1
|
Marshall AH, Hanson MA, Boyle DJ, Nagarajan D, Bibi N, Fitzgerald J, Gaitten E, Kokiko-Cochran ON, Gu B, Wester JC. Arid1b haploinsufficiency in pyramidal neurons causes cellular and circuit changes in neocortex but is not sufficient to produce behavioral or seizure phenotypes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.04.597344. [PMID: 38895205 PMCID: PMC11185765 DOI: 10.1101/2024.06.04.597344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Arid1b is a high confidence risk gene for autism spectrum disorder that encodes a subunit of a chromatin remodeling complex expressed in neuronal progenitors. Haploinsufficiency causes a broad range of social, behavioral, and intellectual disability phenotypes, including Coffin-Siris syndrome. Recent work using transgenic mouse models suggests pathology is due to deficits in proliferation, survival, and synaptic development of cortical neurons. However, there is conflicting evidence regarding the relative roles of excitatory projection neurons and inhibitory interneurons in generating abnormal cognitive and behavioral phenotypes. Here, we conditionally knocked out either one or both copies of Arid1b from excitatory projection neuron progenitors and systematically investigated the effects on intrinsic membrane properties, synaptic physiology, social behavior, and seizure susceptibility. We found that disrupting Arid1b expression in excitatory neurons alters their membrane properties, including hyperpolarizing action potential threshold; however, these changes depend on neuronal subtype. Using paired whole-cell recordings, we found increased synaptic connectivity rate between projection neurons. Furthermore, we found reduced strength of excitatory synapses to parvalbumin (PV)-expression inhibitory interneurons. These data suggest an increase in the ratio of excitation to inhibition. However, the strength of inhibitory synapses from PV interneurons to excitatory neurons was enhanced, which may rebalance this ratio. Indeed, Arid1b haploinsufficiency in projection neurons was insufficient to cause social deficits and seizure phenotypes observed in a preclinical germline haploinsufficient mouse model. Our data suggest that while excitatory projection neurons likely contribute to autistic phenotypes, pathology in these cells is not the primary cause.
Collapse
|
2
|
Molinaro G, Bowles JE, Croom K, Gonzalez D, Mirjafary S, Birnbaum SG, Razak KA, Gibson JR, Huber KM. Female-specific dysfunction of sensory neocortical circuits in a mouse model of autism mediated by mGluR5 and estrogen receptor α. Cell Rep 2024; 43:114056. [PMID: 38581678 PMCID: PMC11112681 DOI: 10.1016/j.celrep.2024.114056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 01/26/2024] [Accepted: 03/20/2024] [Indexed: 04/08/2024] Open
Abstract
Little is known of the brain mechanisms that mediate sex-specific autism symptoms. Here, we demonstrate that deletion of the autism spectrum disorder (ASD)-risk gene, Pten, in neocortical pyramidal neurons (NSEPten knockout [KO]) results in robust cortical circuit hyperexcitability selectively in female mice observed as prolonged spontaneous persistent activity states. Circuit hyperexcitability in females is mediated by metabotropic glutamate receptor 5 (mGluR5) and estrogen receptor α (ERα) signaling to mitogen-activated protein kinases (Erk1/2) and de novo protein synthesis. Pten KO layer 5 neurons have a female-specific increase in mGluR5 and mGluR5-dependent protein synthesis. Furthermore, mGluR5-ERα complexes are generally elevated in female cortices, and genetic reduction of ERα rescues enhanced circuit excitability, protein synthesis, and neuron size selectively in NSEPten KO females. Female NSEPten KO mice display deficits in sensory processing and social behaviors as well as mGluR5-dependent seizures. These results reveal mechanisms by which sex and a high-confidence ASD-risk gene interact to affect brain function and behavior.
Collapse
Affiliation(s)
- Gemma Molinaro
- Department of Neuroscience, O'Donnell Brain Institute, UT Southwestern Medical Center, Dallas, TX, USA
| | - Jacob E Bowles
- Department of Neuroscience, O'Donnell Brain Institute, UT Southwestern Medical Center, Dallas, TX, USA
| | - Katilynne Croom
- Graduate Neuroscience Program, University of California, Riverside, Riverside, CA, USA
| | - Darya Gonzalez
- Department of Neuroscience, O'Donnell Brain Institute, UT Southwestern Medical Center, Dallas, TX, USA
| | - Saba Mirjafary
- Department of Neuroscience, O'Donnell Brain Institute, UT Southwestern Medical Center, Dallas, TX, USA
| | - Shari G Birnbaum
- Department of Psychiatry, O'Donnell Brain Institute, UT Southwestern Medical Center, Dallas, TX, USA
| | - Khaleel A Razak
- Graduate Neuroscience Program, University of California, Riverside, Riverside, CA, USA; Department of Psychology, University of California, Riverside, Riverside, CA, USA
| | - Jay R Gibson
- Department of Neuroscience, O'Donnell Brain Institute, UT Southwestern Medical Center, Dallas, TX, USA
| | - Kimberly M Huber
- Department of Neuroscience, O'Donnell Brain Institute, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
3
|
Molinaro G, Bowles JE, Croom K, Gonzalez D, Mirjafary S, Birnbaum S, Razak KA, Gibson JR, Huber KM. Female specific dysfunction of sensory neocortical circuits in a mouse model of autism mediated by mGluR5 and Estrogen Receptor α. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.10.552857. [PMID: 37609208 PMCID: PMC10441407 DOI: 10.1101/2023.08.10.552857] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Autism manifests differently in males and females and the brain mechanisms that mediate these sex-dependent differences are unknown. Here, we demonstrate that deletion of the ASD-risk gene, Pten, in neocortical pyramidal neurons (NSE Pten KO) results in robust hyperexcitability of local neocortical circuits in female, but not male, mice, observed as prolonged, spontaneous persistent activity states (UP states). Circuit hyperexcitability in NSE Pten KO mice is mediated by enhanced and/or altered signaling of metabotropic glutamate receptor 5 (mGluR5) and estrogen receptor α (ERα) to ERK and protein synthesis selectively in Pten deleted female neurons. In support of this idea, Pten deleted Layer 5 cortical neurons have female-specific increases in mGluR5 and mGluR5-driven protein synthesis. In addition, mGluR5-ERα complexes are elevated in female cortex and genetic reduction of ERα in Pten KO cortical neurons rescues circuit excitability, protein synthesis and enlarged neurons selectively in females. Abnormal timing and hyperexcitability of neocortical circuits in female NSE Pten KO mice are associated with deficits in temporal processing of sensory stimuli and social behaviors as well as mGluR5-dependent seizures. Female-specific cortical hyperexcitability and mGluR5-dependent seizures are also observed in a human disease relevant mouse model, germline Pten +/- mice. Our results reveal molecular mechanisms by which sex and a high impact ASD-risk gene interact to affect brain function and behavior.
Collapse
|
4
|
Maruo T, Mizutani K, Miyata M, Kuriu T, Sakakibara S, Takahashi H, Kida D, Maesaka K, Sugaya T, Sakane A, Sasaki T, Takai Y, Mandai K. s-Afadin binds to MAGUIN/Cnksr2 and regulates the localization of the AMPA receptor and glutamatergic synaptic response in hippocampal neurons. J Biol Chem 2023; 299:103040. [PMID: 36803960 PMCID: PMC10040811 DOI: 10.1016/j.jbc.2023.103040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/19/2023] Open
Abstract
A hippocampal mossy fiber synapse implicated in learning and memory is a complex structure in which a presynaptic bouton attaches to the dendritic trunk by puncta adherentia junctions (PAJs) and wraps multiply branched spines. The postsynaptic densities (PSDs) are localized at the heads of each of these spines and faces to the presynaptic active zones. We previously showed that the scaffolding protein afadin regulates the formation of the PAJs, PSDs, and active zones in the mossy fiber synapse. Afadin has two splice variants: l-afadin and s-afadin. l-Afadin, but not s-afadin, regulates the formation of the PAJs but the roles of s-afadin in synaptogenesis remain unknown. We found here that s-afadin more preferentially bound to MAGUIN (a product of the Cnksr2 gene) than l-afadin in vivo and in vitro. MAGUIN/CNKSR2 is one of the causative genes for nonsyndromic X-linked intellectual disability accompanied by epilepsy and aphasia. Genetic ablation of MAGUIN impaired PSD-95 localization and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic (AMPA) receptor surface accumulation in cultured hippocampal neurons. Our electrophysiological analysis revealed that the postsynaptic response to glutamate, but not its release from the presynapse, was impaired in the MAGUIN-deficient cultured hippocampal neurons. Furthermore, disruption of MAGUIN did not increase the seizure susceptibility to flurothyl, a GABAA receptor antagonist. These results indicate that s-afadin binds to MAGUIN and regulates the PSD-95-dependent cell surface localization of the AMPA receptor and glutamatergic synaptic responses in the hippocampal neurons and that MAGUIN is not involved in the induction of epileptic seizure by flurothyl in our mouse model.
Collapse
Affiliation(s)
- Tomohiko Maruo
- Department of Molecular and Cellular Neurobiology, Kitasato University Graduate School of Medical Sciences, Sagamihara, Kanagawa, Japan; Department of Biochemistry, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan; Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan; Department of Biochemistry, Tokushima University Graduate School of Medical Sciences, Tokushima, Japan
| | - Kiyohito Mizutani
- Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Muneaki Miyata
- Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Toshihiko Kuriu
- Research and Development Center, Osaka Medical and Pharmaceutical University, Takatsuki, Osaka, Japan
| | - Shotaro Sakakibara
- Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan; Department of Biochemistry, Tokushima University Graduate School of Medical Sciences, Tokushima, Japan
| | - Hatena Takahashi
- Department of Molecular and Cellular Neurobiology, Kitasato University Graduate School of Medical Sciences, Sagamihara, Kanagawa, Japan
| | - Daichi Kida
- Department of Molecular and Cellular Neurobiology, Kitasato University Graduate School of Medical Sciences, Sagamihara, Kanagawa, Japan
| | - Kouki Maesaka
- Department of Molecular and Cellular Neurobiology, Kitasato University Graduate School of Medical Sciences, Sagamihara, Kanagawa, Japan
| | - Tsukiko Sugaya
- Department of Biochemistry, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Ayuko Sakane
- Department of Biochemistry, Tokushima University Graduate School of Medical Sciences, Tokushima, Japan; Department of Interdisciplinary Researches for Medicine and Photonics, Institute of Post-LED Photonics, Tokushima University, Tokushima, Japan
| | - Takuya Sasaki
- Department of Biochemistry, Tokushima University Graduate School of Medical Sciences, Tokushima, Japan
| | - Yoshimi Takai
- Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan.
| | - Kenji Mandai
- Department of Molecular and Cellular Neurobiology, Kitasato University Graduate School of Medical Sciences, Sagamihara, Kanagawa, Japan; Department of Biochemistry, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan.
| |
Collapse
|
5
|
Cristancho AG, Gadra EC, Samba IM, Zhao C, Ouyang M, Magnitsky S, Huang H, Viaene AN, Anderson SA, Marsh ED. Deficits in Seizure Threshold and Other Behaviors in Adult Mice without Gross Neuroanatomic Injury after Late Gestation Transient Prenatal Hypoxia. Dev Neurosci 2022; 44:246-265. [PMID: 35279653 PMCID: PMC9464267 DOI: 10.1159/000524045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 03/07/2022] [Indexed: 11/19/2022] Open
Abstract
Intrauterine hypoxia is a common cause of brain injury in children resulting in a broad spectrum of long-term neurodevelopmental sequela, including life-long disabilities that can occur even in the absence of severe neuroanatomic damage. Postnatal hypoxia-ischemia rodent models are commonly used to understand the effects of ischemia and transient hypoxia on the developing brain. Postnatal models, however, have some limitations. First, they do not test the impact of placental pathologies on outcomes from hypoxia. Second, they primarily recapitulate severe injury because they provoke substantial cell death, which is not seen in children with mild hypoxic injury. Lastly, they do not model preterm hypoxic injury. Prenatal models of hypoxia in mice may allow us to address some of these limitations to expand our understanding of developmental brain injury. The published rodent models of prenatal hypoxia employ multiple days of hypoxic exposure or complicated surgical procedures, making these models challenging to perform consistently in mice. Furthermore, large animal models suggest that transient prenatal hypoxia without ischemia is sufficient to lead to significant functional impairment to the developing brain. However, these large animal studies are resource-intensive and not readily amenable to mechanistic molecular studies. Therefore, here we characterized the effect of late gestation (embryonic day 17.5) transient prenatal hypoxia (5% inspired oxygen) on long-term anatomical and neurodevelopmental outcomes in mice. Late gestation transient prenatal hypoxia increased hypoxia-inducible factor 1 alpha protein levels (a marker of hypoxic exposure) in the fetal brain. Hypoxia exposure predisposed animals to decreased weight at postnatal day 2, which normalized by day 8. However, hypoxia did not affect gestational age at birth, litter size at birth, or pup survival. No differences in fetal brain cell death or long-term gray or white matter changes resulted from hypoxia. Animals exposed to prenatal hypoxia did have several long-term functional consequences, including sex-dichotomous changes. Hypoxia exposure was associated with a decreased seizure threshold and abnormalities in hindlimb strength and repetitive behaviors in males and females. Males exposed to hypoxia had increased anxiety-related deficits, whereas females had deficits in social interaction. Neither sex developed any motor or visual learning deficits. This study demonstrates that late gestation transient prenatal hypoxia in mice is a simple, clinically relevant paradigm for studying putative environmental and genetic modulators of the long-term effects of hypoxia on the developing brain.
Collapse
Affiliation(s)
- Ana G. Cristancho
- Division of Child Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA, U.S.A
- Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA, U.S.A
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, U.S.A
| | - Elyse C. Gadra
- Department of Child and Adolescent Psychiatry and Behavioral Services, The Children’s Hospital of Philadelphia, Philadelphia, PA, U.S.A
| | - Ima M. Samba
- Division of Child Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA, U.S.A
| | - Chenying Zhao
- Radiology Research, Children’s Hospital of Philadelphia Research Institute, Philadelphia, PA, U.S.A
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, U.S.A
| | - Minhui Ouyang
- Radiology Research, Children’s Hospital of Philadelphia Research Institute, Philadelphia, PA, U.S.A
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, PA, U.S.A
| | - Sergey Magnitsky
- Radiology Research, Children’s Hospital of Philadelphia Research Institute, Philadelphia, PA, U.S.A
| | - Hao Huang
- Radiology Research, Children’s Hospital of Philadelphia Research Institute, Philadelphia, PA, U.S.A
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, PA, U.S.A
| | - Angela N. Viaene
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, U.S.A. and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, U.S.A
| | - Stewart A. Anderson
- Department of Child and Adolescent Psychiatry and Behavioral Services, The Children’s Hospital of Philadelphia, Philadelphia, PA, U.S.A
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, U.S.A
| | - Eric D. Marsh
- Division of Child Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA, U.S.A
- Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA, U.S.A
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, U.S.A
| |
Collapse
|
6
|
Mortazavi M, Ren Y, Saini S, Antaki D, St. Pierre CL, Williams A, Sohni A, Wilkinson MF, Gymrek M, Sebat J, Palmer AA. SNPs, short tandem repeats, and structural variants are responsible for differential gene expression across C57BL/6 and C57BL/10 substrains. CELL GENOMICS 2022; 2:100102. [PMID: 35720252 PMCID: PMC9205302 DOI: 10.1016/j.xgen.2022.100102] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 11/22/2021] [Accepted: 02/02/2022] [Indexed: 12/13/2022]
Abstract
Mouse substrains are an invaluable model for understanding disease. We compared C57BL/6J, which is the most commonly used inbred mouse strain, with eight C57BL/6 and five C57BL/10 closely related inbred substrains. Whole-genome sequencing and RNA-sequencing analysis yielded 352,631 SNPs, 109,096 indels, 150,344 short tandem repeats (STRs), 3,425 structural variants (SVs), and 2,826 differentially expressed genes (DE genes) among these 14 strains; 312,981 SNPs (89%) distinguished the B6 and B10 lineages. These SNPs were clustered into 28 short segments that are likely due to introgressed haplotypes rather than new mutations. Outside of these introgressed regions, we identified 53 SVs, protein-truncating SNPs, and frameshifting indels that were associated with DE genes. Our results can be used for both forward and reverse genetic approaches and illustrate how introgression and mutational processes give rise to differences among these widely used inbred substrains.
Collapse
Affiliation(s)
- Milad Mortazavi
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Yangsu Ren
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Shubham Saini
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA, USA
| | - Danny Antaki
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Department of Cellular and Molecular Medicine and Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Celine L. St. Pierre
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - April Williams
- Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Abhishek Sohni
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California San Diego, La Jolla, CA, USA
| | - Miles F. Wilkinson
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Melissa Gymrek
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Jonathan Sebat
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Department of Cellular and Molecular Medicine and Pediatrics, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Abraham A. Palmer
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
7
|
Verma V, Kumar MJV, Sharma K, Rajaram S, Muddashetty R, Manjithaya R, Behnisch T, Clement JP. Pharmacological intervention in young adolescents rescues synaptic physiology and behavioural deficits in Syngap1 +/- mice. Exp Brain Res 2021; 240:289-309. [PMID: 34739555 DOI: 10.1007/s00221-021-06254-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 10/21/2021] [Indexed: 01/04/2023]
Abstract
Haploinsufficiency in SYNGAP1 is implicated in intellectual disability (ID) and autism spectrum disorder (ASD) and affects the maturation of dendritic spines. The abnormal spine development has been suggested to cause a disbalance of excitatory and inhibitory (E/I) neurotransmission at distinct developmental periods. In addition, E/I imbalances in Syngap1+/- mice might be due to abnormalities in K+-Cl- co-transporter function (NKCC1, KCC2), in a maner similar to the murine models of Fragile-X and Rett syndromes. To study whether an altered intracellular chloride ion concentration represents an underlying mechanism of modified function of GABAergic synapses in Dentate Gyrus Granule Cells of Syngap1+/- recordings were performed at different developmental stages of the mice. We observed depolarised neurons at P14-15 as illustrated by decreased Cl- reversal potential in Syngap1+/- mice. The KCC2 expression was decreased compared to Wild-type (WT) mice at P14-15. The GSK-3β inhibitor, 6-bromoindirubin-3'-oxime (6BIO) that crosses the blood-brain barrier, was tested to restore the function of GABAergic synapses. We discovered that the intraperitoneal administration of 6BIO during the critical period or young adolescents [P30 to P80 (4-week to 10-week)] normalised an altered E/I balance, the deficits of synaptic plasticity, and behavioural performance like social novelty, anxiety, and memory of the Syngap1+/- mice. In summary, altered GABAergic function in Syngap1+/- mice is due to reduced KCC2 expression leading to an increase in the intracellular chloride concentration that can be counteracted by the 6BIO, which restored cognitive, emotional, and social symptoms by pharmacological intervention, particularly in adulthood.
Collapse
Affiliation(s)
- Vijaya Verma
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, 560064, India
| | - M J Vijay Kumar
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, 560064, India
| | - Kavita Sharma
- International Centre for Material Sciences, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, 560064, India
| | - Sridhar Rajaram
- International Centre for Material Sciences, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, 560064, India
| | - Ravi Muddashetty
- Institute for Stem Cell Biology and Regenerative Medicine, Bangalore, 560065, India
| | - Ravi Manjithaya
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, 560064, India.,Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, 560064, India
| | - Thomas Behnisch
- Institutes of Brain Sciences, Fudan University, Shanghai, 200032, China
| | - James P Clement
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, 560064, India.
| |
Collapse
|
8
|
Gu B, Shorter JR, Williams LH, Bell TA, Hock P, Dalton KA, Pan Y, Miller DR, Shaw GD, Philpot BD, Pardo-Manuel de Villena F. Collaborative Cross mice reveal extreme epilepsy phenotypes and genetic loci for seizure susceptibility. Epilepsia 2020; 61:2010-2021. [PMID: 32852103 DOI: 10.1111/epi.16617] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 06/25/2020] [Accepted: 06/26/2020] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Animal studies remain essential for understanding mechanisms of epilepsy and identifying new therapeutic targets. However, existing animal models of epilepsy do not reflect the high level of genetic diversity found in the human population. The Collaborative Cross (CC) population is a genetically diverse recombinant inbred panel of mice. The CC offers large genotypic and phenotypic diversity, inbred strains with stable genomes that allow for repeated phenotypic measurements, and genomic tools including whole genome sequence to identify candidate genes and candidate variants. METHODS We evaluated multiple complex epileptic traits in a sampling of 35 CC inbred strains using the flurothyl-induced seizure and kindling paradigm. We created an F2 population of 297 mice with extreme seizure susceptibility and performed quantitative trait loci (QTL) mapping to identify genomic regions associated with seizure sensitivity. We used quantitative RNA sequencing from CC hippocampal tissue to identify candidate genes and whole genome sequence to identify genetic variants likely affecting gene expression. RESULTS We identified new mouse models with extreme seizure susceptibility, seizure propagation, epileptogenesis, and SUDEP (sudden unexpected death in epilepsy). We performed QTL mapping and identified one known and seven novel loci associated with seizure sensitivity. We combined whole genome sequencing and hippocampal gene expression to pinpoint biologically plausible candidate genes (eg, Gabra2) and variants associated with seizure sensitivity. SIGNIFICANCE New mouse models of epilepsy are needed to better understand the complex genetic architecture of seizures and to identify therapeutics. We performed a phenotypic screen utilizing a novel genetic reference population of CC mice. The data we provide enable the identification of protective/risk genes and novel molecular mechanisms linked to complex seizure traits that are currently challenging to study and treat.
Collapse
Affiliation(s)
- Bin Gu
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, USA.,Neuroscience Center, University of North Carolina, Chapel Hill, NC, USA
| | - John R Shorter
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA.,Carolina Institute for Developmental Disabilities, University of North Carolina, Chapel Hill, NC, USA.,Institute of Biological Psychiatry, Mental Health Centre Sct. Hans, Mental Health Services, Copenhagen, Denmark.,iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
| | - Lucy H Williams
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Timothy A Bell
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA.,Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Pablo Hock
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA.,Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Katherine A Dalton
- Neuroscience Curriculum, University of North Carolina, Chapel Hill, NC, USA
| | - Yiyun Pan
- Neuroscience Curriculum, University of North Carolina, Chapel Hill, NC, USA
| | - Darla R Miller
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA.,Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Ginger D Shaw
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA.,Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Benjamin D Philpot
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, USA.,Neuroscience Center, University of North Carolina, Chapel Hill, NC, USA.,Carolina Institute for Developmental Disabilities, University of North Carolina, Chapel Hill, NC, USA.,Neuroscience Curriculum, University of North Carolina, Chapel Hill, NC, USA
| | - Fernando Pardo-Manuel de Villena
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA.,Carolina Institute for Developmental Disabilities, University of North Carolina, Chapel Hill, NC, USA.,Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
9
|
Kang SK, Hawkins NA, Kearney JA. C57BL/6J and C57BL/6N substrains differentially influence phenotype severity in the Scn1a +/- mouse model of Dravet syndrome. Epilepsia Open 2019; 4:164-169. [PMID: 30868126 PMCID: PMC6398090 DOI: 10.1002/epi4.12287] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 10/05/2018] [Accepted: 11/13/2018] [Indexed: 01/01/2023] Open
Abstract
Many disease-relevant phenotypes modeled in inbred mice have been shown to be strain-dependent, indicating the important influence of genetic background on disease phenotypes. Although C57BL/6 mice are one of the most commonly used inbred strains in laboratory research, there are multiple substrains (eg, B6J vs B6N) that have been separated for more than 50 years. Thus, understanding the substrain differences is important for scientific rigor and reproducibility. In this study, seizure susceptibility, spontaneous seizures, and survival were compared between Scn1a +/- mice on (C57BL/6J × 129S6/SvEvTac)F1 (F1J) vs (C57BL/6N × 129S6/SvEvTac)F1 (F1N) strain backgrounds. F1N.Scn1a +/- mice were more susceptible to hyperthermia-induced seizures, yet had milder spontaneous seizures and improved survival relative to F1J.Scn1a +/- mice. Our results indicate that choice of C57BL/6 substrain may significantly alter disease phenotypes and should be considered carefully in experimental design using the Scn1a +/- Dravet mouse model, as well as other mouse models of epilepsy.
Collapse
Affiliation(s)
- Seok K. Kang
- Interdepartmental Neuroscience ProgramFeinberg School of MedicineNorthwestern UniversityChicagoIllinois
| | - Nicole A. Hawkins
- Department of PharmacologyFeinberg School of MedicineNorthwestern UniversityChicagoIllinois
| | - Jennifer A. Kearney
- Interdepartmental Neuroscience ProgramFeinberg School of MedicineNorthwestern UniversityChicagoIllinois
- Department of PharmacologyFeinberg School of MedicineNorthwestern UniversityChicagoIllinois
| |
Collapse
|
10
|
Löscher W, Ferland RJ, Ferraro TN. The relevance of inter- and intrastrain differences in mice and rats and their implications for models of seizures and epilepsy. Epilepsy Behav 2017; 73. [PMID: 28651171 PMCID: PMC5909069 DOI: 10.1016/j.yebeh.2017.05.040] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
It is becoming increasingly clear that the genetic background of mice and rats, even in inbred strains, can have a profound influence on measures of seizure susceptibility and epilepsy. These differences can be capitalized upon through genetic mapping studies to reveal genes important for seizures and epilepsy. However, strain background and particularly mixed genetic backgrounds of transgenic animals need careful consideration in both the selection of strains and in the interpretation of results and conclusions. For instance, mice with targeted deletions of genes involved in epilepsy can have profoundly disparate phenotypes depending on the background strain. In this review, we discuss findings related to how this genetic heterogeneity has and can be utilized in the epilepsy field to reveal novel insights into seizures and epilepsy. Moreover, we discuss how caution is needed in regards to rodent strain or even animal vendor choice, and how this can significantly influence seizure and epilepsy parameters in unexpected ways. This is particularly critical in decisions regarding the strain of choice used in generating mice with targeted deletions of genes. Finally, we discuss the role of environment (at vendor and/or laboratory) and epigenetic factors for inter- and intrastrain differences and how such differences can affect the expression of seizures and the animals' performance in behavioral tests that often accompany acute and chronic seizure testing.
Collapse
Affiliation(s)
- Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Hannover, Germany; Center for Systems Neuroscience, Hannover, Germany.
| | - Russell J Ferland
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY, United States; Department of Neurology, Albany Medical College, Albany, NY, United States
| | - Thomas N Ferraro
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, United States
| |
Collapse
|
11
|
Kadiyala SB, Ferland RJ. Dissociation of spontaneous seizures and brainstem seizure thresholds in mice exposed to eight flurothyl-induced generalized seizures. Epilepsia Open 2016; 2:48-58. [PMID: 28825051 PMCID: PMC5560332 DOI: 10.1002/epi4.12031] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Objective C57BL/6J mice exposed to eight flurothyl‐induced generalized clonic seizures exhibit a change in seizure phenotype following a 28‐day incubation period and subsequent flurothyl rechallenge. Mice now develop a complex seizure semiology originating in the forebrain and propagating into the brainstem seizure network (a forebrain→brainstem seizure). In contrast, this phenotype change does not occur in seizure‐sensitive DBA/2J mice. The underlying mechanism was the focus of this study. Methods DBA/2J mice were exposed to eight flurothyl‐induced seizures (1/day) followed by 24‐h video‐electroencephalographic recordings for 28 days. Forebrain and brainstem seizure thresholds were determined in C57BL/6J and DBA/2J mice following one or eight flurothyl‐induced seizures, or after eight flurothyl‐induced seizures, a 28‐day incubation period, and final flurothyl rechallenge. Results Similar to C57BL/6J mice, DBA/2J mice expressed spontaneous seizures. However, unlike C57BL/6J mice, DBA/2J mice continued to have spontaneous seizures without remission. Because DBA/2J mice did not express forebrain→brainstem seizures following flurothyl rechallenge after a 28‐day incubation period, this indicated that spontaneous seizures were not sufficient for the evolution of forebrain→brainstem seizures. Therefore, we determined whether brainstem seizure thresholds were changing during this repeated‐flurothyl model and whether this could account for the expression of forebrain→brainstem seizures. Brainstem seizure thresholds were not different between C57BL/6J and DBA/2J mice on day 1 or on the last induction seizure trial (day 8). However, brainstem seizure thresholds did differ significantly on flurothyl rechallenge (day 28), with DBA/2J mice showing no lowering of their brainstem seizure thresholds. Significance These results demonstrate that DBA/2J mice exposed to the repeated‐flurothyl model develop spontaneous seizures without evidence of seizure remission and provide a new model of epileptogenesis. Moreover, these findings indicated that the transition of forebrain ictal discharge into the brainstem seizure network occurs as a result of changes in brainstem seizure thresholds that are independent of spontaneous seizure expression.
Collapse
Affiliation(s)
- Sridhar B Kadiyala
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY 12208, USA
| | - Russell J Ferland
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY 12208, USA.,Department of Neurology, Albany Medical College, Albany, NY 12208, USA
| |
Collapse
|
12
|
Judson MC, Wallace ML, Sidorov MS, Burette AC, Gu B, van Woerden GM, King IF, Han JE, Zylka MJ, Elgersma Y, Weinberg RJ, Philpot BD. GABAergic Neuron-Specific Loss of Ube3a Causes Angelman Syndrome-Like EEG Abnormalities and Enhances Seizure Susceptibility. Neuron 2016; 90:56-69. [PMID: 27021170 DOI: 10.1016/j.neuron.2016.02.040] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 01/17/2016] [Accepted: 02/24/2016] [Indexed: 11/19/2022]
Abstract
Loss of maternal UBE3A causes Angelman syndrome (AS), a neurodevelopmental disorder associated with severe epilepsy. We previously implicated GABAergic deficits onto layer (L) 2/3 pyramidal neurons in the pathogenesis of neocortical hyperexcitability, and perhaps epilepsy, in AS model mice. Here we investigate consequences of selective Ube3a loss from either GABAergic or glutamatergic neurons, focusing on the development of hyperexcitability within L2/3 neocortex and in broader circuit and behavioral contexts. We find that GABAergic Ube3a loss causes AS-like increases in neocortical EEG delta power, enhances seizure susceptibility, and leads to presynaptic accumulation of clathrin-coated vesicles (CCVs)-all without decreasing GABAergic inhibition onto L2/3 pyramidal neurons. Conversely, glutamatergic Ube3a loss fails to yield EEG abnormalities, seizures, or associated CCV phenotypes, despite impairing tonic inhibition onto L2/3 pyramidal neurons. These results substantiate GABAergic Ube3a loss as the principal cause of circuit hyperexcitability in AS mice, lending insight into ictogenic mechanisms in AS.
Collapse
Affiliation(s)
- Matthew C Judson
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC 27599, USA; Carolina Institute for Developmental Disabilities, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Michael L Wallace
- Curriculum in Neurobiology, University of North Carolina, Chapel Hill, NC 27599, USA; Carolina Institute for Developmental Disabilities, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Michael S Sidorov
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC 27599, USA; Carolina Institute for Developmental Disabilities, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Alain C Burette
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Bin Gu
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC 27599, USA; Carolina Institute for Developmental Disabilities, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Geeske M van Woerden
- Department of Neuroscience, Erasmus Medical Center, Wytemaweg 80, 3015 CN Rotterdam, the Netherlands; ENCORE Center for Neurodevelopmental Disorders, Erasmus Medical Center, Wytemaweg 80, 3015 CN Rotterdam, the Netherlands
| | - Ian F King
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ji Eun Han
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Mark J Zylka
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC 27599, USA; Curriculum in Neurobiology, University of North Carolina, Chapel Hill, NC 27599, USA; Carolina Institute for Developmental Disabilities, University of North Carolina, Chapel Hill, NC 27599, USA; Neuroscience Center, University of North Carolina, Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ype Elgersma
- Department of Neuroscience, Erasmus Medical Center, Wytemaweg 80, 3015 CN Rotterdam, the Netherlands; ENCORE Center for Neurodevelopmental Disorders, Erasmus Medical Center, Wytemaweg 80, 3015 CN Rotterdam, the Netherlands
| | - Richard J Weinberg
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC 27599, USA; Curriculum in Neurobiology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Benjamin D Philpot
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC 27599, USA; Curriculum in Neurobiology, University of North Carolina, Chapel Hill, NC 27599, USA; Carolina Institute for Developmental Disabilities, University of North Carolina, Chapel Hill, NC 27599, USA; Neuroscience Center, University of North Carolina, Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
13
|
Bröer S, Käufer C, Haist V, Li L, Gerhauser I, Anjum M, Bankstahl M, Baumgärtner W, Löscher W. Brain inflammation, neurodegeneration and seizure development following picornavirus infection markedly differ among virus and mouse strains and substrains. Exp Neurol 2016; 279:57-74. [PMID: 26892877 DOI: 10.1016/j.expneurol.2016.02.011] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 01/25/2016] [Accepted: 02/13/2016] [Indexed: 01/20/2023]
Abstract
Infections, particularly those caused by viruses, are among the main causes of acquired epilepsy, but the mechanisms causing epileptogenesis are only poorly understood. As a consequence, no treatment exists for preventing epilepsy in patients at risk. Animal models are useful to study epileptogenesis after virus-induced encephalitis and how to interfere with this process, but most viruses that cause encephalitis in rodents are associated with high mortality, so that the processes leading to epilepsy cannot be investigated. Recently, intracerebral infection with Theiler's murine encephalomyelitis virus (TMEV) in C57BL/6 (B6) mice was reported to induce early seizures and epilepsy and it was proposed that the TMEV mouse model represents the first virus infection-driven animal model of epilepsy. In the present study, we characterized this model in two B6 substrains and seizure-resistant SJL/J mice by using three TMEV (sub)strains (BeAn-1, BeAn-2, DA). The idea behind this approach was to study what is and what is not necessary for development of acute and late seizures after brain infection in mice. Receiver operating characteristic (ROC) curve analysis was used to determine which virus-induced brain alterations are associated with seizure development. In B6 mice infected with different TMEV virus (sub)strains, the severity of hippocampal neurodegeneration, amount of MAC3-positive microglia/macrophages, and expression of the interferon-inducible antiviral effector ISG15 were almost perfect at discriminating seizing from non-seizing B6 mice, whereas T-lymphocyte brain infiltration was not found to be a crucial factor. However, intense microglia/macrophage activation and some hippocampal damage were also observed in SJL/J mice. Overall, the TMEV model provides a unique platform to study virus and host factors in ictogenesis and epileptogenesis.
Collapse
Affiliation(s)
- Sonja Bröer
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany
| | - Christopher Käufer
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany; Center for Systems Neuroscience, Hanover, Germany
| | - Verena Haist
- Department of Pathology, University of Veterinary Medicine, Germany
| | - Lin Li
- Center for Systems Neuroscience, Hanover, Germany; Department of Pathology, University of Veterinary Medicine, Germany
| | - Ingo Gerhauser
- Department of Pathology, University of Veterinary Medicine, Germany
| | - Muneeb Anjum
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany; Center for Systems Neuroscience, Hanover, Germany
| | - Marion Bankstahl
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany; Center for Systems Neuroscience, Hanover, Germany
| | - Wolfgang Baumgärtner
- Center for Systems Neuroscience, Hanover, Germany; Department of Pathology, University of Veterinary Medicine, Germany
| | - Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany; Center for Systems Neuroscience, Hanover, Germany.
| |
Collapse
|