1
|
Gong L, Bates S, Li Y, Lin X, Wei W, Zhou X. AKT Phosphorylates FAM13A and Promotes Its Degradation via CUL4A/DDB1/DCAF1 E3 Complex. Am J Respir Cell Mol Biol 2023; 68:577-590. [PMID: 36749583 PMCID: PMC10174174 DOI: 10.1165/rcmb.2022-0362oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 02/07/2023] [Indexed: 02/08/2023] Open
Abstract
SNPs within FAM13A (family with sequence similarity 13 member A) gene are significantly associated with chronic obstructive pulmonary disease and lung function in genome-wide association studies (GWAS). However, how FAM13A protein is regulated under physiological and pathological conditions remains largely elusive. Herein, we report that FAM13A is phosphorylated at the serine 312 residue by AKT kinase after cigarette smoke extract treatment and thereby recognized by the CULLIN4A/DCAF1 (DDB1 and CUL4 associated factor 1) E3 ligase complex, rendering the ubiquitination-mediated degradation of FAM13A. More broadly, downregulation of FAM13A protein upon AKT activation, as a general cellular response to acute stress, was also detected in influenza- or naphthalene-injured lungs in mice. Functionally, reduced protein levels of FAM13A lead to accelerated epithelial cell proliferation in murine lungs during the recovery phase after injury. In summary, we characterized a novel molecular mechanism that regulates the stability of FAM13A protein, which enables the fine-tuning of lung epithelial repair after injury. These significant findings will expand our molecular understanding of the regulation of protein stability, which may modulate lung epithelial repair implicated in the development of chronic obstructive pulmonary disease and other lung diseases.
Collapse
Affiliation(s)
- Lu Gong
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts; and
| | - Samuel Bates
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts; and
| | - Yujun Li
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts; and
| | - Xin Lin
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts; and
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Xiaobo Zhou
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts; and
| |
Collapse
|
2
|
Yasukawa T, Tsutsui A, Tomomori-Sato C, Sato S, Saraf A, Washburn MP, Florens L, Terada T, Shimizu K, Conaway RC, Conaway JW, Aso T. NRBP1-Containing CRL2/CRL4A Regulates Amyloid β Production by Targeting BRI2 and BRI3 for Degradation. Cell Rep 2021; 30:3478-3491.e6. [PMID: 32160551 DOI: 10.1016/j.celrep.2020.02.059] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 12/09/2019] [Accepted: 02/13/2020] [Indexed: 11/18/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease caused by accumulations of Aβ peptides. Production and fibrillation of Aβ are downregulated by BRI2 and BRI3, which are physiological inhibitors of amyloid precursor protein (APP) processing and Aβ oligomerization. Here, we identify nuclear receptor binding protein 1 (NRBP1) as a substrate receptor of a Cullin-RING ubiquitin ligase (CRL) that targets BRI2 and BRI3 for degradation. Moreover, we demonstrate that (1) dimerized NRBP1 assembles into a functional Cul2- and Cul4A-containing heterodimeric CRL through its BC-box and an overlapping cryptic H-box, (2) both Cul2 and Cul4A contribute to NRBP1 CRL function, and (3) formation of the NRBP1 heterodimeric CRL is strongly enhanced by chaperone-like function of TSC22D3 and TSC22D4. NRBP1 knockdown in neuronal cells results in an increase in the abundance of BRI2 and BRI3 and significantly reduces Aβ production. Thus, disrupting interactions between NRBP1 and its substrates BRI2 and BRI3 may provide a useful therapeutic strategy for AD.
Collapse
Affiliation(s)
- Takashi Yasukawa
- Department of Functional Genomics, Kochi Medical School, Kohasu, Oko-cho, Nankoku, Kochi 783-8505, Japan
| | - Aya Tsutsui
- Department of Functional Genomics, Kochi Medical School, Kohasu, Oko-cho, Nankoku, Kochi 783-8505, Japan
| | | | - Shigeo Sato
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Anita Saraf
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Michael P Washburn
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA; Department of Pathology and Laboratory Medicine, Kansas University Medical Center, Kansas City, KS 66160, USA
| | - Laurence Florens
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Tohru Terada
- Interfaculty Initiative in Information Studies, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; Agricultural Bioinformatics Research Unit, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Kentaro Shimizu
- Agricultural Bioinformatics Research Unit, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Ronald C Conaway
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA; Department of Biochemistry and Molecular Biology, Kansas University Medical Center, Kansas City, KS 66160, USA
| | - Joan W Conaway
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA; Department of Biochemistry and Molecular Biology, Kansas University Medical Center, Kansas City, KS 66160, USA
| | - Teijiro Aso
- Department of Functional Genomics, Kochi Medical School, Kohasu, Oko-cho, Nankoku, Kochi 783-8505, Japan.
| |
Collapse
|
3
|
Li Y, Cui C, Xie F, Kiełbasa S, Mei H, van Dinther M, van Dam H, Bauer A, Zhang L, Ten Dijke P. VprBP mitigates TGF-β and Activin signaling by promoting Smurf1-mediated type I receptor degradation. J Mol Cell Biol 2021; 12:138-151. [PMID: 31291647 PMCID: PMC7109606 DOI: 10.1093/jmcb/mjz057] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 04/16/2019] [Accepted: 06/06/2019] [Indexed: 12/13/2022] Open
Abstract
The transforming growth factor-β (TGF-β) family controls embryogenesis, stem cell differentiation, and tissue homeostasis. However, how post-translation modifications contribute to fine-tuning of TGF-β family signaling responses is not well understood. Inhibitory (I)-Smads can antagonize TGF-β/Smad signaling by recruiting Smurf E3 ubiquitin ligases to target the active TGF-β receptor for proteasomal degradation. A proteomic interaction screen identified Vpr binding protein (VprBP) as novel binding partner of Smad7. Mis-expression studies revealed that VprBP negatively controls Smad2 phosphorylation, Smad2-Smad4 interaction, as well as TGF-β target gene expression. VprBP was found to promote Smad7-Smurf1-TβRI complex formation and induce proteasomal degradation of TGF-β type I receptor (TβRI). Moreover, VprBP appears to stabilize Smurf1 by suppressing Smurf1 poly-ubiquitination. In multiple adult and mouse embryonic stem cells, depletion of VprBP promotes TGF-β or Activin-induced responses. In the mouse embryo VprBP expression negatively correlates with mesoderm marker expression, and VprBP attenuated mesoderm induction during zebrafish embryogenesis. Our findings thereby uncover a novel regulatory mechanism by which Smurf1 controls the TGF-β and Activin cascade and identify VprBP as a critical determinant of embryonic mesoderm induction.
Collapse
Affiliation(s)
- Yihao Li
- Department of Cell and Chemical Biology and Oncode Institute, Leiden University Medical Center, 2300RC Leiden, The Netherlands
| | - Chao Cui
- Department of Cell and Chemical Biology and Oncode Institute, Leiden University Medical Center, 2300RC Leiden, The Netherlands
| | - Feng Xie
- MOE Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Szymon Kiełbasa
- Department of Human Genetics, Leiden Genome Technology Centre, Leiden University Medical Center, 2300RC Leiden, The Netherlands
| | - Hailiang Mei
- Sequence Analysis Support Core, Leiden University Medical Center, 2300RC Leiden, The Netherlands
| | - Maarten van Dinther
- Department of Cell and Chemical Biology and Oncode Institute, Leiden University Medical Center, 2300RC Leiden, The Netherlands
| | - Hans van Dam
- Department of Cell and Chemical Biology and Oncode Institute, Leiden University Medical Center, 2300RC Leiden, The Netherlands
| | - Andreas Bauer
- Novartis Institutes for BioMedical Research, Inc., Novartis Campus, Forum 2.5.01.30, CH-4056, Basel, Switzerland
| | - Long Zhang
- Department of Cell and Chemical Biology and Oncode Institute, Leiden University Medical Center, 2300RC Leiden, The Netherlands.,MOE Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Peter Ten Dijke
- Department of Cell and Chemical Biology and Oncode Institute, Leiden University Medical Center, 2300RC Leiden, The Netherlands.,MOE Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
4
|
A comprehensive phenotypic CRISPR-Cas9 screen of the ubiquitin pathway uncovers roles of ubiquitin ligases in mitosis. Mol Cell 2021; 81:1319-1336.e9. [PMID: 33539788 DOI: 10.1016/j.molcel.2021.01.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 10/20/2020] [Accepted: 01/11/2021] [Indexed: 12/13/2022]
Abstract
The human ubiquitin proteasome system, composed of over 700 ubiquitin ligases (E3s) and deubiquitinases (DUBs), has been difficult to characterize systematically and phenotypically. We performed chemical-genetic CRISPR-Cas9 screens to identify E3s/DUBs whose loss renders cells sensitive or resistant to 41 compounds targeting a broad range of biological processes, including cell cycle progression, genome stability, metabolism, and vesicular transport. Genes and compounds clustered functionally, with inhibitors of related pathways interacting similarly with E3s/DUBs. Some genes, such as FBXW7, showed interactions with many of the compounds. Others, such as RNF25 and FBXO42, showed interactions primarily with a single compound (methyl methanesulfonate for RNF25) or a set of related compounds (the mitotic cluster for FBXO42). Mutation of several E3s with sensitivity to mitotic inhibitors led to increased aberrant mitoses, suggesting a role for these genes in cell cycle regulation. Our comprehensive CRISPR-Cas9 screen uncovered 466 gene-compound interactions covering 25% of the interrogated E3s/DUBs.
Collapse
|
5
|
Lubow J, Collins KL. Vpr Is a VIP: HIV Vpr and Infected Macrophages Promote Viral Pathogenesis. Viruses 2020; 12:E809. [PMID: 32726944 PMCID: PMC7472745 DOI: 10.3390/v12080809] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/17/2020] [Accepted: 07/23/2020] [Indexed: 02/06/2023] Open
Abstract
HIV infects several cell types in the body, including CD4+ T cells and macrophages. Here we review the role of macrophages in HIV infection and describe complex interactions between viral proteins and host defenses in these cells. Macrophages exist in many forms throughout the body, where they play numerous roles in healthy and diseased states. They express pattern-recognition receptors (PRRs) that bind viral, bacterial, fungal, and parasitic pathogens, making them both a key player in innate immunity and a potential target of infection by pathogens, including HIV. Among these PRRs is mannose receptor, a macrophage-specific protein that binds oligosaccharides, restricts HIV replication, and is downregulated by the HIV accessory protein Vpr. Vpr significantly enhances infection in vivo, but the mechanism by which this occurs is controversial. It is well established that Vpr alters the expression of numerous host proteins by using its co-factor DCAF1, a component of the DCAF1-DDB1-CUL4 ubiquitin ligase complex. The host proteins targeted by Vpr and their role in viral replication are described in detail. We also discuss the structure and function of the viral protein Env, which is stabilized by Vpr in macrophages. Overall, this literature review provides an updated understanding of the contributions of macrophages and Vpr to HIV pathogenesis.
Collapse
Affiliation(s)
- Jay Lubow
- Department of Microbiology & Immunology, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Kathleen L. Collins
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
6
|
Schabla NM, Mondal K, Swanson PC. DCAF1 (VprBP): emerging physiological roles for a unique dual-service E3 ubiquitin ligase substrate receptor. J Mol Cell Biol 2020; 11:725-735. [PMID: 30590706 PMCID: PMC6821201 DOI: 10.1093/jmcb/mjy085] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 10/01/2018] [Accepted: 12/21/2018] [Indexed: 12/12/2022] Open
Abstract
Cullin-RING ligases (CRLs) comprise a large group of modular eukaryotic E3 ubiquitin ligases. Within this family, the CRL4 ligase (consisting of the Cullin4 [CUL4] scaffold protein, the Rbx1 RING finger domain protein, the DNA damage-binding protein 1 [DDB1], and one of many DDB1-associated substrate receptor proteins) has been intensively studied in recent years due to its involvement in regulating various cellular processes, its role in cancer development and progression, and its subversion by viral accessory proteins. Initially discovered as a target for hijacking by the human immunodeficiency virus accessory protein r, the normal targets and function of the CRL4 substrate receptor protein DDB1–Cul4-associated factor 1 (DCAF1; also known as VprBP) had remained elusive, but newer studies have begun to shed light on these questions. Here, we review recent progress in understanding the diverse physiological roles of this DCAF1 in supporting various general and cell type-specific cellular processes in its context with the CRL4 E3 ligase, as well as another HECT-type E3 ligase with which DCAF1 also associates, called EDD/UBR5. We also discuss emerging questions and areas of future study to uncover the dynamic roles of DCAF1 in normal physiology.
Collapse
Affiliation(s)
- N Max Schabla
- Department of Medical Microbiology and Immunology, Creighton University, 2500 California Plaza, Omaha, NE, USA
| | - Koushik Mondal
- Department of Medical Microbiology and Immunology, Creighton University, 2500 California Plaza, Omaha, NE, USA
| | - Patrick C Swanson
- Department of Medical Microbiology and Immunology, Creighton University, 2500 California Plaza, Omaha, NE, USA
| |
Collapse
|
7
|
Ly PT, Tan YS, Koe CT, Zhang Y, Xie G, Endow S, Deng WM, Yu F, Wang H. CRL4Mahj E3 ubiquitin ligase promotes neural stem cell reactivation. PLoS Biol 2019; 17:e3000276. [PMID: 31170139 PMCID: PMC6553684 DOI: 10.1371/journal.pbio.3000276] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 05/02/2019] [Indexed: 12/22/2022] Open
Abstract
The ability of neural stem cells (NSCs) to transit between quiescence and proliferation is crucial for brain development and homeostasis. Drosophila Hippo pathway maintains NSC quiescence, but its regulation during brain development remains unknown. Here, we show that CRL4Mahj, an evolutionarily conserved E3 ubiquitin ligase, is essential for NSC reactivation (exit from quiescence). We demonstrate that damaged DNA-binding protein 1 (DDB1) and Cullin4, two core components of Cullin4-RING ligase (CRL4), are intrinsically required for NSC reactivation. We have identified a substrate receptor of CRL4, Mahjong (Mahj), which is necessary and sufficient for NSC reactivation. Moreover, we show that CRL4Mahj forms a protein complex with Warts (Wts/large tumor suppressor [Lats]), a kinase of the Hippo signaling pathway, and Mahj promotes the ubiquitination of Wts. Our genetic analyses further support the conclusion that CRL4Mahj triggers NSC reactivation by inhibition of Wts. Given that Cullin4B mutations cause mental retardation and cerebral malformation, similar regulatory mechanisms may be applied to the human brain. During the transition from quiescence to reactivation of neural stem cells, the E3 ubiquitin ligase CRL4Mahj promotes their reactivation by inhibiting Wts, a core kinase of Hippo signalling pathway.
Collapse
Affiliation(s)
- Phuong Thao Ly
- Neuroscience and Behavioural Disorders Programme, Duke-NUS Medical School, Singapore, Singapore
| | - Ye Sing Tan
- Neuroscience and Behavioural Disorders Programme, Duke-NUS Medical School, Singapore, Singapore
| | | | - Yingjie Zhang
- Neuroscience and Behavioural Disorders Programme, Duke-NUS Medical School, Singapore, Singapore
| | - Gengqiang Xie
- Department of Biological Science, Florida State University, Tallahassee, Florida, United States of America
| | - Sharyn Endow
- Neuroscience and Behavioural Disorders Programme, Duke-NUS Medical School, Singapore, Singapore
- Department of Cell Biology, Duke University Medical Centre, Durham, North Carolina, United States of America
| | - Wu-Min Deng
- Department of Biological Science, Florida State University, Tallahassee, Florida, United States of America
| | - Fengwei Yu
- Neuroscience and Behavioural Disorders Programme, Duke-NUS Medical School, Singapore, Singapore
- Temasek Life Sciences Laboratory, Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, Singapore
| | - Hongyan Wang
- Neuroscience and Behavioural Disorders Programme, Duke-NUS Medical School, Singapore, Singapore
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- * E-mail:
| |
Collapse
|
8
|
Hossain D, Ferreira Barbosa JA, Cohen ÉA, Tsang WY. HIV-1 Vpr hijacks EDD-DYRK2-DDB1 DCAF1 to disrupt centrosome homeostasis. J Biol Chem 2018; 293:9448-9460. [PMID: 29724823 PMCID: PMC6005440 DOI: 10.1074/jbc.ra117.001444] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 04/17/2018] [Indexed: 11/06/2022] Open
Abstract
Viruses exploit the host cell machinery for their own profit. To evade innate immune sensing and promote viral replication, HIV type 1 (HIV-1) subverts DNA repair regulatory proteins and induces G2/M arrest. The preintegration complex of HIV-1 is known to traffic along microtubules and accumulate near the microtubule-organizing center. The centrosome is the major microtubule-organizing center in most eukaryotic cells, but precisely how HIV-1 impinges on centrosome biology remains poorly understood. We report here that the HIV-1 accessory protein viral protein R (Vpr) localized to the centrosome through binding to DCAF1, forming a complex with the ubiquitin ligase EDD-DYRK2-DDB1DCAF1 and Cep78, a resident centrosomal protein previously shown to inhibit EDD-DYRK2-DDB1DCAF1 Vpr did not affect ubiquitination of Cep78. Rather, it enhanced ubiquitination of an EDD-DYRK2-DDB1DCAF1 substrate, CP110, leading to its degradation, an effect that could be overcome by Cep78 expression. The down-regulation of CP110 and elongation of centrioles provoked by Vpr were independent of G2/M arrest. Infection of T lymphocytes with HIV-1, but not with HIV-1 lacking Vpr, promoted CP110 degradation and centriole elongation. Elongated centrioles recruited more γ-tubulin to the centrosome, resulting in increased microtubule nucleation. Our results suggest that Vpr is targeted to the centrosome where it hijacks a ubiquitin ligase, disrupting organelle homeostasis, which may contribute to HIV-1 pathogenesis.
Collapse
Affiliation(s)
- Delowar Hossain
- From the Institut de recherches cliniques de Montréal, Montreal, Quebec H2W 1R7, Canada
- the Division of Experimental Medicine, McGill University, Montreal, Quebec H4A 3J1, Canada
| | | | - Éric A Cohen
- From the Institut de recherches cliniques de Montréal, Montreal, Quebec H2W 1R7, Canada
- the Division of Experimental Medicine, McGill University, Montreal, Quebec H4A 3J1, Canada
- the Department of Microbiology, Infectiology, and Immunology, Université de Montréal, Montreal, Quebec H3C 3J7, Canada, and
| | - William Y Tsang
- From the Institut de recherches cliniques de Montréal, Montreal, Quebec H2W 1R7, Canada,
- the Division of Experimental Medicine, McGill University, Montreal, Quebec H4A 3J1, Canada
- the Department of Pathology and Cell Biology, Université de Montréal, Montreal, Quebec H3C 3J7, Canada
| |
Collapse
|
9
|
Murray AJ, Kwon KJ, Farber DL, Siliciano RF. The Latent Reservoir for HIV-1: How Immunologic Memory and Clonal Expansion Contribute to HIV-1 Persistence. THE JOURNAL OF IMMUNOLOGY 2017; 197:407-17. [PMID: 27382129 DOI: 10.4049/jimmunol.1600343] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 04/12/2016] [Indexed: 12/15/2022]
Abstract
Combination antiretroviral therapy (ART) for HIV-1 infection reduces plasma virus levels to below the limit of detection of clinical assays. However, even with prolonged suppression of viral replication with ART, viremia rebounds rapidly after treatment interruption. Thus, ART is not curative. The principal barrier to cure is a remarkably stable reservoir of latent HIV-1 in resting memory CD4(+) T cells. In this review, we consider explanations for the remarkable stability of the latent reservoir. Stability does not appear to reflect replenishment from new infection events but rather normal physiologic processes that provide for immunologic memory. Of particular importance are proliferative processes that drive clonal expansion of infected cells. Recent evidence suggests that in some infected cells, proliferation is a consequence of proviral integration into host genes associated with cell growth. Efforts to cure HIV-1 infection by targeting the latent reservoir may need to consider the potential of latently infected cells to proliferate.
Collapse
Affiliation(s)
- Alexandra J Murray
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Kyungyoon J Kwon
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Donna L Farber
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY 10032; Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY 10032; Department of Surgery, Columbia University Medical Center, New York, NY 10032; and
| | - Robert F Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205; Howard Hughes Medical Institute, Baltimore MD 21250
| |
Collapse
|
10
|
Remarkable Evolutionary Conservation of Antiobesity ADIPOSE/WDTC1 Homologs in Animals and Plants. Genetics 2017; 207:153-162. [PMID: 28663238 DOI: 10.1534/genetics.116.198382] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 06/25/2017] [Indexed: 11/18/2022] Open
Abstract
ASG2 (Altered Seed Germination 2) is a prenylated protein in Arabidopsis thaliana that participates to abscisic acid signaling and is proposed to act as a substrate adaptor for the DDB1 (DNA damage-binding protein 1)-CUL4 (Cullin 4) E3 ubiquitin ligase complex. ASG2 harbors WD40 and TetratricoPeptide Repeat (TPR) domains, and resembles the well-conserved animal gene called ADP (antiobesity factor ADIPOSE) in fly and WDTC1 (WD40 and TPR 1) in humans. Loss of function of WDTC1 results in an increase in adipocytes, fat accumulation, and obesity. Antiadipogenic functions of WDTC1 involve regulation of fat-related gene transcription, notably through its binding to histone deacetylases (HDACs). Our sequence and phylogenetic analysis reveals that ASG2 belongs to the ADP/WDTC1 cluster. ASG2 and WDTC1 share a highly conserved organization that encompasses structural and functional motifs: seven WD40 domains and WD40 hotspot-related residues, three TPR protein-protein interaction domains, DDB1-binding elements [H-box and DWD (DDB1-binding WD40 protein)-box], and a prenylatable C-terminus. Furthermore, ASG2 involvement in fat metabolism was confirmed by reverse genetic approaches using asg2 knockout Arabidopsis plants. Under limited irradiance, asg2 mutants produce "obese" seeds characterized by increased weight, oil body density, and higher fatty acid contents. In addition, considering some ASG2- and WDTC1-peculiar properties, we show that the WDTC1 C-terminus is prenylated in vitro and HDAC-binding capability is conserved in ASG2, suggesting that the regulation mechanism and targets of ADP/WDTC1-like proteins may be conserved features. Our findings reveal the remarkable evolutionary conservation of the structure and the physiological role of ADIPOSE homologs in animals and plants.
Collapse
|
11
|
Hossain D, Javadi Esfehani Y, Das A, Tsang WY. Cep78 controls centrosome homeostasis by inhibiting EDD-DYRK2-DDB1 VprBP. EMBO Rep 2017; 18:632-644. [PMID: 28242748 PMCID: PMC5376967 DOI: 10.15252/embr.201642377] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 01/13/2017] [Accepted: 02/03/2017] [Indexed: 01/08/2023] Open
Abstract
The centrosome plays a critical role in various cellular processes including cell division and cilia formation, and deregulation of centrosome homeostasis is a hallmark feature of many human diseases. Here, we show that centrosomal protein of 78 kDa (Cep78) localizes to mature centrioles and directly interacts with viral protein R binding protein (VprBP). Although VprBP is a component of two distinct E3 ubiquitin ligases, EDD-DYRK2-DDB1VprBP and CRL4VprBP, Cep78 binds specifically to EDD-DYRK2-DDB1VprBP and inhibits its activity. A pool of EDD-DYRK2-DDB1VprBP is active at the centrosome and mediates ubiquitination of CP110, a novel centrosomal substrate. Deregulation of Cep78 or EDD-DYRK2-DDB1VprBP perturbs CP110 ubiquitination and protein stability, thereby affecting centriole length and cilia assembly. Mechanistically, ubiquitination of CP110 entails its phosphorylation by DYRK2 and binding to VprBP Cep78 specifically impedes the transfer of ubiquitin from EDD to CP110 without affecting CP110 phosphorylation and binding to VprBP Thus, we identify Cep78 as a new player that regulates centrosome homeostasis by inhibiting the final step of the enzymatic reaction catalyzed by EDD-DYRK2-DDB1VprBP.
Collapse
Affiliation(s)
- Delowar Hossain
- Institut de recherches cliniques de Montréal, Montréal, QC, Canada
- Division of Experimental Medicine, McGill University, Montréal, QC, Canada
| | - Yalda Javadi Esfehani
- Institut de recherches cliniques de Montréal, Montréal, QC, Canada
- Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Arindam Das
- Institut de recherches cliniques de Montréal, Montréal, QC, Canada
- Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| | - William Y Tsang
- Institut de recherches cliniques de Montréal, Montréal, QC, Canada
- Division of Experimental Medicine, McGill University, Montréal, QC, Canada
- Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
12
|
Wu Y, Zhou X, Barnes CO, DeLucia M, Cohen AE, Gronenborn AM, Ahn J, Calero G. The DDB1-DCAF1-Vpr-UNG2 crystal structure reveals how HIV-1 Vpr steers human UNG2 toward destruction. Nat Struct Mol Biol 2016; 23:933-940. [PMID: 27571178 DOI: 10.1038/nsmb.3284] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 08/03/2016] [Indexed: 01/04/2023]
Abstract
The HIV-1 accessory protein Vpr is required for efficient viral infection of macrophages and promotion of viral replication in T cells. Vpr's biological activities are closely linked to the interaction with human DCAF1, a cellular substrate receptor of the Cullin4-RING E3 ubiquitin ligase (CRL4) of the host ubiquitin-proteasome-mediated protein degradation pathway. The molecular details of how Vpr usurps the protein degradation pathway have not been delineated. Here we present the crystal structure of the DDB1-DCAF1-HIV-1-Vpr-uracil-DNA glycosylase (UNG2) complex. The structure reveals how Vpr engages with DCAF1, creating a binding interface for UNG2 recruitment in a manner distinct from the recruitment of SAMHD1 by Vpx proteins. Vpr and Vpx use similar N-terminal and helical regions to bind the substrate receptor, whereas different regions target the specific cellular substrates. Furthermore, Vpr uses molecular mimicry of DNA by a variable loop for specific recruitment of the UNG2 substrate.
Collapse
Affiliation(s)
- Ying Wu
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Structural Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Xiaohong Zhou
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Structural Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Christopher O Barnes
- Department of Structural Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Maria DeLucia
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Structural Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Aina E Cohen
- Stanford Synchrotron Radiation Lightsource, Stanford University, Menlo Park, California, USA
| | - Angela M Gronenborn
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Structural Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jinwoo Ahn
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Structural Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Guillermo Calero
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Structural Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
13
|
Defining the roles for Vpr in HIV-1-associated neuropathogenesis. J Neurovirol 2016; 22:403-15. [PMID: 27056720 DOI: 10.1007/s13365-016-0436-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 03/14/2016] [Accepted: 03/15/2016] [Indexed: 12/22/2022]
Abstract
It is increasingly evident that the human immunodeficiency virus type 1 (HIV-1) viral protein R (Vpr) has a unique role in neuropathogenesis. Its ability to induce G2/M arrest coupled with its capacity to increase viral gene transcription gives it a unique role in sustaining viral replication and aiding in the establishment and maintenance of a systemic infection. The requirement of Vpr for HIV-1 infection and replication in cells of monocytic origin (a key lineage of cells involved in HIV-1 neuroinvasion) suggests an important role in establishing and sustaining infection in the central nervous system (CNS). Contributions of Vpr to neuropathogenesis can be expanded further through (i) naturally occurring HIV-1 sequence variation that results in functionally divergent Vpr variants; (ii) the dual activities of Vpr as a intracellular protein delivered and expressed during HIV-1 infection and as an extracellular protein that can act on neighboring, uninfected cells; (iii) cell type-dependent consequences of Vpr expression and exposure, including cell cycle arrest, metabolic dysregulation, and cytotoxicity; and (iv) the effects of Vpr on exosome-based intercellular communication in the CNS. Revealing that the effects of this pleiotropic viral protein is an essential part of a greater understanding of HIV-1-associated pathogenesis and potential approaches to treating and preventing disease caused by HIV-1 infection.
Collapse
|
14
|
Cassiday PA, DePaula-Silva AB, Chumley J, Ward J, Barker E, Planelles V. Understanding the molecular manipulation of DCAF1 by the lentiviral accessory proteins Vpr and Vpx. Virology 2014; 476:19-25. [PMID: 25499532 DOI: 10.1016/j.virol.2014.11.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 09/25/2014] [Accepted: 11/16/2014] [Indexed: 12/31/2022]
Abstract
Vpr and Vpx are primate lentivirus proteins that manipulate the cellular CRL4 ubiquitin ligase complex. While Vpr is common to all primate lentiviruses, Vpx is only encoded by HIV-2 and a limited range of SIVs. Although Vpr and Vpx share a high degree of homology they are known to induce markedly different effects in host cell biology through the recruitment of different substrates to CRL4. Here we explore the interaction of HIV-1 Vpr and SIVmac Vpx with the CRL4 substrate receptor DCAF1. Through mutational analysis of DCAF1 we demonstrate that although Vpr and Vpx share a highly similar DCAF1-binding motif, they interact with a different set of residues in DCAF1. In addition, we show that Vpx recruits SAMHD1 through a protein-protein interface that includes interactions of SAMHD1 with both Vpx and DCAF1, as was first suggested in crystallography data by (Schwefel, D., Groom, H.C.T., Boucherit, V.C., Christodoulou, E., Walker, P.A., Stoye, J.P., Bishop, K.N., Taylor, I.A., 2014. Structural basis of lentiviral subversion of a cellular protein degradation pathway., Nature, 505, 234-238).
Collapse
Affiliation(s)
- Patrick A Cassiday
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, 15 North Medical Drive East #2100, Salt Lake City, UT 84112, USA
| | - Ana Beatriz DePaula-Silva
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, 15 North Medical Drive East #2100, Salt Lake City, UT 84112, USA
| | - Jeffrey Chumley
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, 15 North Medical Drive East #2100, Salt Lake City, UT 84112, USA
| | - Jeffrey Ward
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, 15 North Medical Drive East #2100, Salt Lake City, UT 84112, USA
| | - Edward Barker
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, 15 North Medical Drive East #2100, Salt Lake City, UT 84112, USA
| | - Vicente Planelles
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, 15 North Medical Drive East #2100, Salt Lake City, UT 84112, USA
| |
Collapse
|
15
|
Ma L, Shen CJ, Cohen ÉA, Xiong SD, Wang JH. miRNA-1236 inhibits HIV-1 infection of monocytes by repressing translation of cellular factor VprBP. PLoS One 2014; 9:e99535. [PMID: 24932481 PMCID: PMC4059663 DOI: 10.1371/journal.pone.0099535] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 05/15/2014] [Indexed: 01/07/2023] Open
Abstract
Primary monocytes are refractory to HIV-1 infection and become permissive upon differentiation into monocyte-derived dendritic cells (MDDCs) or macrophages. Multiple mechanisms have been proposed to interpret HIV-1 restriction in monocytes. Human cellular miRNAs can modulate HIV-1 infection by targeting either conserved regions of the HIV-1 genome or host gene transcripts. We have recently reported that the translation of host protein pur-alpha is repressed by abundant cellular miRNAs to inhibit HIV-1 infection in monocytes. Here, we report that the transcript of another cellular factor, VprBP [Vpr (HIV-1)-binding protein], was repressed by cellular miRNA-1236, which contributes to HIV-1 restriction in monocytes. Transfection of miR-1236 inhibitors enhanced translation of VprBP in monocytes and significantly promoted viral infection; exogenous input of synthesized miR-1236 mimics into MDDCs suppressed translation of VprBP, and, accordingly, significantly impaired viral infection. Our data emphasize the role of miRNA in modulating differentiation-dependent susceptibility of the host cell to HIV-1 infection. Understanding the modulation of HIV-1 infection by cellular miRNAs may provide key small RNAs or the identification of new important protein targets regulated by miRNAs for the development of antiviral strategies.
Collapse
Affiliation(s)
- Li Ma
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology & Medical Sciences, Soochow University, Suzhou, China
- Key Laboratory of Molecular Virology & Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Chan-Juan Shen
- Key Laboratory of Molecular Virology & Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Éric A. Cohen
- Laboratory of Human Retrovirology, Institut de Recherches Cliniques de Montréal, Montreal, Quebec, Canada
| | - Si-Dong Xiong
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology & Medical Sciences, Soochow University, Suzhou, China
| | - Jian-Hua Wang
- Key Laboratory of Molecular Virology & Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
16
|
Calistri A, Munegato D, Carli I, Parolin C, Palù G. The ubiquitin-conjugating system: multiple roles in viral replication and infection. Cells 2014; 3:386-417. [PMID: 24805990 PMCID: PMC4092849 DOI: 10.3390/cells3020386] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Revised: 04/23/2014] [Accepted: 04/24/2014] [Indexed: 12/17/2022] Open
Abstract
Through the combined action of ubiquitinating and deubiquitinating enzymes, conjugation of ubiquitin to a target protein acts as a reversible post-translational modification functionally similar to phosphorylation. Indeed, ubiquitination is more and more recognized as a central process for the fine regulation of many cellular pathways. Due to their nature as obligate intracellular parasites, viruses rely on the most conserved host cell machineries for their own replication. Thus, it is not surprising that members from almost every viral family are challenged by ubiquitin mediated mechanisms in different steps of their life cycle and have evolved in order to by-pass or exploit the cellular ubiquitin conjugating system to maximize their chance to establish a successful infection. In this review we will present several examples of the complex interplay that links viruses and the ubiquitin conjugation machinery, with a special focus on the mechanisms evolved by the human immunodeficiency virus to escape from cellular restriction factors and to exit from infected cells.
Collapse
Affiliation(s)
- Arianna Calistri
- Department of Molecular Medicine, University of Padova, via Gabelli 63, Padova 35121, Italy.
| | - Denis Munegato
- Department of Molecular Medicine, University of Padova, via Gabelli 63, Padova 35121, Italy.
| | - Ilaria Carli
- Department of Molecular Medicine, University of Padova, via Gabelli 63, Padova 35121, Italy.
| | - Cristina Parolin
- Department of Molecular Medicine, University of Padova, via Gabelli 63, Padova 35121, Italy.
| | - Giorgio Palù
- Department of Molecular Medicine, University of Padova, via Gabelli 63, Padova 35121, Italy.
| |
Collapse
|