1
|
Sutton DC, Andrews JC, Dolezal DM, Park YJ, Li H, Eberl DF, Yamamoto S, Groves AK. Comparative exploration of mammalian deafness gene homologues in the Drosophila auditory organ shows genetic correlation between insect and vertebrate hearing. PLoS One 2024; 19:e0297846. [PMID: 38412189 PMCID: PMC10898740 DOI: 10.1371/journal.pone.0297846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 01/13/2024] [Indexed: 02/29/2024] Open
Abstract
Johnston's organ, the Drosophila auditory organ, is anatomically very different from the mammalian organ of Corti. However, recent evidence indicates significant cellular and molecular similarities exist between vertebrate and invertebrate hearing, suggesting that Drosophila may be a useful platform to determine the function of the many mammalian deafness genes whose underlying biological mechanisms are poorly characterized. Our goal was a comprehensive screen of all known orthologues of mammalian deafness genes in the fruit fly to better understand conservation of hearing mechanisms between the insect and the fly and ultimately gain insight into human hereditary deafness. We used bioinformatic comparisons to screen previously reported human and mouse deafness genes and found that 156 of them have orthologues in Drosophila melanogaster. We used fluorescent imaging of T2A-GAL4 gene trap and GFP or YFP fluorescent protein trap lines for 54 of the Drosophila genes and found 38 to be expressed in different cell types in Johnston's organ. We phenotypically characterized the function of strong loss-of-function mutants in three genes expressed in Johnston's organ (Cad99C, Msp-300, and Koi) using a courtship assay and electrophysiological recordings of sound-evoked potentials. Cad99C and Koi were found to have significant courtship defects. However, when we tested these genes for electrophysiological defects in hearing response, we did not see a significant difference suggesting the courtship defects were not caused by hearing deficiencies. Furthermore, we used a UAS/RNAi approach to test the function of seven genes and found two additional genes, CG5921 and Myo10a, that gave a statistically significant delay in courtship but not in sound-evoked potentials. Our results suggest that many mammalian deafness genes have Drosophila homologues expressed in the Johnston's organ, but that their requirement for hearing may not necessarily be the same as in mammals.
Collapse
Affiliation(s)
- Daniel C. Sutton
- Graduate Program in Genetics & Genomics, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Jonathan C. Andrews
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, Texas, United States of America
| | - Dylan M. Dolezal
- Department of Biology, University of Iowa, Iowa City, Iowa, United States of America
| | - Ye Jin Park
- Graduate Program in Development, Disease Models & Therapeutics, Baylor College of Medicine, Houston, Texas, United States of America
- Huffington Center on Aging, One Baylor Plaza, Houston, Texas, United States of America
| | - Hongjie Li
- Graduate Program in Development, Disease Models & Therapeutics, Baylor College of Medicine, Houston, Texas, United States of America
- Huffington Center on Aging, One Baylor Plaza, Houston, Texas, United States of America
| | - Daniel F. Eberl
- Department of Biology, University of Iowa, Iowa City, Iowa, United States of America
| | - Shinya Yamamoto
- Graduate Program in Genetics & Genomics, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, Texas, United States of America
- Graduate Program in Development, Disease Models & Therapeutics, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, United States of America
| | - Andrew K. Groves
- Graduate Program in Genetics & Genomics, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Graduate Program in Development, Disease Models & Therapeutics, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, United States of America
| |
Collapse
|
2
|
Xu X, Chen J, Du X, Yao L, Wang Y. CRISPR/Cas9 Mediated Disruption of Seminal Fluid Protein Sfp62 Induces Male Sterility in Bombyx mori. BIOLOGY 2022; 11:biology11040561. [PMID: 35453761 PMCID: PMC9024854 DOI: 10.3390/biology11040561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/04/2022] [Accepted: 04/06/2022] [Indexed: 11/25/2022]
Abstract
Simple Summary In gamogenetic animals, seminal fluid proteins are essential for male fertility. In this study, we investigated the function of the seminal fluid protein Sfp62 by using the CRISPR/Cas9 system in lepidopteran model insect Bombyx mori. Sfp62 mutation led to male sterility and can be inherited stably. The mutation did not affect growth and developmental nor female fertility. These data indicate that Sfp62 is an ideal target for sterile insect technology (SIT), in which genetically modified insects are released on a large scale to mate with wild-type insects in order to reduce or even eradicate the target pests. The determining factors for the effective implementation of SIT include the strong competitiveness of the modified individuals and multi-generational effects resulting from the mutation. Sfp62 meets these criteria and is therefore a promising target for biological pest control. Abstract Seminal fluid proteins provide factors necessary for development, storage, and activation of sperm. Altered expression of seminal fluid proteins can lead to defect in male infertility. We investigated the function of seminal fluid protein Sfp62 in the model lepidopteran insect Bombyx mori using CRISPR/Cas9 mediated mutagenesis. The knockout of BmSfp62 gene led to male sterility but has no effect on female fertility. The mutation did not affect growth and development of the silkworm of both sexes. Motility of sperm in male mutants was decreased and the mRNA expression levels of other genes encoding seminal fluid proteins were altered in BmSfp62 mutants compared to the wild-type controls. The male sterility caused by mutation of BmSfp62 was stably inherited. As the proteins encoded by Sfp62 genes are conserved among lepidopteran species, Sfp62 is a potential target for the biological management of lepidopteran pests.
Collapse
|
3
|
Silencing the Myosin Regulatory Light Chain Gene sqh Reduces Cold Hardiness in Ophraella communa LeSage (Coleoptera: Chrysomelidae). INSECTS 2020; 11:insects11120844. [PMID: 33260791 PMCID: PMC7768443 DOI: 10.3390/insects11120844] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 11/22/2020] [Accepted: 11/26/2020] [Indexed: 11/17/2022]
Abstract
Ambrosia artemisiifolia is a noxious invasive alien weed, that is harmful to the environment and human health. Ophraella communa is a biocontrol agent for A. artemisiifolia, that was accidentally introduced to the Chinese mainland and has now spread throughout southern China. Recently, we found that upon artificial introduction, O. communa can survive in northern China as well. Therefore, it is necessary to study the cold hardiness of O. communa. Many genes have been identified to play a role in cold-tolerance regulation in insects, but the function of the gene encoding non-muscle myosin regulatory light chain (MRLC-sqh) remains unknown. To evaluate the role played by MRLC-sqh in the cold-tolerance response, we cloned and characterized MRLC-sqh from O. communa. Quantitative real-time PCR revealed that MRLC-sqh was expressed at high levels in the gut and pupae of O. communa. The expression of MRLC-sqh was shown to decrease after cold shock between 10 and 0 °C and ascend between 0 and -10 °C, but these did not show a positive association between MRLC-sqh expression and cold stress. Silencing of MRLC-sqh using dsMRLC-sqh increased the chill-coma recovery time of these beetles, suggesting that cold hardiness was reduced in its absence. These results suggest that the cold hardiness of O. communa may be partly regulated by MRLC-sqh. Our findings highlight the importance of motor proteins in mediating the cold response in insects.
Collapse
|
4
|
Gypsy moth genome provides insights into flight capability and virus-host interactions. Proc Natl Acad Sci U S A 2019; 116:1669-1678. [PMID: 30642971 DOI: 10.1073/pnas.1818283116] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Since its accidental introduction to Massachusetts in the late 1800s, the European gypsy moth (EGM; Lymantria dispar dispar) has become a major defoliator in North American forests. However, in part because females are flightless, the spread of the EGM across the United States and Canada has been relatively slow over the past 150 years. In contrast, females of the Asian gypsy moth (AGM; Lymantria dispar asiatica) subspecies have fully developed wings and can fly, thereby posing a serious economic threat if populations are established in North America. To explore the genetic determinants of these phenotypic differences, we sequenced and annotated a draft genome of L. dispar and used it to identify genetic variation between EGM and AGM populations. The 865-Mb gypsy moth genome is the largest Lepidoptera genome sequenced to date and encodes ∼13,300 proteins. Gene ontology analyses of EGM and AGM samples revealed divergence between these populations in genes enriched for several gene ontology categories related to muscle adaptation, chemosensory communication, detoxification of food plant foliage, and immunity. These genetic differences likely contribute to variations in flight ability, chemical sensing, and pathogen interactions among EGM and AGM populations. Finally, we use our new genomic and transcriptomic tools to provide insights into genome-wide gene-expression changes of the gypsy moth after viral infection. Characterizing the immunological response of gypsy moths to virus infection may aid in the improvement of virus-based bioinsecticides currently used to control larval populations.
Collapse
|
5
|
Chen X, Zhang MQ, Wang XQ, Guo JS, Li DT, Xue J, Pan WD, Zhang CX. The flightin gene is necessary for the emission of vibrational signals in the rice brown planthopper (Nilaparvata lugens Stǻl). JOURNAL OF INSECT PHYSIOLOGY 2019; 112:101-108. [PMID: 30391512 DOI: 10.1016/j.jinsphys.2018.10.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 09/30/2018] [Accepted: 10/31/2018] [Indexed: 06/08/2023]
Abstract
In duet-based courtship, species- and sex-specific vibrational signals enable animals to identify the species and sex of the singer and also provide the necessary information with which to locate a partner. Substrate-borne communication has been described in a wide variety of insects. Here, we focus on the gene necessary for the emission of male vibrational signals and whether the male song fulfills such a functional role in the mating system of the brown planthopper (BPH, Nilaparvata lugens). We generated mute BPH adult males via RNA interference (RNAi) of the flightin gene, which encodes a myosin-binding protein expressed exclusively in the dorsal longitudinal muscle (DLM) in the basal two abdominal segments used for driving the vibration of the male-specific tymbal structure in short-winged (brachypterous) BPH adults. Transmission electron microscopy (TEM) observation showed that flightin knockdown disrupted the normal sarcomere structure of the abdominal DLM. No courtship song could be detected in the brachypterous males after RNAi treatment. Behavior and competition trials showed that the lack of male courtship songs prolonged copulation latency and even caused female rejection. Unexpectedly, the mute males exhibited greater competitiveness when competing against normal males.
Collapse
Affiliation(s)
- Xuan Chen
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Science, Zhejiang University, Hangzhou 310058, China
| | - Meng-Qiu Zhang
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Science, Zhejiang University, Hangzhou 310058, China
| | - Xin-Qiu Wang
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Science, Zhejiang University, Hangzhou 310058, China
| | - Jian-Sheng Guo
- School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Dan-Ting Li
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Science, Zhejiang University, Hangzhou 310058, China
| | - Jian Xue
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Science, Zhejiang University, Hangzhou 310058, China
| | - Wei-Dong Pan
- Beijing Key Laboratory of Bioelectromagnetics, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Chuan-Xi Zhang
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Science, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
6
|
Bougleux Gomes HA, Diangelo JR, Santangelo N. Characterization of courtship behavior and copulation rate in adp60 mutant Drosophila melanogaster (Insecta: Diptera: Drosophilidae). THE EUROPEAN ZOOLOGICAL JOURNAL 2019. [DOI: 10.1080/24750263.2019.1635659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Affiliation(s)
| | | | - N. Santangelo
- Department of Biology, Hofstra University, Hempstead, NY, USA
| |
Collapse
|
7
|
Brüggemeier B, Porter MA, Vigoreaux JO, Goodwin SF. Female Drosophila melanogaster respond to song-amplitude modulations. Biol Open 2018; 7:bio032003. [PMID: 29666051 PMCID: PMC6031343 DOI: 10.1242/bio.032003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Accepted: 04/09/2018] [Indexed: 11/20/2022] Open
Abstract
Males in numerous animal species use mating songs to attract females and intimidate competitors. We demonstrate that modulations in song amplitude are behaviourally relevant in the fruit fly Drosophila We show that Drosophilamelanogaster females prefer amplitude modulations that are typical of melanogaster song over other modulations, which suggests that amplitude modulations are processed auditorily by D. melanogaster Our work demonstrates that receivers can decode messages in amplitude modulations, complementing the recent finding that male flies actively control song amplitude. To describe amplitude modulations, we propose the concept of song amplitude structure (SAS) and discuss similarities and differences to amplitude modulation with distance (AMD).This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Birgit Brüggemeier
- Centre for Neural Circuits and Behaviour, University of Oxford, Oxford OX1 3SR, UK
- AudioLabs, Fraunhofer-Institut für Integrierte Schaltungen, 91058 Erlangen, Germany
| | - Mason A Porter
- Department of Mathematics, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Mathematical Institute, University of Oxford, Oxford OX2 6GG, UK
- CABDyN Complexity Centre, University of Oxford, Oxford OX1 1HP, UK
| | - Jim O Vigoreaux
- Department of Biology, University of Vermont, Burlington, VT 05405, USA
| | - Stephen F Goodwin
- Centre for Neural Circuits and Behaviour, University of Oxford, Oxford OX1 3SR, UK
| |
Collapse
|
8
|
Chakravorty S, Tanner BCW, Foelber VL, Vu H, Rosenthal M, Ruiz T, Vigoreaux JO. Flightin maintains myofilament lattice organization required for optimal flight power and courtship song quality in Drosophila. Proc Biol Sci 2018; 284:rspb.2017.0431. [PMID: 28469022 DOI: 10.1098/rspb.2017.0431] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 04/03/2017] [Indexed: 12/13/2022] Open
Abstract
The indirect flight muscles (IFMs) of Drosophila and other insects with asynchronous flight muscles are characterized by a crystalline myofilament lattice structure. The high-order lattice regularity is considered an adaptation for enhanced power output, but supporting evidence for this claim is lacking. We show that IFMs from transgenic flies expressing flightin with a deletion of its poorly conserved N-terminal domain (flnΔN62 ) have reduced inter-thick filament spacing and a less regular lattice. This resulted in a decrease in flight ability by 33% and in skinned fibre oscillatory power output by 57%, but had no effect on wingbeat frequency or frequency of maximum power output, suggesting that the underlying actomyosin kinetics is not affected and that the flight impairment arises from deficits in force transmission. Moreover, we show that flnΔN62 males produced an abnormal courtship song characterized by a higher sine song frequency and a pulse song with longer pulses and longer inter-pulse intervals (IPIs), the latter implicated in male reproductive success. When presented with a choice, wild-type females chose control males over mutant males in 92% of the competition events. These results demonstrate that flightin N-terminal domain is required for optimal myofilament lattice regularity and IFM activity, enabling powered flight and courtship song production. As the courtship song is subject to female choice, we propose that the low amino acid sequence conservation of the N-terminal domain reflects its role in fine-tuning species-specific courtship songs.
Collapse
Affiliation(s)
- Samya Chakravorty
- Department of Biology, University of Vermont, Burlington, VT 05405, USA
| | - Bertrand C W Tanner
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT 05405, USA
| | | | - Hien Vu
- Department of Biology, University of Vermont, Burlington, VT 05405, USA
| | - Matthew Rosenthal
- Department of Biology, University of Vermont, Burlington, VT 05405, USA
| | - Teresa Ruiz
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT 05405, USA
| | - Jim O Vigoreaux
- Department of Biology, University of Vermont, Burlington, VT 05405, USA .,Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT 05405, USA
| |
Collapse
|
9
|
Coen P, Xie M, Clemens J, Murthy M. Sensorimotor Transformations Underlying Variability in Song Intensity during Drosophila Courtship. Neuron 2016; 89:629-44. [PMID: 26844835 DOI: 10.1016/j.neuron.2015.12.035] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 10/05/2015] [Accepted: 12/18/2015] [Indexed: 11/29/2022]
Abstract
Diverse animal species, from insects to humans, utilize acoustic signals for communication. Studies of the neural basis for song or speech production have focused almost exclusively on the generation of spectral and temporal patterns, but animals can also adjust acoustic signal intensity when communicating. For example, humans naturally regulate the loudness of speech in accord with a visual estimate of receiver distance. The underlying mechanisms for this ability remain uncharacterized in any system. Here, we show that Drosophila males modulate courtship song amplitude with female distance, and we investigate each stage of the sensorimotor transformation underlying this behavior, from the detection of particular visual stimulus features and the timescales of sensory processing to the modulation of neural and muscle activity that generates song. Our results demonstrate an unanticipated level of control in insect acoustic communication and uncover novel computations and mechanisms underlying the regulation of acoustic signal intensity.
Collapse
Affiliation(s)
- Philip Coen
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
| | - Marjorie Xie
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
| | - Jan Clemens
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
| | - Mala Murthy
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
10
|
Abstract
The myosin holoenzyme is a multimeric protein complex consisting of heavy chains and light chains. Myosin light chains are calmodulin family members which are crucially involved in the mechanoenzymatic function of the myosin holoenzyme. This review examines the diversity of light chains within the myosin superfamily, discusses interactions between the light chain and the myosin heavy chain as well as regulatory and structural functions of the light chain as a subunit of the myosin holoenzyme. It covers aspects of the myosin light chain in the localization of the myosin holoenzyme, protein-protein interactions and light chain binding to non-myosin binding partners. Finally, this review challenges the dogma that myosin regulatory and essential light chain exclusively associate with conventional myosin heavy chains while unconventional myosin heavy chains usually associate with calmodulin.
Collapse
Affiliation(s)
- Sarah M Heissler
- a Laboratory of Molecular Physiology; National Heart, Lung, and Blood Institute; National Institutes of Health ; Bethesda , MD USA
| | - James R Sellers
- a Laboratory of Molecular Physiology; National Heart, Lung, and Blood Institute; National Institutes of Health ; Bethesda , MD USA
| |
Collapse
|
11
|
Gasek NS, Nyland LR, Vigoreaux JO. The Contributions of the Amino and Carboxy Terminal Domains of Flightin to the Biomechanical Properties of Drosophila Flight Muscle Thick Filaments. BIOLOGY 2016; 5:biology5020016. [PMID: 27128952 PMCID: PMC4929530 DOI: 10.3390/biology5020016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 04/15/2016] [Accepted: 04/18/2016] [Indexed: 11/16/2022]
Abstract
Flightin is a myosin binding protein present in Pancrustacea. In Drosophila, flightin is expressed in the indirect flight muscles (IFM), where it is required for the flexural rigidity, structural integrity, and length determination of thick filaments. Comparison of flightin sequences from multiple Drosophila species revealed a tripartite organization indicative of three functional domains subject to different evolutionary constraints. We use atomic force microscopy to investigate the functional roles of the N-terminal domain and the C-terminal domain that show different patterns of sequence conservation. Thick filaments containing a C-terminal domain truncated flightin (flnΔC44) are significantly shorter (2.68 ± 0.06 μm; p < 0.005) than thick filaments containing a full length flightin (fln+; 3.21 ± 0.05 μm) and thick filaments containing an N-terminal domain truncated flightin (flnΔN62; 3.21 ± 0.06 μm). Persistence length was significantly reduced in flnΔN62 (418 ± 72 μm; p < 0.005) compared to fln+ (1386 ± 196μm) and flnΔC44(1128 ± 193 μm). Statistical polymer chain analysis revealed that the C-terminal domain fulfills a secondary role in thick filament bending propensity. Our results indicate that the flightin amino and carboxy terminal domains make distinct contributions to thick filament biomechanics. We propose these distinct roles arise from the interplay between natural selection and sexual selection given IFM’s dual role in flight and courtship behaviors.
Collapse
Affiliation(s)
- Nathan S Gasek
- Department of Biology, University of Vermont, Burlington, VT 05405, USA.
| | - Lori R Nyland
- Department of Biology, University of Vermont, Burlington, VT 05405, USA.
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT 05405, USA.
| | - Jim O Vigoreaux
- Department of Biology, University of Vermont, Burlington, VT 05405, USA.
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT 05405, USA.
| |
Collapse
|
12
|
Lemas D, Lekkas P, Ballif BA, Vigoreaux JO. Intrinsic disorder and multiple phosphorylations constrain the evolution of the flightin N-terminal region. J Proteomics 2015; 135:191-200. [PMID: 26691840 DOI: 10.1016/j.jprot.2015.12.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 11/23/2015] [Accepted: 12/04/2015] [Indexed: 01/05/2023]
Abstract
Flightin is a myosin binding phosphoprotein that originated in the ancestor to Pancrustacea ~500 MYA. In Drosophila melanogaster, flightin is essential for length determination and flexural rigidity of thick filaments. Here, we show that among 12 Drosophila species, the N-terminal region is characterized by low sequence conservation, low pI, a cluster of phosphorylation sites, and a high propensity to intrinsic disorder (ID) that is augmented by phosphorylation. Using mass spectrometry, we identified eight phosphorylation sites within a 29 amino acid segment in the N-terminal region of D. melanogaster flightin. We show that phosphorylation of D. melanogaster flightin is modulated during flight and, through a comparative analysis to orthologs from other Drosophila species, we found phosphorylation sites that remain invariant, sites that retain the charge character, and sites that are clade-specific. While the number of predicted phosphorylation sites differs across species, we uncovered a conserved pattern that relates the number of phosphorylation sites to pI and ID. Extending the analysis to orthologs of other insects, we found additional conserved features in flightin despite the near absence of sequence identity. Collectively, our results demonstrate that structural constraints demarcate the evolution of the highly variable N-terminal region.
Collapse
Affiliation(s)
- Dominick Lemas
- Department of Biology, University of Vermont, Burlington, VT 05405, United States
| | - Panagiotis Lekkas
- Department of Biology, University of Vermont, Burlington, VT 05405, United States
| | - Bryan A Ballif
- Department of Biology, University of Vermont, Burlington, VT 05405, United States
| | - Jim O Vigoreaux
- Department of Biology, University of Vermont, Burlington, VT 05405, United States.
| |
Collapse
|
13
|
Noh S, Henry CS. Within-Species Mate Preferences Do Not Contribute to the Maintenance of Sexually Monomorphic Mating Signals in Green Lacewings. Ethology 2015. [DOI: 10.1111/eth.12385] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Suegene Noh
- Department of Biology; Washington University in St. Louis; St. Louis MO USA
| | - Charles S. Henry
- Department of Ecology and Evolutionary Biology; University of Connecticut; Storrs CT USA
| |
Collapse
|
14
|
Betapudi V. Life without double-headed non-muscle myosin II motor proteins. Front Chem 2014; 2:45. [PMID: 25072053 PMCID: PMC4083560 DOI: 10.3389/fchem.2014.00045] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2014] [Accepted: 06/19/2014] [Indexed: 11/20/2022] Open
Abstract
Non-muscle myosin II motor proteins (myosin IIA, myosin IIB, and myosin IIC) belong to a class of molecular motor proteins that are known to transduce cellular free-energy into biological work more efficiently than man-made combustion engines. Nature has given a single myosin II motor protein for lower eukaryotes and multiple for mammals but none for plants in order to provide impetus for their life. These specialized nanomachines drive cellular activities necessary for embryogenesis, organogenesis, and immunity. However, these multifunctional myosin II motor proteins are believed to go awry due to unknown reasons and contribute for the onset and progression of many autosomal-dominant disorders, cataract, deafness, infertility, cancer, kidney, neuronal, and inflammatory diseases. Many pathogens like HIV, Dengue, hepatitis C, and Lymphoma viruses as well as Salmonella and Mycobacteria are now known to take hostage of these dedicated myosin II motor proteins for their efficient pathogenesis. Even after four decades since their discovery, we still have a limited knowledge of how these motor proteins drive cell migration and cytokinesis. We need to enrich our current knowledge on these fundamental cellular processes and develop novel therapeutic strategies to fix mutated myosin II motor proteins in pathological conditions. This is the time to think how to relieve the hijacked myosins from pathogens in order to provide a renewed impetus for patients' life. Understanding how to steer these molecular motors in proliferating and differentiating stem cells will improve stem cell based-therapeutics development. Given the plethora of cellular activities non-muscle myosin motor proteins are involved in, their importance is apparent for human life.
Collapse
Affiliation(s)
- Venkaiah Betapudi
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic Cleveland, OH, USA ; Department of Physiology and Biophysics, Case Western Reserve University Cleveland, OH, USA
| |
Collapse
|