1
|
Manoj KM. Murburn posttranslational modifications of proteins: Cellular redox processes and murzyme-mediated metabolo-proteomics. J Cell Physiol 2024; 239:e30954. [PMID: 36716112 DOI: 10.1002/jcp.30954] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/04/2023] [Accepted: 01/11/2023] [Indexed: 01/31/2023]
Abstract
Murburn concept constitutes the thesis that diffusible reactive species or DRS are obligatorily involved in routine metabolic and physiological activities. Murzymes are defined as biomolecules/proteins that generate/modulate/sustain/utilize DRS. Murburn posttranslational modifications (PTMs) result because murburn/murzyme functionalism is integral to cellular existence. Cells must incorporate the inherently stochastic nature of operations mediated by DRS. Due to the earlier/inertial stigmatic perception that DRS are mere agents of chaos, several such outcomes were either understood as deterministic modulations sponsored by house-keeping enzymes or deemed as unregulated nonenzymatic events resulting out of "oxidative stress". In the current review, I dispel the myths around DRS-functions, and undertake systematic parsing and analyses of murburn modifications of proteins. Although it is impossible to demarcate all PTMs into the classical or murburn modalities, telltale signs of the latter are evident from the relative inaccessibility of the locus, non-specificities and mechanistic details. It is pointed out that while many murburn PTMs may be harmless, some others could have deleterious or beneficial physiological implications. Some details of reversible/irreversible modifications of amino acid residues and cofactors that may be subjected to phosphorylation, halogenation, glycosylation, alkylation/acetylation, hydroxylation/oxidation, etc. are listed, along with citations of select proteins where such modifications have been reported. The contexts of these modifications and their significance in (patho)physiology/aging and therapy are also presented. With more balanced explorations and statistically verified data, a definitive understanding of normal versus pathological contexts of murburn modifications would be obtainable in the future.
Collapse
|
2
|
Manoj KM, Gideon DA, Bazhin NM, Tamagawa H, Nirusimhan V, Kavdia M, Jaeken L. Na,K-ATPase: A murzyme facilitating thermodynamic equilibriums at the membrane-interface. J Cell Physiol 2023; 238:109-136. [PMID: 36502470 DOI: 10.1002/jcp.30925] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/08/2022] [Accepted: 11/14/2022] [Indexed: 12/14/2022]
Abstract
The redox metabolic paradigm of murburn concept advocates that diffusible reactive species (DRS, particularly oxygen-centric radicals) are mainstays of physiology, and not mere pathological manifestations. The murburn purview of cellular function also integrates the essential principles of bioenergetics, thermogenesis, homeostasis, electrophysiology, and coherence. In this context, any enzyme that generates/modulates/utilizes/sustains DRS functionality is called a murzyme. We have demonstrated that several water-soluble (peroxidases, lactate dehydrogenase, hemogoblin, etc.) and membrane-embedded (Complexes I-V in mitochondria, Photosystems I/II in chloroplasts, rhodopsin/transducin in rod cells, etc.) proteins serve as murzymes. The membrane protein of Na,K-ATPase (NKA, also known as sodium-potassium pump) is the focus of this article, owing to its centrality in neuro-cardio-musculo electrophysiology. Herein, via a series of critical queries starting from the geometric/spatio-temporal considerations of diffusion/mass transfer of solutes in cells to an update on structural/distributional features of NKA in diverse cellular systems, and from various mechanistic aspects of ion-transport (thermodynamics, osmoregulation, evolutionary dictates, etc.) to assays/explanations of inhibitory principles like cardiotonic steroids (CTS), we first highlight some unresolved problems in the field. Thereafter, we propose and apply a minimalist murburn model of trans-membrane ion-differentiation by NKA to address the physiological inhibitory effects of trans-dermal peptide, lithium ion, volatile anesthetics, confirmed interfacial DRS + proton modulators like nitrophenolics and unsaturated fatty acid, and the diverse classes of molecules like CTS, arginine, oximes, etc. These explanations find a pan-systemic connectivity with the inhibitions/uncouplings of other membrane proteins in cells.
Collapse
Affiliation(s)
- Kelath Murali Manoj
- Satyamjayatu: The Science & Ethics Foundation, Kulappully, Shoranur-2, Kerala, India
| | - Daniel A Gideon
- Satyamjayatu: The Science & Ethics Foundation, Kulappully, Shoranur-2, Kerala, India
| | - Nikolai M Bazhin
- Institute of Chemical Kinetics and Combustion, Russian Academy of Sciences, Novosibirsk, Russia
| | - Hirohisa Tamagawa
- Department of Mechanical Engineering, Gifu University, Gifu City, Japan
| | - Vijay Nirusimhan
- Satyamjayatu: The Science & Ethics Foundation, Kulappully, Shoranur-2, Kerala, India
| | - Mahendra Kavdia
- Department of Biomedical Engineering, Wayne State University, Detroit, Michigan, USA
| | - Laurent Jaeken
- Department of Industrial Sciences and Technology, Karel de Grote-Hogeschool, Antwerp University Association, Antwerp, Belgium
| |
Collapse
|
3
|
Manoj KM, Gideon DA, Parashar A, Nirusimhan V, Annadurai P, Jacob VD, Manekkathodi A. Validating the predictions of murburn model for oxygenic photosynthesis: Analyses of ligand-binding to protein complexes and cross-system comparisons. J Biomol Struct Dyn 2022; 40:11024-11056. [PMID: 34328391 DOI: 10.1080/07391102.2021.1953607] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In this second half of our treatise on oxygenic photosynthesis, we provide support for the murburn model of the light reaction of photosynthesis and ratify key predictions made in the first part. Molecular docking and visualization of various ligands of quinones/quinols (and their derivatives) with PS II/Cytochrome b6f complexes did not support chartered 2e-transport role of quinols. A broad variety of herbicides did not show any affinity/binding-based rationales for inhibition of photosynthesis. We substantiate the proposal that disubstituted phenolics (perceived as protonophores/uncouplers or affinity-based inhibitors in the classical purview) serve as interfacial modulators of diffusible reactive (oxygen) species or DR(O)S. The DRS-based murburn model is evidenced by the identification of multiple ADP-binding sites on the extra-membraneous projection of protein complexes and structure/distribution of the photo/redox catalysts. With a panoramic comparison of the redox metabolic machinery across diverse organellar/cellular systems, we highlight the ubiquitous one-electron murburn facets (cofactors of porphyrin, flavin, FeS, other metal centers and photo/redox active pigments) that enable a facile harnessing of the utility of DRS. In the summative analyses, it is demonstrated that the murburn model of light reaction explains the structures of membrane supercomplexes recently observed in thylakoids and also accounts for several photodynamic experimental observations and evolutionary considerations. In toto, the work provides a new orientation and impetus to photosynthesis research. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Kelath Murali Manoj
- RedOx Lab, Department of Life Sciences, Satyamjayatu: The Science & Ethics Foundation, Palakkad District, Kerala, India
| | - Daniel Andrew Gideon
- RedOx Lab, Department of Life Sciences, Satyamjayatu: The Science & Ethics Foundation, Palakkad District, Kerala, India
| | - Abhinav Parashar
- RedOx Lab, Department of Life Sciences, Satyamjayatu: The Science & Ethics Foundation, Palakkad District, Kerala, India
| | - Vijay Nirusimhan
- RedOx Lab, Department of Life Sciences, Satyamjayatu: The Science & Ethics Foundation, Palakkad District, Kerala, India
| | - Pushparaj Annadurai
- RedOx Lab, Department of Life Sciences, Satyamjayatu: The Science & Ethics Foundation, Palakkad District, Kerala, India
| | - Vivian David Jacob
- RedOx Lab, Department of Life Sciences, Satyamjayatu: The Science & Ethics Foundation, Palakkad District, Kerala, India
| | - Afsal Manekkathodi
- RedOx Lab, Department of Life Sciences, Satyamjayatu: The Science & Ethics Foundation, Palakkad District, Kerala, India
| |
Collapse
|
4
|
Manoj KM, Bazhin NM, Jacob VD, Parashar A, Gideon DA, Manekkathodi A. Structure-function correlations and system dynamics in oxygenic photosynthesis: classical perspectives and murburn precepts. J Biomol Struct Dyn 2022; 40:10997-11023. [PMID: 34323659 DOI: 10.1080/07391102.2021.1953606] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
HIGHLIGHTS Contemporary beliefs on oxygenic photosynthesis are critiqued.Murburn model is suggested as an alternative explanation.In the new model, diffusible reactive species are the main protagonists.All pigments are deemed photo-redox active in the new stochastic mechanism.NADPH synthesis occurs via simple electron transfers, not via elaborate ETC.Oxygenesis is delocalized and not just centered at Mn-Complex.Energetics of murburn proposal for photophosphorylation is provided.The proposal ushers in a paradigm shift in photosynthesis research.
Collapse
Affiliation(s)
| | | | - Vivian David Jacob
- Satyamjayatu: The Science & Ethics Foundation, Kulappully, Kerala, India
| | - Abhinav Parashar
- Satyamjayatu: The Science & Ethics Foundation, Kulappully, Kerala, India
| | | | - Afsal Manekkathodi
- Satyamjayatu: The Science & Ethics Foundation, Kulappully, Kerala, India
| |
Collapse
|
5
|
Manoj KM, Gideon DA. Structural foundations for explaining the physiological roles of murzymes embedded in diverse phospholipid membranes. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:183981. [PMID: 35690100 DOI: 10.1016/j.bbamem.2022.183981] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/26/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
The advent of improved structural biology protocols and bioinformatics methodologies have provided paradigm-shifting insights on metabolic or physiological processes catalyzed by homo-/hetero- proteins (super)complexes embedded in phospholipid membranes of cells/organelles. In this panoramic review, we succinctly elucidate the structural features of select redox proteins from four systems: hepatocyte/adrenal cortex endoplasmic reticulum (microsomes), inner mitochondrial membrane (cristae), thylakoid membrane (grana), and in the flattened disks of rod/cone cells (in retina). Besides catalyzing fast/crucial (photo)chemical reactions, these proteins utilize the redox-active diatomic gaseous molecule of oxygen, the elixir of aerobic life. Quite contrary to extant perceptions that invoke primarily deterministic affinity-binding or conformation-change based "proton-pump"/"serial electron-relay" type roles, we advocate murzyme functions for the membrane-embedded proteins in these systems. Murzymes are proteins that generate/stabilize/utilize diffusible reactive (oxygen) species (DRS/DROS) based activities. Herein, we present a brief compendium of the recently revealed wealth of structural information and mechanistic concepts on how the membrane proteins use DRS/DROS to aid 'effective charge separation' and facilitate trans-membrane dynamics of diverse species in milieu, thereby enabling the cells to function as 'simple chemical engines'.
Collapse
Affiliation(s)
- Kelath Murali Manoj
- Satyamjayatu: The Science & Ethics Foundation, Snehatheeram, Shoranur-2 (PO), Kerala 679122, India.
| | - Daniel Andrew Gideon
- Satyamjayatu: The Science & Ethics Foundation, Snehatheeram, Shoranur-2 (PO), Kerala 679122, India.
| |
Collapse
|
6
|
Manoj KM, Gideon DA, Jaeken L. Why do cells need oxygen? Insights from mitochondrial composition and function. Cell Biol Int 2021; 46:344-358. [PMID: 34918410 DOI: 10.1002/cbin.11746] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/07/2021] [Accepted: 12/14/2021] [Indexed: 02/03/2023]
Abstract
Mitochondrial membrane-embedded redox proteins are classically perceived as deterministic "electron transport chain" (ETC) arrays cum proton pumps; and oxygen is seen as an "immobile terminal electron acceptor." This is untenable because: (1) there are little free protons to be pumped out of the matrix; (2) proton pumping would be highly endergonic; (3) ETC-chemiosmosis-rotary ATP synthesis proposal is "irreducibly complex"/"non-evolvable" and does not fit with mitochondrial architecture or structural/distribution data of the concerned proteins/components; (4) a plethora of experimental observations do not conform to the postulates/requisites; for example, there is little evidence for viable proton-pumps/pH-gradient in mitochondria, trans-membrane potential (TMP) is non-fluctuating/non-trappable, oxygen is seen to give copious "diffusible reactive (oxygen) species" (DRS/DROS) in milieu, etc. Quite contrarily, the newly proposed murburn model's tenets agree with known principles of energetics/kinetics, and builds on established structural data and reported observations. In this purview, oxygen is needed to make DRS, the principal component of mitochondrial function. Complex V and porins respectively serve as proton-inlet and turgor-based water-exodus portals, thereby achieving organellar homeostasis. Complexes I to IV possess ADP-binding sites and their redox-centers react/interact with O2 /DRS. At/around these complexes, DRS cross-react or activate/oxidize ADP/Pi via fast thermogenic one-electron reaction(s), condensing to form two-electron stabilized products (H2 O2 /H2 O/ATP). The varied architecture and distribution of components in mitochondria validate DRS as (i) the coupling agent of oxidative reactions and phosphorylations, and (ii) the primary reason for manifestation of TMP in steady-state. Explorations along the new precepts stand to provide greater insights on mitochondrial function and pathophysiology.
Collapse
Affiliation(s)
- Kelath Murali Manoj
- Department of Biochemistry, Satyamjayatu: The Science & Ethics Foundation, Kerala, India
| | - Daniel Andrew Gideon
- Department of Biochemistry, Satyamjayatu: The Science & Ethics Foundation, Kerala, India
| | - Laurent Jaeken
- Industrial Sciences and Technology, Karel de Grote-Hogeschool, Association University and High Schools Antwerp, Antwerpen, Belgium
| |
Collapse
|
7
|
Manoj KM, Bazhin N. The murburn precepts for aerobic respiration and redox homeostasis. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2021; 167:104-120. [DOI: 10.1016/j.pbiomolbio.2021.05.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/13/2021] [Accepted: 05/31/2021] [Indexed: 12/13/2022]
|
8
|
Gideon DA, Nirusimhan V, E JC, Sudarsha K, Manoj KM. Mechanism of electron transfers mediated by cytochromes c and b5 in mitochondria and endoplasmic reticulum: classical and murburn perspectives. J Biomol Struct Dyn 2021; 40:9235-9252. [PMID: 33998974 DOI: 10.1080/07391102.2021.1925154] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We explore the mechanism of electron transfers mediated by cytochrome c, a soluble protein involved in mitochondrial oxidative phosphorylation and cytochrome b5, a microsomal membrane protein acting as a redox aide in xenobiotic metabolism. We found minimal conservation in the sequence and surface amino acid residues of cytochrome c/b5 proteins among divergent species. Therefore, we question the evolutionary logic for electron transfer (ET) occurring through affinity binding via recognition of specific surface residues/topography. Also, analysis of putative protein-protein interactions in the crystal structures of these proteins and their redox partners did not point to any specific interaction logic. A comparison of the kinetic and thermodynamic constants of wildtype vs. mutants did not provide strong evidence to support the binding-based ET paradigm, but indicated support for diffusible reactive species (DRS)-mediated process. Topographically divergent cytochromes from one species have been substituted for reaction with proteins from other species, implying the involvement of non-specific interactions. We provide a viable alternative (murburn concept) to classical protein-protein binding-based long range ET mechanism. To account for the promiscuity of interactions and solvent-accessible hemes, we propose that the two proteins act as non- specific redox capacitors, mediating one-electron redox equilibriums involving DRS and unbound ions.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Daniel Andrew Gideon
- Satyamjayatu: The Science & Ethics Foundation, Palakkad District, Kerala State, India.,Department of Biotechnology and Bioinformatics, Bishop Heber College (Autonomous), Tiruchirappalli, Tamil Nadu, India
| | - Vijay Nirusimhan
- Department of Biotechnology and Bioinformatics, Bishop Heber College (Autonomous), Tiruchirappalli, Tamil Nadu, India
| | - Jesu Castin E
- Department of Biotechnology and Bioinformatics, Bishop Heber College (Autonomous), Tiruchirappalli, Tamil Nadu, India
| | - Karthik Sudarsha
- Department of Biotechnology and Bioinformatics, Bishop Heber College (Autonomous), Tiruchirappalli, Tamil Nadu, India
| | - Kelath Murali Manoj
- Satyamjayatu: The Science & Ethics Foundation, Palakkad District, Kerala State, India
| |
Collapse
|
9
|
Manoj KM, Manekkathodi A. Light's interaction with pigments in chloroplasts: The murburn perspective. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY 2021. [DOI: 10.1016/j.jpap.2020.100015] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
10
|
Manoj KM, Ramasamy S, Parashar A, Gideon DA, Soman V, Jacob VD, Pakshirajan K. Acute toxicity of cyanide in aerobic respiration: Theoretical and experimental support for murburn explanation. Biomol Concepts 2020; 11:32-56. [PMID: 32187011 DOI: 10.1515/bmc-2020-0004] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 02/19/2020] [Indexed: 12/30/2022] Open
Abstract
The inefficiency of cyanide/HCN (CN) binding with heme proteins (under physiological regimes) is demonstrated with an assessment of thermodynamics, kinetics, and inhibition constants. The acute onset of toxicity and CN's mg/Kg LD50 (μM lethal concentration) suggests that the classical hemeFe binding-based inhibition rationale is untenable to account for the toxicity of CN. In vitro mechanistic probing of CN-mediated inhibition of hemeFe reductionist systems was explored as a murburn model for mitochondrial oxidative phosphorylation (mOxPhos). The effect of CN in haloperoxidase catalyzed chlorine moiety transfer to small organics was considered as an analogous probe for phosphate group transfer in mOxPhos. Similarly, inclusion of CN in peroxidase-catalase mediated one-electron oxidation of small organics was used to explore electron transfer outcomes in mOxPhos, leading to water formation. The free energy correlations from a Hammett study and IC50/Hill slopes analyses and comparison with ligands ( CO/ H 2 S/ N 3 - ) $\left( {\text{CO}}/{{{{\text{H}}_{2}}\text{S}}/{\text{N}_{3}^{\text{-}}}\;}\; \right)$ provide insights into the involvement of diffusible radicals and proton-equilibriums, explaining analogous outcomes in mOxPhos chemistry. Further, we demonstrate that superoxide (diffusible reactive oxygen species, DROS) enables in vitro ATP synthesis from ADP+phosphate, and show that this reaction is inhibited by CN. Therefore, practically instantaneous CN ion-radical interactions with DROS in matrix catalytically disrupt mOxPhos, explaining the acute lethal effect of CN.
Collapse
Affiliation(s)
- Kelath Murali Manoj
- Satyamjayatu: The Science & Ethics Foundation Snehatheeram, Kulappully, Shoranur-2 (PO), Kerala, India-679122
| | - Surjith Ramasamy
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India-781039
| | - Abhinav Parashar
- Department of Biotechnology, Vignan's Foundation for Science, Technology & Research, Vadlamudi, Guntur, India-522213
| | - Daniel Andrew Gideon
- Department of Biotechnology, Bishop Heber College, Tiruchirappalli, Tamil Nadu, India-620017
| | - Vidhu Soman
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India-110016
| | - Vivian David Jacob
- Satyamjayatu: The Science & Ethics Foundation Snehatheeram, Kulappully, Shoranur-2 (PO), Kerala, India-679122
| | - Kannan Pakshirajan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India-781039
| |
Collapse
|
11
|
Manoj KM. Murburn concept: a paradigm shift in cellular metabolism and physiology. Biomol Concepts 2020; 11:7-22. [PMID: 31961793 DOI: 10.1515/bmc-2020-0002] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 01/02/2020] [Indexed: 12/26/2022] Open
Abstract
Two decades of evidence-based exploratory pursuits in heme-flavin enzymology led to the formulation of a new biological electron/moiety transfer paradigm, called murburn concept. Murburn is a novel literary abstraction from "mured burning" or "mild unrestricted burning". This concept was invoked to explain the longstanding conundrum of maverick physiological dose responses and also applied to remodel the prevailing understanding of drug metabolism and cellular respiration. A conglomeration of simple ideas grounded in the known principles of thermodynamics and reaction chemistry, murburn concept invokes catalytic/functional roles for diffusible reactive species or radicals. Hitherto, diffusible reactive species were primarily seen as toxic agents of chaos, non-conducible to the maintenance of life-order. Since the murburn paradigm offers a distinctly different perspective for several biological phenomena, researchers holding conventional views of cellular metabolism pose a direct conflict of interests to the advancement of murburn concept. Murburn schemes are poised to integrate numerous metabolic motifs with holistic physiological outcomes; redefining pursuits in biology and medicine. To advance this agenda, I present a brief account of murburn concept and point out how redundant ideas are still advocated in some prestigious journals.
Collapse
Affiliation(s)
- Kelath Murali Manoj
- Satyamjayatu: The Science & Ethics Foundation,Snehatheeram, Kulappully, Shoranur-2 (PO), Kerala,India-679122
| |
Collapse
|
12
|
Manoj KM, Soman V, David Jacob V, Parashar A, Gideon DA, Kumar M, Manekkathodi A, Ramasamy S, Pakshirajan K, Bazhin NM. Chemiosmotic and murburn explanations for aerobic respiration: Predictive capabilities, structure-function correlations and chemico-physical logic. Arch Biochem Biophys 2019; 676:108128. [PMID: 31622585 DOI: 10.1016/j.abb.2019.108128] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 10/03/2019] [Accepted: 10/04/2019] [Indexed: 12/18/2022]
Abstract
Since mid-1970s, the proton-centric proposal of 'chemiosmosis' became the acclaimed explanation for aerobic respiration. Recently, significant theoretical and experimental evidence were presented for an oxygen-centric 'murburn' mechanism of mitochondrial ATP-synthesis. Herein, we compare the predictive capabilities of the two models with respect to the available information on mitochondrial reaction chemistry and the membrane proteins' structure-function correlations. Next, fundamental queries are addressed on thermodynamics of mitochondrial oxidative phosphorylation (mOxPhos): (1) Can the energy of oxygen reduction be utilized for proton transport? (2) Is the trans-membrane proton differential harness-able as a potential energy capable of doing useful work? and (3) Whether the movement of miniscule amounts of mitochondrial protons could give rise to a potential of ~200 mV and if such an electrical energy could sponsor ATP-synthesis. Further, we explore critically if rotary ATPsynthase activity of Complex V can account for physiological ATP-turnovers. We also answer the question- "What is the role of protons in the oxygen-centric murburn scheme of aerobic respiration?" Finally, it is demonstrated that the murburn reaction model explains the fast kinetics, non-integral stoichiometry and high yield of mOxPhos. Strategies are charted to further demarcate the two explanations' relevance in the cellular physiology of aerobic respiration.
Collapse
Affiliation(s)
- Kelath Murali Manoj
- Satyamjayatu: The Science & Ethics Foundation, Snehatheeram, Kulappully, Shoranur-2 (PO), Kerala, 679122, India.
| | - Vidhu Soman
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Vivian David Jacob
- Satyamjayatu: The Science & Ethics Foundation, Snehatheeram, Kulappully, Shoranur-2 (PO), Kerala, 679122, India
| | - Abhinav Parashar
- Department of Biotechnology, Vignan's Foundation for Science, Technology & Research, Vadlamudi, Guntur, 522213, India
| | - Daniel Andrew Gideon
- Department of Biotechnology & Bioinformatics, Bishop Heber College (Autonomous), Tennur, Tiruchirappalli, 620017, India
| | - Manish Kumar
- Satyamjayatu: The Science & Ethics Foundation, Snehatheeram, Kulappully, Shoranur-2 (PO), Kerala, 679122, India
| | - Afsal Manekkathodi
- Qatar Environment and Energy Research Institute, Hamad Bin Khalifa University, Al-Rayyan PO Box 34110, Qatar
| | - Surjith Ramasamy
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Kannan Pakshirajan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Nikolai Mikhailovich Bazhin
- Institute of Chemical Kinetics and Combustion, Russian Academy of Sciences, St. Institutskaya 3, 630090, Novosibirsk, Russia.
| |
Collapse
|
13
|
Manoj KM, Parashar A, David Jacob V, Ramasamy S. Aerobic respiration: proof of concept for the oxygen-centric murburn perspective. J Biomol Struct Dyn 2019; 37:4542-4556. [PMID: 30488771 DOI: 10.1080/07391102.2018.1552896] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The inner mitochondrial membrane protein complexes (I-V) and prokaryotic respiratory machinery are examined for a deeper understanding of their structure-function correlations and dynamics. In silico analysis of the structure of complexes I-IV, docking studies and erstwhile literature confirm that they carry sites which are in close proximity to DROS (diffusible reactive oxygen species) generating redox centers. These findings provide supportive evidence for the newly proposed oxygen-centric chemical-coupling mechanism (murburn concept), wherein DROS catalyzes the esterification of inorganic phosphate to ADP. Further, in a reductionist system, we demonstrate that a DROS (like superoxide) can effectively esterify inorganic phosphate to ADP. The impact of these findings and the interactive dynamics of classical inhibitors (rotenone and cyanide), uncouplers (dinitrophenol and uncoupling protein) and other toxins (atractyloside and oligomycin) are briefly discussed. Highlights • Earlier perception: Complexes (I-IV) pump protons and Complex V make ATP (aided by protons) • Herein: Respiratory molecular machinery is probed for new structure-function correlations • Analyses: Quantitative arguments discount proton-centric ATP synthesis in mitochondria and bacteria • In silico data: ADP-binding sites and O2/ diffusible reactive oxygen species (DROS)-accessible channels are unveiled in respiratory proteins • In vitro data: Using luminometry, ATP synthesis is demonstrated from ADP, Pi and superoxide • Inference: Findings agree with decentralized ADP-Pi activation via oxygen-centric murburn scheme Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - Abhinav Parashar
- Department of Biotechnology, Vignan's Foundation for Science, Technology & Research , Vadlamudi , Guntur, Andhra Pradesh, India
| | | | - Surjith Ramasamy
- Department of Biotechnology, Indian Institute of Technology Guwahati , Guwahati , Assam, India
| |
Collapse
|
14
|
Manoj KM. Aerobic Respiration: Criticism of the Proton-centric Explanation Involving Rotary Adenosine Triphosphate Synthesis, Chemiosmosis Principle, Proton Pumps and Electron Transport Chain. BIOCHEMISTRY INSIGHTS 2018; 11:1178626418818442. [PMID: 30643418 PMCID: PMC6311555 DOI: 10.1177/1178626418818442] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 11/20/2018] [Indexed: 12/17/2022]
Abstract
The acclaimed explanation for mitochondrial oxidative phosphorylation (mOxPhos, or cellular respiration) is a deterministic proton-centric scheme involving four components: Rotary adenosine triphosphate (ATP)-synthesis, Chemiosmosis principle, Proton pumps, and Electron transport chain (abbreviated as RCPE hypothesis). Within this write-up, the RCPE scheme is critically analyzed with respect to mitochondrial architecture, proteins’ distribution, structure-function correlations and their interactive dynamics, overall reaction chemistry, kinetics, thermodynamics, evolutionary logic, and so on. It is found that the RCPE proposal fails to explain key physiological aspects of mOxPhos in several specific issues and also in holistic perspectives. Therefore, it is imperative to look for new explanations for mOxPhos.
Collapse
|
15
|
Parashar A, Gideon DA, Manoj KM. Murburn Concept: A Molecular Explanation for Hormetic and Idiosyncratic Dose Responses. Dose Response 2018; 16:1559325818774421. [PMID: 29770107 PMCID: PMC5946624 DOI: 10.1177/1559325818774421] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 03/21/2018] [Accepted: 03/27/2018] [Indexed: 12/28/2022] Open
Abstract
Recently, electron transfers and catalyses in a bevy of redox reactions mediated by hemeproteins were explained by murburn concept. The term “murburn” is abstracted from “muredburning” or “mildunrestrictedburning” and connotes a novel “molecule-unbound ion–radical” interaction paradigm. Quite unlike the genetic regulations and protein-level affinity-based controls that govern order and specificity/selectivity in conventional treatments, murburn concept is based on stochastic/thermodynamic regulatory principles. The novel insight necessitates a “reactivity outside the active-site” perspective, because select redox enzymatic activity is obligatorily mediated via diffusible radical/species. Herein, reactions employing key hemeproteins (as exemplified by CYP2E1) establish direct experimental connection between “additive-influenced redox catalysis” and “unusual dose responses” in reductionist and physiological milieu. Thus, direct and conclusive molecular-level experimental evidence is presented, supporting the mechanistic relevance of murburn concept in “maverick” concentration-based effects brought about by additives. Therefore, murburn concept could potentially explain several physiological hormetic and idiosyncratic dose responses.
Collapse
Affiliation(s)
- Abhinav Parashar
- Department of Biotechnology, Vignan's University, Vadlamudi, Guntur, Andhra Pradesh, India
| | | | | |
Collapse
|
16
|
Venkatachalam A, Parashar A, Manoj KM. Functioning of drug-metabolizing microsomal cytochrome P450s: In silico probing of proteins suggests that the distal heme 'active site' pocket plays a relatively 'passive role' in some enzyme-substrate interactions. In Silico Pharmacol 2016; 4:2. [PMID: 26894412 PMCID: PMC4760962 DOI: 10.1186/s40203-016-0016-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 02/05/2016] [Indexed: 01/01/2023] Open
Abstract
PURPOSE The currently held mechanistic understanding of microsomal cytochrome P450s (CYPs) seeks that diverse drug molecules bind within the deep-seated distal heme pocket and subsequently react at the heme centre. To explain a bevy of experimental observations and meta-analyses, we indulge a hypothesis that involves a "diffusible radical mediated" mechanism. This new hypothesis posits that many substrates could also bind at alternate loci on/within the enzyme and be reacted without the pertinent moiety accessing a bonding proximity to the purported catalytic Fe-O enzyme intermediate. METHODS Through blind and heme-distal pocket centered dockings of various substrates and non-substrates (drug molecules of diverse sizes, classes, topographies etc.) of microsomal CYPs, we explored the possibility of access of substrates via the distal channels, its binding energies, docking orientations, distance of reactive moieties (or molecule per se) to/from the heme centre, etc. We investigated specific cases like- (a) large drug molecules as substrates, (b) classical marker drug substrates, (c) class of drugs as substrates (Sartans, Statins etc.), (d) substrate preferences between related and unrelated CYPs, (e) man-made site-directed mutants' and naturally occurring mutants' reactivity and metabolic disposition, (f) drug-drug interactions, (g) overall affinities of drug substrate versus oxidized product, (h) meta-analysis of in silico versus experimental binding constants and reaction/residence times etc. RESULTS It was found that heme-centered dockings of the substrate/modulator drug molecules with the available CYP crystal structures gave poor docking geometries and distances from Fe-heme centre. In conjunction with several other arguments, the findings discount the relevance of erstwhile hypothesis in many CYP systems. Consequently, the newly proposed hypothesis is deemed a viable alternate, as it satisfies Occam's razor. CONCLUSIONS The new proposal affords expanded scope for explaining the mechanism, kinetics and overall phenomenology of CYP mediated drug metabolism. It is now understood that the heme-iron and the hydrophobic distal pocket of CYPs serve primarily to stabilize the reactive intermediate (diffusible radical) and the surface or crypts of the apoprotein bind to the xenobiotic substrate (and in some cases, the heme distal pocket could also serve the latter function). Thus, CYPs enhance reaction rates and selectivity/specificity via a hitherto unrecognized modality.
Collapse
Affiliation(s)
- Avanthika Venkatachalam
- Formerly at PSG Institute of Advanced Studies, Avinashi Road, Peelamedu, Coimbatore, Tamil Nadu, 641004, India.
| | - Abhinav Parashar
- Formerly at Hemoproteins Lab, School of Bio Sciences and Technology, VIT University, Vellore, Tamil Nadu, India, 632014.
| | - Kelath Murali Manoj
- Formerly at PSG Institute of Advanced Studies, Avinashi Road, Peelamedu, Coimbatore, Tamil Nadu, 641004, India.
- Formerly at Hemoproteins Lab, School of Bio Sciences and Technology, VIT University, Vellore, Tamil Nadu, India, 632014.
- Satyamjayatu: The Science & Ethics Foundation, Kulappully, Shoranur-2 (PO), Kerala, 679122, India.
| |
Collapse
|
17
|
Manoj KM, Parashar A, Gade SK, Venkatachalam A. Functioning of Microsomal Cytochrome P450s: Murburn Concept Explains the Metabolism of Xenobiotics in Hepatocytes. Front Pharmacol 2016; 7:161. [PMID: 27445805 PMCID: PMC4918403 DOI: 10.3389/fphar.2016.00161] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Accepted: 05/31/2016] [Indexed: 11/13/2022] Open
Abstract
Using oxygen and NADPH, the redox enzymes cytochrome P450 (CYP) and its reductase (CPR) work in tandem to carry out the phase I metabolism of a vast majority of drugs and xenobiotics. As per the erstwhile understanding of the catalytic cycle, binding of the substrate to CYP's heme distal pocket allows CPR to pump electrons through a CPR-CYP complex. In turn, this trigger (a thermodynamic push of electrons) leads to the activation of oxygen at CYP's heme-center, to give Compound I, a two-electron deficient enzyme reactive intermediate. The formation of diffusible radicals and reactive oxygen species (DROS, hitherto considered an undesired facet of the system) was attributed to the heme-center. Recently, we had challenged these perceptions and proposed the murburn ("mured burning" or "mild unrestricted burning") concept to explain heme enzymes' catalytic mechanism, electron-transfer phenomena and the regulation of redox equivalents' consumption. Murburn concept incorporates a one-electron paradigm, advocating obligatory roles for DROS. The new understanding does not call for high-affinity substrate-binding at the heme distal pocket of the CYP (the first and the most crucial step of the erstwhile paradigm) or CYP-CPR protein-protein complexations (the operational backbone of the erstwhile cycle). Herein, the dynamics of reduced nicotinamide nucleotides' consumption, peroxide formation and depletion, product(s) formation, etc. was investigated with various controls, by altering reaction variables, environments and through the incorporation of diverse molecular probes. In several CYP systems, control reactions lacking the specific substrate showed comparable or higher peroxide in milieu, thereby discrediting the foundations of the erstwhile hypothesis. The profiles obtained by altering CYP:CPR ratios and the profound inhibitions observed upon the incorporation of catalytic amounts of horseradish peroxidase confirm the obligatory roles of DROS in milieu, ratifying murburn as the operative concept. The mechanism of uncoupling (peroxide/water formation) was found to be dependent on multiple one and two electron equilibriums amongst the reaction components. The investigation explains the evolutionary implications of xenobiotic metabolism, confirms the obligatory role of diffusible reactive species in routine redox metabolism within liver microsomes and establishes that a redox enzyme like CYP enhances reaction rates (achieves catalysis) via a novel (hitherto unknown) modality.
Collapse
Affiliation(s)
| | - Abhinav Parashar
- Hemoproteins Lab, School of Bio Sciences and Technology, VIT University Vellore, India
| | - Sudeep K Gade
- Hemoproteins Lab, School of Bio Sciences and Technology, VIT University Vellore, India
| | | |
Collapse
|
18
|
Atypical profiles and modulations of heme-enzymes catalyzed outcomes by low amounts of diverse additives suggest diffusible radicals' obligatory involvement in such redox reactions. Biochimie 2016; 125:91-111. [DOI: 10.1016/j.biochi.2016.03.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 03/03/2016] [Indexed: 01/09/2023]
|
19
|
Manoj KM, Gade SK, Venkatachalam A, Gideon DA. Electron transfer amongst flavo- and hemo-proteins: diffusible species effect the relay processes, not protein–protein binding. RSC Adv 2016. [DOI: 10.1039/c5ra26122h] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Reductase reduces cytochrome cviarelays of highly mobile diffusible agents; not by direct binding and inter-protein long-distance electron tunnelling.
Collapse
Affiliation(s)
| | - Sudeep K. Gade
- Hemoproteins Lab
- School of Biosciences and Technology
- VIT University
- Vellore
- India-632014
| | | | | |
Collapse
|
20
|
Cyanide does more to inhibit heme enzymes, than merely serving as an active-site ligand. Biochem Biophys Res Commun 2014; 455:190-3. [DOI: 10.1016/j.bbrc.2014.10.137] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 10/28/2014] [Indexed: 11/18/2022]
|