA proteins. The ADME analysis detected no undesirable toxicity that could reduce the drug likeness properties of top plant metabolites. Moreover, molecular dynamics studies revealed that the complexes were stable and showed minimum fluctuation at molecular level. We further performed ligand-based virtual screening to identify similar drug molecules using a large collection of 376,342 compounds from DrugBank. The results suggested that several structural analogs (e.g., tramadol, nabumetone, DGLA and hydrocortisone) may act as agonist to block the MTA proteins and inhibit cancer progression at early stage. The study could be useful to develop effective medications against cancer metastasis in future. Due to encouraging results, we highly recommend further in vitro and in vivo trials for the experimental validation of the findings.
Collapse
Affiliation(s)
- Anik Banik
- Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
- Department of Plant and Environmental Biotechnology, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
| | - Sheikh Rashel Ahmed
- Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
- Department of Plant and Environmental Biotechnology, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
| | - Emran Hossain Sajib
- Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
| | - Anamika Deb
- Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
| | - Shiuly Sinha
- Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
| | - Kazi Faizul Azim
- Department of Microbial Biotechnology, Sylhet Agricultural University, Sylhet, 3100, Bangladesh.
- Faculté de Pharmacie, Université de Tours, 37200, Tours, France.
| |
Collapse
|
7
|
Khanum G, Kumar A, Singh M, Fatima A, Muthu S, Abualnaja KM, Althubeiti K, Srivastava G, Siddiqui N, Javed S. Density functional studies and spectroscopic analysis (FT-IR, FT-Raman, UV–visible, and NMR) with molecular docking approach on an anticancer and antifungal drug 4‑hydroxy-3-methoxybenzaldehyde. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
8
|
Kawasaki T, Zen H, Sakai T, Sumitomo Y, Nogami K, Hayakawa K, Yaji T, Ohta T, Nagata T, Hayakawa Y. Degradation of Lignin by Infrared Free Electron Laser. Polymers (Basel) 2022; 14:polym14122401. [PMID: 35745977 PMCID: PMC9227113 DOI: 10.3390/polym14122401] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 06/09/2022] [Accepted: 06/11/2022] [Indexed: 02/01/2023] Open
Abstract
Lignin monomers have attracted attention as functional materials for various industrial uses. However, it is challenging to obtain these monomers by degrading polymerized lignin due to the rigid ether linkage between the aromatic rings. Here, we propose a novel approach based on molecular vibrational excitation using infrared free electron laser (IR-FEL) for the degradation of lignin. The IR-FEL is an accelerator-based pico-second pulse laser, and commercially available powdered lignin was irradiated by the IR-FEL under atmospheric conditions. Synchrotron-radiation infrared microspectroscopy analysis showed that the absorption intensities at 1050 cm−1, 1140 cm−1, and 3400 cm−1 were largely decreased alongside decolorization. Electrospray ionization mass chromatography analysis showed that coumaryl alcohol was more abundant and a mass peak corresponding to hydrated coniferyl alcohol was detected after irradiation at 2.9 μm (νO-H) compared to the original lignin. Interestingly, a mass peak corresponding to vanillic acid appeared after irradiation at 7.1 μm (νC=C and νC-C), which was supported by our two-dimensional nuclear magnetic resonance spectroscopy analysis. Therefore, it seems that partial depolymerization of lignin can be induced by IR-FEL irradiation in a wavelength-dependent manner.
Collapse
Affiliation(s)
- Takayasu Kawasaki
- Accelerator Laboratory, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba 305-0801, Ibaraki, Japan
- Correspondence: ; Tel.: +81-29-864-5200-2014
| | - Heishun Zen
- Institute of Advanced Energy, Kyoto University, Gokasho, Uji 611-0011, Kyoto, Japan; (H.Z.); (T.N.)
| | - Takeshi Sakai
- Laboratory for Electron Beam Research and Application (LEBRA), Institute of Quantum Science, Nihon University, 7-24-1 Narashinodai, Funabashi 274-8501, Chiba, Japan; (T.S.); (K.N.); (K.H.); (Y.H.)
| | - Yoske Sumitomo
- Department of Physics, College of Science and Technology, Nihon University, 1-8-14 Kanda Surugadai, Chiyoda-ku 101-8308, Tokyo, Japan;
| | - Kyoko Nogami
- Laboratory for Electron Beam Research and Application (LEBRA), Institute of Quantum Science, Nihon University, 7-24-1 Narashinodai, Funabashi 274-8501, Chiba, Japan; (T.S.); (K.N.); (K.H.); (Y.H.)
| | - Ken Hayakawa
- Laboratory for Electron Beam Research and Application (LEBRA), Institute of Quantum Science, Nihon University, 7-24-1 Narashinodai, Funabashi 274-8501, Chiba, Japan; (T.S.); (K.N.); (K.H.); (Y.H.)
| | - Toyonari Yaji
- SR Center, Research Organization of Science and Technology, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu 525-8577, Shiga, Japan; (T.Y.); (T.O.)
| | - Toshiaki Ohta
- SR Center, Research Organization of Science and Technology, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu 525-8577, Shiga, Japan; (T.Y.); (T.O.)
| | - Takashi Nagata
- Institute of Advanced Energy, Kyoto University, Gokasho, Uji 611-0011, Kyoto, Japan; (H.Z.); (T.N.)
| | - Yasushi Hayakawa
- Laboratory for Electron Beam Research and Application (LEBRA), Institute of Quantum Science, Nihon University, 7-24-1 Narashinodai, Funabashi 274-8501, Chiba, Japan; (T.S.); (K.N.); (K.H.); (Y.H.)
| |
Collapse
|
9
|
Li Q, Zhu X, Xie Y, Zhong Y. o-Vanillin, a promising antifungal agent, inhibits Aspergillus flavus by disrupting the integrity of cell walls and cell membranes. Appl Microbiol Biotechnol 2021; 105:5147-5158. [PMID: 34086115 DOI: 10.1007/s00253-021-11371-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 05/06/2021] [Accepted: 05/26/2021] [Indexed: 11/25/2022]
Abstract
o-Vanillin is a natural product that has been widely applied in the food and pharmaceutical industries. In this study, we determined that o-vanillin can strongly inhibit the growth of Aspergillus flavus mycelia. However, the inhibition mechanism of o-vanillin is still elusive. The ultrastructural morphology of mycelia was injured, and the cell walls were destroyed. The OH functional groups on cell walls were altered, and the content of protein in mycelial cell walls was reduced by o-vanillin. The content of β-1,3-glucan in cell walls was significantly (P < 0.05) reduced by o-vanillin in a dose-dependent manner, while chitin was not markedly affected. Moreover, o-vanillin led to an increase in the permeability of cell membranes. o-Vanillin also exhibited a promising antifungal effect on contaminated corn kernels. Therefore, o-vanillin inhibited the growth of mycelia by disrupting the integrity of cell walls and cell membranes. This study not only sheds light on the antifungal mechanism of o-vanillin but also indicates that it is a promising agent for the control of A. flavus infection. KEY POINTS: • o-Vanillin has strong inhibitory effects on A. flavus. • o-Vanillin destroyed the integrity of cell walls and cell membranes. • o-Vanillin could effectively inhibit the growth of A. flavus on corn kernels.
Collapse
Affiliation(s)
- Qian Li
- Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, College of Food Science and Engineering, Henan University of Technology, Zhengzhou, 450001, Henan, People's Republic of China
| | - Xiaoman Zhu
- Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, College of Food Science and Engineering, Henan University of Technology, Zhengzhou, 450001, Henan, People's Republic of China
| | - Yanli Xie
- Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, College of Food Science and Engineering, Henan University of Technology, Zhengzhou, 450001, Henan, People's Republic of China.
| | - Yue Zhong
- Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, College of Food Science and Engineering, Henan University of Technology, Zhengzhou, 450001, Henan, People's Republic of China
| |
Collapse
|
10
|
Kłosowski G, Mikulski D. Impact of Lignocellulose Pretreatment By-Products on S. cerevisiae Strain Ethanol Red Metabolism during Aerobic and An-aerobic Growth. Molecules 2021; 26:molecules26040806. [PMID: 33557207 PMCID: PMC7913964 DOI: 10.3390/molecules26040806] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 01/31/2021] [Accepted: 02/01/2021] [Indexed: 11/16/2022] Open
Abstract
Understanding the specific response of yeast cells to environmental stress factors is the starting point for selecting the conditions of adaptive culture in order to obtain a yeast line with increased resistance to a given stress factor. The aim of the study was to evaluate the specific cellular response of Saccharomyces cerevisiae strain Ethanol Red to stress caused by toxic by-products generated during the pretreatment of lignocellulose, such as levulinic acid, 5-hydroxymethylfurfural, furfural, ferulic acid, syringaldehyde and vanillin. The presence of 5-hydroxymethylfurfural at the highest analyzed concentration (5704.8 ± 249.3 mg/L) under aerobic conditions induced the overproduction of ergosterol and trehalose. On the other hand, under anaerobic conditions (during the alcoholic fermentation), a decrease in the biosynthesis of these environmental stress indicators was observed. The tested yeast strain was able to completely metabolize 5-hydroxymethylfurfural, furfural, syringaldehyde and vanillin, both under aerobic and anaerobic conditions. Yeast cells reacted to the presence of furan aldehydes by overproducing Hsp60 involved in the control of intracellular protein folding. The results may be helpful in optimizing the process parameters of second-generation ethanol production, in order to reduce the formation and toxic effects of fermentation inhibitors.
Collapse
|
11
|
Sánchez-Hernández S, Esteban-Muñoz A, Samaniego-Sánchez C, Giménez-Martínez R, Miralles B, Olalla-Herrera M. Study of the phenolic compound profile and antioxidant activity of human milk from Spanish women at different stages of lactation: A comparison with infant formulas. Food Res Int 2021; 141:110149. [PMID: 33642015 DOI: 10.1016/j.foodres.2021.110149] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 01/10/2021] [Accepted: 01/12/2021] [Indexed: 12/11/2022]
Abstract
Human milk (HM) has been proven to have important and essential antioxidant properties to counteract infant susceptibility to oxidative stress. Phenolic compounds are secondary metabolites which come from plants and are potent natural antioxidants. The ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method used in the present study allowed the quantification of 26 phenolic compounds (ten hydroxybenzoic acids, seven hydroxycinnamic acids, four flavonoids, three hydroxybenzaldehydes and two other polyphenols) in HM samples at different stages of lactation (colostrum, transitional milk and mature milk) and infant formulas (IF). Many of the phenolic compounds identified have been reported to be present in HM for the first time. The total phenolic compound content (TPC) was quantified using the Folin assay and the antioxidant activity (AC) was evaluated with the DPPH, ABTS and FRAP assays. Significant differences were evidenced between HM and IF. HM from mothers with an adherence to a Mediterranean diet contained twice as many individual phenolic compounds as infant formulas, with a higher proportion of hydroxybenzoic acids. Conversely, IF showed a higher proportion of hydroxycinnamic acids. Overall, the antioxidant activity of HM showed small variations during lactation.
Collapse
Affiliation(s)
- Silvia Sánchez-Hernández
- Departament of Nutrition and Bromatology, University of Granada, Campus de Cartuja, s.n., 18071 Granada, Spain; Ph.D. Programme in Nutrition and Food Science, University of Granada, Spain
| | - Adelaida Esteban-Muñoz
- Departament of Nutrition and Bromatology, University of Granada, Campus de Cartuja, s.n., 18071 Granada, Spain; Ph.D. Programme in Nutrition and Food Science, University of Granada, Spain.
| | - Cristina Samaniego-Sánchez
- Departament of Nutrition and Bromatology, University of Granada, Campus de Cartuja, s.n., 18071 Granada, Spain
| | - Rafael Giménez-Martínez
- Departament of Nutrition and Bromatology, University of Granada, Campus de Cartuja, s.n., 18071 Granada, Spain; Institute of Biosanitary Research ibs. University of Granada, Av. del Conocimiento, s/n., 18016 Granada, Spain
| | - Beatriz Miralles
- Institute of Food Science Research (CIAL), CSIC.UAM, Calle Nicolás Cabrera, 9, 28049 Madrid, Spain
| | - Manuel Olalla-Herrera
- Departament of Nutrition and Bromatology, University of Granada, Campus de Cartuja, s.n., 18071 Granada, Spain; Institute of Biosanitary Research ibs. University of Granada, Av. del Conocimiento, s/n., 18016 Granada, Spain
| |
Collapse
|
12
|
Arya SS, Rookes JE, Cahill DM, Lenka SK. Vanillin: a review on the therapeutic prospects of a popular flavouring molecule. ADVANCES IN TRADITIONAL MEDICINE 2021. [PMCID: PMC7790484 DOI: 10.1007/s13596-020-00531-w] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Abstract Graphic abstract
Collapse
Affiliation(s)
- Sagar S. Arya
- TERI-Deakin NanoBiotechnology Centre, The Energy and Resources Institute, Gurugram, Haryana 122001 India
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds Campus, Geelong, VIC 3216 Australia
| | - James E. Rookes
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds Campus, Geelong, VIC 3216 Australia
| | - David M. Cahill
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds Campus, Geelong, VIC 3216 Australia
| | - Sangram K. Lenka
- TERI-Deakin NanoBiotechnology Centre, The Energy and Resources Institute, Gurugram, Haryana 122001 India
| |
Collapse
|
13
|
Law WY, Asaruddin MR, Bhawani SA, Mohamad S. Pharmacophore modelling of vanillin derivatives, favipiravir, chloroquine, hydroxychloroquine, monolaurin and tetrodotoxin as M Pro inhibitors of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). BMC Res Notes 2020; 13:527. [PMID: 33176880 PMCID: PMC7656897 DOI: 10.1186/s13104-020-05379-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 11/05/2020] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVES The aim of this study was to use Ligand-based pharmacophore modelling approach for four established antiviral drugs, namely remdesivir, lopinavir, ritonavir and hydroxychloroquine for COVID-19 inhibitors as training sets. In this study Twenty vanillin derivatives together with monolaurin and tetrodotoxin were used as test sets to evaluate as potential SARS-CoV-2 inhibitors. The Structure-based pharmacophore modelling approach was also performed using 5RE6, 5REX and 5RFZ in order to analyse the binding site and ligand-protein complex interactions. RESULTS The pharmacophore modelling mode of 5RE6 displayed two Hydrogen Bond Acceptors (HBA) and one Hydrophobic (HY) interaction. Besides, the pharmacophore model of 5REX showed two HBA and two HY interactions. Finally, the pharmacophore model of 5RFZ showed three HBA and one HY interaction. Based on ligand-based approach, 20 Schiff-based vanillin derivatives, showed strong MPro inhibition activity. This was due to their good alignment and common features to PDB-5RE6. Similarly, monolaurin and tetrodotoxin displayed some significant activity against SARS-CoV-2. From structure-based approach, vanillin derivatives (1) to (12) displayed some potent MPro inhibition against SARS-CoV-2. Favipiravir, chloroquine and hydroxychloroquine also showed some significant MPro inhibition.
Collapse
Affiliation(s)
- Woon Yi Law
- Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, 94300, Kota Samarahan, Sarawak, Malaysia.
| | - Mohd Razip Asaruddin
- Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, 94300, Kota Samarahan, Sarawak, Malaysia.
| | - Showkat Ahamd Bhawani
- Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, 94300, Kota Samarahan, Sarawak, Malaysia
| | - Samsur Mohamad
- Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, 94300, Kota Samarahan, Sarawak, Malaysia
| |
Collapse
|
14
|
Banik A, Ahmed SR, Sajib EH, Deb A, Sinha S, Azim KF. Identification of potential inhibitory analogs of metastasis tumor antigens (MTAs) using bioactive compounds: revealing therapeutic option to prevent malignancy.. [DOI: 10.1101/2020.10.19.345975] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
AbstractThe deeper understanding of metastasis phenomenon and detection of drug targets could be a potential approach to minimize cancer mortality. In this study, attempts were taken to unmask novel therapeutics to prevent metastasis and cancer progression. Initially, we explored the physiochemical, structural and functional insights of three metastasis tumor antigens (MTAs) and evaluated some plant based bioactive compounds as potent MTA inhibitors. From 50 plant metabolites screened, isoflavone, gingerol, citronellal and asiatic acid showed maximum binding affinity with all three MTA proteins. The ADME analysis detected no undesirable toxicity that could reduce the drug likeness properties of top plant metabolites. Moreover, molecular dynamics studies revealed that the complexes were stable and showed minimum fluctuation at molecular level. We further performed ligand based virtual screening to identify similar drug molecules using a large collection of 3,76,342 compounds from DrugBank. The results suggested that several structural analogs (e.g. Tramadol, Nabumetone, DGLA, Hydrocortisone) may act as agonist to block the MTA proteins and inhibit cancer progression at early stage. The study could be useful to develop effective medications against cancer metastasis in future. Due to encouraging results, we highly recommend furtherin vitroandin vivotrials for the experimental validation of the findings.
Collapse
|
15
|
Liang Z, Wang X, Bao X, Wei T, Hou J, Liu W, Shen Y. Newly identified genes contribute to vanillin tolerance in Saccharomyces cerevisiae. Microb Biotechnol 2020; 14:503-516. [PMID: 32729986 PMCID: PMC7936312 DOI: 10.1111/1751-7915.13643] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 07/05/2020] [Accepted: 07/13/2020] [Indexed: 12/12/2022] Open
Abstract
Exploring the mechanisms of tolerance in microorganisms to vanillin, which is derived from lignin, will benefit the design of robust cell factories that produce biofuels and chemicals using lignocellulosic materials. Our objective was to identify the genes related to vanillin tolerance in Saccharomyces cerevisiae. We investigated the effects on vanillin tolerance of several genes that have site mutations in the highly vanillin‐tolerant strain EMV‐8 compared to its parental line NAN‐27. The results showed that overexpression of GCY1, a gene that encodes an aldo‐keto reductase that also has mRNA‐binding activity, YPR1, a paralog of GCY1 that encodes an aldo‐keto reductase, PEX5, a gene that encodes a peroxisomal membrane signal receptor and MBF1, a gene that encodes a multiprotein bridging factor increase the specific growth rates (μ) by 49%, 41%, 44% and 48 %, respectively, in medium containing 6 mmol l−1 vanillin. Among these gene products, Gcy1p and Ypr1p showed NADPH‐dependent and NAD(P)H‐dependent vanillin reductase activity, respectively. The reductase‐inactive mutant Gcy1pY56F also increased vanillin tolerance in S. cerevisiae, suggesting that other mechanisms exist. Although TRS85 and PEX5, genes for which the mRNAs are binding targets of Gcy1p, were shown to be related to vanillin tolerance, both the mRNA and protein levels of these genes were not changed by overexpression of GCY1. The relationship between the mRNA‐binding activity of Gcy1p and its positive effect on vanillin tolerance is still not clear. Finally, we found that the point mutation D112A in Mbf1p, which disrupts the binding of Mbf1p and the TATA element‐binding protein (TBP), did not decrease the positive effect of Mbf1p on vanillin tolerance. This indicates that the binding of Mbf1p and TBP is not necessary for the positive effect on vanillin tolerance mediated by Mbf1p. We have successfully identified new genes related to vanillin tolerance and provided novel targets that can be used to improve the vanillin tolerance of S. cerevisiae. Moreover, we have extended our understanding of the proteins encoded by these genes.
Collapse
Affiliation(s)
- Zhenzhen Liang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Xinning Wang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, China.,State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qi Lu University of Technology, Jinan, 250353, China
| | - Xiaoming Bao
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, China.,State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qi Lu University of Technology, Jinan, 250353, China
| | - Tiandi Wei
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Jin Hou
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Weifeng Liu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Yu Shen
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, China
| |
Collapse
|
16
|
Ito S, Sakai K, Gamaleev V, Ito M, Hori M, Kato M, Shimizu M. Oxygen radical based on non-thermal atmospheric pressure plasma alleviates lignin-derived phenolic toxicity in yeast. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:18. [PMID: 32010221 PMCID: PMC6988259 DOI: 10.1186/s13068-020-1655-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 01/12/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND Vanillin is the main byproduct of alkaline-pretreated lignocellulosic biomass during the process of fermentable-sugar production and a potent inhibitor of ethanol production by yeast. Yeast cells are usually exposed to vanillin during the industrial production of bioethanol from lignocellulosic biomass. Therefore, vanillin toxicity represents a major barrier to reducing the cost of bioethanol production. RESULTS In this study, we analysed the effects of oxygen-radical treatment on vanillin molecules. Our results showed that vanillin was converted to vanillic acid, protocatechuic aldehyde, protocatechuic acid, methoxyhydroquinone, 3,4-dihydroxy-5-methoxybenzaldehyde, trihydroxy-5-methoxybenzene, and their respective ring-cleaved products, which displayed decreased toxicity relative to vanillin and resulted in reduced vanillin-specific toxicity to yeast during ethanol fermentation. Additionally, after a 16-h incubation, the ethanol concentration in oxygen-radical-treated vanillin solution was 7.0-fold greater than that from non-treated solution, with similar results observed using alkaline-pretreated rice straw slurry with oxygen-radical treatment. CONCLUSIONS This study analysed the effects of oxygen-radical treatment on vanillin molecules in the alkaline-pretreated rice straw slurry, thereby finding that this treatment converted vanillin to its derivatives, resulting in reduced vanillin toxicity to yeast during ethanol fermentation. These findings suggest that a combination of chemical and oxygen-radical treatment improved ethanol production using yeast cells, and that oxygen-radical treatment of plant biomass offers great promise for further improvements in bioethanol-production processes.
Collapse
Affiliation(s)
- Shou Ito
- Faculty of Agriculture, Meijo University, Nagoya, Aichi 468-8502 Japan
| | - Kiyota Sakai
- Faculty of Agriculture, Meijo University, Nagoya, Aichi 468-8502 Japan
| | - Vladislav Gamaleev
- Faculty of Science and Technology, Meijo University, Nagoya, Aichi 468-8502 Japan
| | - Masafumi Ito
- Faculty of Science and Technology, Meijo University, Nagoya, Aichi 468-8502 Japan
| | - Masaru Hori
- Center for Low-temperature Plasma Sciences, Nagoya University, Nagoya, Aichi 464-8603 Japan
| | - Masashi Kato
- Faculty of Agriculture, Meijo University, Nagoya, Aichi 468-8502 Japan
| | - Motoyuki Shimizu
- Faculty of Agriculture, Meijo University, Nagoya, Aichi 468-8502 Japan
| |
Collapse
|
17
|
Ethyl Vanillin Protects against Kidney Injury in Diabetic Nephropathy by Inhibiting Oxidative Stress and Apoptosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:2129350. [PMID: 31781325 PMCID: PMC6875338 DOI: 10.1155/2019/2129350] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 09/27/2019] [Accepted: 10/08/2019] [Indexed: 01/05/2023]
Abstract
Diabetes-induced oxidative stress and apoptosis is regarded as a critical role in the pathogenesis of diabetic nephropathy (DN). Treating diabetes-induced kidney damage and renal dysfunction has been thought a promising therapeutic option to attenuate the development and progression of DN. In this study, we investigated the renoprotective effect of ethyl vanillin (EVA), an active analogue of vanillin isolated from vanilla beans, on streptozotocin- (STZ-) induced rat renal injury model and high glucose-induced NRK-52E cell model. The EVA treatment could strongly improve the deterioration of renal function and kidney cell apoptosis in vivo and in vitro. Moreover, treating with EVA significantly decreased the level of MDA and reactive oxygen species (ROS) and stabilized antioxidant enzyme system in response to oxidative stress by enhancing the activity of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) in vivo and in vitro. Furthermore, EVA also markedly suppressed cleaved caspase-3, Bax, and nuclear transcription factor erythroid 2-related factor (Nrf2) expression in STZ-induced rats. Therefore, these results of our investigation provided that EVA might protect against kidney injury in DN by inhibiting oxidative stress and cell apoptosis.
Collapse
|
18
|
Kumari P, Arora N, Chatrath A, Gangwar R, Pruthi V, Poluri KM, Prasad R. Delineating the Biofilm Inhibition Mechanisms of Phenolic and Aldehydic Terpenes against Cryptococcus neoformans. ACS OMEGA 2019; 4:17634-17648. [PMID: 31681870 PMCID: PMC6822124 DOI: 10.1021/acsomega.9b01482] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 09/25/2019] [Indexed: 05/31/2023]
Abstract
The recalcitrant biofilm formed by fungus Cryptococcus neoformans is a life-threatening pathogenic condition responsible for further intensifying cryptococcosis. Considering the enhanced biofilm resistance and toxicity of synthetic antifungal drugs, the search for efficient, nontoxic, and cost-effective natural therapeutics has received a major boost. Phenolic (thymol and carvacrol) and aldehydic (citral) terpenes are natural and safe alternatives capable of efficient microbial biofilm inhibition. However, the biofilm inhibition mechanism of these terpenes still remains unclear. In this study, we adopted an integrative biophysical and biochemical approach to elucidate the hierarchy of their action against C. neoformans biofilm cells. The microscopic analysis revealed disruption of the biofilm cell surface with elevation in surface roughness and reduction in cell height. Although all terpenes acted through ergosterol biosynthesis inhibition, the phenolic terpenes also selectively interacted via ergosterol binding. Further, the alterations in the fatty acid profile in response to terpenes attenuated the cell membrane fluidity with enhanced permeability, resulting in pore formation and efflux of the K+/intracellular content. Additionally, mitochondrial depolarization caused higher levels of reactive oxygen species, which led to increased lipid peroxidation and activation of the antioxidant defense system. Indeed, the oxidative stress caused a significant decline in the amount of extracellular polymeric matrix and capsule sugars (mannose, xylose, and glucuronic acid), leading to a reduced capsule size and an overall negative charge on the cell surface. This comprehensive data revealed the mechanistic insights into the mode of action of terpenes on biofilm inhibition, which could be exploited for formulating novel anti-biofilm agents.
Collapse
Affiliation(s)
- Poonam Kumari
- Department of Biotechnology, Indian Institute
of Technology Roorkee, Roorkee 247677, Uttarakhand, India
| | - Neha Arora
- Department of Biotechnology, Indian Institute
of Technology Roorkee, Roorkee 247677, Uttarakhand, India
| | - Apurva Chatrath
- Department of Biotechnology, Indian Institute
of Technology Roorkee, Roorkee 247677, Uttarakhand, India
| | - Rashmi Gangwar
- Department of Biotechnology, Indian Institute
of Technology Roorkee, Roorkee 247677, Uttarakhand, India
| | - Vikas Pruthi
- Department of Biotechnology, Indian Institute
of Technology Roorkee, Roorkee 247677, Uttarakhand, India
| | - Krishna Mohan Poluri
- Department of Biotechnology, Indian Institute
of Technology Roorkee, Roorkee 247677, Uttarakhand, India
| | - Ramasare Prasad
- Department of Biotechnology, Indian Institute
of Technology Roorkee, Roorkee 247677, Uttarakhand, India
| |
Collapse
|
19
|
Li Z, Liu N, Tu J, Ji C, Han G, Sheng C. Discovery of Simplified Sampangine Derivatives with Potent Antifungal Activities against Cryptococcal Meningitis. ACS Infect Dis 2019; 5:1376-1384. [PMID: 31070884 DOI: 10.1021/acsinfecdis.9b00086] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Cryptococcal meningitis (CM) is associated with high morbidity and mortality. Current antifungal drug therapy for CM has the following challenges: limited efficacy, significant side effects, emerging drug resistance, and unavailability in highly needed countries. There is an urgent need to develop novel CM therapeutic agents with a new mode of action. On the basis of the antifungal natural product sampangine, herein, novel simplified isoxazole derivatives were identified to possess excellent inhibitory activity against Cryptococcus neoformans (C. neoformans). Particularly, compound 9a was highly active (the minimum inhibitory concentration of 80% inhibition, MIC80 = 0.031 μg/mL) and significantly inhibited biofilm formation, melanin, and urease production of C. neoformans. 9a had good blood-brain barrier (BBB) permeability and effectively reduced the brain fungal burden in a murine model of cryptococcosis. The antifungal mechanism of compound 9a was preliminarily investigated by transmission electron microscopy and flow cytometry. It was able to cause necrocytosis of C. neoformans cells and cell cycle arrest in the G1/S phase. Isoxazole compound 9a represents a promising lead compound for the development of novel CM therapeutic agents.
Collapse
Affiliation(s)
- Zhuang Li
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, People’s Republic of China
- School of Pharmacy, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Fuzhou, Fujian 350122, People’s Republic of China
| | - Na Liu
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, People’s Republic of China
| | - Jie Tu
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, People’s Republic of China
| | - Changjin Ji
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, People’s Republic of China
| | - Guiyan Han
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, People’s Republic of China
| | - Chunquan Sheng
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, People’s Republic of China
- School of Pharmacy, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Fuzhou, Fujian 350122, People’s Republic of China
| |
Collapse
|
20
|
Do E, Lee HG, Park M, Cho YJ, Kim DH, Park SH, Eun D, Park T, An S, Jung WH. Antifungal Mechanism of Action of Lauryl Betaine Against Skin-Associated Fungus Malassezia restricta. MYCOBIOLOGY 2019; 47:242-249. [PMID: 31448144 PMCID: PMC6691833 DOI: 10.1080/12298093.2019.1625175] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 05/21/2019] [Accepted: 05/24/2019] [Indexed: 06/10/2023]
Abstract
Betaine derivatives are considered major ingredients of shampoos and are commonly used as antistatic and viscosity-increasing agents. Several studies have also suggested that betaine derivatives can be used as antimicrobial agents. However, the antifungal activity and mechanism of action of betaine derivatives have not yet been fully understood. In this study, we investigated the antifungal activity of six betaine derivatives against Malassezia restricta, which is the most frequently isolated fungus from the human skin and is implicated in the development of dandruff. We found that, among the six betaine derivatives, lauryl betaine showed the most potent antifungal activity. The mechanism of action of lauryl betaine was studied mainly using another phylogenetically close model fungal organism, Cryptococcus neoformans, because of a lack of available genetic manipulation and functional genomics tools for M. restricta. Our genome-wide reverse genetic screening method using the C. neoformans gene deletion mutant library showed that the mutants with mutations in genes for cell membrane synthesis and integrity, particularly ergosterol synthesis, are highly sensitive to lauryl betaine. Furthermore, transcriptome changes in both C. neoformans and M. restricta cells grown in the presence of lauryl betaine were analyzed and the results indicated that the compound mainly affected cell membrane synthesis, particularly ergosterol synthesis. Overall, our data demonstrated that lauryl betaine influences ergosterol synthesis in C. neoformans and that the compound exerts a similar mechanism of action on M. restricta.
Collapse
Affiliation(s)
- Eunsoo Do
- Department of Systems Biotechnology, Chung-Ang University, Anseong, Korea
| | - Hyun Gee Lee
- Safety Research Institute, Amorepacific R&D Center, Yongin, Korea
| | - Minji Park
- Department of Systems Biotechnology, Chung-Ang University, Anseong, Korea
| | | | - Dong Hyeun Kim
- Department of Systems Biotechnology, Chung-Ang University, Anseong, Korea
| | - Se-Ho Park
- Department of Systems Biotechnology, Chung-Ang University, Anseong, Korea
| | - Daekyung Eun
- Safety Research Institute, Amorepacific R&D Center, Yongin, Korea
| | - Taehun Park
- Safety Research Institute, Amorepacific R&D Center, Yongin, Korea
| | - Susun An
- Safety Research Institute, Amorepacific R&D Center, Yongin, Korea
| | - Won Hee Jung
- Department of Systems Biotechnology, Chung-Ang University, Anseong, Korea
| |
Collapse
|
21
|
Romero-Cortes T, Pérez España VH, López Pérez PA, Rodríguez-Jimenes GDC, Robles-Olvera VJ, Aparicio Burgos JE, Cuervo-Parra JA. Antifungal activity of vanilla juice and vanillin against Alternaria alternata. CYTA - JOURNAL OF FOOD 2019. [DOI: 10.1080/19476337.2019.1586776] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Teresa Romero-Cortes
- Escuela Superior de Apan, Universidad Autónoma del Estado de Hidalgo, Chimalpa Tlalayote, Hgo, Mexico
| | - Víctor Hugo Pérez España
- Escuela Superior de Apan, Universidad Autónoma del Estado de Hidalgo, Chimalpa Tlalayote, Hgo, Mexico
| | - Pablo Antonio López Pérez
- Escuela Superior de Apan, Universidad Autónoma del Estado de Hidalgo, Chimalpa Tlalayote, Hgo, Mexico
| | | | - Víctor J. Robles-Olvera
- Unidad de Investigación y Desarrollo en Alimentos, Instituto Tecnológico de Veracruz, Veracruz, Ver, Mexico
| | | | | |
Collapse
|
22
|
Zhong L, Tong Y, Chuan J, Bai L, Shi J, Zhu Y. Protective effect of ethyl vanillin against Aβ-induced neurotoxicity in PC12 cells via the reduction of oxidative stress and apoptosis. Exp Ther Med 2019; 17:2666-2674. [PMID: 30930969 PMCID: PMC6425458 DOI: 10.3892/etm.2019.7242] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 12/21/2018] [Indexed: 12/22/2022] Open
Abstract
Increased aggregation of β-amyloid (Aβ) peptides induces oxidative stress, which is considered a major contributor in the development of Alzheimer's disease (AD). Prevention of Aβ-induced neurotoxicity is proposed as a possible modality for treatment of AD. The present study aimed to elucidate possible effects of ethyl vanillin (EVA), an analog of vanillin isolated from vanilla beans, on the Aβ1-42-induced oxidative injury in PC12 cells. EVA restrained the decrease in PC12 cell viability and apoptosis induction caused by treatment with Aβ1-42. In addition, EVA markedly alleviated intracellular lipid peroxidation as demonstrated by malondialdehyde levels and reactive oxygen species production in Aβ1-42-treated PC12 cells. In addition, the reduction in the activity levels of the antioxidative enzymes superoxide dismutase, catalase and glutathione peroxidase was detected in Aβ1-42-treated PC12 cells. This effect was partially reversed by treatment with EVA. Furthermore, the results indicated that EVA attenuated Aβ1-42-induced caspase-3 activation and the increase noted in the apoptosis regulator Bcl-2/apoptosis regulator Bax ratio of PC12 cells. These results indicated that EVA could be used as an efficient and novel agent for the prevention of neurodegenerative diseases via inhibition of oxidative stress and cell apoptosis.
Collapse
Affiliation(s)
- Lei Zhong
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, P.R. China
| | - Yuna Tong
- Department of Nephrology, The Third People's Hospital of Chengdu, Chengdu, Sichuan 610031, P.R. China
| | - Junlan Chuan
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, P.R. China
| | - Lan Bai
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, P.R. China
| | - Jianyou Shi
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, P.R. China
| | - Yuxuan Zhu
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, P.R. China
| |
Collapse
|
23
|
Rönnander J, Ljunggren J, Hedenström E, Wright SAI. Biotransformation of vanillin into vanillyl alcohol by a novel strain of Cystobasidium laryngis isolated from decaying wood. AMB Express 2018; 8:137. [PMID: 30143905 PMCID: PMC6109037 DOI: 10.1186/s13568-018-0666-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 08/17/2018] [Indexed: 11/19/2022] Open
Abstract
Vanillin is an aromatic aldehyde found as a component of lignocellulosic material, and in the cured pods of orchidaceae plants. Like other phenolic substances, vanillin has antimicrobial activity and can be extracted from lignin either by a thermo-chemical process or through microbial degradation. Vanillin, can serve as a model monomer in biodegradation studies of lignin. In the present study, a yeast isolated from decaying wood on the Faroe Islands, was identified as Cystobasidium laryngis strain FMYD002, based on internal transcribed spacer sequence analysis. It demonstrated the ability to convert vanillin to vanillyl alcohol, as detected by ultra-high performance liquid chromatography-quadrupole-time-of-flight. Structural analysis of vanillyl alcohol was carried out by using gas chromatography-mass spectrometry and 1H NMR spectroscopy, and further verified by synthesis. The reduction of vanillin to vanillyl alcohol has been documented for only a few species of fungi. However, to our knowledge, this biotransformation has not yet been reported for basidiomycetous yeast species, nor for any representative of the subphylum Pucciniomycotina. The biotransformation capability of the present strain might prove useful in the industrial utilisation of lignocellulosic residues.
Collapse
Affiliation(s)
- Jonas Rönnander
- Faculty of Engineering and Sustainable Development, University of Gävle, 80176, Gävle, Sweden.
| | - Joel Ljunggren
- Department of Chemical Engineering, Mid Sweden University, 85170, Sundsvall, Sweden
| | - Erik Hedenström
- Department of Chemical Engineering, Mid Sweden University, 85170, Sundsvall, Sweden
| | | |
Collapse
|
24
|
Abstract
Long-term use of a denture base can be a reservoir of microbes due to porosities and mechanical wear of denture surfaces. Vanillin has an antimicrobial effect. However, its influence on physical properties after incorporated in PMMA has not yet been evaluated. The purpose of this study was to investigate physical properties of PMMA by incorporating vanillin in different concentrations. Material and method. There were three groups of PMMA with ten specimens per group. Flexural strength and flexural modulus were tested by using a 3-point bending machine, and surface hardness was determined by Vickers hardness test. One-way ANOVA and Kruskal Wallis tests were used to analyze all data at 0.05 significance level. Result. The 0.1% vanillin group yielded a significant difference in Vickers hardness number (17.15 HV) as compared to 0.5% vanillin group (16.30 HV) and without vanillin (15.30 HV). In contrast, the flexural strength and modulus showed no significant difference among test groups upon incorporation of vanillin. Conclusion. The vanillin incorporated PMMA group demonstrated higher surface hardness, compared to the group without vanillin. In addition, there were no significant differences in flexural strength and flexural modulus among the three groups. This study also found no adverse effect in physical properties of the vanillin incorporated PMMA.
Collapse
|
25
|
Obando D, Koda Y, Pantarat N, Lev S, Zuo X, Bijosono Oei J, Widmer F, Djordjevic JT, Sorrell TC, Jolliffe KA. Synthesis and Evaluation of a Series of Bis(pentylpyridinium) Compounds as Antifungal Agents. ChemMedChem 2018; 13:1421-1436. [PMID: 29781143 DOI: 10.1002/cmdc.201800331] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Indexed: 01/05/2023]
Abstract
A series of bis(4-pentylpyridinium) compounds with a variety of spacers between the pyridinium headgroups was synthesised, and the antifungal activity of these compounds was investigated. Lengthening the alkyl spacer between the pentylpyridinium headgroups from 12 to 16 methylene units resulted in increased antifungal activity against C. neoformans and C. albicans, but also resulted in increased hemolytic activity and cytotoxicity against mammalian cells. However, inclusion of an ortho-substituted benzene ring in the centre of the alkyl spacer resulted in decreased cytotoxicity and hemolytic activity, while maintaining antifungal potency. Replacement of the alkyl and aromatic-containing spacers by more hydrophilic ethylene glycol groups resulted in a loss of antifungal activity. Some of the compounds inhibited fungal PLB1 activity, but the low correlation of this inhibition with antifungal potency indicates PLB1 inhibition is unlikely to be the predominant mode of antifungal action of this class of compounds, with preliminary studies suggesting they may act via disruption of fungal mitochondrial function.
Collapse
Affiliation(s)
- Daniel Obando
- School of Chemistry, The University of Sydney, 2006, NSW, Australia
| | - Yasuko Koda
- School of Chemistry, The University of Sydney, 2006, NSW, Australia.,The University of Sydney, Marie Bashir Institute for Infectious Diseases and Biosecurity, Centre for Infectious Diseases and Microbiology, Westmead Institute for Medical Research, Westmead, 2145, NSW, Australia
| | - Namfon Pantarat
- The University of Sydney, Marie Bashir Institute for Infectious Diseases and Biosecurity, Centre for Infectious Diseases and Microbiology, Westmead Institute for Medical Research, Westmead, 2145, NSW, Australia
| | - Sophie Lev
- The University of Sydney, Marie Bashir Institute for Infectious Diseases and Biosecurity, Centre for Infectious Diseases and Microbiology, Westmead Institute for Medical Research, Westmead, 2145, NSW, Australia
| | - Xiaoming Zuo
- The University of Sydney, Marie Bashir Institute for Infectious Diseases and Biosecurity, Centre for Infectious Diseases and Microbiology, Westmead Institute for Medical Research, Westmead, 2145, NSW, Australia
| | - Johanes Bijosono Oei
- The University of Sydney, Marie Bashir Institute for Infectious Diseases and Biosecurity, Centre for Infectious Diseases and Microbiology, Westmead Institute for Medical Research, Westmead, 2145, NSW, Australia
| | - Fred Widmer
- The University of Sydney, Marie Bashir Institute for Infectious Diseases and Biosecurity, Centre for Infectious Diseases and Microbiology, Westmead Institute for Medical Research, Westmead, 2145, NSW, Australia
| | - Julianne T Djordjevic
- The University of Sydney, Marie Bashir Institute for Infectious Diseases and Biosecurity, Centre for Infectious Diseases and Microbiology, Westmead Institute for Medical Research, Westmead, 2145, NSW, Australia
| | - Tania C Sorrell
- The University of Sydney, Marie Bashir Institute for Infectious Diseases and Biosecurity, Centre for Infectious Diseases and Microbiology, Westmead Institute for Medical Research, Westmead, 2145, NSW, Australia
| | | |
Collapse
|
26
|
A gap is filled: First structures of enantiopure iron(III) complexes with Schiff base ligands derived from ortho-vanillin and -glutamine or l-glutamic acid. Polyhedron 2018. [DOI: 10.1016/j.poly.2017.12.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
27
|
Alves JCO, Ferreira GF, Santos JR, Silva LCN, Rodrigues JFS, Neto WRN, Farah EI, Santos ÁRC, Mendes BS, Sousa LVNF, Monteiro AS, Dos Santos VL, Santos DA, Perez AC, Romero TRL, Denadai ÂML, Guzzo LS. Eugenol Induces Phenotypic Alterations and Increases the Oxidative Burst in Cryptococcus. Front Microbiol 2017; 8:2419. [PMID: 29270159 PMCID: PMC5726113 DOI: 10.3389/fmicb.2017.02419] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 11/22/2017] [Indexed: 11/13/2022] Open
Abstract
Eugenol is a phenolic compound and the main constituent of the essential oil of clove India. Although there are reports of some pharmacological effects of eugenol, this study is the first that proposes to evaluate the antifungal effects of this phenol against both Cryptococcus gattii and C. neoformans cells. The effect of eugenol against yeast cells was analyzed for drug susceptibility, alterations in cell diameter, capsule properties, amounts of ergosterol, oxidative burst, and thermodynamics data. Data demonstrated that there is no interaction between eugenol and fluconazole and amphotericin B. Eugenol reduced the cell diameter and the capsule size, increased cell surface/volume, changed positively the cell surface charge of cryptococcal cells. We also verified increased levels of reactive oxygen species without activation of antioxidant enzymes, leading to increased lipid peroxidation, mitochondrial membrane depolarization and reduction of lysosomal integrity in cryptococcal cells. Additionally, the results showed that there is no significant molecular interaction between eugenol and C. neoformans. Morphological alterations, changes of cellular superficial charges and oxidative stress play an important role in antifungal activity of eugenol against C. gattii and C. neoformans that could be used as an auxiliary treatment to cutaneous cryptococcosis.
Collapse
Affiliation(s)
- Júnia C O Alves
- Faculdade de Ciências da Saúde, Universidade Vale do Rio Doce, Governador Valadares, Brazil
| | - Gabriella F Ferreira
- Departamento de Farmácia, Universidade Federal de Juiz de Fora - Campus Governador Valadares, Governador Valadares, Brazil
| | | | - Luís C N Silva
- Centro de Ciências da Saúde, Universidade CEUMA, São Luís, Brazil
| | | | - Wallace R N Neto
- Centro de Ciências da Saúde, Universidade CEUMA, São Luís, Brazil
| | | | - Áquila R C Santos
- Departamento de Farmácia, Universidade Federal de Juiz de Fora - Campus Governador Valadares, Governador Valadares, Brazil
| | - Brenda S Mendes
- Faculdade de Ciências da Saúde, Universidade Vale do Rio Doce, Governador Valadares, Brazil
| | - Lourimar V N F Sousa
- Faculdade de Ciências da Saúde, Universidade Vale do Rio Doce, Governador Valadares, Brazil
| | | | - Vera L Dos Santos
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Daniel A Santos
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Andrea C Perez
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Thiago R L Romero
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ângelo M L Denadai
- Departamento de Farmácia, Universidade Federal de Juiz de Fora - Campus Governador Valadares, Governador Valadares, Brazil
| | - Luciana S Guzzo
- Departamento de Farmácia, Universidade Federal de Juiz de Fora - Campus Governador Valadares, Governador Valadares, Brazil
| |
Collapse
|
28
|
Day JN, Qihui S, Thanh LT, Trieu PH, Van AD, Thu NH, Chau TTH, Lan NPH, Chau NVV, Ashton PM, Thwaites GE, Boni MF, Wolbers M, Nagarajan N, Tan PBO, Baker S. Comparative genomics of Cryptococcus neoformans var. grubii associated with meningitis in HIV infected and uninfected patients in Vietnam. PLoS Negl Trop Dis 2017; 11:e0005628. [PMID: 28614360 PMCID: PMC5484541 DOI: 10.1371/journal.pntd.0005628] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 06/26/2017] [Accepted: 05/07/2017] [Indexed: 12/14/2022] Open
Abstract
The vast burden of cryptococcal meningitis occurs in immunosuppressed patients, driven by HIV, and is caused by Cryptococcus neoformansvar. grubii. We previously reported cryptococcal meningitis in Vietnam arising atypically in HIV uninfected, apparently immunocompetent patients, caused by a single amplified fragment length polymorphism (AFLP) cluster of C. neoformansvar. grubii (VNIγ). This variant was less common in HIV infected individuals; it remains unclear why this lineage is associated with apparently immunocompetent patients. To study this host tropism we aimed to further our understanding of clinical phenotype and genomic variation within Vietnamese C. neoformansvar. grubii. After performing MLST on C. neoformans clinical isolates we identified 14 sequence types (STs); ST5 correlated with the VNIγ cluster. We next compared clinical phenotype by lineage and found HIV infected patients with cryptococcal meningitis caused by ST5 organisms were significantly more likely to have lymphadenopathy (11% vs. 4%, p = 0.05 Fisher’s exact test) and higher blood lymphocyte count (median 0.76 versus 0.55 X109 cells/L, p = 0.001, Kruskal-Wallis test). Furthermore, survivors of ST5 infections had evidence of worse disability outcomes at 70 days (72.7% (40/55) in ST5 infections versus 57.1% (52/91) non-ST5 infections (OR 2.11, 95%CI 1.01 to 4.41), p = 0.046). To further investigate the relationship between strain and disease phenotype we performed genome sequencing on eight Vietnamese C. neoformansvar. grubii. Eight genome assemblies exhibited >99% nucleotide sequence identity and we identified 165 kbp of lineage specific to Vietnamese isolates. ST5 genomes harbored several strain specific regions, incorporating 19 annotated coding sequences and eight hypothetical proteins. These regions included a phenolic acid decarboxylase, a DEAD-box ATP-dependent RNA helicase 26, oxoprolinases, a taurine catabolism dioxygenase, a zinc finger protein, membrane transport proteins and various drug transporters. Our work outlines the complexity of genomic pathogenicity in cryptococcal infections and identifies a number of gene candidates that may aid the disaggregation of the pathways associated with the pathogenesis of Cryptococcus neoformansvar. grubii. Cryptococcal meningitis is a brain infection caused by a yeast, Cryptococcus neoformans, and results in an estimated 600 000 deaths each year. Disease usually only occurs in patients who have some problem with their immune systems—most commonly Human Immunodeficiency Virus (HIV) infection. However, it is increasingly recognized that disease can occur, particularly in southeast and east Asia, in patients with apparently normal immune systems (‘immunocompetent’). We previously showed that almost all infections in immunocompetent patients in Vietnam are due to just one small ‘family’ (or lineage) of Cryptococcus neoformans var. grubii, which we called VNIγ. This is in contrast to disease in HIV infected patients, which can be caused by a number of different families. This suggests that VNIγ strains have an increased ability to cause disease. Here, we define the pattern of disease caused by VNIγ infections compared with other strains in HIV infected patients, and use whole genome sequencing—comparing the entire genetic codes from different strains—to try and understand which genes give the VNIγ family this special ability to cause disease in immunocompetent patients.
Collapse
Affiliation(s)
- Jeremy N Day
- Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Programme Viet Nam, Ho Chi Minh City, Vietnam.,Centre for Tropical Medicine, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Seet Qihui
- Genome Institute of Singapore, Singapore
| | - Lam Tuan Thanh
- Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Programme Viet Nam, Ho Chi Minh City, Vietnam
| | - Phan Hai Trieu
- Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Programme Viet Nam, Ho Chi Minh City, Vietnam
| | - Anh Duong Van
- Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Programme Viet Nam, Ho Chi Minh City, Vietnam
| | - Nha Hoang Thu
- Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Programme Viet Nam, Ho Chi Minh City, Vietnam
| | - Tran Thi Hong Chau
- Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Programme Viet Nam, Ho Chi Minh City, Vietnam
| | - Nguyen P H Lan
- Hospital for Tropical Diseases, Ho Chi Minh City, Viet Nam
| | | | - Philip M Ashton
- Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Programme Viet Nam, Ho Chi Minh City, Vietnam
| | - Guy E Thwaites
- Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Programme Viet Nam, Ho Chi Minh City, Vietnam.,Centre for Tropical Medicine, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Maciej F Boni
- Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Programme Viet Nam, Ho Chi Minh City, Vietnam.,Centre for Tropical Medicine, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Marcel Wolbers
- Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Programme Viet Nam, Ho Chi Minh City, Vietnam.,Centre for Tropical Medicine, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | | | | | - Stephen Baker
- Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Programme Viet Nam, Ho Chi Minh City, Vietnam.,Centre for Tropical Medicine, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom.,The London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|
29
|
Zheng DQ, Jin XN, Zhang K, Fang YH, Wu XC. Novel strategy to improve vanillin tolerance and ethanol fermentation performances of Saccharomycere cerevisiae strains. BIORESOURCE TECHNOLOGY 2017; 231:53-58. [PMID: 28192726 DOI: 10.1016/j.biortech.2017.01.040] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 01/18/2017] [Accepted: 01/20/2017] [Indexed: 06/06/2023]
Abstract
The aim of this work was to develop a novel strategy for improving the vanillin tolerance and ethanol fermentation performances of Saccharomyces cerevisiae strains. Isogeneic diploid, triploid, and tetraploid S. cerevisiae strains were generated by genome duplication of haploid strain CEN.PK2-1C. Ploidy increments improved vanillin tolerance and diminished proliferation capability. Antimitotic drug methyl benzimidazol-2-ylcarbamate (MBC) was used to introduce chromosomal aberrations into the tetraploid S. cerevisiae strain. Interestingly, aneuploid mutants with DNA contents between triploid and tetraploid were more resistant to vanillin and showed faster ethanol fermentation rates than all euploid strains. The physiological characteristics of these mutants suggest that higher bioconversion capacities of vanillin and ergosterol contents might contribute to improved vanillin tolerance. This study demonstrates that genome duplication and MBC treatment is a powerful strategy to improve the vanillin tolerance of yeast strains.
Collapse
Affiliation(s)
- Dao-Qiong Zheng
- College of Life Science, Zhejiang University, Hangzhou 310058, Zhejiang Province, China; Ocean College, Zhejiang University, Zhoushan, Zhejiang Province, China
| | - Xin-Na Jin
- College of Life Science, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Ke Zhang
- College of Life Science, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Ya-Hong Fang
- College of Life Science, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Xue-Chang Wu
- College of Life Science, Zhejiang University, Hangzhou 310058, Zhejiang Province, China.
| |
Collapse
|
30
|
Seo WD, Lee DY, Park KH, Kim JH. Downregulation of fungal cytochrome c peroxidase expression by antifungal quinonemethide triterpenoids. ACTA ACUST UNITED AC 2016. [DOI: 10.3839/jabc.2016.048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
31
|
Grecco SS, Lorenzi H, Tempone AG, Lago JHG. Update: biological and chemical aspects of Nectandra genus (Lauraceae). ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.tetasy.2016.07.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
32
|
Wang X, Liang Z, Hou J, Bao X, Shen Y. Identification and functional evaluation of the reductases and dehydrogenases from Saccharomyces cerevisiae involved in vanillin resistance. BMC Biotechnol 2016; 16:31. [PMID: 27036139 PMCID: PMC4818428 DOI: 10.1186/s12896-016-0264-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 03/21/2016] [Indexed: 11/24/2022] Open
Abstract
Background Vanillin, a type of phenolic released during the pre-treatment of lignocellulosic materials, is toxic to microorganisms and therefore its presence inhibits the fermentation. The vanillin can be reduced to vanillyl alcohol, which is much less toxic, by the ethanol producer Saccharomyces cerevisiae. The reducing capacity of S. cerevisiae and its vanillin resistance are strongly correlated. However, the specific enzymes and their contribution to the vanillin reduction are not extensively studied. In our previous work, an evolved vanillin-resistant strain showed an increased vanillin reduction capacity compared with its parent strain. The transcriptome analysis suggested the reductases and dehydrogenases of this vanillin resistant strain were up-regulated. Using this as a starting point, 11 significantly regulated reductases and dehydrogenases were selected in the present work for further study. The roles of these reductases and dehydrogenases in the vanillin tolerance and detoxification abilities of S. cerevisiae are described. Results Among the candidate genes, the overexpression of the alcohol dehydrogenase gene ADH6, acetaldehyde dehydrogenase gene ALD6, glucose-6-phosphate 1-dehydrogenase gene ZWF1, NADH-dependent aldehyde reductase gene YNL134C, and aldo-keto reductase gene YJR096W increased 177, 25, 6, 15, and 18 % of the strain μmax in the medium containing 1 g L−1 vanillin. The in vitro detected vanillin reductase activities of strain overexpressing ADH6, YNL134C and YJR096W were notably higher than control. The vanillin specific reduction rate increased by 8 times in ADH6 overexpressed strain but not in YNL134C and YJR096W overexpressed strain. This suggested that the enzymes encoded by YNL134C and YJR096W might prefer other substrate and/or could not show their effects on vanillin on the high background of Adh6p in vivo. Overexpressing ALD6 and ZWF1 mainly increased the [NADPH]/[NADP+] and [GSH]/[GSSG] ratios but not the vanillin reductase activities. Their contribution to strain growth and vanillin reduction were balancing the redox state of strain when vanillin was presented. Conclusions Beside the reported Adh6p, the enzymes encoded by YNL134C and YJR096W were proved to have vanillin reduction activity in present study. While ALD6 and ZWF1 did not directly reduce vanillin to vanillyl alcohol, their contribution to vanillin resistance primarily depended on the enhancement of the reducing equivalent supply. Electronic supplementary material The online version of this article (doi:10.1186/s12896-016-0264-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xinning Wang
- State Key Laboratory of Microbial Technology, Shandong University, Shan Da Nan Road 27, Jinan, 250100, China
| | - Zhenzhen Liang
- State Key Laboratory of Microbial Technology, Shandong University, Shan Da Nan Road 27, Jinan, 250100, China
| | - Jin Hou
- State Key Laboratory of Microbial Technology, Shandong University, Shan Da Nan Road 27, Jinan, 250100, China
| | - Xiaoming Bao
- State Key Laboratory of Microbial Technology, Shandong University, Shan Da Nan Road 27, Jinan, 250100, China.
| | - Yu Shen
- State Key Laboratory of Microbial Technology, Shandong University, Shan Da Nan Road 27, Jinan, 250100, China.
| |
Collapse
|
33
|
Leu1 plays a role in iron metabolism and is required for virulence in Cryptococcus neoformans. Fungal Genet Biol 2014; 75:11-9. [PMID: 25554701 DOI: 10.1016/j.fgb.2014.12.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 11/27/2014] [Accepted: 12/20/2014] [Indexed: 01/28/2023]
Abstract
Amino acid biosynthetic pathways that are absent in mammals are considered an attractive target for antifungal therapy. Leucine biosynthesis is one such target pathway, consisting of a five-step conversion process starting from the valine precursor 2-keto-isovalerate. Isopropylmalate dehydrogenase (Leu1) is an Fe-S cluster protein that is required for leucine biosynthesis in the model fungus Saccharomyces cerevisiae. The human pathogenic fungus Cryptococcus neoformans possesses an ortholog of S. cerevisiae Leu1, and our previous transcriptome data showed that the expression of LEU1 is regulated by iron availability. In this study, we characterized the role of Leu1 in iron homeostasis and the virulence of C. neoformans. We found that deletion of LEU1 caused leucine auxotrophy and that Leu1 may play a role in the mitochondrial-cytoplasmic Fe-S cluster balance. Whereas cytoplasmic Fe-S protein levels were not affected, mitochondrial Fe-S proteins were up-regulated in the leu1 mutant, suggesting that Leu1 mainly influences mitochondrial iron metabolism. The leu1 mutant also displayed increased sensitivity to oxidative stress and cell wall/membrane disrupting agents, which may have been caused by mitochondrial dysfunction. Furthermore, the leu1 mutant was deficient in capsule formation and showed attenuated virulence in a mouse inhalation model of cryptococcosis. Overall, our results indicate that Leu1 plays a role in iron metabolism and is required for virulence in C. neoformans.
Collapse
|