1
|
Sammani S, Bermudez T, Kempf CL, Song JH, Fleming JC, Reyes Hernon V, Hufford M, Tang L, Cai H, Camp SM, Natarajan V, Jacobson JR, Dudek SM, Martin DR, Karmonik C, Sun X, Sun B, Casanova NG, Bime C, Garcia JGN. eNAMPT Neutralization Preserves Lung Fluid Balance and Reduces Acute Renal Injury in Porcine Sepsis/VILI-Induced Inflammatory Lung Injury. Front Physiol 2022; 13:916159. [PMID: 35812318 PMCID: PMC9257134 DOI: 10.3389/fphys.2022.916159] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/31/2022] [Indexed: 12/12/2022] Open
Abstract
Background: Numerous potential ARDS therapeutics, based upon preclinical successful rodent studies that utilized LPS challenge without mechanical ventilation, have failed in Phase 2/3 clinical trials. Recently, ALT-100 mAb, a novel biologic that neutralizes the TLR4 ligand and DAMP, eNAMPT (extracellular nicotinamide phosphoribosyltransferase), was shown to reduce septic shock/VILI-induced porcine lung injury when delivered 2 h after injury onset. We now examine the ALT-100 mAb efficacy on acute kidney injury (AKI) and lung fluid balance in a porcine ARDS/VILI model when delivered 6 h post injury.Methods/Results: Compared to control PBS-treated pigs, exposure of ALT-100 mAb-treated pigs (0.4 mg/kg, 2 h or 6 h after injury initiation) to LPS-induced pneumonia/septic shock and VILI (12 h), demonstrated significantly diminished lung injury severity (histology, BAL PMNs, plasma cytokines), biochemical/genomic evidence of NF-kB/MAP kinase/cytokine receptor signaling, and AKI (histology, plasma lipocalin). ALT-100 mAb treatment effectively preserved lung fluid balance reflected by reduced BAL protein/tissue albumin levels, lung wet/dry tissue ratios, ultrasound-derived B lines, and chest radiograph opacities. Delayed ALT-100 mAb at 2 h was significantly more protective than 6 h delivery only for plasma eNAMPT while trending toward greater protection for remaining inflammatory indices. Delayed ALT-100 treatment also decreased lung/renal injury indices in LPS/VILI-exposed rats when delivered up to 12 h after LPS.Conclusions: These studies indicate the delayed delivery of the eNAMPT-neutralizing ALT-100 mAb reduces inflammatory lung injury, preserves lung fluid balance, and reduces multi-organ dysfunction, and may potentially address the unmet need for novel therapeutics that reduce ARDS/VILI mortality.
Collapse
Affiliation(s)
- Saad Sammani
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, United States
| | - Tadeo Bermudez
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, United States
| | - Carrie L. Kempf
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, United States
| | - Jin H. Song
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, United States
| | - Justin C Fleming
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, United States
| | - Vivian Reyes Hernon
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, United States
| | - Matthew Hufford
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, United States
| | - Lin Tang
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, United States
| | - Hua Cai
- Department of Anesthesiology, University of California Los Angeles, Los Angeles, CA, United States
| | - Sara M. Camp
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, United States
| | - Viswanathan Natarajan
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Jeffrey R. Jacobson
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Steven M. Dudek
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Diego R. Martin
- Department of Radiology and the Translational Imaging Center, Houston Methodist Hospital and the Houston Methodist Research Institute, Houston, TX, United States
| | - Christof Karmonik
- Department of Radiology and the Translational Imaging Center, Houston Methodist Hospital and the Houston Methodist Research Institute, Houston, TX, United States
| | - Xiaoguang Sun
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, United States
| | - Belinda Sun
- Department of Pathology, University of Arizona Health Sciences, Tucson, AZ, United States
| | - Nancy G. Casanova
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, United States
| | - Christian Bime
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, United States
| | - Joe G. N. Garcia
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, United States
- *Correspondence: Joe G. N. Garcia,
| |
Collapse
|
2
|
Hwang H, Choi SM, Lee J, Park YS, Lee CH, Yoo CG, Kim YW, Han SK, Lee SM. Validation of age, PaO 2/FlO 2 and plateau pressure score in Korean patients with acute respiratory distress syndrome: a retrospective cohort study. Respir Res 2020; 21:94. [PMID: 32321513 PMCID: PMC7178575 DOI: 10.1186/s12931-020-01357-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 04/06/2020] [Indexed: 01/09/2023] Open
Abstract
Background A predictive scoring system for acute respiratory distress syndrome (ARDS) patients, which incorporates age, PaO2/FlO2, and plateau pressure, APPS, was developed recently. It was validated externally in a Caucasian population but has not been studied in Asian populations. The aim of this study was to validate APPS in Korean ARDS patients. Methods We retrospectively reviewed the medical records of patients who were diagnosed with ARDS using the Berlin criteria and admitted to the medical ICU at Seoul National University Hospital from January 2015 to December 2016. The validation of the APPS was performed by evaluating its calibration and predictive accuracy. Its calibration was plotted and quantified using the Hosmer–Lemeshow test. Its predictive accuracy was assessed by calculating the area under the receiver operating characteristics (AUC–ROC) curve. Results A total of 116 patients were analyzed, 32 of whom survived. Of the 116 patients, 11 (9.5%) were classified as APPS grade 1 (score 3–4), 88 (75.9%) as grade 2 (score 5–7) and 17 (14.6%) as grade 3 (score 8–9). In-hospital mortality was 27.3% for grade 1, 73.9% for grade 2 and 94.1% for grade 3 (P for trend < 0.001). The APPS was well calibrated (Hosmer–Lemeshow test, P = 0.578) and its predictive accuracy was acceptable (AUC–ROC 0.704, 95% confidence interval 0.599–0.809). Conclusions The APPS predicted in-hospital mortality in Korean patients with ARDS with similar power to its application in a Western population and with acceptable predictive accuracy. Trial registration Retrospectively registered.
Collapse
Affiliation(s)
- Hyeontaek Hwang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University Hospital, College of Medicine, Daehak-ro 101, Jongro-gu, Seoul, 03080, Republic of Korea
| | - Sun Mi Choi
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University Hospital, College of Medicine, Daehak-ro 101, Jongro-gu, Seoul, 03080, Republic of Korea
| | - Jinwoo Lee
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University Hospital, College of Medicine, Daehak-ro 101, Jongro-gu, Seoul, 03080, Republic of Korea
| | - Young Sik Park
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University Hospital, College of Medicine, Daehak-ro 101, Jongro-gu, Seoul, 03080, Republic of Korea
| | - Chang-Hoon Lee
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University Hospital, College of Medicine, Daehak-ro 101, Jongro-gu, Seoul, 03080, Republic of Korea
| | - Chul-Gyu Yoo
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University Hospital, College of Medicine, Daehak-ro 101, Jongro-gu, Seoul, 03080, Republic of Korea
| | - Young Whan Kim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University Hospital, College of Medicine, Daehak-ro 101, Jongro-gu, Seoul, 03080, Republic of Korea
| | - Sung Koo Han
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University Hospital, College of Medicine, Daehak-ro 101, Jongro-gu, Seoul, 03080, Republic of Korea
| | - Sang-Min Lee
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University Hospital, College of Medicine, Daehak-ro 101, Jongro-gu, Seoul, 03080, Republic of Korea.
| |
Collapse
|
3
|
Lynn H, Sun X, Casanova N, Gonzales-Garay M, Bime C, Garcia JGN. Genomic and Genetic Approaches to Deciphering Acute Respiratory Distress Syndrome Risk and Mortality. Antioxid Redox Signal 2019; 31:1027-1052. [PMID: 31016989 PMCID: PMC6939590 DOI: 10.1089/ars.2018.7701] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Significance: Acute respiratory distress syndrome (ARDS) is a severe, highly heterogeneous critical illness with staggering mortality that is influenced by environmental factors, such as mechanical ventilation, and genetic factors. Significant unmet needs in ARDS are addressing the paucity of validated predictive biomarkers for ARDS risk and susceptibility that hamper the conduct of successful clinical trials in ARDS and the complete absence of novel disease-modifying therapeutic strategies. Recent Advances: The current ARDS definition relies on clinical characteristics that fail to capture the diversity of disease pathology, severity, and mortality risk. We undertook a comprehensive survey of the available ARDS literature to identify genes and genetic variants (candidate gene and limited genome-wide association study approaches) implicated in susceptibility to developing ARDS in hopes of uncovering novel biomarkers for ARDS risk and mortality and potentially novel therapeutic targets in ARDS. We further attempted to address the well-known health disparities that exist in susceptibility to and mortality from ARDS. Critical Issues: Bioinformatic analyses identified 201 ARDS candidate genes with pathway analysis indicating a strong predominance in key evolutionarily conserved inflammatory pathways, including reactive oxygen species, innate immunity-related inflammation, and endothelial vascular signaling pathways. Future Directions: Future studies employing a system biology approach that combines clinical characteristics, genomics, transcriptomics, and proteomics may allow for a better definition of biologically relevant pathways and genotype-phenotype connections and result in improved strategies for the sub-phenotyping of diverse ARDS patients via molecular signatures. These efforts should facilitate the potential for successful clinical trials in ARDS and yield a better fundamental understanding of ARDS pathobiology.
Collapse
Affiliation(s)
- Heather Lynn
- Department of Physiological Sciences and University of Arizona, Tucson, Arizona.,Department of Health Sciences, University of Arizona, Tucson, Arizona
| | - Xiaoguang Sun
- Department of Health Sciences, University of Arizona, Tucson, Arizona
| | - Nancy Casanova
- Department of Health Sciences, University of Arizona, Tucson, Arizona
| | | | - Christian Bime
- Department of Health Sciences, University of Arizona, Tucson, Arizona
| | - Joe G N Garcia
- Department of Health Sciences, University of Arizona, Tucson, Arizona
| |
Collapse
|
4
|
Feng Q, Liu N, Song S, Ma Y. Relationship between β-defensin-1 gene polymorphism and susceptibility and prognosis of acute respiratory distress syndrome. Medicine (Baltimore) 2019; 98:e14131. [PMID: 30702566 PMCID: PMC6380738 DOI: 10.1097/md.0000000000014131] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 11/23/2018] [Accepted: 12/21/2018] [Indexed: 01/14/2023] Open
Abstract
OBJECTIVE The 1st exon 5' noncoding region rs1799946 (-52A/G), rs1800972 (-44C/G), rs11362 (-20A/G) 3 single-nucleotide polymorphisms (SNPs) on human β-defensin-1 (HBD-1) gene affect its transcription and posttranscriptional mRNA stability then affect the activity of HBD-1. This study was to investigate the effects of HBD-1 gene rs1799946, rs1800972, and rs11362 locus SNPs on genetic susceptibility and prognosis of acute respiratory distress syndrome (ARDS). METHODS A total of 300 patients with ARDS (ARDS group) and 240 patients who were admitted to the intensive care unit and had a high risk of ARDS but did not progress to ARDS (control group) were included in this study. The genotypes of HBD-1 gene rs1799946, rs1800972, and rs11362 locus and serum HBD-1 were detected. Patients were followed for 60 days with development of ARDS as a primary outcome, ARDS-related mortality and organ dysfunction were secondary outcomes. RESULTS HBD-1 gene rs1799946 and rs11362 gene mutations were not risk factors for ARDS (P > .05). Mutation allele G of rs1800972 locus in HBD-1 gene was a risk factor for ARDS. There was no significant difference in serum HBD-1 levels between patients with different genotypes of rs1799946 and rs11362 locus in the HBD-1 gene (P > .05). HBD-1 gene rs1800972 locus wild type, heterozygous, and mutant homozygous serum levels of HBD-1 gradually decreased, the difference was statistically significant (P < .001). The 60-day survival rate of subjects with wild type, heterozygous, and mutant homozygote at the rs1800972 locus of HBD-1 gene decreased sequentially (81.7%, 48.9%, and 39.7%), and the difference was statistically significant (P < .05). CONCLUSION The SNP of rs1800972 (-44C/G) in HBD-1 gene is associated with the risk of ARDS. The rs1800972 locus G allele carriers are more likely to develop ARDS and have a poor prognosis.
Collapse
Affiliation(s)
- Qijia Feng
- Department of Intensive Care Unit, Hangzhou Lin’an District Pepole's Hospital, Lin’an
| | - Nan Liu
- Department of Intensive Care Unit, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Shuping Song
- Department of Intensive Care Unit, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yufei Ma
- Department of Intensive Care Unit, Hangzhou Lin’an District Pepole's Hospital, Lin’an
| |
Collapse
|
5
|
Hussain M, Xu C, Ahmad M, Majeed A, Lu M, Wu X, Tang L, Wu X. Acute Respiratory Distress Syndrome: Bench-to-Bedside Approaches to Improve Drug Development. Clin Pharmacol Ther 2018; 104:484-494. [PMID: 29484641 PMCID: PMC7162218 DOI: 10.1002/cpt.1034] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 01/11/2018] [Accepted: 01/21/2018] [Indexed: 12/20/2022]
Abstract
Despite 50 years of extensive research, no definite drug is currently available to treat acute respiratory distress syndrome (ARDS), and the supportive therapies remain the mainstay of treatment. To improve drug development for ARDS, researchers need to deeply analyze the “omics” approaches, reevaluate the suitable therapeutic targets, resolve the problems of inadequate animal modeling, develop the strategies to reduce the heterogeneity, and reconsider new therapeutic and analytical approaches for better designs of clinical trials.
Collapse
Affiliation(s)
- Musaddique Hussain
- Department of Pharmacology, Hangzhou City, 310058, China.,The Key Respiratory Drug Research Laboratory of China Food and Drug Administration, School of Medicine, Zhejiang University, Hangzhou City, 310058, China
| | - Chengyun Xu
- Department of Pharmacology, Hangzhou City, 310058, China.,The Key Respiratory Drug Research Laboratory of China Food and Drug Administration, School of Medicine, Zhejiang University, Hangzhou City, 310058, China
| | - Mashaal Ahmad
- Department of Pharmacology, Hangzhou City, 310058, China.,The Key Respiratory Drug Research Laboratory of China Food and Drug Administration, School of Medicine, Zhejiang University, Hangzhou City, 310058, China
| | - Abdul Majeed
- Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
| | - Meiping Lu
- Department of Respiratory Medicine, the Affiliated Children Hospital, School of Medicine, Zhejiang University, Hangzhou City, 310006, China
| | - Xiling Wu
- Department of Respiratory Medicine, the Affiliated Children Hospital, School of Medicine, Zhejiang University, Hangzhou City, 310006, China
| | - Lanfang Tang
- Department of Respiratory Medicine, the Affiliated Children Hospital, School of Medicine, Zhejiang University, Hangzhou City, 310006, China
| | - Ximei Wu
- Department of Pharmacology, Hangzhou City, 310058, China.,The Key Respiratory Drug Research Laboratory of China Food and Drug Administration, School of Medicine, Zhejiang University, Hangzhou City, 310058, China
| |
Collapse
|
6
|
Abstract
BACKGROUND Adipose tissue is an endocrine organ that plays a critical role in immunity and metabolism by virtue of a large number of hormones and cytokines, collectively termed adipokines. Dysregulation of adipokines has been linked to the pathogenesis of multiple diseases, but some questions have arisen concerning the value of adipokines in critical illness setting. The objective of this review was to evaluate the associations between blood adipokines and critical illness outcomes. METHODS PubMed, CINAHL, Scopus, and the Cochrane Library databases were searched from inception through July 2016 without language restriction. Studies reporting the associations of adipokines, leptin, adiponectin, resistin, and/or visfatin with critical illness outcomes mortality, organ dysfunction, and/or inflammation were included. RESULTS A total of 38 articles were selected according to the inclusion/exclusion criteria of the study. Significant alterations of circulating adipokines have been reported in critically ill patients, some of which were indicative of patient outcomes. The associations of leptin and adiponectin with critical illness outcomes were not conclusive in that blood levels of both adipokines did not always correlate with the illness severity scores or risks of organ failure and mortality. By contrast, studies consistently reported striking increase of blood resistin and visfatin, independently of the critical illness etiology. More interestingly, increased levels of these adipokines were systematically associated with severe inflammation, and high incidence of organ failure and mortality. CONCLUSIONS There is strong evidence to indicate that increased levels of blood resistin and visfatin are associated with poor outcomes of critically ill patients, including higher inflammation, and greater risk of organ dysfunction and mortality. LEVEL OF EVIDENCE Systematic review, level III.
Collapse
|
7
|
Bronchoalveolar Lavage Fluid Protein Expression in Acute Respiratory Distress Syndrome Provides Insights into Pathways Activated in Subjects with Different Outcomes. Sci Rep 2017; 7:7464. [PMID: 28785034 PMCID: PMC5547130 DOI: 10.1038/s41598-017-07791-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 07/04/2017] [Indexed: 02/06/2023] Open
Abstract
Acute respiratory distress syndrome (ARDS) is associated with high mortality. We sought to identify biological pathways in ARDS that differentiate survivors from non-survivors. We studied bronchoalveolar lavage fluid (BALF) from 36 patients with ARDS (20 survivors, 16 non-survivors). Each sample, obtained within seven days of ARDS onset, was depleted of high abundance proteins and labeled for iTRAQ LC-MS/MS separately. Protein identification and relative quantification was performed employing a target-decoy strategy. A variance weighted t-test was used to identify differential expression. Ingenuity Pathway Analysis was used to determine the canonical pathways that differentiated survivors from non-survivors. We identified 1115 high confidence proteins in the BALF out of which 142 were differentially expressed between survivors and non-survivors. These proteins mapped to multiple pathways distinguishing survivors from non-survivors, including several implicated in lung injury and repair such as coagulation/thrombosis, acute phase response signaling and complement activation. We also identified proteins assigned to fibrosis and ones involved in detoxification of lipid peroxide-mediated oxidative stress to be different in survivors and non-survivors. These results support our previous findings demonstrating early differences in the BALF protein expression in ARDS survivors vs. non-survivors, including proteins that counter oxidative stress and canonical pathways associated with fibrosis.
Collapse
|
8
|
Wei Y, Tejera P, Wang Z, Zhang R, Chen F, Su L, Lin X, Bajwa EK, Thompson BT, Christiani DC. A Missense Genetic Variant in LRRC16A/CARMIL1 Improves Acute Respiratory Distress Syndrome Survival by Attenuating Platelet Count Decline. Am J Respir Crit Care Med 2017; 195:1353-1361. [PMID: 27768389 DOI: 10.1164/rccm.201605-0946oc] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
RATIONALE Platelets are believed to contribute to acute respiratory distress syndrome (ARDS) pathogenesis through inflammatory coagulation pathways. We recently reported that leucine-rich repeat-containing 16A (LRRC16A) modulates baseline platelet counts to mediate ARDS risk. OBJECTIVES To examine the role of LRRC16A in ARDS survival and its mediating effect through platelets. METHODS A total of 414 cases with ARDS from intensive care units (ICUs) were recruited who had exome-wide genotyping data, detailed platelet counts, and follow-up data during ICU hospitalization. Association of LRRC16A single-nucleotide polymorphisms (SNPs) and ARDS prognosis, and the mediating effect of SNPs through platelet counts were analyzed. LRRC16A mRNA expression levels for 39 cases with ARDS were also evaluated. MEASUREMENTS AND MAIN RESULTS Missense SNP rs9358856G>A within LRRC16A was associated with favorable survival within 28 days (hazard ratio [HR], 0.57; 95% confidence interval [CI], 0.38-0.87; P = 0.0084) and 60 days (P = 0.0021) after ICU admission. Patients with ARDS who carried the variant genotype versus the wild-type genotype showed an attenuated platelet count decline (∆PLT) within 28 days (difference of ∆PLT, -27.8; P = 0.025) after ICU admission. Patients with ∆PLT were associated with favorable ARDS outcomes. Mediation analysis indicated that the SNP prognostic effect was mediated through ∆PLT within 28 days (28-day survival: HRIndirect, 0.937; 95% CI, 0.918-0.957; P = 0.0009, 11.53% effects mediated; 60-day survival: HRIndirect, 0.919; 95% CI, 0.901-0.936; P = 0.0001, 14.35% effects mediated). Functional exploration suggested that this SNP reduced LRRC16A expression at ICU admission, which was associated with a lesser ∆PLT during ICU hospitalization. CONCLUSIONS LRRC16A appears to mediate ∆PLT after ICU admission to affect the prognosis in patients with ARDS.
Collapse
Affiliation(s)
- Yongyue Wei
- 1 Department of Environmental Health and.,2 Department of Biostatistics, School of Public Health and.,3 China International Cooperation Center for Environment and Human Health, Nanjing Medical University, Nanjing, China; and
| | | | | | - Ruyang Zhang
- 1 Department of Environmental Health and.,2 Department of Biostatistics, School of Public Health and
| | - Feng Chen
- 2 Department of Biostatistics, School of Public Health and.,3 China International Cooperation Center for Environment and Human Health, Nanjing Medical University, Nanjing, China; and
| | - Li Su
- 1 Department of Environmental Health and
| | - Xihong Lin
- 4 Department of Biostatistics, Harvard School of Public Health, Boston, Massachusetts
| | - Ednan K Bajwa
- 5 Division of Pulmonary and Critical Care, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - B Taylor Thompson
- 5 Division of Pulmonary and Critical Care, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - David C Christiani
- 1 Department of Environmental Health and.,3 China International Cooperation Center for Environment and Human Health, Nanjing Medical University, Nanjing, China; and.,5 Division of Pulmonary and Critical Care, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
9
|
Piñeiro-Hermida S, López IP, Alfaro-Arnedo E, Torrens R, Iñiguez M, Alvarez-Erviti L, Ruíz-Martínez C, Pichel JG. IGF1R deficiency attenuates acute inflammatory response in a bleomycin-induced lung injury mouse model. Sci Rep 2017; 7:4290. [PMID: 28655914 PMCID: PMC5487362 DOI: 10.1038/s41598-017-04561-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 05/17/2017] [Indexed: 01/13/2023] Open
Abstract
IGF1R (Insulin-like Growth Factor 1 Receptor) is a tyrosine kinase with pleiotropic cellular functions. IGF activity maintains human lung homeostasis and is implicated in pulmonary diseases such as cancer, ARDS, COPD, asthma and fibrosis. Here we report that lung transcriptome analysis in mice with a postnatally-induced Igf1r gene deletion showed differentially expressed genes with potentially protective roles related to epigenetics, redox and oxidative stress. After bleomycin-induced lung injury, IGF1R-deficient mice demonstrated improved survival within a week. Three days post injury, IGF1R-deficient lungs displayed changes in expression of IGF system-related genes and reduced vascular fragility and permeability. Mutant lungs presented reduced inflamed area, down-regulation of pro-inflammatory markers and up-regulation of resolution indicators. Decreased inflammatory cell presence in BALF was reflected in diminished lung infiltration mainly affecting neutrophils, also corroborated by reduced neutrophil numbers in bone marrow, as well as reduced lymphocyte and alveolar macrophage counts. Additionally, increased SFTPC expression together with hindered HIF1A expression and augmented levels of Gpx8 indicate that IGF1R deficiency protects against alveolar damage. These findings identify IGF1R as an important player in murine acute lung inflammation, suggesting that targeting IGF1R may counteract the inflammatory component of many lung diseases.
Collapse
Affiliation(s)
- Sergio Piñeiro-Hermida
- Lung Cancer and Respiratory Diseases Unit, Centro de Investigación Biomédica de La Rioja (CIBIR), Fundación Rioja Salud, Logroño, Spain
| | - Icíar P López
- Lung Cancer and Respiratory Diseases Unit, Centro de Investigación Biomédica de La Rioja (CIBIR), Fundación Rioja Salud, Logroño, Spain
| | - Elvira Alfaro-Arnedo
- Lung Cancer and Respiratory Diseases Unit, Centro de Investigación Biomédica de La Rioja (CIBIR), Fundación Rioja Salud, Logroño, Spain
| | - Raquel Torrens
- Lung Cancer and Respiratory Diseases Unit, Centro de Investigación Biomédica de La Rioja (CIBIR), Fundación Rioja Salud, Logroño, Spain
| | - María Iñiguez
- Genomics Core Facility, Centro de Investigación Biomédica de La Rioja (CIBIR), Fundación Rioja Salud, Logroño, Spain
| | - Lydia Alvarez-Erviti
- Molecular Neurobiology Unit, Centro de Investigación Biomédica de la Rioja (CIBIR), Fundación Rioja Salud, Logroño, Spain
| | | | - José G Pichel
- Lung Cancer and Respiratory Diseases Unit, Centro de Investigación Biomédica de La Rioja (CIBIR), Fundación Rioja Salud, Logroño, Spain.
| |
Collapse
|
10
|
Horhat FG, Gundogdu F, David LV, Boia ES, Pirtea L, Horhat R, Cucui-Cozma A, Ciuca I, Diaconu M, Nitu R, Licker M, Horhat DI, Rogobete AF, Moise ML, Tataru C. Early Evaluation and Monitoring of Critical Patients with Acute Respiratory Distress Syndrome (ARDS) Using Specific Genetic Polymorphisms. Biochem Genet 2017; 55:204-211. [PMID: 28070694 DOI: 10.1007/s10528-016-9787-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Accepted: 12/08/2016] [Indexed: 12/22/2022]
Abstract
A high percentage of critical patients are found to develop acute respiratory distress syndrome (ARDS). Several studies have reported high mortality rates in these cases which are most frequently associated with multiple organ dysfunctions syndrome. Lately, many efforts have been made to evaluate and monitor ARDS in critical patients. In this regard, the assessment of genetic polymorphisms responsible for developing ARDS present as a challenge and are considered future biomarkers. Early detection of the specific polymorphic gene responsible for ARDS in critically ill patients can prove to be a useful tool in the future, able to help decrease the mortality rates in these cases. Moreover, identifying the genetic polymorphism in these patients can help in the implementation of a personalized intensive therapy scheme for every type of patient, based on its genotype.
Collapse
Affiliation(s)
- Florin G Horhat
- Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania
| | - Fuat Gundogdu
- Faculty of Medicine, Ataturk University, Erzurum, Turkey
| | - Laurentiu V David
- Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania
| | - Eugen S Boia
- Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania
| | - Laurentiu Pirtea
- Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania
| | - Razvan Horhat
- Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania
| | - Alexandru Cucui-Cozma
- Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania
| | - Ioana Ciuca
- Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania
| | - Mircea Diaconu
- Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania
| | - Razvan Nitu
- Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania
| | - Monica Licker
- Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania
| | - Delia I Horhat
- Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania
| | - Alexandru F Rogobete
- Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania. .,Clinic of Anaesthesia and Intensive Care, Emergency County Hospital "Pius Brinzeu", Timisoara, Romania.
| | - Marius L Moise
- Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania
| | - Calin Tataru
- Faculty of Medicine, "Carol Davila" University of Medicine, Bucharest, Romania
| |
Collapse
|
11
|
Palakshappa JA, Anderson BJ, Reilly JP, Shashaty MGS, Ueno R, Wu Q, Ittner CAG, Tommasini A, Dunn TG, Charles D, Kazi A, Christie JD, Meyer NJ. Low Plasma Levels of Adiponectin Do Not Explain Acute Respiratory Distress Syndrome Risk: a Prospective Cohort Study of Patients with Severe Sepsis. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2016; 20:71. [PMID: 26984771 PMCID: PMC4794929 DOI: 10.1186/s13054-016-1244-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 02/17/2016] [Indexed: 01/01/2023]
Abstract
BACKGROUND Obesity is associated with the development of acute respiratory distress syndrome (ARDS) in at-risk patients. Low plasma levels of adiponectin, a circulating hormone-like molecule, have been implicated as a possible mechanism for this association. The objective of this study was to determine the association of plasma adiponectin level at ICU admission with ARDS and 30-day mortality in patients with severe sepsis and septic shock. METHODS This is a prospective cohort study of patients admitted to the medical ICU at the Hospital of the University of Pennsylvania. Plasma adiponectin was measured at the time of ICU admission. ARDS was defined by Berlin criteria. Multivariable logistic regression was used to determine the association of plasma adiponectin with the development of ARDS and mortality at 30 days. RESULTS The study included 164 patients. The incidence of ARDS within 5 days of admission was 45%. The median initial plasma adiponectin level was 7.62 mcg/ml (IQR: 3.87, 14.90) in those without ARDS compared to 8.93 mcg/ml (IQR: 4.60, 18.85) in those developing ARDS. The adjusted odds ratio for ARDS associated with each 5 mcg increase in adiponectin was 1.12 (95% CI 1.01, 1.25), p-value 0.025). A total of 82 patients (51%) of the cohort died within 30 days of ICU admission. There was a statistically significant association between adiponectin and mortality in the unadjusted model (OR 1.11, 95% CI 1.00, 1.23, p-value 0.04) that was no longer significant after adjusting for potential confounders. CONCLUSIONS In this study, low levels of adiponectin were not associated with an increased risk of ARDS in patients with severe sepsis and septic shock. This argues against low levels of adiponectin as a mechanism explaining the association of obesity with ARDS. At present, it is unclear whether circulating adiponectin is involved in the pathogenesis of ARDS or simply represents an epiphenomenon of other unknown functions of adipose tissue or metabolic alterations in sepsis.
Collapse
Affiliation(s)
- Jessica A Palakshappa
- Division of Pulmonary, Allergy, and Critical Care, Perelman School of Medicine, University of Pennsylvania, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA, 19104, USA.
| | - Brian J Anderson
- Division of Pulmonary, Allergy, and Critical Care, Perelman School of Medicine, University of Pennsylvania, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA, 19104, USA
| | - John P Reilly
- Division of Pulmonary, Allergy, and Critical Care, Perelman School of Medicine, University of Pennsylvania, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA, 19104, USA.,Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine, University of Pennsylvania, Blockley Hall, 423 Guardian Drive, Philadelphia, PA, 19104, USA
| | - Michael G S Shashaty
- Division of Pulmonary, Allergy, and Critical Care, Perelman School of Medicine, University of Pennsylvania, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA, 19104, USA.,Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine, University of Pennsylvania, Blockley Hall, 423 Guardian Drive, Philadelphia, PA, 19104, USA
| | - Ryo Ueno
- Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 1130033, Japan
| | - Qufei Wu
- Division of Pulmonary, Allergy, and Critical Care, Perelman School of Medicine, University of Pennsylvania, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA, 19104, USA
| | - Caroline A G Ittner
- Division of Pulmonary, Allergy, and Critical Care, Perelman School of Medicine, University of Pennsylvania, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA, 19104, USA
| | - Anna Tommasini
- Division of Pulmonary, Allergy, and Critical Care, Perelman School of Medicine, University of Pennsylvania, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA, 19104, USA
| | - Thomas G Dunn
- Division of Pulmonary, Allergy, and Critical Care, Perelman School of Medicine, University of Pennsylvania, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA, 19104, USA
| | - Dudley Charles
- Division of Pulmonary, Allergy, and Critical Care, Perelman School of Medicine, University of Pennsylvania, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA, 19104, USA
| | - Altaf Kazi
- Division of Pulmonary, Allergy, and Critical Care, Perelman School of Medicine, University of Pennsylvania, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA, 19104, USA
| | - Jason D Christie
- Division of Pulmonary, Allergy, and Critical Care, Perelman School of Medicine, University of Pennsylvania, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA, 19104, USA.,Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine, University of Pennsylvania, Blockley Hall, 423 Guardian Drive, Philadelphia, PA, 19104, USA
| | - Nuala J Meyer
- Division of Pulmonary, Allergy, and Critical Care, Perelman School of Medicine, University of Pennsylvania, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA, 19104, USA
| |
Collapse
|
12
|
Chen W, Ware LB. Prognostic factors in the acute respiratory distress syndrome. Clin Transl Med 2015; 4:65. [PMID: 26162279 PMCID: PMC4534483 DOI: 10.1186/s40169-015-0065-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Accepted: 06/19/2015] [Indexed: 01/11/2023] Open
Abstract
Despite improvements in critical care, acute respiratory distress syndrome (ARDS) remains a devastating clinical problem with high rates of morbidity and mortality. A better understanding of the prognostic factors associated with ARDS is crucial for facilitating risk stratification and developing new therapeutic interventions that aim to improve clinical outcomes. In this article, we present an up-to-date summary of factors that predict mortality in ARDS in four categories: (1) clinical characteristics; (2) physiological parameters and oxygenation; (3) genetic polymorphisms and biomarkers; and (4) scoring systems. In addition, we discuss how a better understanding of clinical and basic pathogenic mechanisms can help to inform prognostication, decision-making, risk stratification, treatment selection, and improve study design for clinical trials.
Collapse
Affiliation(s)
- Wei Chen
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, USA,
| | | |
Collapse
|
13
|
Obesity-induced adipokine imbalance impairs mouse pulmonary vascular endothelial function and primes the lung for injury. Sci Rep 2015; 5:11362. [PMID: 26068229 PMCID: PMC4464323 DOI: 10.1038/srep11362] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 05/22/2015] [Indexed: 12/13/2022] Open
Abstract
Obesity is a risk factor for the development of acute respiratory distress syndrome (ARDS) but mechanisms mediating this association are unknown. While obesity is known to impair systemic blood vessel function, and predisposes to systemic vascular diseases, its effects on the pulmonary circulation are largely unknown. We hypothesized that the chronic low grade inflammation of obesity impairs pulmonary vascular homeostasis and primes the lung for acute injury. The lung endothelium from obese mice expressed higher levels of leukocyte adhesion markers and lower levels of cell-cell junctional proteins when compared to lean mice. We tested whether systemic factors are responsible for these alterations in the pulmonary endothelium; treatment of primary lung endothelial cells with obese serum enhanced the expression of adhesion proteins and reduced the expression of endothelial junctional proteins when compared to lean serum. Alterations in pulmonary endothelial cells observed in obese mice were associated with enhanced susceptibility to LPS-induced lung injury. Restoring serum adiponectin levels reversed the effects of obesity on the lung endothelium and attenuated susceptibility to acute injury. Our work indicates that obesity impairs pulmonary vascular homeostasis and enhances susceptibility to acute injury and provides mechanistic insight into the increased prevalence of ARDS in obese humans.
Collapse
|
14
|
Walkey AJ, Demissie S, Shah D, Romero F, Puklin L, Summer RS. Plasma Adiponectin, clinical factors, and patient outcomes during the acute respiratory distress syndrome. PLoS One 2014; 9:e108561. [PMID: 25259893 PMCID: PMC4178176 DOI: 10.1371/journal.pone.0108561] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 08/22/2014] [Indexed: 01/11/2023] Open
Abstract
Objective Adiponectin (APN) is an anti-inflammatory hormone derived from adipose tissue that attenuates acute lung injury in rodents. In this study, we investigated the association between circulating APN and outcomes among patients with acute respiratory distress syndrome (ARDS). Methods We performed a retrospective cohort study using data and plasma samples from participants in the multicenter ARDS Network Fluid and Catheter Treatment Trial. Results Plasma APN concentrations were measured in 816 (81.6%) trial participants at baseline and in 568 (56.8%) subjects at both baseline and day 7 after enrollment. Clinical factors associated with baseline APN levels in multivariable-adjusted models included sex, body mass index, past medical history of cirrhosis, and central venous pressure (model R2 = 9.7%). We did not observe an association between baseline APN and either severity of illness (APACHE III) or extent of lung injury (Lung Injury Score). Among patients who received right heart catheterization (n = 384), baseline APN was inversely related to mean pulmonary artery pressure (β = −0.015, R2 1.5%, p = 0.02); however, this association did not persist in multivariable models (β = −0.009, R2 0.5%, p = 0.20). Neither baseline APN levels [HR per quartile1.04 (95% CI 0.91–1.18), p = 0.61], nor change in APN level from baseline to day 7 [HR 1.04 (95% CI 0.89–1.23), p = 0.62)] were associated with 60 day mortality in Cox proportional hazards regression models. However, subgroup analysis identified an association between APN and mortality among patients who developed ARDS from extra-pulmonary etiologies [HR per quartile 1.31 (95% CI 1.08–1.57)]. APN levels did not correlate with mortality among patients developing ARDS in association with direct pulmonary injury [HR 0.96 (95% CI 0.83–1.13)], pinteraction = 0.016. Conclusions Plasma APN levels did not correlate with disease severity or mortality in a large cohort of patients with ARDS. However, higher APN levels were associated with increased mortality among patients developing ARDS from extra-pulmonary etiologies.
Collapse
Affiliation(s)
- Allan J Walkey
- The Pulmonary Center, Boston University School of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Boston Medical Center, Boston, Massachusetts, United States of America
| | - Serkalem Demissie
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts, United States of America
| | - Dilip Shah
- Center for Translational Medicine and Korman Lung Center, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Freddy Romero
- Center for Translational Medicine and Korman Lung Center, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Leah Puklin
- Center for Translational Medicine and Korman Lung Center, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Ross S Summer
- Center for Translational Medicine and Korman Lung Center, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|