1
|
Staff AC, Hansson S, Smárason AK. Christopher Redman. Acta Obstet Gynecol Scand 2024; 103:2112-2113. [PMID: 39325489 PMCID: PMC11426218 DOI: 10.1111/aogs.14963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 08/22/2024] [Indexed: 09/27/2024]
Affiliation(s)
- Anne Cathrine Staff
- Department of Obstetrics and MedicineUniversity of Oslo and Oslo University HospitalOsloNorway
- ISSHP and EPG (European Placenta group)
| | | | - Alexander K Smárason
- University of AkureyriAkureyriIceland
- Nordic Federation of Obstetrics and GynecologyOsloNorway
| |
Collapse
|
2
|
Nguyen CM, Sallam M, Islam MS, Clack K, Soda N, Nguyen NT, Shiddiky MJA. Placental Exosomes as Biomarkers for Maternal Diseases: Current Advances in Isolation, Characterization, and Detection. ACS Sens 2023. [PMID: 37449399 DOI: 10.1021/acssensors.3c00689] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Serving as the interface between fetal and maternal circulation, the placenta plays a critical role in fetal growth and development. Placental exosomes are small membrane-bound extracellular vesicles released by the placenta during pregnancy. They contain a variety of biomolecules, including lipids, proteins, and nucleic acids, which can potentially be biomarkers of maternal diseases. An increasing number of studies have demonstrated the utility of placental exosomes for the diagnosis and monitoring of pathological conditions such as pre-eclampsia and gestational diabetes. This suggests that placental exosomes may serve as new biomarkers in liquid biopsy analysis. This review provides an overview of the current understanding of the biological function of placental exosomes and their potential as biomarkers of maternal diseases. Additionally, this review highlights current barriers and the way forward for standardization and validation of known techniques for exosome isolation, characterization, and detection. Finally, microfluidic devices for exosome research are discussed.
Collapse
Affiliation(s)
- Cong Minh Nguyen
- Queensland Micro- and Nanotechnology Centre (QMNC), Griffith University, Nathan Campus, Nathan, QLD 4111, Australia
- School of Environment and Science (ESC), Griffith University, Nathan Campus, Nathan, QLD 4111, Australia
| | - Mohamed Sallam
- Queensland Micro- and Nanotechnology Centre (QMNC), Griffith University, Nathan Campus, Nathan, QLD 4111, Australia
- School of Environment and Science (ESC), Griffith University, Nathan Campus, Nathan, QLD 4111, Australia
| | - Md Sajedul Islam
- School of Medicine and Dentistry, Griffith University, Gold Coast Campus, Southport, QLD 4222, Australia
| | - Kimberley Clack
- Queensland Micro- and Nanotechnology Centre (QMNC), Griffith University, Nathan Campus, Nathan, QLD 4111, Australia
- School of Environment and Science (ESC), Griffith University, Nathan Campus, Nathan, QLD 4111, Australia
| | - Narshone Soda
- Queensland Micro- and Nanotechnology Centre (QMNC), Griffith University, Nathan Campus, Nathan, QLD 4111, Australia
| | - Nam-Trung Nguyen
- Queensland Micro- and Nanotechnology Centre (QMNC), Griffith University, Nathan Campus, Nathan, QLD 4111, Australia
| | - Muhammad J A Shiddiky
- Queensland Micro- and Nanotechnology Centre (QMNC), Griffith University, Nathan Campus, Nathan, QLD 4111, Australia
- School of Environment and Science (ESC), Griffith University, Nathan Campus, Nathan, QLD 4111, Australia
- Rural Health Research Institute, Charles Sturt University, Orange, NSW 2800, Australia
| |
Collapse
|
3
|
Ntsethe A, Mackraj I. An Investigation of Exosome Concentration and Exosomal microRNA (miR-155 and miR-222) Expression in Pregnant Women with Gestational Hypertension and Preeclampsia. Int J Womens Health 2022; 14:1681-1689. [PMID: 36514348 PMCID: PMC9741850 DOI: 10.2147/ijwh.s382836] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 11/04/2022] [Indexed: 12/12/2022] Open
Abstract
Introduction Hypertensive disorders of pregnancy are characterized by widespread maternal endothelial dysfunction. Elevated secretion of exosomes has been associated with endothelial dysfunction. Exosomes play a role in cell-cell communication by transferring microRNAs. These microRNAs are associated with the pathogenesis of hypertensive disorders of pregnancy through the regulation of endothelial function. This study characterizes exosomes and determines exosomal miR-155 and miR-222 expression levels in women with gestational hypertension (GH) and preeclampsia (PE). Methods Exosomes were isolated and thereafter characterised using NTA, microscopy and ELISA. Results: Exosomes were elevated in the serum of pregnant women with GH and PE (P<0.05). The circulating exosomes and placental exosomes were increased in both GH and PE (P<0.0001). The exosomal miR-155 increased in PE but not in GH (P < 0.05). MiR-222 decreased in PE (P < 0.05). Discussion Elevated exosomes in pregnant women with GH and PE may be indicative of exosomes being potential biomarkers for both GH and PE. The difference in the exosomal miR-155 and miR-222 expression in PE and GH suggested that these two disorders have different pathological pathways.
Collapse
Affiliation(s)
- Aviwe Ntsethe
- Department of Human Physiology, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Irene Mackraj
- Department of Human Physiology, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa,Correspondence: Irene Mackraj; Aviwe Ntsethe, Department of Human Physiology, University of KwaZulu-Natal, Durban, South Africa, Tel +27 31-260-7770; +27 31-260-7192, Email ;
| |
Collapse
|
4
|
Zabel RR, Favaro RR, Groten T, Brownbill P, Jones S. Ex vivo perfusion of the human placenta to investigate pregnancy pathologies. Placenta 2022; 130:1-8. [DOI: 10.1016/j.placenta.2022.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 08/26/2022] [Accepted: 10/08/2022] [Indexed: 11/07/2022]
|
5
|
Calis P, Vojtech L, Hladik F, Gravett MG. A review of ex vivo placental perfusion models: an underutilized but promising method to study maternal-fetal interactions. J Matern Fetal Neonatal Med 2022; 35:8823-8835. [PMID: 34818981 PMCID: PMC9126998 DOI: 10.1080/14767058.2021.2005565] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/10/2021] [Accepted: 11/09/2021] [Indexed: 02/08/2023]
Abstract
Studying the placenta can provide information about the mechanistic pathways of pregnancy disease. However, analyzing placental tissues and manipulating placental function in real-time during pregnancy is not feasible. The ex vivo placental perfusion model allows observing important aspects of the physiology and pathology of the placenta, while maintaining its viability and functional integrity, and without causing harm to mother or fetus. In this review, we describe and compare setups for this technically complex model and summarize outcomes from various published studies. We hope that our review will encourage wider use of ex vivo placental perfusion, which in turn would generate more knowledge to improve pregnancy outcomes.
Collapse
Affiliation(s)
- Pinar Calis
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA, USA
| | - Lucia Vojtech
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA, USA
| | - Florian Hladik
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA, USA
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Michael G. Gravett
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA, USA
| |
Collapse
|
6
|
Žarković M, Hufsky F, Markert UR, Marz M. The Role of Non-Coding RNAs in the Human Placenta. Cells 2022; 11:1588. [PMID: 35563893 PMCID: PMC9104507 DOI: 10.3390/cells11091588] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/01/2022] [Accepted: 05/03/2022] [Indexed: 12/11/2022] Open
Abstract
Non-coding RNAs (ncRNAs) play a central and regulatory role in almost all cells, organs, and species, which has been broadly recognized since the human ENCODE project and several other genome projects. Nevertheless, a small fraction of ncRNAs have been identified, and in the placenta they have been investigated very marginally. To date, most examples of ncRNAs which have been identified to be specific for fetal tissues, including placenta, are members of the group of microRNAs (miRNAs). Due to their quantity, it can be expected that the fairly larger group of other ncRNAs exerts far stronger effects than miRNAs. The syncytiotrophoblast of fetal origin forms the interface between fetus and mother, and releases permanently extracellular vesicles (EVs) into the maternal circulation which contain fetal proteins and RNA, including ncRNA, for communication with neighboring and distant maternal cells. Disorders of ncRNA in placental tissue, especially in trophoblast cells, and in EVs seem to be involved in pregnancy disorders, potentially as a cause or consequence. This review summarizes the current knowledge on placental ncRNA, their transport in EVs, and their involvement and pregnancy pathologies, as well as their potential for novel diagnostic tools.
Collapse
Affiliation(s)
- Milena Žarković
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, Leutragraben 1, 07743 Jena, Germany; (M.Ž.); (F.H.)
- European Virus Bioinformatics Center, Leutragraben 1, 07743 Jena, Germany
- Placenta Lab, Department of Obstetrics, University Hospital Jena, Am Klinikum 1, 07747 Jena, Germany;
| | - Franziska Hufsky
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, Leutragraben 1, 07743 Jena, Germany; (M.Ž.); (F.H.)
- European Virus Bioinformatics Center, Leutragraben 1, 07743 Jena, Germany
| | - Udo R. Markert
- Placenta Lab, Department of Obstetrics, University Hospital Jena, Am Klinikum 1, 07747 Jena, Germany;
| | - Manja Marz
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, Leutragraben 1, 07743 Jena, Germany; (M.Ž.); (F.H.)
- European Virus Bioinformatics Center, Leutragraben 1, 07743 Jena, Germany
- FLI Leibniz Institute for Age Research, Beutenbergstraße 11, 07745 Jena, Germany
- Aging Research Center (ARC), 07745 Jena, Germany
| |
Collapse
|
7
|
Smith MD, Pillman K, Jankovic-Karasoulos T, McAninch D, Wan Q, Bogias KJ, McCullough D, Bianco-Miotto T, Breen J, Roberts CT. Large-scale transcriptome-wide profiling of microRNAs in human placenta and maternal plasma at early to mid gestation. RNA Biol 2021; 18:507-520. [PMID: 34412547 PMCID: PMC8677031 DOI: 10.1080/15476286.2021.1963105] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs (miRNAs) are increasingly seen as important regulators of placental development and opportunistic biomarker targets. Given the difficulty in obtaining samples from early gestation and subsequent paucity of the same, investigation of the role of miRNAs in early gestation human placenta has been limited. To address this, we generated miRNA profiles using 96 placentas from presumed normal pregnancies, across early gestation, in combination with matched profiles from maternal plasma. Placenta samples range from 6 to 23 weeks' gestation, a time period that includes placenta from the early, relatively low but physiological (6-10 weeks' gestation) oxygen environment, and later, physiologically normal oxygen environment (11-23 weeks' gestation).We identified 637 miRNAs with expression in 86 samples (after removing poor quality samples), showing a clear gestational age gradient from 6 to 23 weeks' gestation. We identified 374 differentially expressed (DE) miRNAs between placentas from 6-10 weeks' versus 11-23 weeks' gestation. We see a clear gestational age group bias in miRNA clusters C19MC, C14MC, miR-17 ~ 92 and paralogs, regions that also include many DE miRNAs. Proportional change in expression of placenta-specific miRNA clusters was reflected in maternal plasma.The presumed introduction of oxygenated maternal blood into the placenta (between ~10 and 12 weeks' gestation) changes the miRNA profile of the chorionic villus, particularly in placenta-specific miRNA clusters. Data presented here comprise a clinically important reference set for studying early placenta development and may underpin the generation of minimally invasive methods for monitoring placental health.
Collapse
Affiliation(s)
- Melanie D Smith
- Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia.,Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia.,Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA, Australia
| | - Katherine Pillman
- Centre for Cancer Biology, University of South Australia/SA Pathology, Adelaide, SA, Australia
| | - Tanja Jankovic-Karasoulos
- Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia.,Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia.,Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA, Australia
| | - Dale McAninch
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Qianhui Wan
- Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA, Australia
| | - K Justinian Bogias
- Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia.,Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Dylan McCullough
- Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA, Australia
| | - Tina Bianco-Miotto
- Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia.,School of Agriculture Food and Wine, Waite Research Institute, University of Adelaide, Adelaide, SA, Australia
| | - James Breen
- Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia.,Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia.,South Australian Genomics Centre, South Australian Health & Medical Research Institute, Adelaide, SA, Australia
| | - Claire T Roberts
- Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia.,Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia.,Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA, Australia
| |
Collapse
|
8
|
Abel T, Moodley J, Naicker T. The Involvement of MicroRNAs in SARS-CoV-2 Infection Comorbid with HIV-Associated Preeclampsia. Curr Hypertens Rep 2021; 23:20. [PMID: 33847825 PMCID: PMC8042355 DOI: 10.1007/s11906-021-01138-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2021] [Indexed: 02/07/2023]
Abstract
Purpose of Review This review investigated the potential role of microRNAs (miRNAs) in the synergy of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, preeclampsia (PE), and human immunodeficiency virus (HIV) infection. Maternal health is a great concern when treating pregnant women fighting this triad of diseases, which is highly prevalent in South Africa. MicroRNAs are involved in fine-tuning of physiological processes. Disruptions to the balance of this minute protein can lead to various physiological changes that are sometimes pathological. Recent Findings MicroRNAs have recently been implicated in PE and have been linked to the anti-angiogenic imbalance evident in PE. Recent in silico studies have identified potential host miRNAs with anti-viral properties against SARS-CoV-2 infection. Studies have demonstrated dysregulated expression of several miRNAs in HIV-1 infection along with the ability of HIV-1 to downregulate anti-viral host microRNAs. Summary This review has highlighted the significant gap in literature on the potential of miRNAs in women with HIV-associated PE in synergy with the novel SARS-CoV-2 infection. In addition, this review has provided evidence of the critical role that the epigenetic regulatory mechanism of miRNA plays in viral infections and PE, thereby providing a foundation for further research investigating the potential of therapeutic miRNA development with fewer side-effects for pregnant women.
Collapse
Affiliation(s)
- Tashlen Abel
- Optics and Imaging Centre, Doris Duke Medical Research Institution, College of Health Sciences, University of KwaZulu-Natal, Durban, KwaZulu-Natal, South Africa.
| | - Jagidesa Moodley
- Women's Health and HIV Research Group, Department of Obstetrics & Gynaecology, School of Clinical Medicine, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Thajasvarie Naicker
- Optics and Imaging Centre, Doris Duke Medical Research Institution, College of Health Sciences, University of KwaZulu-Natal, Durban, KwaZulu-Natal, South Africa
| |
Collapse
|
9
|
Syncytiotrophoblast Derived Extracellular Vesicles in Relation to Preeclampsia. MATERNAL-FETAL MEDICINE 2021. [DOI: 10.1097/fm9.0000000000000093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
10
|
Esfandyari S, Elkafas H, Chugh RM, Park HS, Navarro A, Al-Hendy A. Exosomes as Biomarkers for Female Reproductive Diseases Diagnosis and Therapy. Int J Mol Sci 2021; 22:ijms22042165. [PMID: 33671587 PMCID: PMC7926632 DOI: 10.3390/ijms22042165] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/14/2021] [Accepted: 02/18/2021] [Indexed: 12/12/2022] Open
Abstract
Cell-cell communication is an essential mechanism for the maintenance and development of various organs, including the female reproductive system. Today, it is well-known that the function of the female reproductive system and successful pregnancy are related to appropriate follicular growth, oogenesis, implantation, embryo development, and proper fertilization, dependent on the main regulators of cellular crosstalk, exosomes. During exosome synthesis, selective packaging of different factors into these vesicles happens within the originating cells. Therefore, exosomes contain both genetic and proteomic data that could be applied as biomarkers or therapeutic targets in pregnancy-associated disorders or placental functions. In this context, the present review aims to compile information about the potential exosomes with key molecular cargos that are dysregulated in female reproductive diseases which lead to infertility, including polycystic ovary syndrome (PCOS), premature ovarian failure (POF), Asherman syndrome, endometriosis, endometrial cancer, cervical cancer, ovarian cancer, and preeclampsia, as well as signaling pathways related to the regulation of the reproductive system and pregnancy outcome during these pathological conditions. This review might help us realize the etiology of reproductive dysfunction and improve the early diagnosis and treatment of the related complications.
Collapse
Affiliation(s)
- Sahar Esfandyari
- Department of Surgery, University of Illinois at Chicago, Chicago, IL 60612, USA; (S.E.); (H.E.); (R.M.C.)
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Hoda Elkafas
- Department of Surgery, University of Illinois at Chicago, Chicago, IL 60612, USA; (S.E.); (H.E.); (R.M.C.)
- Department of Pharmacology and Toxicology, Egyptian Drug Authority (EDA) Formally, (NODCAR), Cairo 35521, Egypt
| | - Rishi Man Chugh
- Department of Surgery, University of Illinois at Chicago, Chicago, IL 60612, USA; (S.E.); (H.E.); (R.M.C.)
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Hang-soo Park
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL 60637, USA; (H.-s.P.); (A.N.)
| | - Antonia Navarro
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL 60637, USA; (H.-s.P.); (A.N.)
| | - Ayman Al-Hendy
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL 60637, USA; (H.-s.P.); (A.N.)
- Correspondence: ; Tel.: +1-773-832-0742
| |
Collapse
|
11
|
Zabel RR, Bär C, Ji J, Schultz R, Hammer M, Groten T, Schleussner E, Morales-Prieto DM, Markert UR, Favaro RR. Enrichment and characterization of extracellular vesicles from ex vivo one-sided human placenta perfusion. Am J Reprod Immunol 2020; 86:e13377. [PMID: 33175429 DOI: 10.1111/aji.13377] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 11/04/2020] [Indexed: 12/15/2022] Open
Abstract
PROBLEM Extracellular vesicles (EVs) released by the placenta are packed with biological information and play a major role in fetomaternal communication. Here, we describe a comprehensive set-up for the enrichment and characterization of EVs from human placenta perfusion and their application in further assays. METHOD OF STUDY Human term placentas were used for 3 h ex vivo one-sided perfusions to simulate the intervillous circulation. Thereafter, populations of small (sEVs) and large EV (lEVs) were enriched from placental perfusate via serial ultracentrifugation. Following, EV populations were characterized regarding their size, protein concentration, RNA levels, expression of surface markers as well as their uptake and miRNA transfer to recipient cells. RESULTS The sEV and lEV fractions from an entire perfusate yielded, respectively, 294 ± 32 µg and 525 ± 96 µg of protein equivalents and 2.6 ± 0.5 µg and 3.6 ± 0.9 µg of RNA. The sEV fraction had a mean diameter of 117 ± 47 nm, and the lEV fraction presented 236 ± 54 nm. CD63 was strongly detected by dot blot in sEVs, whereas only traces of this marker were found in lEVs. Both EV fractions were positive for the trophoblast marker PLAP (placental alkaline phosphatase) and annexin A1. EV internalization in immune cells was visualized by confocal microscopy, and the transfer of placental miRNAs was detected by quantitative real-time PCR (qPCR). CONCLUSIONS Enriched EV populations showed characteristic features of sEVs and lEVs. EV uptake and transfer of miRNAs to recipient cells demonstrated their functional integrity. Therefore, we advocate the ex vivo one-sided placenta perfusion as a robust approach for the collection of placental EVs.
Collapse
Affiliation(s)
- Rachel R Zabel
- Placenta-Lab, Department of Obstetrics, Jena University Hospital, Jena, Germany
| | - Christin Bär
- Placenta-Lab, Department of Obstetrics, Jena University Hospital, Jena, Germany
| | - Jinlu Ji
- Placenta-Lab, Department of Obstetrics, Jena University Hospital, Jena, Germany
| | - Rowena Schultz
- Department of Ophthalmology, Jena University Hospital, Jena, Germany
| | - Martin Hammer
- Department of Ophthalmology, Jena University Hospital, Jena, Germany
| | - Tanja Groten
- Placenta-Lab, Department of Obstetrics, Jena University Hospital, Jena, Germany
| | | | | | - Udo R Markert
- Placenta-Lab, Department of Obstetrics, Jena University Hospital, Jena, Germany
| | - Rodolfo R Favaro
- Placenta-Lab, Department of Obstetrics, Jena University Hospital, Jena, Germany
| |
Collapse
|
12
|
Qu H, Khalil RA. Vascular mechanisms and molecular targets in hypertensive pregnancy and preeclampsia. Am J Physiol Heart Circ Physiol 2020; 319:H661-H681. [PMID: 32762557 DOI: 10.1152/ajpheart.00202.2020] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Preeclampsia is a major complication of pregnancy manifested as hypertension and often intrauterine growth restriction, but the underlying pathophysiological mechanisms are unclear. Predisposing genetic and environmental factors cause placental maladaptations leading to defective placentation, apoptosis of invasive cytotrophoblasts, inadequate expansive remodeling of the spiral arteries, reduced uteroplacental perfusion pressure, and placental ischemia. Placental ischemia promotes the release of bioactive factors into the maternal circulation, causing an imbalance between antiangiogenic soluble fms-like tyrosine kinase-1 and soluble endoglin and proangiogenic vascular endothelial growth factor, placental growth factor, and transforming growth factor-β. Placental ischemia also stimulates the release of proinflammatory cytokines, hypoxia-inducible factor, reactive oxygen species, and angiotensin type 1 receptor agonistic autoantibodies. These circulating factors target the vascular endothelium, causing generalized endotheliosis in systemic, renal, cerebral, and hepatic vessels, leading to decreases in endothelium-derived vasodilators such as nitric oxide, prostacyclin, and hyperpolarization factor and increases in vasoconstrictors such as endothelin-1 and thromboxane A2. The bioactive factors also target vascular smooth muscle and enhance the mechanisms of vascular contraction, including cytosolic Ca2+, protein kinase C, and Rho-kinase. The bioactive factors could also target matrix metalloproteinases and the extracellular matrix, causing inadequate vascular remodeling, increased arterial stiffening, and further increases in vascular resistance and hypertension. As therapeutic options are limited, understanding the underlying vascular mechanisms and molecular targets should help design new tools for the detection and management of hypertension in pregnancy and preeclampsia.
Collapse
Affiliation(s)
- Hongmei Qu
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts
| | - Raouf A Khalil
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
13
|
Kalapotharakos G, Salehi D, Steding-Ehrenborg K, Andersson MEV, Arheden H, Hansson SR, Hedström E. Cardiovascular effects of severe late-onset preeclampsia are reversed within six months postpartum. Pregnancy Hypertens 2020; 19:18-24. [PMID: 31864208 DOI: 10.1016/j.preghy.2019.12.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 12/02/2019] [Accepted: 12/09/2019] [Indexed: 10/25/2022]
Abstract
OBJECTIVES Preeclampsia (PE) is a common pregnancy-related disorder associated with cardiovascular long-term disease. Eighty percent are late-onset PE, occurring after 34 gestational weeks, and can present with severe symptoms. Magnitude and reversibility rate of maternal cardiovascular changes after severe late-onset PE have not been characterized. This study therefore evaluated longitudinal dynamics of maternal cardiovascular changes after severe late-onset PE. STUDY DESIGN Six previously normotensive women with severe late-onset PE and eight pregnant controls were included. Severe PE was defined as systolic blood pressure (SBP) ≥ 160 mmHg or diastolic blood pressure (DBP) ≥ 110 mmHg and proteinuria with/without evidence of end-organ dysfunction, or SBP ≥ 140 mmHg or DBP ≥ 90 mmHg with/without proteinuria and with evidence of end-organ dysfunction. Cardiovascular function was assessed by magnetic resonance imaging at 1-3 days, one week and six months postpartum. RESULTS Left ventricular mass at 1-3 days postpartum was higher after severe late-onset PE (57 g/m2) compared to after normal pregnancy (48 g/m2; p = 0.01). Pulse wave velocity (PWV) decreased between 1 and 3 days and six months postpartum after PE (6.1 to 5.0 m/s; p = 0.028). There was no difference in PWV 1-3 days postpartum after severe PE compared after normal pregnancy (6.1 versus 5.6 m/s; p = 0.175). Blood pressure normalized within six months in all but one patient. CONCLUSIONS Cardiac effects after severe late-onset PE were small and transient. This indicates that left ventricular hypertrophy after severe late-onset PE may be a secondary physiologic response to increased peripheral resistance in PE. Vascular mechanisms rather than persistent cardiac hypertrophy postpartum may be the culprit for increased long-term cardiovascular risk after PE.
Collapse
Affiliation(s)
- Grigorios Kalapotharakos
- Lund University, Skåne University Hospital, Department of Clinical Sciences Lund, Obstetrics and Gynaecology, Lund, Sweden
| | - Daniel Salehi
- Lund University, Skåne University Hospital, Department of Clinical Sciences Lund, Clinical Physiology, Lund, Sweden
| | - Katarina Steding-Ehrenborg
- Lund University, Skåne University Hospital, Department of Clinical Sciences Lund, Clinical Physiology, Lund, Sweden; Lund University, Skåne University Hospital, Department of Health Sciences, Physiotherapy, Lund, Sweden
| | - Maria E V Andersson
- Lund University, Skåne University Hospital, Department of Clinical Sciences Lund, Obstetrics and Gynaecology, Lund, Sweden
| | - Håkan Arheden
- Lund University, Skåne University Hospital, Department of Clinical Sciences Lund, Clinical Physiology, Lund, Sweden
| | - Stefan R Hansson
- Lund University, Skåne University Hospital, Department of Clinical Sciences Lund, Obstetrics and Gynaecology, Lund, Sweden
| | - Erik Hedström
- Lund University, Skåne University Hospital, Department of Clinical Sciences Lund, Clinical Physiology, Lund, Sweden; Lund University, Skåne University Hospital, Department of Clinical Sciences Lund, Diagnostic Radiology, Lund, Sweden.
| |
Collapse
|
14
|
Ekun OA, Ogidi NO, Lawal RA, Ogunmuyiwa OA, Umewune MC, Adefolaju FO, Oshundun MF, Oremosu AI. Interrelationship Between Markers of Oxidative Stress, Inflammation and Hematological Parameters Among Preeclamptic Nigerian Women. Med Sci Monit Basic Res 2018; 24:225-231. [PMID: 30555153 PMCID: PMC6319160 DOI: 10.12659/msmbr.910660] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 08/21/2018] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Preeclampsia is a multifaceted pregnancy-related disorder affecting women and fetuses. A link between preeclampsia, oxidative stress, and inflammation has been suggested. This study evaluated the interrelationship between biomarkers of oxidative stress, inflammation, and hematological parameters among preeclamptic Nigerian women. MATERIAL AND METHODS A cross-sectional study was conducted among 49 preeclamptic and 50 normotensive healthy pregnant women. Blood samples were obtained after 20-week gestation in all participants. Levels of superoxide dismutase (SOD), catalase, glutathione (GSH), malonaldehyde (MDA), total protein, high-sensitivity C-reactive protein (hs-CRP), and cardiac-specific troponin I (cTnI) were determined by spectrophotometric and ELISA techniques. FBC, prothrombin time, and activated partial thromboplastin time were determined using an auto-analyzer, Quick's one-stage, and Proctor's and Rappaport's modification methods, respectively. RESULTS The mean SOD (0.051±0.050 vs. 0.073±0.047, p 0.029), catalase (2.62±1.93 vs. 8.48±4.40, p<0.001), GSH (49.05±17.57 vs. 187.10±56.07 p<0.001), platelet (127.63±89.75 vs. 267.16±212.82, p<0.001 were lower in preeclampsia. MDA (7.16±5.00 vs. 2.91±2.66, p<0.001), cTnI (0.46±0.31 vs. 0.13±0.14 p<0.001), PT (19.36±4.06 vs. 13.45±1.97 p<0.001), APTT (45.53±2.92 vs. 37.49±4.99; p<0.001) were higher in preeclampsia. Negative associations between SOD and MDA (r -0.527 p<0.001), CAT and MDA (r -0.469, p 0.001) and positive associations between catalase and hs-CRP (r 0.844, p 0.029), RBC and HB (r 0.442, p 0.001), platelet, and SOD (r 0.353, p 0.013) were observed among preeclamptic volunteers. CONCLUSIONS Preeclampsia is associated with oxidative stress, derangement of hematological and coagulation homeostasis, as well as deleterious effects on the cardiovascular system.
Collapse
Affiliation(s)
- Oloruntoba Ayodele Ekun
- Department of Medical Laboratory Science, College of Medicine, University of Lagos, Lagos, Nigeria
| | - Nkeiruka Ogochukwu Ogidi
- Department of Medical Laboratory Science, College of Medicine, University of Lagos, Lagos, Nigeria
| | - Rukayat Adetutu Lawal
- Department of Medical Laboratory Science, College of Medicine, University of Lagos, Lagos, Nigeria
| | | | - Mirian Chiamaka Umewune
- Department of Medical Laboratory Science, College of Medicine, University of Lagos, Lagos, Nigeria
| | - Florence Oreitan Adefolaju
- Department of Medical Laboratory Science, College of Medicine, University of Lagos, Lagos, Nigeria
- Department of Haematology and Blood Transfusion, College of Medicine, University of Lagos, Lagos, Nigeria
| | - Mary Foluke Oshundun
- Department of Medical Laboratory Science, College of Medicine, University of Lagos, Lagos, Nigeria
| | - Ayoola Islamiyat Oremosu
- Department of Medical Laboratory Science, College of Medicine, University of Lagos, Lagos, Nigeria
- Department of Hematology and Blood Transfusion, Lagos University Teaching Hospital, Lagos, Nigeria
| |
Collapse
|
15
|
Lv Y, Lu C, Ji X, Miao Z, Long W, Ding H, Lv M. Roles of microRNAs in preeclampsia. J Cell Physiol 2018; 234:1052-1061. [PMID: 30256424 DOI: 10.1002/jcp.27291] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 07/31/2018] [Indexed: 12/15/2022]
Abstract
Preeclampsia (PE) is a complex disorder that is characterized by hypertension and proteinuria after the 20th week of pregnancy, and it causes most neonatal morbidity and perinatal mortality. Most studies suggest that placental dysfunction is the main cause of PE. However, genetic factors, immune factors, and systemic inflammation are also related to the pathophysiology of this syndrome. Thus far, the exact pathogenesis of PE is not yet fully understood, and intense research efforts are focused on PE to elucidate the pathophysiological mechanisms. MicroRNAs (miRNAs) refer to small single-stranded and noncoding molecules that can negatively regulate gene expression, and miRNA regulatory networks play an important role in diverse pathological processes. Many studies have confirmed deregulated miRNA in pregnant patients with PE, and the function and mechanism of these differentially expressed miRNA are gradually being revealed. In this review, we summarize the current research about miRNA involved in PE, including placenta-specific miRNA, their predictive value, and their function in the development of PE. This review will provide fundamental evidence of miRNA in PE, and further studies are necessary to explore the roles of miRNA in the early diagnosis and treatment of PE.
Collapse
Affiliation(s)
- Yan Lv
- Department of Obstetrics, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| | - Cheng Lu
- Department of Breast, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| | - Xiaohong Ji
- Department of Obstetrics, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| | - Zhijing Miao
- Department of Obstetrics, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| | - Wei Long
- Department of Obstetrics, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| | - Hongjuan Ding
- Department of Obstetrics, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| | - Mingming Lv
- Department of Breast, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China.,Nanjing Maternal and Child Health Institute, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| |
Collapse
|
16
|
Xu Y, Wu D, Jiang Z, Zhang Y, Wang S, Ma Z, Hui B, Wang J, Qian W, Ge Z, Sun L. MiR-616-3p modulates cell proliferation and migration through targeting tissue factor pathway inhibitor 2 in preeclampsia. Cell Prolif 2018; 51:e12490. [PMID: 30028057 DOI: 10.1111/cpr.12490] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 06/03/2018] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVES Despite improvements in diagnosis and treatment, preeclampsia (PE) continues to pose a significant risk of maternal and foetal morbidity and mortality if not addressed promptly. An increasing number of studies have suggested that tissue factor pathway inhibitor 2 (TFPI2) acts as a suppressor gene, possibly inhibiting multiple serine proteases affecting cell proliferation and migration. It plays an essential role in the occurrence and development of PE, but the pathogenesis remains unclear. MATERIALS AND METHODS In our research, we performed western blotting, immunohistochemistry and qPCR assays to investigate TFPI2 and miR-616-3p expression in preeclamptic placental tissues. Cell assays were performed in HTR-8/SVneo and JEG3 cell lines. Cell proliferation and migration events were investigated by MTT, EdU and transwell assays. In conjunction with bioinformatics analysis, luciferase reporter assays were performed to elucidate the mechanism by which miR-616-3p binds to TFPI2 mRNA. RESULTS We established that TFPI2 protein levels were significantly upregulated in PE placental tissues. In addition, we found that miR-616-3p binds specifically to the 3'-UTR region of TFPI2 mRNA. Furthermore, miR-616-3p knockdown or TFPI2 overexpression substantially impaired cell growth and migration, whereas miR-616-3p upregulation or TFPI2 knockdown stimulated cell proliferation and migration. This miR-616-3p/TFPI2 axis was also found to affect the epithelial-mesenchymal transition process in PE. CONCLUSIONS Our results demonstrated that TFPI2 plays a vital role in the progression of PE and might provide a prospective therapeutic strategy to mitigate the severity of the disorder.
Collapse
Affiliation(s)
- Yetao Xu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China.,Department of Obstetrics, Gynecology & Reproductive Sciences, Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, USA
| | - Dan Wu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Ziyan Jiang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yuanyuan Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Sailan Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Zhonghua Ma
- Department of Oncology, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Bingqing Hui
- Department of Oncology, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Jing Wang
- Department of Anatomy, Histology and Embryology, The Research Center for Bone and Stem Cells, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Weiping Qian
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Peking University Shenzhen Hospital, FuTian District, Shenzhen, Guangdong, China
| | - Zhiping Ge
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Lizhou Sun
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| |
Collapse
|
17
|
Familari M, Cronqvist T, Masoumi Z, Hansson SR. Placenta-derived extracellular vesicles: their cargo and possible functions. Reprod Fertil Dev 2018; 29:433-447. [PMID: 26411402 DOI: 10.1071/rd15143] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Accepted: 08/29/2015] [Indexed: 12/15/2022] Open
Abstract
The literature on extracellular vesicles consists of rapidly expanding and often contradictory information. In this paper we attempt to review what is currently known regarding extracellular vesicles released specifically from human placental syncytiotrophoblast cells with a focus on the common but complex pregnancy-associated syndrome pre-eclampsia, where the level of syncytiotrophoblast extracellular vesicle release is significantly increased. We review common methods for syncytiotrophoblast extracellular vesicle derivation and isolation and we discuss the cargo of syncytiotrophoblast extracellular vesicles including proteins, RNA and lipids and their possible functions. A meta-analysis of available trophoblast-derived extracellular vesicle proteomic datasets revealed only three proteins in common: albumin, fibronectin-1 and plasminogen activator inhibitor-1, suggesting some variability in vesicle cargo, most likely reflecting stage and cell type of origin. We discuss the possible sources of variability that may have led to the low number of common markers, which has led us to speculate that markers and density in common use may not be strict criteria for identifying and isolating placenta-derived exosomes.
Collapse
Affiliation(s)
- Mary Familari
- School of Biosciences, University of Melbourne, Parkville, Vic. 3010, Australia
| | - Tina Cronqvist
- Lund University, Department of Clinical Sciences, Lund, Obstetrics and Gynecology, Klinikgatan 28, 221 85 Lund, Sweden
| | - Zahra Masoumi
- Lund University, Department of Clinical Sciences, Lund, Obstetrics and Gynecology, Klinikgatan 28, 221 85 Lund, Sweden
| | - Stefan R Hansson
- Lund University, Department of Clinical Sciences, Lund, Obstetrics and Gynecology, Klinikgatan 28, 221 85 Lund, Sweden
| |
Collapse
|
18
|
Fitzgerald W, Gomez-Lopez N, Erez O, Romero R, Margolis L. Extracellular vesicles generated by placental tissues ex vivo: A transport system for immune mediators and growth factors. Am J Reprod Immunol 2018; 80:e12860. [PMID: 29726582 PMCID: PMC6021205 DOI: 10.1111/aji.12860] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 03/27/2018] [Indexed: 12/12/2022] Open
Abstract
PROBLEM To study the mechanisms of placenta function and the role of extracellular vesicles (EVs) in pregnancy, it is necessary to develop an ex vivo system that retains placental cytoarchitecture and the primary metabolic aspects, in particular the release of EVs and soluble factors. Here, we developed such a system and investigated the pattern of secretion of cytokines, growth factors, and extracellular vesicles by placental villous and amnion tissues ex vivo. METHODS OF STUDY Placental villous and amnion explants were cultured for 2 weeks at the air/liquid interface and their morphology and the released cytokines and EVs were analyzed. Cytokines were analyzed with multiplexed bead assays, and individual EVs were analyzed with recently developed techniques that involved EV capture with magnetic nanoparticles coupled to anti-EV antibodies and flow cytometry. RESULTS Ex vivo tissues (i) remained viable and preserved their cytoarchitecture; (ii) maintained secretion of cytokines and growth factors; (iii) released EVs of syncytiotrophoblast and amnion epithelial cell origins that contain cytokines and growth factors. CONCLUSION A system of ex vivo placental villous and amnion tissues can be used as an adequate model to study placenta metabolic activity in normal and complicated pregnancies, in particular to characterize EVs by their surface markers and by encapsulated proteins. Establishment and benchmarking the placenta ex vivo system may provide new insight in the functional status of this organ in various placental disorders, particularly regarding the release of EVs and cytokines. Such EVs may have a prognostic value for pregnancy complications.
Collapse
Affiliation(s)
- Wendy Fitzgerald
- Section of Intercellular Interactions, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD, and Detroit, MI
| | - Nardhy Gomez-Lopez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD, and Detroit, MI
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Department of Immunology, Microbiology and Biochemistry, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Offer Erez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD, and Detroit, MI
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Roberto Romero
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD, and Detroit, MI
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, Michigan, USA
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, USA
| | - Leonid Margolis
- Section of Intercellular Interactions, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD, and Detroit, MI
| |
Collapse
|
19
|
Simon C, Greening DW, Bolumar D, Balaguer N, Salamonsen LA, Vilella F. Extracellular Vesicles in Human Reproduction in Health and Disease. Endocr Rev 2018; 39:292-332. [PMID: 29390102 DOI: 10.1210/er.2017-00229] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 01/25/2018] [Indexed: 02/07/2023]
Abstract
Extensive evidence suggests that the release of membrane-enclosed compartments, more commonly known as extracellular vesicles (EVs), is a potent newly identified mechanism of cell-to-cell communication both in normal physiology and in pathological conditions. This review presents evidence about the formation and release of different EVs, their definitive markers and cargo content in reproductive physiological processes, and their capacity to convey information between cells through the transfer of functional protein and genetic information to alter phenotype and function of recipient cells associated with reproductive biology. In the male reproductive tract, epididymosomes and prostasomes participate in regulating sperm motility activation, capacitation, and acrosome reaction. In the female reproductive tract, follicular fluid, oviduct/tube, and uterine cavity EVs are considered as vehicles to carry information during oocyte maturation, fertilization, and embryo-maternal crosstalk. EVs via their cargo might be also involved in the triggering, maintenance, and progression of reproductive- and obstetric-related pathologies such as endometriosis, polycystic ovarian syndrome, preeclampsia, gestational diabetes, and erectile dysfunction. In this review, we provide current knowledge on the present and future use of EVs not only as biomarkers, but also as therapeutic targeting agents, mainly as vectors for drug or compound delivery into target cells and tissues.
Collapse
Affiliation(s)
- Carlos Simon
- Igenomix Foundation, Valencia, Spain.,Instituto de Investigación Sanitaria Hospital Clínico (INCLIVA), Valencia, Spain.,Department of Pediatrics, Obstetrics and Gynecology, School of Medicine, Valencia University, Valencia, Spain.,Department of Obstetrics and Gynecology, Stanford University, Palo Alto, California
| | - David W Greening
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - David Bolumar
- Igenomix Foundation, Valencia, Spain.,Instituto de Investigación Sanitaria Hospital Clínico (INCLIVA), Valencia, Spain
| | - Nuria Balaguer
- Igenomix Foundation, Valencia, Spain.,Instituto de Investigación Sanitaria Hospital Clínico (INCLIVA), Valencia, Spain
| | - Lois A Salamonsen
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia.,Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia
| | - Felipe Vilella
- Igenomix Foundation, Valencia, Spain.,Instituto de Investigación Sanitaria Hospital Clínico (INCLIVA), Valencia, Spain.,Department of Obstetrics and Gynecology, Stanford University, Palo Alto, California
| |
Collapse
|
20
|
Tong M, Abrahams VM, Chamley LW. Immunological effects of placental extracellular vesicles. Immunol Cell Biol 2018; 96:714-722. [PMID: 29604098 DOI: 10.1111/imcb.12049] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 03/23/2018] [Accepted: 03/25/2018] [Indexed: 12/13/2022]
Abstract
Extracellular vesicles (EVs) extruded by the human placenta are increasingly being recognized as an essential mode of feto-maternal communication. In the past two decades, there has been an explosion of research into the roles that placental EVs play in modulating the maternal immune and cardiovascular systems during healthy pregnancies, as well as how this communication is altered in obstetric diseases. This review aims to introduce readers to the processes of placental EV formation and the cargos they carry, and also to collate and summarize the published literature that investigates the immunological effects of placental EVs throughout human pregnancy.
Collapse
Affiliation(s)
- Mancy Tong
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Vikki M Abrahams
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Lawrence W Chamley
- Department of Obstetrics and Gynaecology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
21
|
Lässer C, Jang SC, Lötvall J. Subpopulations of extracellular vesicles and their therapeutic potential. Mol Aspects Med 2018; 60:1-14. [PMID: 29432782 DOI: 10.1016/j.mam.2018.02.002] [Citation(s) in RCA: 132] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 01/17/2018] [Accepted: 02/06/2018] [Indexed: 12/20/2022]
Abstract
Extracellular vesicles (EVs), such as exosomes and microvesicles, have over the last 10-15 years been recognized to convey key messages in the molecular communication between cells. Indeed, EVs have the capacity to shuttle proteins, lipids, and nucleotides such as RNA between cells, leading to an array of functional changes in the recipient cells. Importantly, the EV secretome changes significantly in diseased cells and under conditions of cellular stress. More recently, it has become evident that the EV secretome is exceptionally diverse, with many different types of EVs being released by a single cell type, and these EVs can be described in terms of differences in density, molecular cargos, and morphology. This review will discuss the diversity of EVs, will introduce some suggestions for how to categorize them, and will propose how EVs and their subpopulations might be used for very different therapeutic purposes.
Collapse
Affiliation(s)
- Cecilia Lässer
- Krefting Research Centre, Institute of Medicine at Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Su Chul Jang
- Krefting Research Centre, Institute of Medicine at Sahlgrenska Academy, University of Gothenburg, Sweden; Codiak BioSciences, Cambridge, MA 02139, USA
| | - Jan Lötvall
- Krefting Research Centre, Institute of Medicine at Sahlgrenska Academy, University of Gothenburg, Sweden.
| |
Collapse
|
22
|
Chiarello DI, Salsoso R, Toledo F, Mate A, Vázquez CM, Sobrevia L. Foetoplacental communication via extracellular vesicles in normal pregnancy and preeclampsia. Mol Aspects Med 2017; 60:69-80. [PMID: 29222068 DOI: 10.1016/j.mam.2017.12.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 11/28/2017] [Accepted: 12/04/2017] [Indexed: 02/06/2023]
Abstract
Intercellular communication is a critical process in biological mechanisms. During pregnancy foetoplacental tissues release a heterogeneous group of extracellular vesicles (EVs) that include exosomes, microvesicles, apoptotic bodies, and syncytial nuclear aggregates. These vesicles contain a complex cargo (proteins, DNA, mRNA transcripts, microRNAs, noncoding RNA, lipids, and other molecules) that actively participate in the maternal-foetal communication by modulating different processes during gestation for a successful foetal development. Each stage of human gestation is marked by events such as immunomodulation, proliferation, invasion, migration, and differentiation, among others, requiring EVs-mediated signalling to be nearby or distant target cells. Furthermore, EVs also associate with pregnancy pathologies such as preeclampsia and intrauterine growth restriction. This review addresses the role of EVs in human foetomaternal communication in normal pregnancy and preeclampsia.
Collapse
Affiliation(s)
- Delia I Chiarello
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile.
| | - Rocío Salsoso
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile; Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla, Seville E-41012, Spain
| | - Fernando Toledo
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile; Department of Basic Sciences, Faculty of Sciences, Universidad Del Bío-Bío, Chillán 3780000, Chile
| | - Alfonso Mate
- Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla, Seville E-41012, Spain
| | - Carmen M Vázquez
- Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla, Seville E-41012, Spain
| | - Luis Sobrevia
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile; Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla, Seville E-41012, Spain; University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine and Biomedical Sciences, University of Queensland, Herston, QLD 4029 Queensland, Australia.
| |
Collapse
|
23
|
Jayachandran M, Garovic VD, Mielke MM, Bailey KR, Lahr BD, Miller VM. Characterization of intravascular cellular activation in relationship to subclinical atherosclerosis in postmenopausal women. PLoS One 2017; 12:e0183159. [PMID: 28910282 PMCID: PMC5598935 DOI: 10.1371/journal.pone.0183159] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 07/31/2017] [Indexed: 02/02/2023] Open
Abstract
Objective Mechanisms and interactions among intravascular cells contributing to development of subclinical atherosclerosis are poorly understood. In women, both menopausal status and pregnancy history influence progression of atherosclerosis. This study examined activation and interactions among blood elements with subclinical atherosclerosis in menopausal women with known pregnancy histories. Methods Carotid intima-media thickness (CIMT), as a marker of subclinical atherosclerosis, was measured using B-mode ultrasound in age- and parity-matched women [40 with and 40 without a history of preeclampsia] 35 years after the index pregnancy. Interactions among intravascular cells (38 parameters) were measured by flow cytometry in venous blood. Data analysis was by principal component which retained 7 independent dimensions accounting for 63% of the variability among 38 parameters. Results CIMT was significantly greater in women with a history of preeclampsia (P = 0.004). Platelet aggregation and platelet interactions with granulocytes and monocytes positively associated with CIMT in postmenopausal women independent of their pregnancy history (ρ = 0.258, P< 0.05). However, the association of the number of platelets, platelet activation and monocyte-platelet interactions with CIMT differed significantly depending upon pregnancy history (test for interaction, P<0.001). Conclusion Interactions among actived intravascular cells and their association with subclinical atherosclerosis differ in women depending upon their pregnancy histories.
Collapse
Affiliation(s)
- Muthuvel Jayachandran
- Departments of Surgery, Mayo Clinic, Rochester, Minnesota, United States of America
- Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Vesna D. Garovic
- General Internal Medicine, Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Michelle M. Mielke
- Health Science Research, Division of Epidemiology, Mayo Clinic, Rochester, Minnesota, United States of America
- Neurology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Kent R. Bailey
- Health Science Research, Division of Epidemiology, Mayo Clinic, Rochester, Minnesota, United States of America
- Health Science Research, Division of Biostatistics, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Brian D. Lahr
- Health Science Research, Division of Epidemiology, Mayo Clinic, Rochester, Minnesota, United States of America
- Health Science Research, Division of Biostatistics, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Virginia M. Miller
- Departments of Surgery, Mayo Clinic, Rochester, Minnesota, United States of America
- Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
24
|
Cronqvist T, Tannetta D, Mörgelin M, Belting M, Sargent I, Familari M, Hansson SR. Syncytiotrophoblast derived extracellular vesicles transfer functional placental miRNAs to primary human endothelial cells. Sci Rep 2017; 7:4558. [PMID: 28676635 PMCID: PMC5496854 DOI: 10.1038/s41598-017-04468-0] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 05/02/2017] [Indexed: 01/19/2023] Open
Abstract
During the pregnancy associated syndrome preeclampsia (PE), there is increased release of placental syncytiotrophoblast extracellular vesicles (STBEVs) and free foetal haemoglobin (HbF) into the maternal circulation. In the present study we investigated the uptake of normal and PE STBEVs by primary human coronary artery endothelial cells (HCAEC) and the effects of free HbF on this uptake. Our results show internalization of STBEVs into primary HCAEC, and transfer of placenta specific miRNAs from STBEVs into the endoplasmic reticulum and mitochondria of these recipient cells. Further, the transferred miRNAs were functional, causing a down regulation of specific target genes, including the PE associated gene fms related tyrosine kinase 1 (FLT1). When co-treating normal STBEVs with HbF, the miRNA deposition is altered from the mitochondria to the ER and the cell membrane becomes ruffled, as was also seen with PE STBEVs. These findings suggest that STBEVs may cause endothelial damage and contribute to the endothelial dysfunction typical for PE. The miRNA mediated effects on gene expression may contribute to the oxidative and endoplasmic reticulum stress described in PE, as well as endothelial reprogramming that may underlay the increased risk of cardiovascular disease reported for women with PE later in life.
Collapse
Affiliation(s)
- Tina Cronqvist
- Lund University, Department of Clinical Sciences in Lund, Obstetrics and Gynecology, 22185, Lund, Sweden.
| | - Dionne Tannetta
- University of Reading, Department of Food and Nutritional Sciences, Whiteknights, Reading, UK
| | - Matthias Mörgelin
- Lund University, Department of Clinical Sciences in Lund, Division of Infection Medicine, 22185, Lund, Sweden
| | - Mattias Belting
- Lund University, Department of Clinical Sciences, Lund, Oncology and Pathology, 22185, Lund, Sweden
| | - Ian Sargent
- Nuffield Department of Obstetrics and Gynaecology, John Radcliffe Hospital University of Oxford, OX3 9DU, Oxford, UK
| | - Mary Familari
- School of Biosciences, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Stefan R Hansson
- Lund University, Department of Clinical Sciences in Lund, Obstetrics and Gynecology, 22185, Lund, Sweden
| |
Collapse
|
25
|
Gunnarsson R, Åkerström B, Hansson SR, Gram M. Recombinant alpha-1-microglobulin: a potential treatment for preeclampsia. Drug Discov Today 2017; 22:736-743. [DOI: 10.1016/j.drudis.2016.12.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 11/21/2016] [Accepted: 12/08/2016] [Indexed: 01/31/2023]
|
26
|
Jayabalan N, Nair S, Nuzhat Z, Rice GE, Zuñiga FA, Sobrevia L, Leiva A, Sanhueza C, Gutiérrez JA, Lappas M, Freeman DJ, Salomon C. Cross Talk between Adipose Tissue and Placenta in Obese and Gestational Diabetes Mellitus Pregnancies via Exosomes. Front Endocrinol (Lausanne) 2017; 8:239. [PMID: 29021781 PMCID: PMC5623931 DOI: 10.3389/fendo.2017.00239] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 08/30/2017] [Indexed: 12/16/2022] Open
Abstract
Obesity is an important public health issue worldwide, where it is commonly associated with the development of metabolic disorders, especially insulin resistance (IR). Maternal obesity is associated with an increased risk of pregnancy complications, especially gestational diabetes mellitus (GDM). Metabolism is a vital process for energy production and the maintenance of essential cellular functions. Excess energy storage is predominantly regulated by the adipose tissue. Primarily made up of adipocytes, adipose tissue acts as the body's major energy reservoir. The role of adipose tissue, however, is not restricted to a "bag of fat." The adipose tissue is an endocrine organ, secreting various adipokines, enzymes, growth factors, and hormones that take part in glucose and lipid metabolism. In obesity, the greater portion of the adipose tissue comprises fat, and there is increased pro-inflammatory cytokine secretion, macrophage infiltration, and reduced insulin sensitivity. Obesity contributes to systemic IR and its associated metabolic complications. Similar to adipose tissue, the placenta is also an endocrine organ. During pregnancy, the placenta secretes various molecules to maintain pregnancy physiology. In addition, the placenta plays an important role in metabolism and exchange of nutrients between mother and fetus. Inflammation at the placenta may contribute to the severity of maternal IR and her likelihood of developing GDM and may also mediate the adverse consequences of obesity and GDM on the fetus. Interestingly, studies on maternal insulin sensitivity and secretion of placental hormones have not shown a positive correlation between these phenomena. Recently, a great interest in the field of extracellular vesicles (EVs) has been observed in the literature. EVs are produced by a wide range of cells and are present in all biological fluids. EVs are involved in cell-to-cell communication. Recent evidence points to an association between adipose tissue-derived EVs and metabolic syndrome in obesity. In this review, we will discuss the changes in human placenta and adipose tissue in GDM and obesity and summarize the findings regarding the role of adipose tissue and placenta-derived EVs, with an emphasis on exosomes in obesity, and the contribution of obesity to the development of GDM.
Collapse
Affiliation(s)
- Nanthini Jayabalan
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, University of Queensland Centre for Clinical Research, Royal Brisbane and Women’s Hospital, The University of Queensland, Brisbane, QLD, Australia
| | - Soumyalekshmi Nair
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, University of Queensland Centre for Clinical Research, Royal Brisbane and Women’s Hospital, The University of Queensland, Brisbane, QLD, Australia
| | - Zarin Nuzhat
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, University of Queensland Centre for Clinical Research, Royal Brisbane and Women’s Hospital, The University of Queensland, Brisbane, QLD, Australia
| | - Gregory E. Rice
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, University of Queensland Centre for Clinical Research, Royal Brisbane and Women’s Hospital, The University of Queensland, Brisbane, QLD, Australia
- Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Ochsner Clinic Foundation, New Orleans, LA, United States
| | - Felipe A. Zuñiga
- Faculty of Pharmacy, Department of Clinical Biochemistry and Immunology, University of Concepción, Concepción, Chile
| | - Luis Sobrevia
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, Faculty of Medicine, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- University of Queensland Centre for Clinical Research, Royal Brisbane and Women’s Hospital, The University of Queensland, Brisbane, QLD, Australia
- Faculty of Pharmacy, Department of Physiology, Universidad de Sevilla, Seville, Spain
| | - Andrea Leiva
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, Faculty of Medicine, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Carlos Sanhueza
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, Faculty of Medicine, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Jaime Agustín Gutiérrez
- Cellular Signaling and Differentiation Laboratory (CSDL), Medical Technology School, Health Sciences Faculty, Universidad San Sebastian, Santiago, Chile
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, Faculty of Medicine, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Martha Lappas
- Obstetrics, Nutrition and Endocrinology Group, Department of Obstetrics and Gynaecology, University of Melbourne, Melbourne, VIC, Australia
- Mercy Perinatal Research Centre, Mercy Hospital for Women, Heidelberg, VIC, Australia
| | - Dilys Jane Freeman
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Carlos Salomon
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, University of Queensland Centre for Clinical Research, Royal Brisbane and Women’s Hospital, The University of Queensland, Brisbane, QLD, Australia
- Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Ochsner Clinic Foundation, New Orleans, LA, United States
- Faculty of Pharmacy, Department of Clinical Biochemistry and Immunology, University of Concepción, Concepción, Chile
- Mater Research Institute-University of Queensland, Translational Research Institute, Woolloongabba, QLD, Australia
- *Correspondence: Carlos Salomon,
| |
Collapse
|
27
|
Tong M, Chen Q, James JL, Stone PR, Chamley LW. Micro- and Nano-vesicles from First Trimester Human Placentae Carry Flt-1 and Levels Are Increased in Severe Preeclampsia. Front Endocrinol (Lausanne) 2017; 8:174. [PMID: 28790977 PMCID: PMC5522845 DOI: 10.3389/fendo.2017.00174] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Accepted: 07/05/2017] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND/OBJECTIVES Preeclampsia is a life-threatening hypertensive disease affecting 3-5% of pregnancies. While the pathogenesis of preeclampsia remains unclear, it is known that placenta-derived factors trigger the disease by activating maternal endothelial cells prior to the onset of clinical symptoms. Extracellular vesicles (EVs) of different sizes extruded by the placenta may be one factor. The truncated/secreted form of Flt-1 (sFlt-1) has also been implicated in the pathogenesis of preeclampsia. We investigated whether placental EV production is altered in preeclampsia such that they induce endothelial cell activation, and whether (s)Flt-1 is involved. METHODS Macro-, micro-, and nano-vesicles were collected from normal and preeclamptic (PE) placental explants, and separated by differential centrifugation. The number and size of micro- and nano-vesicles was measured by nanoparticle tracking analysis and their ability to activate endothelial cells was quantified by endothelial cell intercellular adhesion molecule 1 expression and monocyte adhesion. The levels of Flt-1 were measured by western blots and ELISA. RESULTS PE placentae extruded significantly more micro- and nano-vesicles than control placentae and the extruded micro-vesicles were larger than those from control placentae. Micro- and nano-vesicles from both first trimester and term human placentae carried Flt-1 and levels were significantly increased in EVs from severe, but not mild, PE compared to normotensive placentae. All fractions of EVs from PE placentae activated endothelial cells, and for micro- and nano-vesicles, activation was reduced in the presence of exogenous vascular endothelial growth factor (VEGF), a Flt-1 neutralizing antibody, or by pre-treatment with VEGF. While EV-bound VEGF constituted over 20% of the total detected VEGF secreted by PE and normotensive placentae, EV-bound Flt-1 did not significantly contribute to the total level of sFlt-1/Flt-1 released by human third trimester placentae. DISCUSSION Micro- and nano-vesicles extruded by human placentae carry Flt-1 across gestation and in severe preeclampsia, the levels of vesicle-bound Flt-1 are upregulated. All fractions of PE placental EVs activated endothelial cells and for micro- and nano-vesicles, this was in part due to the ability of EV-bound Flt-1 to sequester VEGF. That placental EVs can activate endothelial cells supports the contention that EVs are one placental toxin contributing to the pathogenesis of preeclampsia.
Collapse
Affiliation(s)
- Mancy Tong
- Department of Obstetrics and Gynaecology, School of Medicine, The University of Auckland, Auckland, New Zealand
- *Correspondence: Mancy Tong,
| | - Qi Chen
- Department of Obstetrics and Gynaecology, School of Medicine, The University of Auckland, Auckland, New Zealand
| | - Joanna L. James
- Department of Obstetrics and Gynaecology, School of Medicine, The University of Auckland, Auckland, New Zealand
| | - Peter R. Stone
- Department of Obstetrics and Gynaecology, School of Medicine, The University of Auckland, Auckland, New Zealand
| | - Lawrence W. Chamley
- Department of Obstetrics and Gynaecology, School of Medicine, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
28
|
Soobryan N, Murugesan S, Phoswa W, Gathiram P, Moodley J, Mackraj I. The effects of sildenafil citrate on uterine angiogenic status and serum inflammatory markers in an L-NAME rat model of pre-eclampsia. Eur J Pharmacol 2016; 795:101-107. [PMID: 27940055 DOI: 10.1016/j.ejphar.2016.12.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 12/01/2016] [Accepted: 12/06/2016] [Indexed: 11/29/2022]
Abstract
Pre-eclampsia (PE), a hypertensive disorder of pregnancy, is detrimental to both mother and foetus. There is currently no effective treatment, but we have shown that Sildenafil Citrate (SC) improve various foetal outcomes in Nω-nitro-L arginine methyl ester (L-NAME) rat model of PE. Therefore, we aimed to investigate the effects of SC on a uterine angiogenic status and serum inflammatory markers in an L-NAME rat model of PE. One hundred and twenty adult nulliparous pregnant female Sprague-Dawley rats were used for the study. These were divided into five equal groups; the pregnant control, early and late onset PE and respective SC treated animals. Hypertension was manifested by considerably increased systolic blood pressure and placental lipid peroxidative marker (thiobarbituric acid reactive substances) and also we assessed the activities of plasma nitric oxide level, serum inflammatory marker (TGF-β and IFN-γ) and uterine angiogenic status (VEGF and sFlt-1) at two stages of PE. The administration of SC decreased systolic blood pressure, placental lipid peroxidation product and altered uterine angiogenic status; increased plasma nitric oxide levels in an early and late onset L-NAME model of PE. In addition, histological findings of SC treated preeclamptic rat placenta support the biochemical findings of this study. Our findings revealed that SC enhanced plasma NO levels and uterine angiogenic status in an L-NAME model of PE at two gestational stages.
Collapse
Affiliation(s)
- Nerolen Soobryan
- Department of Human Physiology, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Saravanakumar Murugesan
- Department of Human Physiology, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa.
| | - Wendy Phoswa
- Department of Human Physiology, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Prem Gathiram
- Department of Family Medicine, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Jagidesa Moodley
- Department of Obstetrics and Gynaecology and Women's Health and HIV Research Unit, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Irene Mackraj
- Department of Human Physiology, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa.
| |
Collapse
|
29
|
Tannetta D, Collett G, Vatish M, Redman C, Sargent I. Syncytiotrophoblast extracellular vesicles - Circulating biopsies reflecting placental health. Placenta 2016; 52:134-138. [PMID: 27899180 PMCID: PMC5423500 DOI: 10.1016/j.placenta.2016.11.008] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 11/11/2016] [Accepted: 11/15/2016] [Indexed: 01/15/2023]
Abstract
The ability to directly monitor the status of the placenta throughout pregnancy would be a major advance in both general and personalized obstetric care, allowing treatments to be tailored to the dynamic changes that can occur in gestation. Syncytiotrophoblast extracellular vesicles (STBEV) are membrane bound vesicles, released from the surface of the placenta directly into the maternal circulation, in the form of exosomes, microvesicles and apoptotic bodies. They carry many syncytiotrophoblast derived factors such as proteins, lipids, glycans and nucleic acids, which together could dynamically signal to the mother the status of the placenta. We review STBEV research and discuss the potential for STBEV to be used as circulating syncytiotrophoblast biopsies, accessible via a simple blood sample throughout pregnancy, giving a real-time readout of syncytiotrophoblast health. We also highlight advances in the use of extracellular vesicles as circulating tumour derived biopsies in the field of cancer research, which could prove beneficial to obstetric care. Syncytiotrophoblast release extracellular vesicles (STBEV) directly into the maternal circulation, during normal pregnancy and in increased amounts in preeclampsia, in the form of exosomes, microvesicles and apoptotic bodies. STBEV carry many syncytiotrophoblast derived factors such as proteins, lipids, glycans and nucleic acids, the composition of which can change with syncytiotrophoblast stress. Circulating STBEV are therefore placental “biopsies” accessible throughout gestation, giving a real-time readout of syncytiotrophoblast health. STBEV have great potential as biomarkers for monitoring heterogeneous syndromes such as PE and other forms of placental compromise/stress.
Collapse
Affiliation(s)
- Dionne Tannetta
- Department of Food and Nutritional Sciences, University of Reading, PO Box 226, Whiteknights, Reading RG6 6AP, UK.
| | - Gavin Collett
- Nuffield Department of Obstetrics and Gynaecology, University of Oxford, Level 3, Women's Centre, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Manu Vatish
- Nuffield Department of Obstetrics and Gynaecology, University of Oxford, Level 3, Women's Centre, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Chris Redman
- Nuffield Department of Obstetrics and Gynaecology, University of Oxford, Level 3, Women's Centre, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Ian Sargent
- Nuffield Department of Obstetrics and Gynaecology, University of Oxford, Level 3, Women's Centre, John Radcliffe Hospital, Oxford OX3 9DU, UK
| |
Collapse
|
30
|
Zager RA, Johnson ACM, Frostad K. An evaluation of the antioxidant protein α1-microglobulin as a renal tubular cytoprotectant. Am J Physiol Renal Physiol 2016; 311:F640-51. [DOI: 10.1152/ajprenal.00264.2016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 05/04/2016] [Indexed: 11/22/2022] Open
Abstract
α1-Microglobulin (A1M) is a low-molecular-weight heme-binding antioxidant protein that is readily filtered by the glomerulus and reabsorbed by proximal tubules. Given these properties, recombinant A1M (rA1M) has been proposed as a renal antioxidant and therapeutic agent. However, little direct evidence to support this hypothesis exists. Hence, we have sought “proof of concept” in this regard. Cultured proximal tubule (HK-2) cells or isolated mouse proximal tubule segments were challenged with a variety of prooxidant insults: 1) hemin, 2) myoglobin; 3) “catalytic” iron, 4) H2O2/Fenton reagents, 5) a Ca2+ ionophore, 6) antimycin A, or 7) hypoxia (with or without rA1M treatment). HK-2 injury was gauged by the percent lactate dehydrogenase release and 4,5-(dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide uptake. In vivo protection was sought in rA1M-treated mice subjected to 1) graded myohemoglobinura (2, 4, 8, or 9 ml/kg glycerol injection), 2) purified myoglobinemia/uria, or 3) endotoxemia. In vivo injury was assessed by blood urea nitrogen, creatinine, and the expression of redox-sensitive genes (heme oxygenase-1, neutrophil gelatinase-associated lipocalin, and monocyte chemoattractant protein-1 mRNAs). Although rA1M totally blocked in vitro hemin toxicity, equimolar albumin (another heme binder) or 10% serum induced equal protection. rA1M failed to mitigate any nonhemin forms of either in vitro or in vivo injury. A1M appeared to be rapidly degraded within proximal tubules (by Western blot analysis). Surprisingly, rA1M exerted select injury-promoting effects (increased in vitro catalytic iron/antimycin toxicities and increased in vivo monocyte chemoattractant protein-1/neutrophil gelatinase-associated lipocalin mRNA expression after glycerol or endotoxin injection). We conclude that rA1M has questionable utility as a renal antioxidant/cytoprotective agent, particularly in the presence of larger amounts of competitive free heme (e.g., albumin) binders.
Collapse
Affiliation(s)
- Richard A. Zager
- Fred Hutchinson Cancer Center, Seattle, Washington; and
- University of Washington, Seattle Washington
| | | | | |
Collapse
|
31
|
Shaw J, Tang Z, Schneider H, Saljé K, Hansson SR, Guller S. Inflammatory processes are specifically enhanced in endothelial cells by placental-derived TNF-α: Implications in preeclampsia (PE). Placenta 2016; 43:1-8. [DOI: 10.1016/j.placenta.2016.04.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Revised: 04/08/2016] [Accepted: 04/16/2016] [Indexed: 01/17/2023]
|
32
|
Ospina-Prieto S, Chaiwangyen W, Herrmann J, Groten T, Schleussner E, Markert UR, Morales-Prieto DM. MicroRNA-141 is upregulated in preeclamptic placentae and regulates trophoblast invasion and intercellular communication. Transl Res 2016; 172:61-72. [PMID: 27012474 DOI: 10.1016/j.trsl.2016.02.012] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 02/05/2016] [Accepted: 02/25/2016] [Indexed: 12/27/2022]
Abstract
Preeclampsia (PE) is one of the leading causes of maternal and perinatal morbidity and mortality worldwide. Abnormal expression of microRNAs (miRNAs) occurs in several pregnancy diseases including PE. Placental trophoblast cells express a specific set of miRNAs which changes during pregnancy. These miRNAs can be released within extracellular vesicles (EVs) and mediate intercellular communication. miR-141 is a pregnancy-related miRNA which is expressed by trophoblast cells at increased levels in maternal plasma in the third trimester. We hypothesize that miR-141 is abnormally expressed in PE placentae, controls trophoblast, and immune cell functions and is involved in the intercellular communication between fetal trophoblast and maternal immune cells. Expression of miR-141 was analyzed by quantitative real-time PCR (qPCR) in normal and preeclamptic placentae and in 2 different trophoblastic cell lines, JEG-3 and HTR-8/SVneo. Changes in JEG-3 and HTR-8/SVneo cell proliferation and invasion were investigated after miR-141 inhibition and overexpression by MTS-, BrdU-, and Matrigel assays. EVs from miR-141 transfected cells were isolated from supernatants and characterized by NanoSight analysis and qPCR. Proliferation of Jurkat T cells and invasion of HTR-8/SVneo cells were investigated after treatment with EVs containing different miR-141 levels. miR-141 expression was higher in placentae from PE patients compared with those from normal pregnancies. miR-141 inhibition in trophoblastic cells resulted in decreased cell viability and reduced invasion capability. After transfection with miR-141-mimic, trophoblastic cells secreted EVs with increased miR-141 content. These vesicles did not exert effects on trophoblastic cell invasion but reduced Jurkat T cell proliferation. In conclusion, miR-141 regulates major functions of trophoblastic and immune cells. Trophoblast cells release EVs whose miRNA content can be modified by transfection of origin cells. Furthermore, elevated levels of miR-141 can be transferred from trophoblast to immune cells by release and internalization of EVs suggesting their role in the immune regulation of normal and pathologic pregnancies.
Collapse
Affiliation(s)
- Stephanie Ospina-Prieto
- Placenta Lab, Department of Obstetrics, University Hospital Jena, Bachstraße 18, Jena 07743, Germany
| | - Wittaya Chaiwangyen
- Placenta Lab, Department of Obstetrics, University Hospital Jena, Bachstraße 18, Jena 07743, Germany; School of Medical Sciences, University of Phayao, Phayao 56000, Thailand
| | - Jörg Herrmann
- Department of Gynecology and Obstetrics, Hufeland Klinikum, Henry-van-de-Velde-Straße 2, Weimar 99425, Germany
| | - Tanja Groten
- Placenta Lab, Department of Obstetrics, University Hospital Jena, Bachstraße 18, Jena 07743, Germany
| | - Ekkehard Schleussner
- Placenta Lab, Department of Obstetrics, University Hospital Jena, Bachstraße 18, Jena 07743, Germany
| | - Udo R Markert
- Placenta Lab, Department of Obstetrics, University Hospital Jena, Bachstraße 18, Jena 07743, Germany.
| | - Diana M Morales-Prieto
- Placenta Lab, Department of Obstetrics, University Hospital Jena, Bachstraße 18, Jena 07743, Germany.
| |
Collapse
|
33
|
Liu Q, Yang J. Expression and significance of miR155 and vascular endothelial growth factor in placenta of rats with preeclampsia. Int J Clin Exp Med 2015; 8:15731-15737. [PMID: 26629069 PMCID: PMC4658958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 07/21/2015] [Indexed: 06/05/2023]
Abstract
OBJECTIVE This study is to investigate the expression and significance of miR155 and vascular endothelial growth factor (VEGF) in placenta of preeclampsia (PE) model rats. METHODS A total of 20 SD rats were randomly divided into normal pregnant group and PE model group. PE model was established by subcutaneous injection of L nitro arginine methyl ester continuously for 4 days with a dosage of 200 mg/Kg·d from the 13th day of pregnancy. Blood pressure, urinary protein and renal function were detected to evaluate fetal development. Real-time fluorescent quantitative polymerase chain reaction was used to test the expression of placental miR155. Western-blot assay and ELISA were performed to detect the expression of placental VEGF protein. RESULTS Blood pressure, urine protein, blood urea nitrogen and creatinine in PE model group were higher than in normal pregnant group, and there was statistically significant (P < 0.05). Expression of miR155 in PE group was higher than that of normal pregnant group and VEGF protein expression was lower than that in normal pregnant group, both were statistically significant (P < 0.01). CONCLUSION In PE model group, miR155 expression significantly increases whereas the expression of VEGF decreases. PE might be correlated with the down regulation of VEGF by miR155.
Collapse
Affiliation(s)
- Qian Liu
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University Wuhan 430060, P. R. China
| | - Jing Yang
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University Wuhan 430060, P. R. China
| |
Collapse
|
34
|
Nääv Å, Erlandsson L, Axelsson J, Larsson I, Johansson M, Wester-Rosenlöf L, Mörgelin M, Casslén V, Gram M, Åkerström B, Hansson SR. A1M Ameliorates Preeclampsia-Like Symptoms in Placenta and Kidney Induced by Cell-Free Fetal Hemoglobin in Rabbit. PLoS One 2015; 10:e0125499. [PMID: 25955715 PMCID: PMC4425457 DOI: 10.1371/journal.pone.0125499] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 03/17/2015] [Indexed: 11/18/2022] Open
Abstract
Preeclampsia is one of the most serious pregnancy-related diseases and clinically manifests as hypertension and proteinuria after 20 gestational weeks. The worldwide prevalence is 3-8% of pregnancies, making it the most common cause of maternal and fetal morbidity and mortality. Preeclampsia lacks an effective therapy, and the only “cure” is delivery. We have previously shown that increased synthesis and accumulation of cell-free fetal hemoglobin (HbF) in the placenta is important in the pathophysiology of preeclampsia. Extracellular hemoglobin (Hb) and its metabolites induce oxidative stress, which may lead to acute renal failure and vascular dysfunction seen in preeclampsia. The human endogenous protein, α1-microglobulin (A1M), removes cell-free heme-groups and induces natural tissue repair mechanisms. Exogenously administered A1M has been shown to alleviate the effects of Hb-induced oxidative stress in rat kidneys. Here we attempted to establish an animal model mimicking the human symptoms at stage two of preeclampsia by administering species-specific cell-free HbF starting mid-gestation until term, and evaluated the therapeutic effect of A1M on the induced symptoms. Female pregnant rabbits received HbF infusions i.v. with or without A1M every second day from gestational day 20. The HbF-infused animals developed proteinuria and a significantly increased glomerular sieving coefficient in kidney that was ameliorated by co-administration of A1M. Transmission electron microscopy analysis of kidney and placenta showed both intracellular and extracellular tissue damages after HbF-treatment, while A1M co-administration resulted in a significant reduction of the structural and cellular changes. Neither of the HbF-treated animals displayed any changes in blood pressure during pregnancy. In conclusion, infusion of cell-free HbF in the pregnant rabbits induced tissue damage and organ failure similar to those seen in preeclampsia, and was restored by co-administration of A1M. This study provides preclinical evidence supporting further examination of A1M as a potential new therapy for preeclampsia.
Collapse
Affiliation(s)
- Åsa Nääv
- Obstetrics and Gynecology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
- * E-mail:
| | - Lena Erlandsson
- Obstetrics and Gynecology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Josefin Axelsson
- Nephrology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Irene Larsson
- Obstetrics and Gynecology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Martin Johansson
- Clinical Pathology, Department of Laboratory Medicine, Lund University, Malmö, Sweden
| | - Lena Wester-Rosenlöf
- Infection Medicine, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Matthias Mörgelin
- Infection Medicine, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Vera Casslén
- Obstetrics and Gynecology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Magnus Gram
- Infection Medicine, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Bo Åkerström
- Infection Medicine, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Stefan R. Hansson
- Obstetrics and Gynecology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| |
Collapse
|
35
|
Tong M, Chamley LW. Placental extracellular vesicles and feto-maternal communication. Cold Spring Harb Perspect Med 2015; 5:a023028. [PMID: 25635060 DOI: 10.1101/cshperspect.a023028] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The human placenta is an anatomically unique structure that extrudes a variety of extracellular vesicles into the maternal blood (including syncytial nuclear aggregates, microvesicles, and nanovesicles). Large quantities of extracellular vesicles are produced by the placenta in both healthy and diseased pregnancies. Since their first description more than 120 years ago, placental extracellular vesicles are only now being recognized as important carriers for proteins, lipids, and nucleic acids, which may play a crucial role in feto-maternal communication. Here, we summarize the current literature on the cargos of placental extracellular vesicles and the known effects of such vesicles on maternal cells/systems, especially those of the maternal immune and vascular systems.
Collapse
Affiliation(s)
- M Tong
- Department of Obstetrics and Gynecology, University of Auckland, Grafton, Auckland 1142, New Zealand
| | - L W Chamley
- Department of Obstetrics and Gynecology, University of Auckland, Grafton, Auckland 1142, New Zealand
| |
Collapse
|
36
|
Hansson SR, Nääv Å, Erlandsson L. Oxidative stress in preeclampsia and the role of free fetal hemoglobin. Front Physiol 2015; 5:516. [PMID: 25628568 PMCID: PMC4292435 DOI: 10.3389/fphys.2014.00516] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 12/16/2014] [Indexed: 02/04/2023] Open
Abstract
Preeclampsia is a leading cause of pregnancy complications and affects 3-7% of pregnant women. This review summarizes the current knowledge of a new potential etiology of the disease, with a special focus on hemoglobin-induced oxidative stress. Furthermore, we also suggest hemoglobin as a potential target for therapy. Gene and protein profiling studies have shown increased expression and accumulation of free fetal hemoglobin in the preeclamptic placenta. Predominantly due to oxidative damage to the placental barrier, fetal hemoglobin leaks over to the maternal circulation. Free hemoglobin and its metabolites are toxic in several ways; (a) ferrous hemoglobin (Fe(2+)) binds strongly to the vasodilator nitric oxide (NO) and reduces the availability of free NO, which results in vasoconstriction, (b) hemoglobin (Fe(2+)) with bound oxygen spontaneously generates free oxygen radicals, and (c) the heme groups create an inflammatory response by inducing activation of neutrophils and cytokine production. The endogenous protein α1-microglobulin, with radical and heme binding properties, has shown both ex vivo and in vivo to have the ability to counteract free hemoglobin-induced placental and kidney damage. Oxidative stress in general, and more specifically fetal hemoglobin-induced oxidative stress, could play a key role in the pathology of preeclampsia seen both in the placenta and ultimately in the maternal endothelium.
Collapse
Affiliation(s)
- Stefan R. Hansson
- Department of Obstetrics and Gynecology, Institute for Clinical Sciences, Lund UniversityLund, Sweden
| | | | | |
Collapse
|
37
|
Tannetta D, Dragovic R, Alyahyaei Z, Southcombe J. Extracellular vesicles and reproduction-promotion of successful pregnancy. Cell Mol Immunol 2014; 11:548-63. [PMID: 24954226 PMCID: PMC4220835 DOI: 10.1038/cmi.2014.42] [Citation(s) in RCA: 138] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 05/11/2014] [Indexed: 12/11/2022] Open
Abstract
Extracellular vesicles (EVs) are membrane-bound complexes secreted from cells under both physiological and pathological conditions. They contain proteins, nucleic acids and lipids and act as messengers for cell–cell communication and signalling, particularly between immune cells. EV research is a rapidly evolving and expanding field, and it appears that all biological fluids contain very large numbers of EVs; they are produced from all cells that have been studied to date, and are known to have roles in several reproductive processes. This review analyses the evidence for the role of EVs throughout human reproduction, starting with the paternal and maternal gametes, followed by the establishment and continuation of successful pregnancies, with specific focus, where possible, on the interaction of EVs with the maternal immune system. Importantly, variations within the EV populations are identified in various reproductive disorders, such as pre-term labour and pre-eclampsia.
Collapse
|