1
|
Wang Z, Zhang Y, Wu L, Chen J, Xie S, He J, Zhang Q, Chen H, Chen F, Liu Y, Zhang Y, Zhuo Y, Wen N, Qiu L, Tan W. An Aptamer-Functionalized DNA Circuit to Establish an Artificial Interaction between T Cells and Cancer Cells. Angew Chem Int Ed Engl 2023; 62:e202307656. [PMID: 37423897 DOI: 10.1002/anie.202307656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/30/2023] [Accepted: 07/07/2023] [Indexed: 07/11/2023]
Abstract
Nongenetic strategies that enable control over the cell-cell interaction network would be highly desired, particularly in T cell-based cancer immunotherapy. In this work, we developed an aptamer-functionalized DNA circuit to modulate the interaction between T cells and cancer cells. This DNA circuit was composed of recognition-then-triggering and aggregation-then-activation modules. Upon recognizing target cancer cells, the triggering strand was released to induce aggregation of immune receptors on the T cell surface, leading to an enhancement of T cell activity for effective cancer eradication. Our results demonstrated the feasibility of this DNA circuit for promoting target cancer cell-directed stimulation of T cells, which, consequently, enhanced their killing effect on cancer cells. This DNA circuit, as a modular strategy to modulate intercellular interactions, could lead to a new paradigm for the development of nongenetic T cell-based immunotherapy.
Collapse
Affiliation(s)
- Zhimin Wang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Yue Zhang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Limei Wu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Jianghuai Chen
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Sitao Xie
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Jiaxuan He
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Qiang Zhang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Hong Chen
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Fengming Chen
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Yue Liu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Yutong Zhang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Yuting Zhuo
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Nachuan Wen
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Liping Qiu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Institute of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University School of Medicine, College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
2
|
Popugailo A, Rotfogel Z, Levy M, Turgeman O, Hillman D, Levy R, Arad G, Shpilka T, Kaempfer R. The homodimer interfaces of costimulatory receptors B7 and CD28 control their engagement and pro-inflammatory signaling. J Biomed Sci 2023; 30:49. [PMID: 37381064 DOI: 10.1186/s12929-023-00941-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/19/2023] [Indexed: 06/30/2023] Open
Abstract
BACKGROUND The inflammatory response is indispensable for protective immunity, yet microbial pathogens often trigger an excessive response, 'cytokine storm', harmful to the host. Full T-cell activation requires interaction of costimulatory receptors B7-1(CD80) and B7-2(CD86) expressed on antigen-presenting cells with CD28 expressed on the T cells. We created short peptide mimetics of the homodimer interfaces of the B7 and CD28 receptors and examined their ability to attenuate B7/CD28 coligand engagement and signaling through CD28 for inflammatory cytokine induction in human immune cells, and to protect from lethal toxic shock in vivo. METHODS Short B7 and CD28 receptor dimer interface mimetic peptides were synthesized and tested for their ability to attenuate the inflammatory cytokine response of human peripheral blood mononuclear cells, as well as for their ability to attenuate B7/CD28 intercellular receptor engagement. Mice were used to test the ability of such peptides to protect from lethal superantigen toxin challenge when administered in molar doses far below the toxin dose. RESULTS B7 and CD28 homodimer interfaces are remote from the coligand binding sites, yet our finding is that by binding back into the receptor dimer interfaces, short dimer interface mimetic peptides inhibit intercellular B7-2/CD28 as well as the tighter B7-1/CD28 engagement, attenuating thereby pro-inflammatory signaling. B7 mimetic peptides exhibit tight selectivity for the cognate receptor in inhibiting intercellular receptor engagement with CD28, yet each diminishes signaling through CD28. In a prominent example of inflammatory cytokine storm, by attenuating formation of the B7/CD28 costimulatory axis, B7-1 and CD28 dimer interface mimetic peptides protect mice from lethal toxic shock induced by a bacterial superantigen even when administered in doses far submolar to the superantigen. CONCLUSIONS Our results reveal that the B7 and CD28 homodimer interfaces each control B7/CD28 costimulatory receptor engagement and highlight the protective potential against cytokine storm of attenuating, yet not ablating, pro-inflammatory signaling via these receptor domains.
Collapse
Affiliation(s)
- Andrey Popugailo
- Department of Biochemistry and Molecular Biology, Institute of Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, 9112102, Jerusalem, Israel
| | - Ziv Rotfogel
- Department of Biochemistry and Molecular Biology, Institute of Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, 9112102, Jerusalem, Israel
| | - Michal Levy
- Department of Biochemistry and Molecular Biology, Institute of Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, 9112102, Jerusalem, Israel
| | - Orli Turgeman
- Department of Biochemistry and Molecular Biology, Institute of Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, 9112102, Jerusalem, Israel
| | - Dalia Hillman
- Department of Biochemistry and Molecular Biology, Institute of Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, 9112102, Jerusalem, Israel
| | - Revital Levy
- Department of Biochemistry and Molecular Biology, Institute of Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, 9112102, Jerusalem, Israel
| | - Gila Arad
- Department of Biochemistry and Molecular Biology, Institute of Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, 9112102, Jerusalem, Israel
| | - Tomer Shpilka
- Department of Biochemistry and Molecular Biology, Institute of Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, 9112102, Jerusalem, Israel
| | - Raymond Kaempfer
- Department of Biochemistry and Molecular Biology, Institute of Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, 9112102, Jerusalem, Israel.
| |
Collapse
|
3
|
Kunkl M, Amormino C, Spallotta F, Caristi S, Fiorillo MT, Paiardini A, Kaempfer R, Tuosto L. Bivalent binding of staphylococcal superantigens to the TCR and CD28 triggers inflammatory signals independently of antigen presenting cells. Front Immunol 2023; 14:1170821. [PMID: 37207220 PMCID: PMC10189049 DOI: 10.3389/fimmu.2023.1170821] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 04/21/2023] [Indexed: 05/21/2023] Open
Abstract
Staphylococcus aureus superantigens (SAgs) such as staphylococcal enterotoxin A (SEA) and B (SEB) are potent toxins stimulating T cells to produce high levels of inflammatory cytokines, thus causing toxic shock and sepsis. Here we used a recently released artificial intelligence-based algorithm to better elucidate the interaction between staphylococcal SAgs and their ligands on T cells, the TCR and CD28. The obtained computational models together with functional data show that SEB and SEA are able to bind to the TCR and CD28 stimulating T cells to activate inflammatory signals independently of MHC class II- and B7-expressing antigen presenting cells. These data reveal a novel mode of action of staphylococcal SAgs. By binding to the TCR and CD28 in a bivalent way, staphylococcal SAgs trigger both the early and late signalling events, which lead to massive inflammatory cytokine secretion.
Collapse
Affiliation(s)
- Martina Kunkl
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University, Rome, Italy
| | - Carola Amormino
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University, Rome, Italy
| | - Francesco Spallotta
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University, Rome, Italy
- Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University, Rome, Italy
| | - Silvana Caristi
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University, Rome, Italy
| | - Maria Teresa Fiorillo
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University, Rome, Italy
| | - Alessandro Paiardini
- Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, Rome, Italy
| | - Raymond Kaempfer
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Loretta Tuosto
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University, Rome, Italy
- Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University, Rome, Italy
| |
Collapse
|
4
|
Duraiswamy J, Turrini R, Minasyan A, Barras D, Crespo I, Grimm AJ, Casado J, Genolet R, Benedetti F, Wicky A, Ioannidou K, Castro W, Neal C, Moriot A, Renaud-Tissot S, Anstett V, Fahr N, Tanyi JL, Eiva MA, Jacobson CA, Montone KT, Westergaard MCW, Svane IM, Kandalaft LE, Delorenzi M, Sorger PK, Färkkilä A, Michielin O, Zoete V, Carmona SJ, Foukas PG, Powell DJ, Rusakiewicz S, Doucey MA, Dangaj Laniti D, Coukos G. Myeloid antigen-presenting cell niches sustain antitumor T cells and license PD-1 blockade via CD28 costimulation. Cancer Cell 2021; 39:1623-1642.e20. [PMID: 34739845 PMCID: PMC8861565 DOI: 10.1016/j.ccell.2021.10.008] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 07/06/2021] [Accepted: 10/15/2021] [Indexed: 12/15/2022]
Abstract
The mechanisms regulating exhaustion of tumor-infiltrating lymphocytes (TIL) and responsiveness to PD-1 blockade remain partly unknown. In human ovarian cancer, we show that tumor-specific CD8+ TIL accumulate in tumor islets, where they engage antigen and upregulate PD-1, which restrains their functions. Intraepithelial PD-1+CD8+ TIL can be, however, polyfunctional. PD-1+ TIL indeed exhibit a continuum of exhaustion states, with variable levels of CD28 costimulation, which is provided by antigen-presenting cells (APC) in intraepithelial tumor myeloid niches. CD28 costimulation is associated with improved effector fitness of exhausted CD8+ TIL and is required for their activation upon PD-1 blockade, which also requires tumor myeloid APC. Exhausted TIL lacking proper CD28 costimulation in situ fail to respond to PD-1 blockade, and their response may be rescued by local CTLA-4 blockade and tumor APC stimulation via CD40L.
Collapse
Affiliation(s)
- Jaikumar Duraiswamy
- Ovarian Cancer Research Center, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Riccardo Turrini
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), 1011 Lausanne, Switzerland
| | - Aspram Minasyan
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), 1011 Lausanne, Switzerland
| | - David Barras
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), 1011 Lausanne, Switzerland; Bioinformatics Core Facility, Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Isaac Crespo
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), 1011 Lausanne, Switzerland
| | - Alizée J Grimm
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), 1011 Lausanne, Switzerland
| | - Julia Casado
- Research Program of Systems Oncology, University of Helsinki, 00014 Helsinki, Finland
| | - Raphael Genolet
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), 1011 Lausanne, Switzerland
| | - Fabrizio Benedetti
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), 1011 Lausanne, Switzerland
| | - Alexandre Wicky
- Center for Precision Oncology, Department of Oncology, CHUV, 1011 Lausanne, Switzerland
| | - Kalliopi Ioannidou
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), 1011 Lausanne, Switzerland
| | - Wilson Castro
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), 1011 Lausanne, Switzerland
| | - Christopher Neal
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), 1011 Lausanne, Switzerland
| | - Amandine Moriot
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), 1011 Lausanne, Switzerland
| | - Stéphanie Renaud-Tissot
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), 1011 Lausanne, Switzerland; Center of Experimental Therapeutics, Department of Oncology, CHUV, 1011 Lausanne, Switzerland
| | - Victor Anstett
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), 1011 Lausanne, Switzerland
| | - Noémie Fahr
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), 1011 Lausanne, Switzerland
| | - Janos L Tanyi
- Ovarian Cancer Research Center, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Monika A Eiva
- Ovarian Cancer Research Center, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Connor A Jacobson
- Harvard Ludwig Center, Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Kathleen T Montone
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Inge Marie Svane
- National Center for Cancer Immune Therapy, Copenhagen University Hospital, 2730 Herlev, Denmark
| | - Lana E Kandalaft
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), 1011 Lausanne, Switzerland; Center of Experimental Therapeutics, Department of Oncology, CHUV, 1011 Lausanne, Switzerland
| | - Mauro Delorenzi
- Bioinformatics Core Facility, Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland; Department of Oncology, UNIL, 1011 Lausanne, Switzerland
| | - Peter K Sorger
- Harvard Ludwig Center, Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Anniina Färkkilä
- Research Program of Systems Oncology, University of Helsinki, 00014 Helsinki, Finland; Department of Obstetrics and Gynecology, Helsinki University Hospital, 00014 Helsinki, Finland
| | - Olivier Michielin
- Center for Precision Oncology, Department of Oncology, CHUV, 1011 Lausanne, Switzerland
| | - Vincent Zoete
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), 1011 Lausanne, Switzerland
| | - Santiago J Carmona
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), 1011 Lausanne, Switzerland
| | - Periklis G Foukas
- 2nd Department of Pathology, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Daniel J Powell
- Ovarian Cancer Research Center, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sylvie Rusakiewicz
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), 1011 Lausanne, Switzerland; Center of Experimental Therapeutics, Department of Oncology, CHUV, 1011 Lausanne, Switzerland
| | - Marie-Agnès Doucey
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), 1011 Lausanne, Switzerland
| | - Denarda Dangaj Laniti
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), 1011 Lausanne, Switzerland
| | - George Coukos
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), 1011 Lausanne, Switzerland.
| |
Collapse
|
5
|
Kunkl M, Amormino C, Caristi S, Tedeschi V, Fiorillo MT, Levy R, Popugailo A, Kaempfer R, Tuosto L. Binding of Staphylococcal Enterotoxin B (SEB) to B7 Receptors Triggers TCR- and CD28-Mediated Inflammatory Signals in the Absence of MHC Class II Molecules. Front Immunol 2021; 12:723689. [PMID: 34489975 PMCID: PMC8418141 DOI: 10.3389/fimmu.2021.723689] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/02/2021] [Indexed: 01/19/2023] Open
Abstract
The inflammatory activity of staphylococcal enterotoxin B (SEB) relies on its capacity to trigger polyclonal T-cell activation by binding both T-cell receptor (TCR) and costimulatory receptor CD28 on T cells and MHC class II and B7 molecules on antigen presenting cells (APC). Previous studies highlighted that SEB may bind TCR and CD28 molecules independently of MHC class II, yet the relative contribution of these interactions to the pro-inflammatory function of SEB remained unclear. Here, we show that binding to MHC class II is dispensable for the inflammatory activity of SEB, whereas binding to TCR, CD28 and B7 molecules is pivotal, in both human primary T cells and Jurkat T cell lines. In particular, our finding is that binding of SEB to B7 molecules suffices to trigger both TCR- and CD28-mediated inflammatory signalling. We also provide evidence that, by strengthening the interaction between CD28 and B7, SEB favours the recruitment of the TCR into the immunological synapse, thus inducing lethal inflammatory signalling.
Collapse
Affiliation(s)
- Martina Kunkl
- Department of Biology and Biotechnology Charles Darwin, Sapienza University, Rome, Italy.,Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University, Rome, Italy
| | - Carola Amormino
- Department of Biology and Biotechnology Charles Darwin, Sapienza University, Rome, Italy.,Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University, Rome, Italy
| | - Silvana Caristi
- Department of Biology and Biotechnology Charles Darwin, Sapienza University, Rome, Italy.,Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University, Rome, Italy
| | - Valentina Tedeschi
- Department of Biology and Biotechnology Charles Darwin, Sapienza University, Rome, Italy
| | - Maria Teresa Fiorillo
- Department of Biology and Biotechnology Charles Darwin, Sapienza University, Rome, Italy
| | - Revital Levy
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Andrey Popugailo
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Raymond Kaempfer
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Loretta Tuosto
- Department of Biology and Biotechnology Charles Darwin, Sapienza University, Rome, Italy.,Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University, Rome, Italy
| |
Collapse
|
6
|
Xiang H, Jin S, Tan F, Xu Y, Lu Y, Wu T. Physiological functions and therapeutic applications of neutral sphingomyelinase and acid sphingomyelinase. Biomed Pharmacother 2021; 139:111610. [PMID: 33957567 DOI: 10.1016/j.biopha.2021.111610] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/05/2021] [Accepted: 04/12/2021] [Indexed: 11/15/2022] Open
Abstract
Sphingomyelin (SM) can be converted into ceramide (Cer) by neutral sphingomyelinase (NSM) and acid sphingomyelinase (ASM). Cer is a second messenger of lipids and can regulate cell growth and apoptosis. Increasing evidence shows that NSM and ASM play key roles in many processes, such as apoptosis, immune function and inflammation. Therefore, NSM and ASM have broad prospects in clinical treatments, especially in cancer, cardiovascular diseases (such as atherosclerosis), nervous system diseases (such as Alzheimer's disease), respiratory diseases (such as chronic obstructive pulmonary disease) and the phenotype of dwarfisms in adolescents, playing a complex regulatory role. This review focuses on the physiological functions of NSM and ASM and summarizes their roles in certain diseases and their potential applications in therapy.
Collapse
Affiliation(s)
- Hongjiao Xiang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shengjie Jin
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Fenglang Tan
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yifan Xu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yifei Lu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tao Wu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
7
|
Qian CR, Xia F, Sartre AM, Formisano A, Jaeger S, Nunès JA, Guo XJ, He HT. A critical regulatory role for the cytoplasmic domain of CD28 in ligand binding in naive T cells. Sci Bull (Beijing) 2021; 66:107-110. [PMID: 36654216 DOI: 10.1016/j.scib.2020.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 06/02/2020] [Accepted: 06/30/2020] [Indexed: 01/20/2023]
Affiliation(s)
- Cheng-Rui Qian
- Aix Marseille Univ, CNRS, INSERM, CIML, 13288 Marseille, France; Shanghai Blood Center, Shanghai 200051, China
| | - Fan Xia
- Aix Marseille Univ, CNRS, INSERM, CIML, 13288 Marseille, France; Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | | | | | | | - Jacques A Nunès
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, 13273 Marseille, France; Centre de Recherche en Cancérologie de Marseille, Immunology and Cancer, Equipe Labellisée Fondation pour la Recherche Médicale, 13273 Marseille, France
| | - Xiao-Jun Guo
- Aix Marseille Univ, CNRS, INSERM, CIML, 13288 Marseille, France.
| | - Hai-Tao He
- Aix Marseille Univ, CNRS, INSERM, CIML, 13288 Marseille, France.
| |
Collapse
|
8
|
Chandler NJ, Call MJ, Call ME. T Cell Activation Machinery: Form and Function in Natural and Engineered Immune Receptors. Int J Mol Sci 2020; 21:E7424. [PMID: 33050044 PMCID: PMC7582382 DOI: 10.3390/ijms21197424] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/05/2020] [Accepted: 10/07/2020] [Indexed: 12/15/2022] Open
Abstract
The impressive success of chimeric antigen receptor (CAR)-T cell therapies in treating advanced B-cell malignancies has spurred a frenzy of activity aimed at developing CAR-T therapies for other cancers, particularly solid tumors, and optimizing engineered T cells for maximum clinical benefit in many different disease contexts. A rapidly growing body of design work is examining every modular component of traditional single-chain CARs as well as expanding out into many new and innovative engineered immunoreceptor designs that depart from this template. New approaches to immune cell and receptor engineering are being reported with rapidly increasing frequency, and many recent high-quality reviews (including one in this special issue) provide comprehensive coverage of the history and current state of the art in CAR-T and related cellular immunotherapies. In this review, we step back to examine our current understanding of the structure-function relationships in natural and engineered lymphocyte-activating receptors, with an eye towards evaluating how well the current-generation CAR designs recapitulate the most desirable features of their natural counterparts. We identify key areas that we believe are under-studied and therefore represent opportunities to further improve our grasp of form and function in natural and engineered receptors and to rationally design better therapeutics.
Collapse
Affiliation(s)
- Nicholas J. Chandler
- Structural Biology Division, Walter and Eliza Hall Institute, Parkville, VIC 3052, Australia; (N.J.C.); (M.J.C.)
- Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Melissa J. Call
- Structural Biology Division, Walter and Eliza Hall Institute, Parkville, VIC 3052, Australia; (N.J.C.); (M.J.C.)
- Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Matthew E. Call
- Structural Biology Division, Walter and Eliza Hall Institute, Parkville, VIC 3052, Australia; (N.J.C.); (M.J.C.)
- Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| |
Collapse
|
9
|
Johdi NA, Sukor NF. Colorectal Cancer Immunotherapy: Options and Strategies. Front Immunol 2020; 11:1624. [PMID: 33042104 PMCID: PMC7530194 DOI: 10.3389/fimmu.2020.01624] [Citation(s) in RCA: 260] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 06/17/2020] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer is the third most common cancer in the world with increasing incidence and mortality rates globally. Standard treatments for colorectal cancer have always been surgery, chemotherapy and radiotherapy which may be used in combination to treat patients. However, these treatments have many side effects due to their non-specificity and cytotoxicity toward any cells including normal cells that are growing and dividing. Furthermore, many patients succumb to relapse even after a series of treatments. Thus, it is crucial to have more alternative and effective treatments to treat CRC patients. Immunotherapy is one of the new alternatives in cancer treatment. The strategy is to utilize patients' own immune systems in combating the cancer cells. Cancer immunotherapy overcomes the issue of specificity which is the major problem in chemotherapy and radiotherapy. The normal cells with no cancer antigens are not affected. The outcomes of some cancer immunotherapy have been astonishing in some cases, but some which rely on the status of patients' own immune systems are not. Those patients who responded well to cancer immunotherapy have a better prognostic and better quality of life.
Collapse
Affiliation(s)
- Nor Adzimah Johdi
- UKM Medical Molecular Biology Institute (UMBI), National University of Malaysia, Bangi, Malaysia
| | | |
Collapse
|
10
|
Leddon SA, Fettis MM, Abramo K, Kelly R, Oleksyn D, Miller J. The CD28 Transmembrane Domain Contains an Essential Dimerization Motif. Front Immunol 2020; 11:1519. [PMID: 32765524 PMCID: PMC7378745 DOI: 10.3389/fimmu.2020.01519] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 06/09/2020] [Indexed: 12/13/2022] Open
Abstract
CD28 plays a critical role in regulating immune responses both by enhancing effector T cell activation and differentiation and controlling the development and function of regulatory T cells. CD28 is expressed at the cell surface as a disulfide linked homodimer that is thought to bind ligand monovalently. How ligand binding triggers CD28 to induce intracellular signaling as well as the proximal signaling pathways that are induced are not well-understood. In addition, recent data suggest inside-out signaling initiated by the T cell antigen receptor can enhance CD28 ligand binding, possibly by inducing a rearrangement of the CD28 dimer interface to allow for bivalent binding. To understand how possible conformational changes during ligand-induced receptor triggering and inside-out signaling are mediated, we examined the CD28 transmembrane domain. We identified an evolutionarily conserved YxxxxT motif that is shared with CTLA-4 and resembles the transmembrane dimerization motif within CD3ζ. We show that the CD28 transmembrane domain can drive protein dimerization in a bacterial expression system at levels equivalent to the well-known glycophorin A transmembrane dimerization motif. In addition, ectopic expression of the CD28 transmembrane domain into monomeric human CD25 can drive dimerization in murine T cells as detected by an increase in FRET by flow cytometry. Mutation of the polar YxxxxT motif to hydrophobic leucine residues (Y145L/T150L) attenuated CD28 transmembrane mediated dimerization in both the bacterial and mammalian assays. Introduction of the Y145L/T150L mutation of the CD28 transmembrane dimerization motif into the endogenous CD28 locus by CRISPR resulted in a dramatic loss in CD28 cell surface expression. These data suggest that under physiological conditions the YxxxxT dimerization motif within the CD28 transmembrane domain plays a critical role in the assembly and/or expression of stable CD28 dimers at the cell surface.
Collapse
Affiliation(s)
- Scott A Leddon
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, University of Rochester Medical Center, Rochester, NY, United States
| | - Margaret M Fettis
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, University of Rochester Medical Center, Rochester, NY, United States
| | - Kristin Abramo
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, University of Rochester Medical Center, Rochester, NY, United States
| | - Ryan Kelly
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, University of Rochester Medical Center, Rochester, NY, United States
| | - David Oleksyn
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, University of Rochester Medical Center, Rochester, NY, United States
| | - Jim Miller
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, University of Rochester Medical Center, Rochester, NY, United States
| |
Collapse
|
11
|
Mechanistic dissection of the PD-L1:B7-1 co-inhibitory immune complex. PLoS One 2020; 15:e0233578. [PMID: 32497097 PMCID: PMC7272049 DOI: 10.1371/journal.pone.0233578] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 05/07/2020] [Indexed: 12/12/2022] Open
Abstract
The B7 family represents one of the best-studied subgroups within the Ig superfamily, yet new interactions continue to be discovered. However, this binding promiscuity represents a major challenge for defining the biological contribution of each specific interaction. We developed a strategy for addressing these challenges by combining cell microarray and high-throughput FACS methods to screen for promiscuous binding events, map binding interfaces, and generate functionally selective reagents. Applying this approach to the interactions of mPD-L1 with its receptor mPD-1 and its ligand mB7-1, we identified the binding interface of mB7-1 on mPD-L1 and as a result generated mPD-L1 mutants with binding selectivity for mB7-1 or mPD-1. Next, using a panel of mB7-1 mutants, we mapped the binding sites of mCTLA-4, mCD28 and mPD-L1. Surprisingly, the mPD-L1 binding site mapped to the dimer interface surface of mB7-1, placing it distal from the CTLA-4/CD28 recognition surface. Using two independent approaches, we demonstrated that mPD-L1 and mB7-1 bind in cis, consistent with recent reports from Chaudhri A et al. and Sugiura D et al. We further provide evidence that while CTLA-4 and CD28 do not directly compete with PD-L1 for binding to B7-1, they can disrupt the cis PD-L1:B7-1 complex by reorganizing B7-1 on the cell surface. These observations offer new functional insights into the regulatory mechanisms associated with this group of B7 family proteins and provide new tools to elucidate their function in vitro and in vivo.
Collapse
|
12
|
Jin HS, Ko M, Choi DS, Kim JH, Lee DH, Kang SH, Kim I, Lee HJ, Choi EK, Kim KP, Yoo C, Park Y. CD226 hiCD8 + T Cells Are a Prerequisite for Anti-TIGIT Immunotherapy. Cancer Immunol Res 2020; 8:912-925. [PMID: 32265229 DOI: 10.1158/2326-6066.cir-19-0877] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/27/2020] [Accepted: 03/27/2020] [Indexed: 11/16/2022]
Abstract
Clinical trials are evaluating the efficacy of anti-TIGIT for use as single-agent therapy or in combination with programmed death 1 (PD-1)/programmed death-ligand 1 blockade. How and whether a TIGIT blockade will synergize with immunotherapies is not clear. Here, we show that CD226loCD8+ T cells accumulate at the tumor site and have an exhausted phenotype with impaired functionality. In contrast, CD226hiCD8+ tumor-infiltrating T cells possess greater self-renewal capacity and responsiveness. Anti-TIGIT treatment selectively affects CD226hiCD8+ T cells by promoting CD226 phosphorylation at tyrosine 322. CD226 agonist antibody-mediated activation of CD226 augments the effect of TIGIT blockade on CD8+ T-cell responses. Finally, mFOLFIRINOX treatment, which increases CD226hiCD8+ T cells in patients with pancreatic ductal adenocarcinoma, potentiates the effects of TIGIT or PD-1 blockade. Our results implicate CD226 as a predictive biomarker for cancer immunotherapy and suggest that increasing numbers of CD226hiCD8+ T cells may improve responses to anti-TIGIT therapy.
Collapse
Affiliation(s)
- Hyung-Seung Jin
- Department of Convergence Medicine, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea.
| | - Minkyung Ko
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, South Korea
| | - Da-Som Choi
- Department of Convergence Medicine, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - June Hyuck Kim
- Department of Convergence Medicine, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Dong-Hee Lee
- Department of Convergence Medicine, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Seong-Ho Kang
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, South Korea
| | - Inki Kim
- Department of Convergence Medicine, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Hee Jin Lee
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Eun Kyung Choi
- Department of Radiation Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Kyu-Pyo Kim
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Changhoon Yoo
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea.
| | - Yoon Park
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, South Korea.
| |
Collapse
|
13
|
Chen R, Ganesan A, Okoye I, Arutyunova E, Elahi S, Lemieux MJ, Barakat K. Targeting B7‐1 in immunotherapy. Med Res Rev 2020; 40:654-682. [DOI: 10.1002/med.21632] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 07/30/2019] [Accepted: 08/07/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Rui Chen
- Faculty of Pharmacy and Pharmaceutical SciencesUniversity of AlbertaEdmonton Alberta Canada
| | - Aravindhan Ganesan
- Faculty of Pharmacy and Pharmaceutical SciencesUniversity of AlbertaEdmonton Alberta Canada
| | - Isobel Okoye
- Department of Dentistry, Faculty of Medicine and DentistryUniversity of AlbertaEdmonton Alberta Canada
| | - Elena Arutyunova
- Department of Biochemistry, Faculty of Medicine and DentistryUniversity of AlbertaEdmonton Alberta Canada
| | - Shokrollah Elahi
- Department of Dentistry, Faculty of Medicine and DentistryUniversity of AlbertaEdmonton Alberta Canada
- Li Ka Shing Institute of VirologyUniversity of AlbertaEdmonton Alberta Canada
- Department of Oncology, Faculty of Medicine and DentistryUniversity of AlbertaEdmonton Alberta Canada
- Department of Medical Microbiology and Immunology, Faculty of Medicine and DentistryUniversity of AlbertaEdmonton Alberta Canada
| | - M. Joanne Lemieux
- Department of Biochemistry, Faculty of Medicine and DentistryUniversity of AlbertaEdmonton Alberta Canada
| | - Khaled Barakat
- Faculty of Pharmacy and Pharmaceutical SciencesUniversity of AlbertaEdmonton Alberta Canada
- Li Ka Shing Institute of VirologyUniversity of AlbertaEdmonton Alberta Canada
| |
Collapse
|
14
|
Van Coillie S, Wiernicki B, Xu J. Molecular and Cellular Functions of CTLA-4. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1248:7-32. [PMID: 32185705 DOI: 10.1007/978-981-15-3266-5_2] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) is an inhibitory receptor belonging to the CD28 immunoglobulin subfamily, expressed primarily by T-cells. Its ligands, CD80 and CD86, are typically found on the surface of antigen-presenting cells and can either bind CD28 or CTLA-4, resulting in a costimulatory or a co-inhibitory response, respectively. Because of its dampening effect, CTLA-4 is a crucial regulator of T-cell homeostasis and self-tolerance. The mechanisms by which CTLA-4 exerts its inhibitory function can be categorized as either cell-intrinsic (affects the CTLA-4 expressing T-cell) or cell-extrinsic (affects secondary cells). Research from the last decade has shown that CTLA-4 mainly acts in a cell-extrinsic manner via its competition with CD28, CTLA-4-mediated trans-endocytosis of CD80 and CD86, and its direct tolerogenic effects on the interacting cell. Nonetheless, intrinsic CTLA-4 signaling has been implicated in T-cell motility and the regulation of CTLA-4 its subcellular localization amongst others. CTLA-4 is well recognized as a key immune checkpoint and has gained significant momentum as a therapeutic target in the field of autoimmunity and cancer. In this chapter, we describe the role of costimulation in immune response induction as well as the main mechanisms by which CTLA-4 can inhibit this process.
Collapse
Affiliation(s)
- Samya Van Coillie
- Molecular Signaling and Cell Death Unit, VIB-UGent Center for Inflammation Research, Zwijnaarde, 9052, Ghent, Belgium.
| | - Bartosz Wiernicki
- Molecular Signaling and Cell Death Unit, VIB-UGent Center for Inflammation Research, Zwijnaarde, 9052, Ghent, Belgium
| | - Jie Xu
- Institutes of Biomedical Sciences, Zhongshan-Xuhui Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
15
|
Xia S, Chen Q, Niu B. CD28: A New Drug Target for Immune Disease. Curr Drug Targets 2019; 21:589-598. [PMID: 31729942 DOI: 10.2174/1389450120666191114102830] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/22/2019] [Accepted: 11/04/2019] [Indexed: 01/05/2023]
Abstract
BACKGROUND CD28, a cell surface glycoprotein receptor, predominantly expressed on activated T cells, belongs to the Ig superfamily and provides a critical co-stimulatory signal. CTLA-4 has sequence homology to CD28, and is expressed on T cells after activation. It provides an inhibition signal coordinated with CD28 to regulate T cell activation. Both of them regulate T cell proliferation and differentiation and play an important role in the immune response pathway in vivo. OBJECTIVE We studied the special role of different structural sites of CD28 in producing costimulatory signals. METHODS We reviewed the relevant literature, mainly regarding the structure of CD28 to clarify its biological function, and its role in the immune response. RESULTS In recent years, increasingly attention has been paid to CD28, which is considered as a key therapeutic target for many modern diseases, especially some immune diseases. CONCLUSION In this paper, we mainly introduce the structure of CD28 and its related biological functions, as well as the application of costimulatory pathways targeting CD28 in disease treatment.
Collapse
Affiliation(s)
- Sijing Xia
- College of Life Science, Shanghai University, Shanghai, China
| | - Qin Chen
- College of Life Science, Shanghai University, Shanghai, China
| | - Bing Niu
- College of Life Science, Shanghai University, Shanghai, China
| |
Collapse
|
16
|
Kunkl M, Sambucci M, Ruggieri S, Amormino C, Tortorella C, Gasperini C, Battistini L, Tuosto L. CD28 Autonomous Signaling Up-Regulates C-Myc Expression and Promotes Glycolysis Enabling Inflammatory T Cell Responses in Multiple Sclerosis. Cells 2019; 8:cells8060575. [PMID: 31212712 PMCID: PMC6628233 DOI: 10.3390/cells8060575] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 06/05/2019] [Accepted: 06/07/2019] [Indexed: 02/06/2023] Open
Abstract
The immunopathogenesis of multiple sclerosis (MS) depend on the expansion of specific inflammatory T cell subsets, which are key effectors of tissue damage and demyelination. Emerging studies evidence that a reprogramming of T cell metabolism may occur in MS, thus the identification of stimulatory molecules and associated signaling pathways coordinating the metabolic processes that amplify T cell inflammation in MS is pivotal. Here, we characterized the involvement of the cluster of differentiation (CD)28 and associated signaling mediators in the modulation of the metabolic programs regulating pro-inflammatory T cell functions in relapsing-remitting MS (RRMS) patients. We show that CD28 up-regulates glycolysis independent of the T cell receptor (TCR) engagement by promoting the increase of c-myc and the glucose transporter, Glut1, in RRMS CD4+ T cells. The increase of glycolysis induced by CD28 was important for the expression of inflammatory cytokines related to T helper (Th)17 cells, as demonstrated by the strong inhibition exerted by impairing the glycolytic pathway. Finally, we identified the class 1A phosphatidylinositol 3-kinase (PI3K) as the critical signaling mediator of CD28 that regulates cell metabolism and amplify specific inflammatory T cell phenotypes in MS.
Collapse
Affiliation(s)
- Martina Kunkl
- Department of Biology and Biotechnology Charles Darwin, Sapienza University, 00185 Rome, Italy.
- Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University, 00185 Rome, Italy.
| | - Manolo Sambucci
- Neuroimmunology Unit, IRCCS Santa Lucia Foundation, 00185 Rome, Italy.
| | - Serena Ruggieri
- Department of Neurosciences, S. Camillo/Forlanini Hospital, 00185 Rome, Italy.
| | - Carola Amormino
- Department of Biology and Biotechnology Charles Darwin, Sapienza University, 00185 Rome, Italy.
| | - Carla Tortorella
- Department of Neurosciences, S. Camillo/Forlanini Hospital, 00185 Rome, Italy.
| | - Claudio Gasperini
- Department of Neurosciences, S. Camillo/Forlanini Hospital, 00185 Rome, Italy.
| | - Luca Battistini
- Neuroimmunology Unit, IRCCS Santa Lucia Foundation, 00185 Rome, Italy.
| | - Loretta Tuosto
- Department of Biology and Biotechnology Charles Darwin, Sapienza University, 00185 Rome, Italy.
- Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University, 00185 Rome, Italy.
| |
Collapse
|
17
|
Popugailo A, Rotfogel Z, Supper E, Hillman D, Kaempfer R. Staphylococcal and Streptococcal Superantigens Trigger B7/CD28 Costimulatory Receptor Engagement to Hyperinduce Inflammatory Cytokines. Front Immunol 2019; 10:942. [PMID: 31114583 PMCID: PMC6503043 DOI: 10.3389/fimmu.2019.00942] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 04/12/2019] [Indexed: 11/13/2022] Open
Abstract
Staphylococcal and streptococcal superantigens are virulence factors that cause toxic shock by hyperinducing inflammatory cytokines. Effective T-cell activation requires interaction between the principal costimulatory receptor CD28 and its two coligands, B7-1 (CD80) and B7-2 (CD86). To elicit an inflammatory cytokine storm, bacterial superantigens must bind directly into the homodimer interfaces of CD28 and B7-2. Recent evidence revealed that by engaging CD28 and B7-2 directly at their dimer interface, staphylococcal enterotoxin B (SEB) potently enhances intercellular synapse formation mediated by B7-2 and CD28, resulting in T-cell hyperactivation. Here, we addressed the question, whether diverse bacterial superantigens share the property of triggering B7-2/CD28 receptor engagement and if so, whether they are capable of enhancing also the interaction between B7-1 and CD28, which occurs with an order-of-magnitude higher affinity. To this end, we compared the ability of distinct staphylococcal and streptococcal superantigens to enhance intercellular B7-2/CD28 engagement. Each of these diverse superantigens promoted B7-2/CD28 engagement to a comparable extent. Moreover, they were capable of triggering the intercellular B7-1/CD28 interaction, analyzed by flow cytometry of co-cultured cell populations transfected separately to express human CD28 or B7-1. Streptococcal mitogenic exotoxin Z (SMEZ), the most potent superantigen known, was as sensitive as SEB, SEA and toxic shock syndrome toxin-1 (TSST-1) to inhibition of inflammatory cytokine induction by CD28 and B7-2 dimer interface mimetic peptides. Thus, superantigens act not only by mediating unconventional interaction between MHC-II molecule and T-cell receptor but especially, by strongly promoting engagement of CD28 by its B7-2 and B7-1 coligands, a critical immune checkpoint, forcing the principal costimulatory axis to signal excessively. Our results show that the diverse superantigens use a common mechanism to subvert the inflammatory response, strongly enhancing B7-1/CD28 and B7-2/CD28 costimulatory receptor engagement.
Collapse
Affiliation(s)
- Andrey Popugailo
- Department of Biochemistry and Molecular Biology, Institute of Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Ziv Rotfogel
- Department of Biochemistry and Molecular Biology, Institute of Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Emmanuelle Supper
- Department of Biochemistry and Molecular Biology, Institute of Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Dalia Hillman
- Department of Biochemistry and Molecular Biology, Institute of Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Raymond Kaempfer
- Department of Biochemistry and Molecular Biology, Institute of Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| |
Collapse
|
18
|
Xia F, Qian CR, Xun Z, Hamon Y, Sartre AM, Formisano A, Mailfert S, Phelipot MC, Billaudeau C, Jaeger S, Nunès JA, Guo XJ, He HT. TCR and CD28 Concomitant Stimulation Elicits a Distinctive Calcium Response in Naive T Cells. Front Immunol 2018; 9:2864. [PMID: 30564247 PMCID: PMC6288997 DOI: 10.3389/fimmu.2018.02864] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 11/20/2018] [Indexed: 11/13/2022] Open
Abstract
T cell activation is initiated upon ligand engagement of the T cell receptor (TCR) and costimulatory receptors. The CD28 molecule acts as a major costimulatory receptor in promoting full activation of naive T cells. However, despite extensive studies, why naive T cell activation requires concurrent stimulation of both the TCR and costimulatory receptors remains poorly understood. Here, we explore this issue by analyzing calcium response as a key early signaling event to elicit T cell activation. Experiments using mouse naive CD4+ T cells showed that engagement of the TCR or CD28 with the respective cognate ligand was able to trigger a rise in fluctuating calcium mobilization levels, as shown by the frequency and average response magnitude of the reacting cells compared with basal levels occurred in unstimulated cells. The engagement of both TCR and CD28 enabled a further increase of these two metrics. However, such increases did not sufficiently explain the importance of the CD28 pathways to the functionally relevant calcium responses in T cell activation. Through the autocorrelation analysis of calcium time series data, we found that combined but not separate TCR and CD28 stimulation significantly prolonged the average decay time (τ) of the calcium signal amplitudes determined with the autocorrelation function, compared with its value in unstimulated cells. This increasement of decay time (τ) uniquely characterizes the fluctuating calcium response triggered by concurrent stimulation of TCR and CD28, as it could not be achieved with either stronger TCR stimuli or by co-engaging both TCR and LFA-1, and likely represents an important feature of competent early signaling to provoke efficient T cell activation. Our work has thus provided new insights into the interplay between the TCR and CD28 early signaling pathways critical to trigger naive T cell activation.
Collapse
Affiliation(s)
- Fan Xia
- Aix Marseille University, CNRS, INSERM, CIML, Marseille, France
| | - Cheng-Rui Qian
- Aix Marseille University, CNRS, INSERM, CIML, Marseille, France
| | - Zhou Xun
- School of Economics, Jiangxi University of Finance and Economics, Nanchang, China.,Aix Marseille University, AMSE and GREQAM, Marseille, France
| | - Yannick Hamon
- Aix Marseille University, CNRS, INSERM, CIML, Marseille, France
| | | | | | | | | | | | | | - Jacques A Nunès
- Aix Marseille University, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille, France.,Equipe Labellisée Fondation pour la Recherche Médicale, Centre de Recherche en Cancérologie de Marseille, Immunology and Cancer, Marseille, France
| | - Xiao-Jun Guo
- Aix Marseille University, CNRS, INSERM, CIML, Marseille, France
| | - Hai-Tao He
- Aix Marseille University, CNRS, INSERM, CIML, Marseille, France
| |
Collapse
|
19
|
Ganesan A, Moon TC, Barakat KH. Revealing the atomistic details behind the binding of B7–1 to CD28 and CTLA-4: A comprehensive protein-protein modelling study. Biochim Biophys Acta Gen Subj 2018; 1862:2764-2778. [DOI: 10.1016/j.bbagen.2018.08.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 08/06/2018] [Accepted: 08/08/2018] [Indexed: 01/06/2023]
|
20
|
Börtlein C, Draeger A, Schoenauer R, Kuhlemann A, Sauer M, Schneider-Schaulies S, Avota E. The Neutral Sphingomyelinase 2 Is Required to Polarize and Sustain T Cell Receptor Signaling. Front Immunol 2018; 9:815. [PMID: 29720981 PMCID: PMC5915489 DOI: 10.3389/fimmu.2018.00815] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 04/04/2018] [Indexed: 01/02/2023] Open
Abstract
By promoting ceramide release at the cytosolic membrane leaflet, the neutral sphingomyelinase 2 (NSM) is capable of organizing receptor and signalosome segregation. Its role in T cell receptor (TCR) signaling remained so far unknown. We now show that TCR-driven NSM activation is dispensable for TCR clustering and initial phosphorylation, but of crucial importance for further signal amplification. In particular, at low doses of TCR stimulatory antibodies, NSM is required for Ca2+ mobilization and T cell proliferation. NSM-deficient T cells lack sustained CD3ζ and ZAP-70 phosphorylation and are unable to polarize and stabilize their microtubular system. We identified PKCζ as the key NSM downstream effector in this second wave of TCR signaling supporting dynamics of microtubule-organizing center (MTOC). Ceramide supplementation rescued PKCζ membrane recruitment and MTOC translocation in NSM-deficient cells. These findings identify the NSM as essential in TCR signaling when dynamic cytoskeletal reorganization promotes continued lateral and vertical supply of TCR signaling components: CD3ζ, Zap70, and PKCζ, and functional immune synapses are organized and stabilized via MTOC polarization.
Collapse
Affiliation(s)
- Charlene Börtlein
- Institute for Virology and Immunobiology, University of Wuerzburg, Wuerzburg, Germany
| | - Annette Draeger
- Department of Cell Biology, Institute for Anatomy, University of Bern, Bern, Switzerland
| | - Roman Schoenauer
- Department of Cell Biology, Institute for Anatomy, University of Bern, Bern, Switzerland
| | - Alexander Kuhlemann
- Department of Biotechnology and Biophysics, University of Wuerzburg, Wuerzburg, Germany
| | - Markus Sauer
- Department of Biotechnology and Biophysics, University of Wuerzburg, Wuerzburg, Germany
| | | | - Elita Avota
- Institute for Virology and Immunobiology, University of Wuerzburg, Wuerzburg, Germany
| |
Collapse
|
21
|
Abstract
CD28 superagonistic antibodies (CD28SAb) can preferentially activate and expand immunosuppressive regulatory T cells (Treg) in mice. However, pre-clinical trials assessing CD28SAbs for the therapy of autoimmune diseases reveal severe systemic inflammatory response syndrome in humans, thereby implying the existence of distinct signalling abilities between human and mouse CD28. Here, we show that a single amino acid variant within the C-terminal proline-rich motif of human and mouse CD28 (P212 in human vs. A210 in mouse) regulates CD28-induced NF-κB activation and pro-inflammatory cytokine gene expression. Moreover, this Y209APP212 sequence in humans is crucial for the association of CD28 with the Nck adaptor protein for actin cytoskeleton reorganisation events necessary for CD28 autonomous signalling. This study thus unveils different outcomes between human and mouse CD28 signalling to underscore the importance of species difference when transferring results from preclinical models to the bedside. CD28 transmits co-stimulatory signals for the activation of both mouse and human T cells, but in vivo hyperactivation of CD28 has opposite effects on system immunity. Here, the authors show that a single amino acid difference between mouse and human CD28 dictates this function distinction via differential recruitment of Nck.
Collapse
|
22
|
Early T cell receptor signals globally modulate ligand:receptor affinities during antigen discrimination. Proc Natl Acad Sci U S A 2017; 114:12190-12195. [PMID: 29087297 PMCID: PMC5699024 DOI: 10.1073/pnas.1613140114] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Antigen discrimination by T cells is based on subtle differences in binding of the T cell receptor (TCR) for its peptide major histocompatibility complex (pMHC) ligand. While such binding characteristics are readily mapped with great precision in reconstituted biochemical systems, it is less clear how these interactions are affected in the live cell environment. Here we utilize single-molecule imaging to individually resolve all of the pMHC:TCR binding events in live T cells. The quantitative measurements reveal an active feedback mechanism that globally modulates the probability of pMHC:TCR binding throughout the cell–cell interface, without affecting the unbinding rate. The result is to increase the efficiency with which TCRs scan for antigen pMHC after the first few molecular encounters have occurred. Antigen discrimination by T cells occurs at the junction between a T cell and an antigen-presenting cell. Juxtacrine binding between numerous adhesion, signaling, and costimulatory molecules defines both the topographical and lateral geometry of this cell–cell interface, within which T cell receptor (TCR) and peptide major histocompatibility complex (pMHC) interact. These physical constraints on receptor and ligand movement have significant potential to modulate their molecular binding properties. Here, we monitor individual ligand:receptor binding and unbinding events in space and time by single-molecule imaging in live primary T cells for a range of different pMHC ligands and surface densities. Direct observations of pMHC:TCR and CD80:CD28 binding events reveal that the in situ affinity of both pMHC and CD80 ligands for their respective receptors is modulated by the steady-state number of agonist pMHC:TCR interactions experienced by the cell. By resolving every single pMHC:TCR interaction it is evident that this cooperativity is accomplished by increasing the kinetic on-rate without altering the off-rate and has a component that is not spatially localized. Furthermore, positive cooperativity is observed under conditions where the T cell activation probability is low. This TCR-mediated feedback is a global effect on the intercellular junction. It is triggered by the first few individual pMHC:TCR binding events and effectively increases the efficiency of TCR scanning for antigen before the T cell is committed to activation.
Collapse
|
23
|
Kouidhi S, Elgaaied AB, Chouaib S. Impact of Metabolism on T-Cell Differentiation and Function and Cross Talk with Tumor Microenvironment. Front Immunol 2017; 8:270. [PMID: 28348562 PMCID: PMC5346542 DOI: 10.3389/fimmu.2017.00270] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 02/24/2017] [Indexed: 12/12/2022] Open
Abstract
The immune system and metabolism are highly integrated and multilevel interactions between metabolic system and T lymphocyte signaling and fate exist. Accumulating evidence indicates that the regulation of nutrient uptake and utilization in T cells is critically important for the control of their differentiation and manipulating metabolic pathways in these cells can shape their function and survival. This review will discuss some potential cell metabolism pathways involved in shaping T lymphocyte function and differentiation. It will also describe show subsets of T cells have specific metabolic requirements and signaling pathways that contribute to their respective function. Examples showing the apparent similarity between cancer cell metabolism and T cells during activation are illustrated and finally some mechanisms being used by tumor microenvironment to orchestrate T-cell metabolic dysregulation and the subsequent emergence of immune suppression are discussed. We believe that targeting T-cell metabolism may provide an additional opportunity to manipulate T-cell function in the development of novel therapeutics.
Collapse
Affiliation(s)
- Soumaya Kouidhi
- ISBST, Laboratory BVBGR, LR11ES31, Higher Institute of Biotechnology of Sidi Thabet, University of Manouba, Sidi Thabet, Tunisia; Laboratory of Genetics, Immunology and Human Pathology, Faculty of Sciences of Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Amel Benammar Elgaaied
- Laboratory of Genetics, Immunology and Human Pathology, Faculty of Sciences of Tunis, University Tunis El Manar , Tunis , Tunisia
| | - Salem Chouaib
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMR1186, Laboratory «Integrative Tumor Immunology and Genetic Oncology», Equipe Labellisée LIGUE 2015, Villejuif, France; Institut National de la Santé et de la Recherche Médicale (INSERM), Gustave Roussy, University of Paris-Sud, Villejuif, France; Institut National de la Santé et de la Recherche Médicale (INSERM), Gustave Roussy, Université Paris-Saclay, Villejuif, France
| |
Collapse
|
24
|
Beta 2-adrenergic receptor homodimers: Role of transmembrane domain 1 and helix 8 in dimerization and cell surface expression. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1859:1445-1455. [PMID: 27993566 DOI: 10.1016/j.bbamem.2016.12.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 12/05/2016] [Accepted: 12/08/2016] [Indexed: 11/22/2022]
Abstract
Even though there are hundreds of reports in the published literature supporting the hypothesis that G protein-coupled receptors (GPCR) form and function as dimers this remains a highly controversial area of research and mechanisms governing homodimer formation are poorly understood. Crystal structures revealing homodimers have been reported for many different GPCR. For adrenergic receptors, a potential dimer interface involving transmembrane domain 1 (TMD1) and helix 8 (H8) was identified in crystal structures of the beta1-adrenergic (β1-AR) and β2-AR. The purpose of this study was to investigate a potential role for TMD1 and H8 in dimerization and plasma membrane expression of functional β2-AR. Charged residues at the base of TMD1 and in the distal portion of H8 were replaced, singly and in combination, with non-polar residues or residues of opposite charge. Wild type and mutant β2-AR, tagged with YFP and expressed in HEK293 cells, were evaluated for plasma membrane expression and function. Homodimer formation was evaluated using bioluminescence resonance energy transfer, bimolecular fluorescence complementation, and fluorescence correlation spectroscopy. Amino acid substitutions at the base of TMD1 and in the distal portion of H8 disrupted homodimer formation and caused receptors to be retained in the endoplasmic reticulum. Mutations in the proximal region of H8 did not disrupt dimerization but did interfere with plasma membrane expression. This study provides biophysical evidence linking a potential TMD1/H8 interface with ER export and the expression of functional β2-AR on the plasma membrane. This article is part of a Special Issue entitled: Interactions between membrane receptors in cellular membranes edited by Kalina Hristova.
Collapse
|
25
|
Superantigens hyperinduce inflammatory cytokines by enhancing the B7-2/CD28 costimulatory receptor interaction. Proc Natl Acad Sci U S A 2016; 113:E6437-E6446. [PMID: 27708164 DOI: 10.1073/pnas.1603321113] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Full T-cell activation requires interaction between the costimulatory receptors B7-2 and CD28. By binding CD28, bacterial superantigens elicit harmful inflammatory cytokine overexpression through an unknown mechanism. We show that, by engaging not only CD28 but also its coligand B7-2 directly, superantigens potently enhance the avidity between B7-2 and CD28, inducing thereby T-cell hyperactivation. Using the same 12-aa β-strand-hinge-α-helix domain, superantigens engage both B7-2 and CD28 at their homodimer interfaces, areas remote from where these coreceptors interact, implying that inflammatory signaling can be controlled through the receptor homodimer interfaces. Short B7-2 dimer interface mimetic peptides bind diverse superantigens, prevent superantigen binding to cell-surface B7-2 or CD28, attenuate inflammatory cytokine overexpression, and protect mice from lethal superantigen challenge. Thus, superantigens induce a cytokine storm not only by mediating the interaction between MHC-II molecule and T-cell receptor but also, critically, by promoting B7-2/CD28 coreceptor engagement, forcing the principal costimulatory axis to signal excessively. Our results reveal a role for B7-2 as obligatory receptor for superantigens. B7-2 homodimer interface mimotopes prevent superantigen lethality by blocking the superantigen-host costimulatory receptor interaction.
Collapse
|
26
|
Esensten JH, Helou YA, Chopra G, Weiss A, Bluestone JA. CD28 Costimulation: From Mechanism to Therapy. Immunity 2016; 44:973-88. [PMID: 27192564 PMCID: PMC4932896 DOI: 10.1016/j.immuni.2016.04.020] [Citation(s) in RCA: 582] [Impact Index Per Article: 64.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Indexed: 02/07/2023]
Abstract
Ligation of the CD28 receptor on T cells provides a critical second signal alongside T cell receptor (TCR) ligation for naive T cell activation. Here, we discuss the expression, structure, and biochemistry of CD28 and its ligands. CD28 signals play a key role in many T cell processes, including cytoskeletal remodeling, production of cytokines, survival, and differentiation. CD28 ligation leads to unique epigenetic, transcriptional, and post-translational changes in T cells that cannot be recapitulated by TCR ligation alone. We discuss the function of CD28 and its ligands in both effector and regulatory T cells. CD28 is critical for regulatory T cell survival and the maintenance of immune homeostasis. We outline the roles that CD28 and its family members play in human disease and we review the clinical efficacy of drugs that block CD28 ligands. Despite the centrality of CD28 and its family members and ligands to immune function, many aspects of CD28 biology remain unclear. Translation of a basic understanding of CD28 function into immunomodulatory therapeutics has been uneven, with both successes and failures. Such real-world results might stem from multiple factors, including complex receptor-ligand interactions among CD28 family members, differences between the mouse and human CD28 families, and cell-type specific roles of CD28 family members.
Collapse
Affiliation(s)
- Jonathan H Esensten
- Department of Laboratory Medicine, University of California, San Francisco, CA 94143, USA.
| | - Ynes A Helou
- Division of Rheumatology, Department of Medicine, Rosalind Russell and Ephraim P. Engleman Rheumatology Research Center, University of California, San Francisco, CA 94143, USA
| | - Gaurav Chopra
- Department of Chemistry, Purdue Center for Drug Discovery, Purdue University, West Lafayette, IN 47907, USA
| | - Arthur Weiss
- Division of Rheumatology, Department of Medicine, Rosalind Russell and Ephraim P. Engleman Rheumatology Research Center, University of California, San Francisco, CA 94143, USA; Howard Hughes Medical Institute, University of California, San Francisco, CA 94143, USA
| | - Jeffrey A Bluestone
- Diabetes Center and Department of Medicine, University of California, San Francisco, CA 94143, USA.
| |
Collapse
|
27
|
Kumar NA, Cheong K, Powell DR, da Fonseca Pereira C, Anderson J, Evans VA, Lewin SR, Cameron PU. The role of antigen presenting cells in the induction of HIV-1 latency in resting CD4(+) T-cells. Retrovirology 2015; 12:76. [PMID: 26362311 PMCID: PMC4567795 DOI: 10.1186/s12977-015-0204-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 09/01/2015] [Indexed: 12/24/2022] Open
Abstract
Background Combination antiretroviral therapy (cART) is able to control HIV-1 viral replication, however long-lived latent infection in resting memory CD4+ T-cells persist. The mechanisms for establishment and maintenance of latent infection in resting memory CD4+ T-cells remain unclear. Previously we have shown that HIV-1 infection of resting CD4+ T-cells co-cultured with CD11c+ myeloid dendritic cells (mDC) produced a population of non-proliferating T-cells with latent infection. Here we asked whether different antigen presenting cells (APC), including subpopulations of DC and monocytes, were able to induce post-integration latent infection in resting CD4+ T-cells, and examined potential cell interactions that may be involved using RNA-seq. Results mDC (CD1c+), SLAN+ DC and CD14+ monocytes were most efficient in stimulating proliferation of CD4+ T-cells during syngeneic culture and in generating post-integration latent infection in non-proliferating CD4+ T-cells following HIV-1 infection of APC-T cell co-cultures. In comparison, plasmacytoid DC (pDC) and B-cells did not induce latent infection in APC-T-cell co-cultures. We compared the RNA expression profiles of APC subpopulations that could and could not induce latency in non-proliferating CD4+ T-cells. Gene expression analysis, comparing the CD1c+ mDC, SLAN+ DC and CD14+ monocyte subpopulations to pDC identified 53 upregulated genes that encode proteins expressed on the plasma membrane that could signal to CD4+ T-cells via cell–cell interactions (32 genes), immune checkpoints (IC) (5 genes), T-cell activation (9 genes), regulation of apoptosis (5 genes), antigen presentation (1 gene) and through unknown ligands (1 gene). Conclusions APC subpopulations from the myeloid lineage, specifically mDC subpopulations and CD14+ monocytes, were able to efficiently induce post-integration HIV-1 latency in non-proliferating CD4+ T-cells in vitro. Inhibition of key pathways involved in mDC-T-cell interactions and HIV-1 latency may provide novel targets to eliminate HIV-1 latency. Electronic supplementary material The online version of this article (doi:10.1186/s12977-015-0204-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nitasha A Kumar
- Department of Infectious Diseases, Alfred Hospital and Monash University, Melbourne, VIC, 3004, Australia. .,Centre for Biomedical Research, Burnet Institute, Melbourne, VIC, 3004, Australia. .,Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, 3010, Australia.
| | - Karey Cheong
- Department of Infectious Diseases, Alfred Hospital and Monash University, Melbourne, VIC, 3004, Australia. .,Centre for Biomedical Research, Burnet Institute, Melbourne, VIC, 3004, Australia. .,Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, 3010, Australia.
| | - David R Powell
- Victorian Life Science Computational Initiative, Parkville, 3010, Australia. .,Monash Bioinformatics Platform, Monash University, Clayton, 3800, Australia.
| | | | - Jenny Anderson
- Department of Infectious Diseases, Alfred Hospital and Monash University, Melbourne, VIC, 3004, Australia. .,Centre for Biomedical Research, Burnet Institute, Melbourne, VIC, 3004, Australia. .,Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, 3010, Australia.
| | - Vanessa A Evans
- Department of Infectious Diseases, Alfred Hospital and Monash University, Melbourne, VIC, 3004, Australia. .,Centre for Biomedical Research, Burnet Institute, Melbourne, VIC, 3004, Australia. .,Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, 3010, Australia.
| | - Sharon R Lewin
- Department of Infectious Diseases, Alfred Hospital and Monash University, Melbourne, VIC, 3004, Australia. .,Centre for Biomedical Research, Burnet Institute, Melbourne, VIC, 3004, Australia. .,Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, 3010, Australia.
| | - Paul U Cameron
- Department of Infectious Diseases, Alfred Hospital and Monash University, Melbourne, VIC, 3004, Australia. .,Centre for Biomedical Research, Burnet Institute, Melbourne, VIC, 3004, Australia. .,Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, 3010, Australia.
| |
Collapse
|
28
|
Beyersdorf N, Kerkau T, Hünig T. CD28 co-stimulation in T-cell homeostasis: a recent perspective. Immunotargets Ther 2015; 4:111-22. [PMID: 27471717 PMCID: PMC4918251 DOI: 10.2147/itt.s61647] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
T-cells play a key role within the adaptive immune system mediating cellular immunity and orchestrating the immune response as a whole. Their activation requires not only recognition of antigen/major histocompatibility complexes by the T-cell receptor but in addition co-stimulation via the CD28 molecule through binding to CD80, CD86, or as recently discovered, inducible co-stimulator ligand expressed by antigen-presenting cells. Apart from tight control of the co-stimulatory signal by the T-cell receptor complex, expression of the inhibitory receptor cytotoxic T-lymphocyte antigen-4 (CTLA-4) sharing its ligands with CD28 is required to avoid inappropriate or prolonged T-cell activation. CD4(+) Foxp3(+) regulatory T (Treg) cells, which are crucial inhibitors of autoimmunity, add another level of complexity in that they differ from conventional non-regulatory CD4(+) T-cells by strongly depending on CD28 signaling for their generation and homeostasis. Moreover, CTLA-4 is constitutively expressed by Treg cells where it serves as a key mediator of suppression, while conventional CD4(+) T-cells express CTLA-4 only after activation. Here, we discuss recent insights into the molecular events underlying CD28-mediated co-stimulation, its impact on gene regulation, and the differential role of CD28 expression on Treg cells versus conventional CD4(+) and CD8(+) T-cells. Moreover, we summarize the exciting therapeutic options which have arisen from our current understanding of T-cell co-stimulation. Some of these have already been translated into the clinic, while others are expected to follow soon due to promising preclinical results. In particular, we discuss the failed 2006 trial of the CD28 superagonist TGN1412, and the return of this potent T-cell activator to clinical development.
Collapse
Affiliation(s)
- Niklas Beyersdorf
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Thomas Kerkau
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Thomas Hünig
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| |
Collapse
|