1
|
Kroneberg D, Nümann A, Minnerop M, Rönnefarth M, Endres M, Kühn AA, Paul F, Doss S, Solbrig S, Elshehabi M, Maetzler W, Schmitz-Hübsch T. Gait Variability as a Potential Motor Marker of Cerebellar Disease-Relationship between Variability of Stride, Arm Swing and Trunk Movements, and Walking Speed. SENSORS (BASEL, SWITZERLAND) 2024; 24:3476. [PMID: 38894268 PMCID: PMC11174553 DOI: 10.3390/s24113476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/17/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024]
Abstract
Excessive stride variability is a characteristic feature of cerebellar ataxias, even in pre-ataxic or prodromal disease stages. This study explores the relation of variability of arm swing and trunk deflection in relationship to stride length and gait speed in previously described cohorts of cerebellar disease and healthy elderly: we examined 10 patients with spinocerebellar ataxia type 14 (SCA), 12 patients with essential tremor (ET), and 67 healthy elderly (HE). Using inertial sensors, recordings of gait performance were conducted at different subjective walking speeds to delineate gait parameters and respective coefficients of variability (CoV). Comparisons across cohorts and walking speed categories revealed slower stride velocities in SCA and ET patients compared to HE, which was paralleled by reduced arm swing range of motion (RoM), peak velocity, and increased CoV of stride length, while no group differences were found for trunk deflections and their variability. Larger arm swing RoM, peak velocity, and stride length were predicted by higher gait velocity in all cohorts. Lower gait velocity predicted higher CoV values of trunk sagittal and horizontal deflections, as well as arm swing and stride length in ET and SCA patients, but not in HE. These findings highlight the role of arm movements in ataxic gait and the impact of gait velocity on variability, which are essential for defining disease manifestation and disease-related changes in longitudinal observations.
Collapse
Affiliation(s)
- Daniel Kroneberg
- Department of Neurology with Experimental Neurology, Charité–Universitätsmedizin Berlin, corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
- Berlin Institute of Health, Charité–Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Astrid Nümann
- Department of Neurology with Experimental Neurology, Charité–Universitätsmedizin Berlin, corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
- Experimental and Clinical Research Center, a cooperation of Max-Delbrueck Center of Molecular Medicine and Charité–Universitätsmedizin Berlin, Lindenberger Weg 80, 13125 Berlin, Germany;
| | - Martina Minnerop
- Institute of Neuroscience and Medicine (INM-1), Research Center Jülich, 52425 Jülich, Germany
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty & University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
- Center for Movement Disorders and Neuromodulation, Department of Neurology, Medical Faculty & University Hospital Düsseldorf, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Maria Rönnefarth
- Department of Neurology with Experimental Neurology, Charité–Universitätsmedizin Berlin, corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Matthias Endres
- Department of Neurology with Experimental Neurology, Charité–Universitätsmedizin Berlin, corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
- Center for Stroke Research Berlin, Charitéplatz 1, 10117 Berlin, Germany
- NeuroCure Cluster of Excellence, Charité–University Medicine Berlin, Charitéplatz 1, 10117 Berlin, Germany
- German Center for Neurodegenerative Diseases (DZNE), Partner Site Berlin, Charitéplatz 1, 10117 Berlin, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Berlin, 10117 Berlin, Germany
- German Center for Mental Health (DZPG), Partner Site Berlin, 10117 Berlin, Germany
| | - Andrea A. Kühn
- Department of Neurology with Experimental Neurology, Charité–Universitätsmedizin Berlin, corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
- Berlin Institute of Health, Charité–Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
- NeuroCure Cluster of Excellence, Charité–University Medicine Berlin, Charitéplatz 1, 10117 Berlin, Germany
- German Center for Neurodegenerative Diseases (DZNE), Partner Site Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Friedemann Paul
- Department of Neurology with Experimental Neurology, Charité–Universitätsmedizin Berlin, corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
- Experimental and Clinical Research Center, a cooperation of Max-Delbrueck Center of Molecular Medicine and Charité–Universitätsmedizin Berlin, Lindenberger Weg 80, 13125 Berlin, Germany;
- NCRC-Neuroscience Clinical Research Center, Charité–Universitätsmedizin Berlin, corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Sarah Doss
- Department of Neurology with Experimental Neurology, Charité–Universitätsmedizin Berlin, corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Susanne Solbrig
- Department of Neurodegenerative Diseases, Center for Neurology, Hertie Institute, Hoppe-Seyler-Straße 3, 72076 Tübingen, Germany
| | - Morad Elshehabi
- Department of Neurology, Universitätsklinikum Schleswig-Holstein, Arnold-Heller-Straße 3, 24105 Kiel, Germany
| | - Walter Maetzler
- Department of Neurodegenerative Diseases, Center for Neurology, Hertie Institute, Hoppe-Seyler-Straße 3, 72076 Tübingen, Germany
- Department of Neurology, Universitätsklinikum Schleswig-Holstein, Arnold-Heller-Straße 3, 24105 Kiel, Germany
| | - Tanja Schmitz-Hübsch
- Experimental and Clinical Research Center, a cooperation of Max-Delbrueck Center of Molecular Medicine and Charité–Universitätsmedizin Berlin, Lindenberger Weg 80, 13125 Berlin, Germany;
- NCRC-Neuroscience Clinical Research Center, Charité–Universitätsmedizin Berlin, corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| |
Collapse
|
2
|
Walz ID, Waibel S, Kuhner A, Gollhofer A, Maurer C. Age-related changes in mobility assessments correlate with repetitive goal-directed arm-movement performance. BMC Geriatr 2023; 23:487. [PMID: 37568095 PMCID: PMC10422784 DOI: 10.1186/s12877-023-04150-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 07/04/2023] [Indexed: 08/13/2023] Open
Abstract
BACKGROUND There is ample evidence that mobility abilities between healthy young and elderly people differ. However, we do not know whether these differences are based on different lower leg motor capacity or instead reveal a general motor condition that could be detected by monitoring upper-limb motor behavior. We therefore captured body movements during a standard mobility task, namely the Timed Up and Go test (TUG) with subjects following different instructions while performing a rapid, repetitive goal-directed arm-movement test (arm-movement test). We hypothesized that we would be able to predict gait-related parameters from arm motor behavior, even regardless of age. METHODS Sixty healthy individuals were assigned to three groups (young: mean 26 ± 3 years, middle-aged 48 ± 9, old 68 ± 7). They performed the arm-movement and TUG test under three conditions: preferred (at preferred movement speed), dual-task (while counting backwards), and fast (at fast movement speed). We recorded the number of contacts within 20 s and the TUG duration. We also extracted TUG walking sequences to analyze spatiotemporal gait parameters and evaluated the correlation between arm-movement and TUG results. RESULTS The TUG condition at preferred speed revealed differences in gait speed and step length only between young and old, while dual-task and fast execution increased performance differences significantly among all 3 groups. Our old group's gait speed decreased the most doing the dual-task, while the young group's gait speed increased the most during the fast condition. As in our TUG results, arm-movements were significant faster in young than in middle-aged and old. We observed significant correlations between arm movements and the fast TUG condition, and that the number of contacts closely predicts TUG timefast and gait speedfast. This prediction is more accurate when including age. CONCLUSION We found that the age-related decline in mobility performance that TUG reveals strongly depends on the test instruction: the dual-task and fast condition clearly strengthened group contrasts. Interestingly, a fast TUG performance was predictable by the performance in a fast repetitive goal-directed arm-movements test, even beyond the age effect. We assume that arm movements and the fast TUG condition reflect similarly reduced motor function. TRIAL REGISTRATION German Clinical Trials Register (DRKS) number: DRKS00016999, prospectively registered on March, 26, 2019.
Collapse
Affiliation(s)
- Isabelle Daniela Walz
- Department of Neurology and Neuroscience, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Sports and Sport Science, University of Freiburg, Freiburg, Germany
| | - Sarah Waibel
- Department of Neurology and Neuroscience, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Andreas Kuhner
- Department of Computer Science, University of Freiburg, Freiburg, Germany
- Franka Emika GmbH, Freiburg, Germany
| | - Albert Gollhofer
- Department of Sports and Sport Science, University of Freiburg, Freiburg, Germany
| | - Christoph Maurer
- Department of Neurology and Neuroscience, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
3
|
Dumuids-Vernet MV, Forma V, Provasi J, Anderson DI, Hinnekens E, Soyez E, Strassel M, Guéret L, Hym C, Huet V, Granjon L, Calamy L, Dassieu G, Boujenah L, Dollat C, Biran V, Barbu-Roth M. Stimulating the motor development of very premature infants: effects of early crawling training on a mini-skateboard. Front Pediatr 2023; 11:1198016. [PMID: 37346892 PMCID: PMC10281647 DOI: 10.3389/fped.2023.1198016] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/18/2023] [Indexed: 06/23/2023] Open
Abstract
Aim To examine the effects of an early home-based 8-week crawling intervention performed by trained therapists on the motor and general development of very premature infants during the first year of life. Methods At term-equivalent age, immediately following discharge from the Neonatal Intensive Care Unit (NICU), we randomly allocated 44 premature infants born before 32 weeks' gestation without major brain damage to one of three conditions in our intervention study: crawling on a mini-skateboard, the Crawliskate (Crawli), prone positioning control (Mattress), or standard care (Control). The Crawli and Mattress groups received 5 min daily at-home training administered by trained therapists for 8 consecutive weeks upon discharge from the NICU. The outcomes of greatest interest included gross motor development (Bayley-III) at 2, 6, 9, and 12 months (primary outcome) corrected age (CA), mature crawling at 9 months CA and general development at 9 and 12 months CA [Ages and Stages Questionnaires-3 (ASQ-3)]. The study was registered at www.clinicaltrials.gov; registration number: NCT05278286. Results A 3 (Condition) × 4 (Age) repeated measures ANOVA revealed that Crawli group infants had significantly higher Bayley-III gross motor development scores than Mattress and Control group infants. Crawli group infants also scored significantly higher on groups of Bayley-III items related to specific motor skills than infants in the other groups, including crawling at 9 months CA. We found significant differences in favor of the Crawli group in separate one-way ANOVAs at each of the ages we examined. A 3 (Condition) × 2 (Age) repeated measures ANOVA revealed that the Crawli group scored significantly higher than the Control group for the ASQ-3 total score and communication score and significantly higher for the fine motor score than the Control and Mattress groups. We found additional significant differences in favor of the Crawli group for other dimensions of the ASQ-3 in separate one-way ANOVAs at 9 and 12 months CA. Interpretation Early crawling training on a Crawliskate provides an effective way to promote motor and general development in very premature infants. The findings also provide clear evidence for a link between newborn crawling and more mature crawling later in development.
Collapse
Affiliation(s)
| | - Vincent Forma
- Université Paris Cité, CNRS, Integrative Neuroscience and Cognition Center (INCC), Paris, France
| | - Joëlle Provasi
- CHArt Laboratory (Human and Artificial Cognition), EPHE-PSL, Paris, France
| | - David Ian Anderson
- Marian Wright Edelman Institute, San Francisco State University, San Francisco, CA, United States
| | - Elodie Hinnekens
- Université Paris Cité, CNRS, Integrative Neuroscience and Cognition Center (INCC), Paris, France
| | - Evelyne Soyez
- Université Paris Cité, CNRS, Integrative Neuroscience and Cognition Center (INCC), Paris, France
| | - Mathilde Strassel
- Université Paris Cité, CNRS, Integrative Neuroscience and Cognition Center (INCC), Paris, France
| | - Léa Guéret
- Université Paris Cité, CNRS, Integrative Neuroscience and Cognition Center (INCC), Paris, France
| | - Charlotte Hym
- Université Paris Cité, CNRS, Integrative Neuroscience and Cognition Center (INCC), Paris, France
| | - Viviane Huet
- Université Paris Cité, CNRS, Integrative Neuroscience and Cognition Center (INCC), Paris, France
| | - Lionel Granjon
- Université Paris Cité, CNRS, Integrative Neuroscience and Cognition Center (INCC), Paris, France
| | - Lucie Calamy
- Université Paris Cité, CNRS, Integrative Neuroscience and Cognition Center (INCC), Paris, France
| | - Gilles Dassieu
- Service de Néonatologie, Centre Hospitalier Intercommunal, Créteil, France
| | - Laurence Boujenah
- Service de Néonatologie, Groupe Hospitalier Paris Saint-Joseph, Paris, France
| | - Camille Dollat
- Service de Néonatologie, AP-HP, Maternité Port Royal, Paris, France
| | - Valérie Biran
- Service de Néonatologie, AP-HP, Hôpital Robert Debré, Paris, France
| | - Marianne Barbu-Roth
- Université Paris Cité, CNRS, Integrative Neuroscience and Cognition Center (INCC), Paris, France
| |
Collapse
|
4
|
Ivanenko Y, Shapkova EY, Petrova DA, Kleeva DF, Lebedev MA. Exoskeleton gait training with spinal cord neuromodulation. Front Hum Neurosci 2023; 17:1194702. [PMID: 37250689 PMCID: PMC10213721 DOI: 10.3389/fnhum.2023.1194702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 04/27/2023] [Indexed: 05/31/2023] Open
Abstract
Neuromodulating the locomotor network through spinal cord electrical stimulation (SCES) is effective for restoring function in individuals with gait deficits. However, SCES alone has limited effectiveness without concurrent locomotor function training that enhances activity-dependent plasticity of spinal neuronal networks by sensory feedback. This mini review discusses recent developments in using combined interventions, such as SCES added to exoskeleton gait training (EGT). To develop personalized therapies, it is crucial to assess the state of spinal circuitry through a physiologically relevant approach that identifies individual characteristics of spinal cord function to develop person-specific SCES and EGT. The existing literature suggests that combining SCES and EGT to activate the locomotor network can have a synergistic rehabilitative effect on restoring walking abilities, somatic sensation, and cardiovascular and bladder function in paralyzed individuals.
Collapse
Affiliation(s)
| | - Elena Y. Shapkova
- Saint-Petersburg State Research Institute of Phthisiopulmonology, Saint Petersburg, Russia
- Institute of Translational Biomedicine, St. Petersburg State University, Saint Petersburg, Russia
| | - Daria A. Petrova
- Vladimir Zelman Center for Neurobiology and Brain Rehabilitation, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Daria F. Kleeva
- Vladimir Zelman Center for Neurobiology and Brain Rehabilitation, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Mikhail A. Lebedev
- Faculty of Mechanics and Mathematics, Lomonosov Moscow State University, Moscow, Russia
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, Saint Petersburg, Russia
| |
Collapse
|
5
|
Solopova IA, Selionov VA, Blinov EO, Dolinskaya IY, Zhvansky DS, Lacquaniti F, Ivanenko Y. Higher Responsiveness of Pattern Generation Circuitry to Sensory Stimulation in Healthy Humans Is Associated with a Larger Hoffmann Reflex. BIOLOGY 2022; 11:biology11050707. [PMID: 35625435 PMCID: PMC9138260 DOI: 10.3390/biology11050707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/26/2022] [Accepted: 05/02/2022] [Indexed: 11/25/2022]
Abstract
Simple Summary Individual differences in the sensorimotor circuitry play an important role for understanding the nature of behavioral variability and developing personalized therapies. While the spinal network likely requires relatively rigid organization, it becomes increasingly evident that adaptability and inter-individual variability in the functioning of the neuronal circuitry is present not only in the brain but also in the spinal cord. In this study we investigated the relationship between the excitability of pattern generation circuitry and segmental reflexes in healthy humans. We found that the high individual responsiveness of pattern generation circuitries to tonic sensory input in both the upper and lower limbs was related to larger H-reflexes. The results provide further evidence for the importance of physiologically relevant assessments of spinal cord neuromodulation and the individual physiological state of reflex pathways. Abstract The state and excitability of pattern generators are attracting the increasing interest of neurophysiologists and clinicians for understanding the mechanisms of the rhythmogenesis and neuromodulation of the human spinal cord. It has been previously shown that tonic sensory stimulation can elicit non-voluntary stepping-like movements in non-injured subjects when their limbs were placed in a gravity-neutral unloading apparatus. However, large individual differences in responsiveness to such stimuli were observed, so that the effects of sensory neuromodulation manifest only in some of the subjects. Given that spinal reflexes are an integral part of the neuronal circuitry, here we investigated the extent to which spinal pattern generation excitability in response to the vibrostimulation of muscle proprioceptors can be related to the H-reflex magnitude, in both the lower and upper limbs. For the H-reflex measurements, three conditions were used: stationary limbs, voluntary limb movement and passive limb movement. The results showed that the H-reflex was considerably higher in the group of participants who demonstrated non-voluntary rhythmic responses than it was in the participants who did not demonstrate them. Our findings are consistent with the idea that spinal reflex measurements play important roles in assessing the rhythmogenesis of the spinal cord.
Collapse
Affiliation(s)
- Irina A. Solopova
- Laboratory of Neurobiology of Motor Control, Institute for Information Transmission Problems, Russian Academy of Sciences, 127951 Moscow, Russia; (I.A.S.); (V.A.S.); (I.Y.D.); (D.S.Z.)
| | - Victor A. Selionov
- Laboratory of Neurobiology of Motor Control, Institute for Information Transmission Problems, Russian Academy of Sciences, 127951 Moscow, Russia; (I.A.S.); (V.A.S.); (I.Y.D.); (D.S.Z.)
| | - Egor O. Blinov
- School of Biological and Medical Physics, Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia;
| | - Irina Y. Dolinskaya
- Laboratory of Neurobiology of Motor Control, Institute for Information Transmission Problems, Russian Academy of Sciences, 127951 Moscow, Russia; (I.A.S.); (V.A.S.); (I.Y.D.); (D.S.Z.)
- School of Biological and Medical Physics, Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia;
| | - Dmitry S. Zhvansky
- Laboratory of Neurobiology of Motor Control, Institute for Information Transmission Problems, Russian Academy of Sciences, 127951 Moscow, Russia; (I.A.S.); (V.A.S.); (I.Y.D.); (D.S.Z.)
| | - Francesco Lacquaniti
- Laboratory of Neuromotor Physiology, IRCCS Santa Lucia Foundation, 00179 Rome, Italy;
- Department of Systems Medicine and Center of Space Biomedicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Yury Ivanenko
- Laboratory of Neuromotor Physiology, IRCCS Santa Lucia Foundation, 00179 Rome, Italy;
- Correspondence:
| |
Collapse
|
6
|
Bloom J, Hejrati B. The effects of forearm movements on human gait during walking with various self-selected speeds. Hum Mov Sci 2021; 79:102835. [PMID: 34265508 DOI: 10.1016/j.humov.2021.102835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 05/29/2021] [Accepted: 06/29/2021] [Indexed: 11/30/2022]
Abstract
The forearms significantly contribute to the upper extremity movements and, consequently, whole-body responses during locomotion. The purpose of this study is to provide a more in-depth understanding of the mechanism controlling forearm movements during walking by comprehensively investigating the effects of the forearms on the lower and upper limb movements. Such an understanding can provide critical information for the design and control of robotic upper-limb prostheses. Twelve healthy young participants were recruited to compare their gait during (1) natural walking, (2) walking while wearing a pair of artificial passive forearms and having their actual forearms restrained by orthopedic braces, and (3) walking with only having their forearms restrained by the braces (i.e., no artificial forearms). While the passive forearms in condition 2 were to determine if the forearm movements were passively or actively controlled, condition 3 was to account for the effects of restraining the forearms in condition 2. The participants' lower-limb joint angles and spatiotemporal parameters remained unchanged across the three conditions while walking at their normal and fast self-selected gait speeds. However, significant decreases were observed in the shoulder and trunk angles, the interlimb coordination, and the shoulder-trunk correlations when walking with the artificial forearms. These observations were in tandem with the increased muscle activity of the biceps, trapeziuses, and posterior deltoids, which controlled the shoulder motion and trunk rotation during walking with the artificial forearms across both normal and fast self-selected speeds. Although not significant, the metabolic energy analysis of five participants revealed an increase during walking with artificial forearms. The results support the idea that the body actively controls the forearm movements through the shoulder and trunk rotations to mitigate the undesired disturbances induced by the passive forearm movements during locomotion.
Collapse
Affiliation(s)
- Jacob Bloom
- Biorobotics and Biomechanics Lab, Department of Mechanical Engineering, University of Maine, Orono, ME, United States of America.
| | - Babak Hejrati
- Biorobotics and Biomechanics Lab, Department of Mechanical Engineering, University of Maine, Orono, ME, United States of America.
| |
Collapse
|
7
|
Soma Y, Kubota S, Kadone H, Shimizu Y, Takahashi H, Hada Y, Koda M, Sankai Y, Yamazaki M. Hybrid Assistive Limb Functional Treatment for a Patient with Chronic Incomplete Cervical Spinal Cord Injury. Int Med Case Rep J 2021; 14:413-420. [PMID: 34188556 PMCID: PMC8232853 DOI: 10.2147/imcrj.s306558] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 05/20/2021] [Indexed: 11/24/2022] Open
Abstract
Introduction The hybrid assistive limb (HAL) is a wearable exoskeleton cyborg that assists walking and lower limb movements via real-time actuator control by detecting the wearer’s bioelectric signals on the surface of their skin. Purpose The purpose of this study was to report the improvement in walking ability following HAL gait training in a patient with tetraplegia after incomplete cervical spinal cord injury (SCI). Patient and Methods A 47-year-old man with traumatic cervical SCI for six months after fall had incomplete tetraplegic SCI grade C as classified according to the American Spinal Cord Injury Association impairment scale and was unable to walk in conventional rehabilitation. Results The HAL gait training was received 2 or 3 times per week for 13 sessions. Improvement was observed in gait speed (baseline: 0.12; after training: 0.45 m/sec), step length (baseline: 0.30; after training: 0.45 m), and cadence (baseline: 23.1; after training: 59.6 steps/min) based on a 10-meter walking test; International Standards for Neurological and functional Classification of Spinal Cord Injury (ISNCSCI) motor score (baseline: 59; after training: 76); and walking index for spinal cord injury (WISCI) II score (baseline: 1; after training: 6). Conclusion We report the recovery of walking ability in a patient with chronic severe incomplete tetraplegic SCI following the HAL training.
Collapse
Affiliation(s)
- Yuichiro Soma
- Department of Rehabilitation Medicine, University of Tsukuba Hospital, Ibaraki, Japan
| | - Shigeki Kubota
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Hideki Kadone
- Center for Innovating Medicine and Engineering (CIME), University of Tsukuba Hospital, Ibaraki, Japan
| | - Yukiyo Shimizu
- Department of Rehabilitation Medicine, University of Tsukuba Hospital, Ibaraki, Japan
| | - Hiroshi Takahashi
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Yasushi Hada
- Department of Rehabilitation Medicine, University of Tsukuba Hospital, Ibaraki, Japan
| | - Masao Koda
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Yoshiyuki Sankai
- Faculty of Systems and Information Engineering, University of Tsukuba, Ibaraki, Japan
| | - Masashi Yamazaki
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| |
Collapse
|
8
|
Weersink JB, de Jong BM, Halliday DM, Maurits NM. Intermuscular coherence analysis in older adults reveals that gait-related arm swing drives lower limb muscles via subcortical and cortical pathways. J Physiol 2021; 599:2283-2298. [PMID: 33687081 PMCID: PMC8252748 DOI: 10.1113/jp281094] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 02/26/2021] [Indexed: 12/11/2022] Open
Abstract
KEY POINTS Gait-related arm swing in humans supports efficient lower limb muscle activation, indicating a neural coupling between the upper and lower limbs during gait. Intermuscular coherence analyses of gait-related electromyography from upper and lower limbs in 20 healthy participants identified significant coherence in alpha and beta/gamma bands indicating that upper and lower limbs share common subcortical and cortical drivers that coordinate the rhythmic four-limb gait pattern. Additional directed connectivity analyses revealed that upper limb muscles drive and shape lower limb muscle activity during gait via subcortical and cortical pathways and to a lesser extent vice versa. The results provide a neural underpinning that arm swing may serve as an effective rehabilitation therapy concerning impaired gait in neurological diseases. ABSTRACT Human gait benefits from arm swing, as it enhances efficient lower limb muscle activation in healthy participants as well as patients suffering from neurological impairment. The underlying neuronal mechanisms of such coupling between upper and lower limbs remain poorly understood. The aim of the present study was to examine this coupling by intermuscular coherence analysis during gait. Additionally, directed connectivity analysis of this coupling enabled assessment of whether gait-related arm swing indeed drives lower limb muscles. To that end, electromyography recordings were obtained from four lower limb muscles and two upper limb muscles bilaterally, during gait, of 20 healthy participants (mean (SD) age 67 (6.8) years). Intermuscular coherence analysis revealed functional coupling between upper and lower limb muscles in the alpha and beta/gamma band during muscle specific periods of the gait cycle. These effects in the alpha and beta/gamma bands indicate involvement of subcortical and cortical sources, respectively, that commonly drive the rhythmic four-limb gait pattern in an efficiently coordinated fashion. Directed connectivity analysis revealed that upper limb muscles drive and shape lower limb muscle activity during gait via subcortical and cortical pathways and to a lesser extent vice versa. This indicates that gait-related arm swing reflects the recruitment of neuronal support for optimizing the cyclic movement pattern of the lower limbs. These findings thus provide a neural underpinning for arm swing to potentially serve as an effective rehabilitation therapy concerning impaired gait in neurological diseases.
Collapse
Affiliation(s)
- Joyce B Weersink
- Department of Neurology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, POB 30.001, Groningen, The Netherlands
| | - Bauke M de Jong
- Department of Neurology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, POB 30.001, Groningen, The Netherlands
| | - David M Halliday
- Department of Electronic Engineering & York Biomedical Research Institute, University of York, York, YO10 5DD, UK
| | - Natasha M Maurits
- Department of Neurology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, POB 30.001, Groningen, The Netherlands
| |
Collapse
|
9
|
Fadeev F, Eremeev A, Bashirov F, Shevchenko R, Izmailov A, Markosyan V, Sokolov M, Kalistratova J, Khalitova A, Garifulin R, Islamov R, Lavrov I. Combined Supra- and Sub-Lesional Epidural Electrical Stimulation for Restoration of the Motor Functions after Spinal Cord Injury in Mini Pigs. Brain Sci 2020; 10:brainsci10100744. [PMID: 33081405 PMCID: PMC7650717 DOI: 10.3390/brainsci10100744] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/06/2020] [Accepted: 10/12/2020] [Indexed: 12/20/2022] Open
Abstract
This study evaluates the effect of combined epidural electrical stimulation (EES) applied above (C5) and below (L2) the spinal cord injury (SCI) at T8–9 combined with motor training on the restoration of sensorimotor function in mini pigs. The motor evoked potentials (MEP) induced by EES applied at C5 and L2 levels were recorded in soleus muscles before and two weeks after SCI. EES treatment started two weeks after SCI and continued for 6 weeks led to improvement in multiple metrics, including behavioral, electrophysiological, and joint kinematics outcomes. In control animals after SCI a multiphasic M-response was observed during M/H-response testing, while animals received EES-enable training demonstrated the restoration of the M-response and H-reflex, although at a lower amplitude. The joint kinematic and assessment with Porcine Thoracic Injury Behavior scale (PTIBS) motor recovery scale demonstrated improvement in animals that received EES-enable training compared to animals with no treatment. The positive effect of two-level (cervical and lumbar) epidural electrical stimulation on functional restoration in mini pigs following spinal cord contusion injury in mini pigs could be related with facilitation of spinal circuitry at both levels and activation of multisegmental coordination. This approach can be taken as a basis for the future development of neuromodulation and neurorehabilitation therapy for patients with spinal cord injury.
Collapse
Affiliation(s)
- Filip Fadeev
- Department of Medical Biology and Genetics, Kazan State Medical University, 420012 Kazan, Russia; (F.F.); (F.B.); (R.S.); (A.I.); (V.M.); (M.S.); (J.K.); (A.K.); (R.G.)
| | - Anton Eremeev
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, Russia;
| | - Farid Bashirov
- Department of Medical Biology and Genetics, Kazan State Medical University, 420012 Kazan, Russia; (F.F.); (F.B.); (R.S.); (A.I.); (V.M.); (M.S.); (J.K.); (A.K.); (R.G.)
| | - Roman Shevchenko
- Department of Medical Biology and Genetics, Kazan State Medical University, 420012 Kazan, Russia; (F.F.); (F.B.); (R.S.); (A.I.); (V.M.); (M.S.); (J.K.); (A.K.); (R.G.)
| | - Andrei Izmailov
- Department of Medical Biology and Genetics, Kazan State Medical University, 420012 Kazan, Russia; (F.F.); (F.B.); (R.S.); (A.I.); (V.M.); (M.S.); (J.K.); (A.K.); (R.G.)
| | - Vage Markosyan
- Department of Medical Biology and Genetics, Kazan State Medical University, 420012 Kazan, Russia; (F.F.); (F.B.); (R.S.); (A.I.); (V.M.); (M.S.); (J.K.); (A.K.); (R.G.)
| | - Mikhail Sokolov
- Department of Medical Biology and Genetics, Kazan State Medical University, 420012 Kazan, Russia; (F.F.); (F.B.); (R.S.); (A.I.); (V.M.); (M.S.); (J.K.); (A.K.); (R.G.)
| | - Julia Kalistratova
- Department of Medical Biology and Genetics, Kazan State Medical University, 420012 Kazan, Russia; (F.F.); (F.B.); (R.S.); (A.I.); (V.M.); (M.S.); (J.K.); (A.K.); (R.G.)
| | - Anastasiia Khalitova
- Department of Medical Biology and Genetics, Kazan State Medical University, 420012 Kazan, Russia; (F.F.); (F.B.); (R.S.); (A.I.); (V.M.); (M.S.); (J.K.); (A.K.); (R.G.)
| | - Ravil Garifulin
- Department of Medical Biology and Genetics, Kazan State Medical University, 420012 Kazan, Russia; (F.F.); (F.B.); (R.S.); (A.I.); (V.M.); (M.S.); (J.K.); (A.K.); (R.G.)
| | - Rustem Islamov
- Department of Medical Biology and Genetics, Kazan State Medical University, 420012 Kazan, Russia; (F.F.); (F.B.); (R.S.); (A.I.); (V.M.); (M.S.); (J.K.); (A.K.); (R.G.)
- Correspondence: (R.I.); (I.L.)
| | - Igor Lavrov
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, Russia;
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
- Department of Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
- Correspondence: (R.I.); (I.L.)
| |
Collapse
|
10
|
Cappellini G, Sylos-Labini F, Dewolf AH, Solopova IA, Morelli D, Lacquaniti F, Ivanenko Y. Maturation of the Locomotor Circuitry in Children With Cerebral Palsy. Front Bioeng Biotechnol 2020; 8:998. [PMID: 32974319 PMCID: PMC7462003 DOI: 10.3389/fbioe.2020.00998] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 07/30/2020] [Indexed: 12/26/2022] Open
Abstract
The first years of life represent an important phase of maturation of the central nervous system, processing of sensory information, posture control and acquisition of the locomotor function. Cerebral palsy (CP) is the most common group of motor disorders in childhood attributed to disturbances in the fetal or infant brain, frequently resulting in impaired gait. Here we will consider various findings about functional maturation of the locomotor output in early infancy, and how much the dysfunction of gait in children with CP can be related to spinal neuronal networks vs. supraspinal dysfunction. A better knowledge about pattern generation circuitries in infancy may improve our understanding of developmental motor disorders, highlighting the necessity for regulating the functional properties of abnormally developed neuronal locomotor networks as a target for early sensorimotor rehabilitation. Various clinical approaches and advances in biotechnology are also considered that might promote acquisition of the locomotor function in infants at risk for locomotor delays.
Collapse
Affiliation(s)
- Germana Cappellini
- Laboratory of Neuromotor Physiology, IRCCS Santa Lucia Foundation, Rome, Italy.,Department of Pediatric Neurorehabilitation, IRCCS Santa Lucia Foundation, Rome, Italy
| | | | - Arthur H Dewolf
- Centre of Space Bio-medicine and Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Irina A Solopova
- Laboratory of Neurobiology of Motor Control, Institute for Information Transmission Problems, Moscow, Russia
| | - Daniela Morelli
- Department of Pediatric Neurorehabilitation, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Francesco Lacquaniti
- Laboratory of Neuromotor Physiology, IRCCS Santa Lucia Foundation, Rome, Italy.,Centre of Space Bio-medicine and Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Yury Ivanenko
- Laboratory of Neuromotor Physiology, IRCCS Santa Lucia Foundation, Rome, Italy
| |
Collapse
|
11
|
Bannwart M, Bayer SL, König Ignasiak N, Bolliger M, Rauter G, Easthope CA. Mediolateral damping of an overhead body weight support system assists stability during treadmill walking. J Neuroeng Rehabil 2020; 17:108. [PMID: 32778127 PMCID: PMC7418206 DOI: 10.1186/s12984-020-00735-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 07/28/2020] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Body weight support systems with three or more degrees of freedom (3-DoF) are permissive and safe environments that provide unloading and allow unrestricted movement in any direction. This enables training of walking and balance control at an early stage in rehabilitation. Transparent systems generate a support force vector that is near vertical at all positions in the workspace to only minimally interfere with natural movement patterns. Patients with impaired balance, however, may benefit from additional mediolateral support that can be adjusted according to their capacity. An elegant solution for providing balance support might be by rendering viscous damping along the mediolateral axis via the software controller. Before use with patients, we evaluated if control-rendered mediolateral damping evokes the desired stability enhancement in able-bodied individuals. METHODS A transparent, cable-driven robotic body weight support system (FLOAT) was used to provide transparent body weight support with and without mediolateral damping to 21 able-bodied volunteers while walking at preferred gait velocity on a treadmill. Stability metrics reflecting resistance to small and large perturbations were derived from walking kinematics and compared between conditions and to free walking. RESULTS Compared to free walking, the application of body weight support per-se resulted in gait alterations typically associated with body weight support, namely increased step length and swing phase. Frontal plane dynamic stability, measured by kinematic variability and nonlinear dynamics of the center of mass, was increased under body weight support, indicating reduced balance requirements in both damped and undamped support conditions. Adding damping to the body weight support resulted in a greater increase of frontal plane stability. CONCLUSION Adding mediolateral damping to 3-DoF body weight support systems is an effective method of increasing frontal plane stability during walking in able-bodied participants. Building on these results, adjustable mediolateral damping could enable therapists to select combinations of unloading and stability specifically for each patient and to adapt this in a task specific manner. This could extend the impact of transparent 3-DoF body weight support systems, enabling training of gait and active balance from an early time point onwards in the rehabilitation process for a wide range of mobility activities of daily life.
Collapse
Affiliation(s)
- M. Bannwart
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
- Sensory Motor Systems Laboratory, Department of Health Sciences and Technology, Swiss Federal Institute of Technology, Zurich, Switzerland
| | - S. L. Bayer
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | | | - M. Bolliger
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - G. Rauter
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
- Sensory Motor Systems Laboratory, Department of Health Sciences and Technology, Swiss Federal Institute of Technology, Zurich, Switzerland
- BIROMED-Laboratory, Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - C. A. Easthope
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
- cereneo Center for Interdisciplinary Research, Vitznau, Switzerland
| |
Collapse
|
12
|
Steuer I, Guertin PA. Central pattern generators in the brainstem and spinal cord: an overview of basic principles, similarities and differences. Rev Neurosci 2019; 30:107-164. [PMID: 30543520 DOI: 10.1515/revneuro-2017-0102] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 03/30/2018] [Indexed: 12/11/2022]
Abstract
Central pattern generators (CPGs) are generally defined as networks of neurons capable of enabling the production of central commands, specifically controlling stereotyped, rhythmic motor behaviors. Several CPGs localized in brainstem and spinal cord areas have been shown to underlie the expression of complex behaviors such as deglutition, mastication, respiration, defecation, micturition, ejaculation, and locomotion. Their pivotal roles have clearly been demonstrated although their organization and cellular properties remain incompletely characterized. In recent years, insightful findings about CPGs have been made mainly because (1) several complementary animal models were developed; (2) these models enabled a wide variety of techniques to be used and, hence, a plethora of characteristics to be discovered; and (3) organizations, functions, and cell properties across all models and species studied thus far were generally found to be well-preserved phylogenetically. This article aims at providing an overview for non-experts of the most important findings made on CPGs in in vivo animal models, in vitro preparations from invertebrate and vertebrate species as well as in primates. Data about CPG functions, adaptation, organization, and cellular properties will be summarized with a special attention paid to the network for locomotion given its advanced level of characterization compared with some of the other CPGs. Similarities and differences between these networks will also be highlighted.
Collapse
Affiliation(s)
- Inge Steuer
- Neuroscience Unit, Laval University Medical Center (CHUL - CHU de Québec), 2705 Laurier Blvd, Quebec City, Quebec G1V 4G2, Canada
| | - Pierre A Guertin
- Neuroscience Unit, Laval University Medical Center (CHUL - CHU de Québec), 2705 Laurier Blvd, Quebec City, Quebec G1V 4G2, Canada
- Faculty of Medicine, Department of Psychiatry and Neurosciences, Laval University, Quebec City, Quebec G1V 0A6, Canada
| |
Collapse
|
13
|
Braun Janzen T, Haase M, Thaut MH. Rhythmic priming across effector systems: A randomized controlled trial with Parkinson’s disease patients. Hum Mov Sci 2019; 64:355-365. [DOI: 10.1016/j.humov.2019.03.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 02/21/2019] [Accepted: 03/01/2019] [Indexed: 01/23/2023]
|
14
|
Synergistic influences of sensory and central stimuli on non-voluntary rhythmic arm movements. Hum Mov Sci 2019; 64:230-239. [PMID: 30798047 DOI: 10.1016/j.humov.2019.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 01/26/2019] [Accepted: 02/14/2019] [Indexed: 11/22/2022]
Abstract
In recent years, neuromodulation of the cervical spinal circuitry has become an area of interest for investigating rhythmogenesis of the human spinal cord and interaction between cervical and lumbosacral circuitries, given the involvement of rhythmic arm muscle activity in many locomotor tasks. We have previously shown that arm muscle vibrostimulation can elicit non-voluntary upper limb oscillations in unloading body conditions. Here we investigated the excitability of the cervical spinal circuitry by applying different peripheral and central stimuli in healthy humans. The rationale for applying combined stimuli is that the efficiency of only one stimulus is generally limited. We found that low-intensity electrical stimulation of the superficial arm median nerve can evoke rhythmic arm movements. Furthermore, the movements were enhanced by additional peripheral stimuli (e.g., arm muscle vibration, head turns or passive rhythmic leg movements). Finally, low-frequency transcranial magnetic stimulation of the motor cortex significantly facilitated rhythmogenesis. The findings are discussed in the general framework of a brain-spinal interface for developing adaptive central pattern generator-modulating therapies.
Collapse
|
15
|
Ramanujam A, Cirnigliaro CM, Garbarini E, Asselin P, Pilkar R, Forrest GF. Neuromechanical adaptations during a robotic powered exoskeleton assisted walking session. J Spinal Cord Med 2018; 41:518-528. [PMID: 28427305 PMCID: PMC6117573 DOI: 10.1080/10790268.2017.1314900] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVE To evaluate gait parameters and neuromuscular profiles of exoskeleton-assisted walking under Max Assist condition during a single-session for; (i) able bodied (AB) individuals walking assisted with (EXO) and without (non-EXO) a powered exoskeleton, (ii) non-ambulatory SCI individuals walking assisted with a powered exoskeleton. DESIGN Single-session. SETTING Motion analysis laboratory. PARTICIPANTS Four AB individuals and four individuals with SCI. INTERVENTIONS Powered lower extremity exoskeleton. OUTCOME MEASURES Temporal-spatial parameters, kinematics, walking velocity and electromyography data. RESULTS AB individuals in exoskeleton showed greater stance time and a significant reduction in walking velocity (P < 0.05) compared to non-EXO walking. Interestingly, when the AB individuals voluntarily assisted the exoskeleton movements, they walked with an increased velocity and lowered stance time to resemble that of slow walking. For SCI individuals, mean percent stance time was higher and walking velocity was lower compared to all AB walking conditions (P < 0.05). There was muscle activation in several lower limb muscles for SCI group. For AB individuals, there were similarities among EXO and non-EXO walking conditions however there were differences in several lower limb EMGs for phasing of muscle activation. CONCLUSION The data suggests that our AB individuals experienced reduction in walking velocity and muscle activation amplitudes while walking in the exoskeleton and moreover with voluntary control there is a greater temporal-spatial response of the lower limbs. Also, there are neuromuscular phasic adaptions for both AB and SCI groups while walking in the exoskeleton that are inconsistent to non-EXO gait muscle activation.
Collapse
Affiliation(s)
- Arvind Ramanujam
- Kessler Foundation, Human Performance and Engineering Research, West Orange, New Jersey, USA
| | - Christopher M. Cirnigliaro
- Department of Veterans Affairs Rehabilitation Research & Development Service, National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters Veterans Affairs Medical Center, Bronx, New York, USA
| | - Erica Garbarini
- Kessler Foundation, Human Performance and Engineering Research, West Orange, New Jersey, USA
| | - Pierre Asselin
- Department of Veterans Affairs Rehabilitation Research & Development Service, National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters Veterans Affairs Medical Center, Bronx, New York, USA
| | - Rakesh Pilkar
- Kessler Foundation, Human Performance and Engineering Research, West Orange, New Jersey, USA,Rutgers – New Jersey Medical School, Newark, New Jersey, USA
| | - Gail F. Forrest
- Kessler Foundation, Human Performance and Engineering Research, West Orange, New Jersey, USA,Rutgers – New Jersey Medical School, Newark, New Jersey, USA,Correspondence to: Gail F. Forrest, Kessler Foundation, Human Performance and Engineering Research, 1199 Pleasant Valley Way, West Orange, NJ, USA.
| |
Collapse
|
16
|
Klarner T, Zehr EP. Sherlock Holmes and the curious case of the human locomotor central pattern generator. J Neurophysiol 2018. [PMID: 29537920 DOI: 10.1152/jn.00554.2017] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Evidence first described in reduced animal models over 100 years ago led to deductions about the control of locomotion through spinal locomotor central pattern-generating (CPG) networks. These discoveries in nature were contemporaneous with another form of deductive reasoning found in popular culture, that of Arthur Conan Doyle's detective, Sherlock Holmes. Because the invasive methods used in reduced nonhuman animal preparations are not amenable to study in humans, we are left instead with deducing from other measures and observations. Using the deductive reasoning approach of Sherlock Holmes as a metaphor for framing research into human CPGs, we speculate and weigh the evidence that should be observable in humans based on knowledge from other species. This review summarizes indirect inference to assess "observable evidence" of pattern-generating activity that leads to the logical deduction of CPG contributions to arm and leg activity during locomotion in humans. The question of where a CPG may be housed in the human nervous system remains incompletely resolved at this time. Ongoing understanding, elaboration, and application of functioning locomotor CPGs in humans is important for gait rehabilitation strategies in those with neurological injuries.
Collapse
Affiliation(s)
- Taryn Klarner
- Rehabilitation Neuroscience Laboratory, University of Victoria , Victoria, British Columbia , Canada.,Human Discovery Science, International Collaboration on Repair Discoveries , Vancouver, British Columbia , Canada.,Centre for Biomedical Research, University of Victoria , Victoria, British Columbia , Canada
| | - E Paul Zehr
- Rehabilitation Neuroscience Laboratory, University of Victoria , Victoria, British Columbia , Canada.,Human Discovery Science, International Collaboration on Repair Discoveries , Vancouver, British Columbia , Canada.,Centre for Biomedical Research, University of Victoria , Victoria, British Columbia , Canada.,Division of Medical Sciences, University of Victoria, British Columbia, Canada
| |
Collapse
|
17
|
Sylos-Labini F, d'Avella A, Lacquaniti F, Ivanenko Y. Human-Human Interaction Forces and Interlimb Coordination During Side-by-Side Walking With Hand Contact. Front Physiol 2018; 9:179. [PMID: 29563883 PMCID: PMC5850283 DOI: 10.3389/fphys.2018.00179] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 02/20/2018] [Indexed: 01/03/2023] Open
Abstract
Handholding can naturally occur between two walkers. When people walk side-by-side, either with or without hand contact, they often synchronize their steps. However, despite the importance of haptic interaction in general and the natural use of hand contact between humans during walking, few studies have investigated forces arising from physical interactions. Eight pairs of adult subjects participated in this study. They walked on side-by-side treadmills at 4 km/h independently and with hand contact. Only hand contact-related sensory information was available for unintentional synchronization, while visual and auditory communication was obstructed. Subjects walked at their natural cadences or following a metronome. Limb kinematics, hand contact 3D interaction forces and EMG activity of 12 upper limb muscles were recorded. Overall, unintentional step frequency locking was observed during about 40% of time in 88% of pairs walking with hand contact. On average, the amplitude of contact arm oscillations decreased while the contralateral (free) arm oscillated in the same way as during normal walking. Interestingly, EMG activity of the shoulder muscles of the contact arm did not decrease, and their synergistic pattern remained similar. The amplitude of interaction forces and of trunk oscillations was similar for synchronized and non-synchronized steps, though the synchronized steps were characterized by significantly more regular orientations of interaction forces. Our results further support the notion that gait synchronization during natural walking is common, and that it may occur through interaction forces. Conservation of the proximal muscle activity of the contact (not oscillating) arm is consistent with neural coupling between cervical and lumbosacral pattern generation circuitries (“quadrupedal” arm-leg coordination) during human gait. Overall, the findings suggest that individuals might integrate force interaction cues to communicate and coordinate steps during walking.
Collapse
Affiliation(s)
- Francesca Sylos-Labini
- Laboratory of Neuromotor Physiology, Santa Lucia Foundation, Rome, Italy.,Centre of Space Bio-medicine, University of Rome Tor Vergata, Rome, Italy
| | - Andrea d'Avella
- Laboratory of Neuromotor Physiology, Santa Lucia Foundation, Rome, Italy.,Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Francesco Lacquaniti
- Laboratory of Neuromotor Physiology, Santa Lucia Foundation, Rome, Italy.,Centre of Space Bio-medicine, University of Rome Tor Vergata, Rome, Italy.,Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Yury Ivanenko
- Laboratory of Neuromotor Physiology, Santa Lucia Foundation, Rome, Italy
| |
Collapse
|
18
|
Early manifestation of arm–leg coordination during stepping on a surface in human neonates. Exp Brain Res 2018; 236:1105-1115. [DOI: 10.1007/s00221-018-5201-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 02/07/2018] [Indexed: 12/23/2022]
|
19
|
Hejrati B, Merryweather AS, Abbott JJ. Generating Arm-Swing Trajectories in Real-Time Using a Data-Driven Model for Gait Rehabilitation With Self-Selected Speed. IEEE Trans Neural Syst Rehabil Eng 2018; 26:115-124. [DOI: 10.1109/tnsre.2017.2740060] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
20
|
Shimizu Y, Kadone H, Kubota S, Suzuki K, Abe T, Ueno T, Soma Y, Sankai Y, Hada Y, Yamazaki M. Voluntary Ambulation by Upper Limb-Triggered HAL® in Patients with Complete Quadri/Paraplegia Due to Chronic Spinal Cord Injury. Front Neurosci 2017; 11:649. [PMID: 29209163 PMCID: PMC5702458 DOI: 10.3389/fnins.2017.00649] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 11/08/2017] [Indexed: 12/24/2022] Open
Abstract
Patients with complete paraplegia after spinal cord injury (SCI) are unable to stand or walk on their own. Standing exercise decreases the risk of decubitus ulcers, osteoporosis, and joint deformities in patients with SCI. Conventional gait training for complete paraplegia requires excessive upper limb usage for weight bearing and is difficult in cases of complete quadriplegia. The purpose of this study was to describe voluntary ambulation triggered by upper limb activity using the Hybrid Assistive Limb® (HAL) in patients with complete quadri/paraplegia after chronic SCI. Four patients (3 men, 1 woman) were enrolled in this study. The mean patient age ± standard deviation was 37.2 ± 17.8 (range, 20–67) years. Clinical evaluation before intervention revealed the following findings: case 1, neurological level C6, American Spinal Cord Injury Association impairment scale (AIS) grade B; case 2, T6, AIS A; case 3, T10 AIS A; and case 4, T11, AIS A. The HAL intervention consisted of 10 sessions. Each HAL session lasted 60–90 min. The HAL electrodes for hip and knee flexion-extension were placed on the anterior and posterior sides of the upper limbs contralaterally corresponding to each of the lower limbs. Surface electromyography (EMG) was used to evaluate muscle activity of the tensor fascia lata and quadriceps femoris (Quad) in synchronization with a Vicon motion capture system. The modified Ashworth scale (mAs) score was also evaluated before and after each session. All participants completed all 10 sessions. Cases 1, 2, and 3 demonstrated significant decreases in mAs score after the sessions compared to pre-session measurements. In all cases, EMG before the intervention showed no apparent activation in either Quad. However, gait phase dependent activity of the lower limb muscles was seen during voluntarily triggered ambulation driven by upper limb muscle activities. In cases 3 and 4, active contraction in both Quads was observed after intervention. These findings suggest that upper-limb-triggered HAL ambulation is a safe and feasible option for rehabilitation in patients with complete quadri/paraplegia caused by chronic SCI.
Collapse
Affiliation(s)
- Yukiyo Shimizu
- Department of Rehabilitation Medicine, University of Tsukuba Hospital, Tsukuba, Japan
| | - Hideki Kadone
- Center for Innovative Medicine and Engineering, University of Tsukuba Hospital, Tsukuba, Japan
| | - Shigeki Kubota
- Division of Regenerative Medicine for Musculoskeletal System, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Kenji Suzuki
- Center for Cybernics Research, University of Tsukuba, Tsukuba, Japan
| | - Tetsuya Abe
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Tomoyuki Ueno
- Department of Rehabilitation Medicine, University of Tsukuba Hospital, Tsukuba, Japan
| | - Yuichiro Soma
- Department of Rehabilitation Medicine, University of Tsukuba Hospital, Tsukuba, Japan
| | - Yoshiyuki Sankai
- Center for Cybernics Research, University of Tsukuba, Tsukuba, Japan
| | - Yasushi Hada
- Department of Rehabilitation Medicine, University of Tsukuba Hospital, Tsukuba, Japan
| | - Masashi Yamazaki
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
21
|
Active and passive contributions to arm swing: Implications of the restriction of pelvis motion during human locomotion. Hum Mov Sci 2017; 57:314-323. [PMID: 28958710 DOI: 10.1016/j.humov.2017.09.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 09/15/2017] [Accepted: 09/16/2017] [Indexed: 11/22/2022]
Abstract
Current research has yet to determine how passive dynamics and active neural control contribute to upper limb swing during human locomotion. The present study aimed to investigate these contributions by restricting pelvis motion during walking, thereby altering the upward energy transfer from the swinging lower limbs. Ten healthy individuals walked freely on a treadmill (CON) and with an apparatus that reduced pelvis motion (PR) at three walking speeds (0.9, 1.3, and 1.8m/s). Spatiotemporal characteristics of limb movement and muscle activation were recorded and analyzed. When wearing the apparatus, the ranges of the sagittal and transverse rotations of the trunk and shoulders, as well as vertical trunk center of mass movement all decreased. At higher treadmill speeds, the movement amplitudes of the upper and lower limbs increased. This increase was less pronounced in the upper limbs when the apparatus reduced pelvis motion. However, this decrease in arm swing was accompanied with a preservation of upper and lower limb muscle activity amplitudes. The temporal coordination between upper and lower limbs was also conserved irrespective of the PR or CON conditions. Relating shoulder muscle activities to upper limb kinematics suggested these muscles mainly acted eccentrically, providing evidence that passive elements are a significant factor in arm swing control. However, the conserved muscle activity patterns and temporal coupling of limb movements when pelvis motion was reduced are suggestive of an underlying active maintenance of the locomotor pattern via linked upper and lower limb neural networks.
Collapse
|
22
|
Rhythmic wrist movements facilitate the soleus H-reflex and non-voluntary air-stepping in humans. Neurosci Lett 2017; 638:39-45. [PMID: 27931775 DOI: 10.1016/j.neulet.2016.12.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 11/22/2016] [Accepted: 12/04/2016] [Indexed: 11/23/2022]
Abstract
Neural coupling between the upper and lower limbs during human walking is supported by modulation of cross-limb reflexes and the presence of rhythmic activity in the proximal arm muscles. Nevertheless, the involvement of distal arm muscles in cyclic movements and sensorimotor neuromodulation is also suggested given their step-synchronized activation in many locomotor-related tasks (e.g., swimming, skiing, climbing, cycling, crawling, etc.). Here we investigated the effect of rhythmic wrist movements, separately and in conjunction with arm swinging, on the characteristics of non-voluntary cyclic leg movements evoked by muscle vibration in a gravity neutral position and on the soleus H-reflex of the stationary legs. For the H-reflex modulation, five conditions were compared: stationary arms, voluntary alternating upper limb swinging, combined upper limb and wrist motion, wrist movements only and motion of the upper limbs with addition of load. Rhythmic wrist movements significantly facilitated the amplitude of non-voluntary leg oscillations, including ankle joint oscillations, and the H-reflex. The latter effect was related to rhythmicity of wrist motion rather than to a simple extra tension in the upper limb muscles (a kind of the Jendrassik manoeuvre) since adding resistance to arm oscillations (without flexion-extension in the wrist joint) had an opposite inhibitory effect on the H-reflex. Our results further support the existence of connections between the distal parts of the upper and lower extremities at the neural level, suggesting that wrist joint movements can be an important component of motor neurorehabilitation.
Collapse
|
23
|
Zehr EP, Barss TS, Dragert K, Frigon A, Vasudevan EV, Haridas C, Hundza S, Kaupp C, Klarner T, Klimstra M, Komiyama T, Loadman PM, Mezzarane RA, Nakajima T, Pearcey GEP, Sun Y. Neuromechanical interactions between the limbs during human locomotion: an evolutionary perspective with translation to rehabilitation. Exp Brain Res 2016; 234:3059-3081. [PMID: 27421291 PMCID: PMC5071371 DOI: 10.1007/s00221-016-4715-4] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 06/27/2016] [Indexed: 11/10/2022]
Abstract
During bipedal locomotor activities, humans use elements of quadrupedal neuronal limb control. Evolutionary constraints can help inform the historical ancestry for preservation of these core control elements support transfer of the huge body of quadrupedal non-human animal literature to human rehabilitation. In particular, this has translational applications for neurological rehabilitation after neurotrauma where interlimb coordination is lost or compromised. The present state of the field supports including arm activity in addition to leg activity as a component of gait retraining after neurotrauma.
Collapse
Affiliation(s)
- E P Zehr
- Rehabilitation Neuroscience Laboratory, University of Victoria, PO Box 3010 STN CSC, Victoria, BC, Canada, V8W 3P1.
- Human Discovery Science, International Collaboration on Repair Discoveries (ICORD), Vancouver, BC, Canada.
- Centre for Biomedical Research, University of Victoria, Victoria, BC, Canada.
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada.
| | - Trevor S Barss
- Rehabilitation Neuroscience Laboratory, University of Victoria, PO Box 3010 STN CSC, Victoria, BC, Canada, V8W 3P1
- Human Discovery Science, International Collaboration on Repair Discoveries (ICORD), Vancouver, BC, Canada
- Centre for Biomedical Research, University of Victoria, Victoria, BC, Canada
| | - Katie Dragert
- Rehabilitation Neuroscience Laboratory, University of Victoria, PO Box 3010 STN CSC, Victoria, BC, Canada, V8W 3P1
| | - Alain Frigon
- Department of Pharmacology-physiology, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC, Canada
| | - Erin V Vasudevan
- Department of Physical Therapy, SUNY Stony Brook University, Stony Brook, NY, USA
| | - Carlos Haridas
- Rehabilitation Neuroscience Laboratory, University of Victoria, PO Box 3010 STN CSC, Victoria, BC, Canada, V8W 3P1
| | - Sandra Hundza
- Human Discovery Science, International Collaboration on Repair Discoveries (ICORD), Vancouver, BC, Canada
- Centre for Biomedical Research, University of Victoria, Victoria, BC, Canada
- Motion and Mobility Rehabilitation Laboratory, University of Victoria, Victoria, BC, Canada
| | - Chelsea Kaupp
- Rehabilitation Neuroscience Laboratory, University of Victoria, PO Box 3010 STN CSC, Victoria, BC, Canada, V8W 3P1
- Human Discovery Science, International Collaboration on Repair Discoveries (ICORD), Vancouver, BC, Canada
- Centre for Biomedical Research, University of Victoria, Victoria, BC, Canada
| | - Taryn Klarner
- Rehabilitation Neuroscience Laboratory, University of Victoria, PO Box 3010 STN CSC, Victoria, BC, Canada, V8W 3P1
- Human Discovery Science, International Collaboration on Repair Discoveries (ICORD), Vancouver, BC, Canada
- Centre for Biomedical Research, University of Victoria, Victoria, BC, Canada
| | - Marc Klimstra
- Centre for Biomedical Research, University of Victoria, Victoria, BC, Canada
- Motion and Mobility Rehabilitation Laboratory, University of Victoria, Victoria, BC, Canada
| | - Tomoyoshi Komiyama
- Division of Sports and Health Science, Chiba University, Chiba, Japan
- The United Graduate School of Education, Tokyo Gakugei University, Tokyo, Japan
| | - Pamela M Loadman
- Rehabilitation Neuroscience Laboratory, University of Victoria, PO Box 3010 STN CSC, Victoria, BC, Canada, V8W 3P1
- Human Discovery Science, International Collaboration on Repair Discoveries (ICORD), Vancouver, BC, Canada
- Centre for Biomedical Research, University of Victoria, Victoria, BC, Canada
| | - Rinaldo A Mezzarane
- Laboratory of Signal Processing and Motor Control, College of Physical Education, Universidade de Brasília-UnB, Brasília, Brazil
| | - Tsuyoshi Nakajima
- Department of Integrative Physiology, Kyorin University School of Medicine, Tokyo, Japan
| | - Gregory E P Pearcey
- Rehabilitation Neuroscience Laboratory, University of Victoria, PO Box 3010 STN CSC, Victoria, BC, Canada, V8W 3P1
- Human Discovery Science, International Collaboration on Repair Discoveries (ICORD), Vancouver, BC, Canada
- Centre for Biomedical Research, University of Victoria, Victoria, BC, Canada
| | - Yao Sun
- Rehabilitation Neuroscience Laboratory, University of Victoria, PO Box 3010 STN CSC, Victoria, BC, Canada, V8W 3P1
- Human Discovery Science, International Collaboration on Repair Discoveries (ICORD), Vancouver, BC, Canada
- Centre for Biomedical Research, University of Victoria, Victoria, BC, Canada
| |
Collapse
|
24
|
Hejrati B, Chesebrough S, Bo Foreman K, Abbott JJ, Merryweather AS. Comprehensive quantitative investigation of arm swing during walking at various speed and surface slope conditions. Hum Mov Sci 2016; 49:104-15. [PMID: 27367784 DOI: 10.1016/j.humov.2016.06.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 06/05/2016] [Accepted: 06/05/2016] [Indexed: 11/29/2022]
Abstract
Previous studies have shown that inclusion of arm swing in gait rehabilitation leads to more effective walking recovery in patients with walking impairments. However, little is known about the correct arm-swing trajectories to be used in gait rehabilitation given the fact that changes in walking conditions affect arm-swing patterns. In this paper we present a comprehensive look at the effects of a variety of conditions on arm-swing patterns during walking. The results describe the effects of surface slope, walking speed, and physical characteristics on arm-swing patterns in healthy individuals. We propose data-driven mathematical models to describe arm-swing trajectories. Thirty individuals (fifteen females and fifteen males) with a wide range of height (1.58-1.91m) and body mass (49-98kg), participated in our study. Based on their self-selected walking speed, each participant performed walking trials with four speeds on five surface slopes while their whole-body kinematics were recorded. Statistical analysis showed that walking speed, surface slope, and height were the major factors influencing arm swing during locomotion. The results demonstrate that data-driven models can successfully describe arm-swing trajectories for normal gait under varying walking conditions. The findings also provide insight into the behavior of the elbow during walking.
Collapse
Affiliation(s)
- Babak Hejrati
- Department of Mechanical Engineering, University of Utah, United States.
| | - Sam Chesebrough
- Department of Mechanical Engineering, University of Utah, United States
| | - K Bo Foreman
- Department of Physical Therapy, University of Utah, United States
| | - Jake J Abbott
- Department of Mechanical Engineering, University of Utah, United States
| | | |
Collapse
|
25
|
Canavero S, Ren XP. The Spark of Life: Engaging the Cortico-Truncoreticulo-Propriospinal Pathway by Electrical Stimulation. CNS Neurosci Ther 2016; 22:260-1. [PMID: 26888177 DOI: 10.1111/cns.12520] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Affiliation(s)
- Sergio Canavero
- Turin Advanced Neuromodulation Group (TANG), Turin, Italy.,Harbin Medical University, Harbin, China
| | | |
Collapse
|
26
|
Solopova IA, Selionov VA, Zhvansky DS, Gurfinkel VS, Ivanenko Y. Human cervical spinal cord circuitry activated by tonic input can generate rhythmic arm movements. J Neurophysiol 2015; 115:1018-30. [PMID: 26683072 DOI: 10.1152/jn.00897.2015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 12/16/2015] [Indexed: 01/03/2023] Open
Abstract
The coordination between arms and legs during human locomotion shares many features with that in quadrupeds, yet there is limited evidence for the central pattern generator for the upper limbs in humans. Here we investigated whether different types of tonic stimulation, previously used for eliciting stepping-like leg movements, may evoke nonvoluntary rhythmic arm movements. Twenty healthy subjects participated in this study. The subject was lying on the side, the trunk was fixed, and all four limbs were suspended in a gravity neutral position, allowing unrestricted low-friction limb movements in the horizontal plane. The results showed that peripheral sensory stimulation (continuous muscle vibration) and central tonic activation (postcontraction state of neuronal networks following a long-lasting isometric voluntary effort, Kohnstamm phenomenon) could evoke nonvoluntary rhythmic arm movements in most subjects. In ∼40% of subjects, tonic stimulation elicited nonvoluntary rhythmic arm movements together with rhythmic movements of suspended legs. The fact that not all participants exhibited nonvoluntary limb oscillations may reflect interindividual differences in responsiveness of spinal pattern generation circuitry to its activation. The occurrence and the characteristics of induced movements highlight the rhythmogenesis capacity of cervical neuronal circuitries, complementing the growing body of work on the quadrupedal nature of human gait.
Collapse
Affiliation(s)
- I A Solopova
- Laboratory of Neurobiology of Motor Control, Institute for Information Transmission Problems, Moscow, Russia;
| | - V A Selionov
- Laboratory of Neurobiology of Motor Control, Institute for Information Transmission Problems, Moscow, Russia
| | - D S Zhvansky
- Laboratory of Neurobiology of Motor Control, Institute for Information Transmission Problems, Moscow, Russia
| | - V S Gurfinkel
- Biomedical Engineering Department, Oregon Health and Science University, Portland, Oregon; and
| | - Y Ivanenko
- Laboratory of Neuromotor Physiology, Fondazione Santa Lucia, Rome, Italy
| |
Collapse
|
27
|
Lower extremity muscle activation and function in progressive task-oriented training on the supplementary tilt table during stepping-like movements in patients with acute stroke hemiparesis. J Electromyogr Kinesiol 2015; 25:522-30. [DOI: 10.1016/j.jelekin.2015.03.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 02/05/2015] [Accepted: 03/21/2015] [Indexed: 11/18/2022] Open
|
28
|
Solopova IA, Selionov VA, Sylos-Labini F, Gurfinkel VS, Lacquaniti F, Ivanenko YP. Tapping into rhythm generation circuitry in humans during simulated weightlessness conditions. Front Syst Neurosci 2015; 9:14. [PMID: 25741250 PMCID: PMC4332337 DOI: 10.3389/fnsys.2015.00014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 01/27/2015] [Indexed: 12/25/2022] Open
Abstract
An ability to produce rhythmic activity is ubiquitous for locomotor pattern generation and modulation. The role that the rhythmogenesis capacity of the spinal cord plays in injured populations has become an area of interest and systematic investigation among researchers in recent years, despite its importance being long recognized by neurophysiologists and clinicians. Given that each individual interneuron, as a rule, receives a broad convergence of various supraspinal and sensory inputs and may contribute to a vast repertoire of motor actions, the importance of assessing the functional state of the spinal locomotor circuits becomes increasingly evident. Air-stepping can be used as a unique and important model for investigating human rhythmogenesis since its manifestation is largely facilitated by a reduction of external resistance. This article aims to provide a review on current issues related to the “locomotor” state and interactions between spinal and supraspinal influences on the central pattern generator (CPG) circuitry in humans, which may be important for developing gait rehabilitation strategies in individuals with spinal cord and brain injuries.
Collapse
Affiliation(s)
- Irina A Solopova
- Laboratory of Neurobiology of Motor Control, Institute for Information Transmission Problems, Russian Academy of Science Moscow, Russia
| | - Victor A Selionov
- Laboratory of Neurobiology of Motor Control, Institute for Information Transmission Problems, Russian Academy of Science Moscow, Russia
| | - Francesca Sylos-Labini
- Laboratory of Neuromotor Physiology, IRCCS Fondazione Santa Lucia Rome, Italy ; Centre of Space Bio-medicine, University of Rome Tor Vergata Rome, Italy
| | - Victor S Gurfinkel
- Biomedical Engineering Department, Oregon Health and Science University Portland, OR, USA
| | - Francesco Lacquaniti
- Laboratory of Neuromotor Physiology, IRCCS Fondazione Santa Lucia Rome, Italy ; Centre of Space Bio-medicine, University of Rome Tor Vergata Rome, Italy ; Department of Systems Medicine, University of Rome Tor Vergata Rome, Italy
| | - Yuri P Ivanenko
- Laboratory of Neuromotor Physiology, IRCCS Fondazione Santa Lucia Rome, Italy
| |
Collapse
|
29
|
Gerasimenko Y, Gorodnichev R, Puhov A, Moshonkina T, Savochin A, Selionov V, Roy RR, Lu DC, Edgerton VR. Initiation and modulation of locomotor circuitry output with multisite transcutaneous electrical stimulation of the spinal cord in noninjured humans. J Neurophysiol 2014; 113:834-42. [PMID: 25376784 DOI: 10.1152/jn.00609.2014] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The mammalian lumbar spinal cord has the capability to generate locomotor activity in the absence of input from the brain. Previously, we reported that transcutaneous electrical stimulation of the spinal cord at vertebral level T11 can activate the locomotor circuitry in noninjured subjects when their legs are placed in a gravity-neutral position (Gorodnichev RM, Pivovarova EA, Pukhov A, Moiseev SA, Savokhin AA, Moshonkina TR, Shcherbakova NA, Kilimnik VA, Selionov VA, Kozlovskaia IB, Edgerton VR, Gerasimenko IU. Fiziol Cheloveka 38: 46-56, 2012). In the present study we hypothesized that stimulating multiple spinal sites and therefore unique combinations of networks converging on postural and locomotor lumbosacral networks would be more effective in inducing more robust locomotor behavior and more selective control than stimulation of more restricted networks. We demonstrate that simultaneous stimulation at the cervical, thoracic, and lumbar levels induced coordinated stepping movements with a greater range of motion at multiple joints in five of six noninjured subjects. We show that the addition of stimulation at L1 and/or at C5 to stimulation at T11 immediately resulted in enhancing the kinematics and interlimb coordination as well as the EMG patterns in proximal and distal leg muscles. Sequential cessation of stimulation at C5 and then at L1 resulted in a progressive degradation of the stepping pattern. The synergistic and interactive effects of transcutaneous stimulation suggest a multisegmental convergence of descending and ascending, and most likely propriospinal, influences on the spinal neuronal circuitries associated with locomotor activity. The potential impact of using multisite spinal cord stimulation as a strategy to neuromodulate the spinal circuitry has significant implications in furthering our understanding of the mechanisms controlling posture and locomotion and for regaining significant sensorimotor function even after a severe spinal cord injury.
Collapse
Affiliation(s)
- Yury Gerasimenko
- Pavlov Institute of Physiology, St. Petersburg, Russia; Integrative Biology and Physiology, University of California, Los Angeles, California; and
| | - Ruslan Gorodnichev
- Velikie Luky State Academy of Physical Education and Sport, Velikie Luky, Russia
| | - Aleksandr Puhov
- Velikie Luky State Academy of Physical Education and Sport, Velikie Luky, Russia
| | | | | | - Victor Selionov
- Institute for Information Transmission Problems, Russian Academy of Science, Moscow, Russia
| | - Roland R Roy
- Integrative Biology and Physiology, University of California, Los Angeles, California; and Brain Research Institute, University of California, Los Angeles, California
| | - Daniel C Lu
- Departments of Neurosurgery University of California, Los Angeles, California
| | - V Reggie Edgerton
- Departments of Neurosurgery University of California, Los Angeles, California; Integrative Biology and Physiology, University of California, Los Angeles, California; and Brain Research Institute, University of California, Los Angeles, California
| |
Collapse
|
30
|
La Scaleia V, Sylos-Labini F, Hoellinger T, Wang L, Cheron G, Lacquaniti F, Ivanenko YP. Control of Leg Movements Driven by EMG Activity of Shoulder Muscles. Front Hum Neurosci 2014; 8:838. [PMID: 25368569 PMCID: PMC4202724 DOI: 10.3389/fnhum.2014.00838] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 10/01/2014] [Indexed: 12/26/2022] Open
Abstract
During human walking, there exists a functional neural coupling between arms and legs, and between cervical and lumbosacral pattern generators. Here, we present a novel approach for associating the electromyographic (EMG) activity from upper limb muscles with leg kinematics. Our methodology takes advantage of the high involvement of shoulder muscles in most locomotor-related movements and of the natural co-ordination between arms and legs. Nine healthy subjects were asked to walk at different constant and variable speeds (3–5 km/h), while EMG activity of shoulder (deltoid) muscles and the kinematics of walking were recorded. To ensure a high level of EMG activity in deltoid, the subjects performed slightly larger arm swinging than they usually do. The temporal structure of the burst-like EMG activity was used to predict the spatiotemporal kinematic pattern of the forthcoming step. A comparison of actual and predicted stride leg kinematics showed a high degree of correspondence (r > 0.9). This algorithm has been also implemented in pilot experiments for controlling avatar walking in a virtual reality setup and an exoskeleton during over-ground stepping. The proposed approach may have important implications for the design of human–machine interfaces and neuroprosthetic technologies such as those of assistive lower limb exoskeletons.
Collapse
Affiliation(s)
- Valentina La Scaleia
- Laboratory of Neuromotor Physiology, Santa Lucia Foundation , Rome , Italy ; Centre of Space Bio-Medicine, University of Rome Tor Vergata , Rome , Italy
| | - Francesca Sylos-Labini
- Laboratory of Neuromotor Physiology, Santa Lucia Foundation , Rome , Italy ; Centre of Space Bio-Medicine, University of Rome Tor Vergata , Rome , Italy
| | - Thomas Hoellinger
- Laboratory of Neurophysiology and Movement Biomechanics, Université Libre de Bruxelles , Brussels , Belgium
| | - Letian Wang
- Department of Biomechanical Engineering, University of Twente , Enschede , Netherlands
| | - Guy Cheron
- Laboratory of Neurophysiology and Movement Biomechanics, Université Libre de Bruxelles , Brussels , Belgium
| | - Francesco Lacquaniti
- Laboratory of Neuromotor Physiology, Santa Lucia Foundation , Rome , Italy ; Centre of Space Bio-Medicine, University of Rome Tor Vergata , Rome , Italy ; Department of Systems Medicine, University of Rome Tor Vergata , Rome , Italy
| | - Yuri P Ivanenko
- Laboratory of Neuromotor Physiology, Santa Lucia Foundation , Rome , Italy
| |
Collapse
|
31
|
Solopova I, Selionov V, Kazennikov O, Ivanenko Y. Effects of transcranial magnetic stimulation during voluntary and non-voluntary stepping movements in humans. Neurosci Lett 2014; 579:64-9. [DOI: 10.1016/j.neulet.2014.07.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 07/06/2014] [Accepted: 07/08/2014] [Indexed: 01/01/2023]
|
32
|
Human locomotion under reduced gravity conditions: biomechanical and neurophysiological considerations. BIOMED RESEARCH INTERNATIONAL 2014; 2014:547242. [PMID: 25247179 PMCID: PMC4163425 DOI: 10.1155/2014/547242] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 06/12/2014] [Indexed: 12/26/2022]
Abstract
Reduced gravity offers unique opportunities to study motor behavior. This paper aims at providing a review on current issues of the known tools and techniques used for hypogravity simulation and their effects on human locomotion. Walking and running rely on the limb oscillatory mechanics, and one way to change its dynamic properties is to modify the level of gravity. Gravity has a strong effect on the optimal rate of limb oscillations, optimal walking speed, and muscle activity patterns, and gait transitions occur smoothly and at slower speeds at lower gravity levels. Altered center of mass movements and interplay between stance and swing leg dynamics may challenge new forms of locomotion in a heterogravity environment. Furthermore, observations in the lack of gravity effects help to reveal the intrinsic properties of locomotor pattern generators and make evident facilitation of nonvoluntary limb stepping. In view of that, space neurosciences research has participated in the development of new technologies that can be used as an effective tool for gait rehabilitation.
Collapse
|
33
|
Sylos-Labini F, La Scaleia V, d'Avella A, Pisotta I, Tamburella F, Scivoletto G, Molinari M, Wang S, Wang L, van Asseldonk E, van der Kooij H, Hoellinger T, Cheron G, Thorsteinsson F, Ilzkovitz M, Gancet J, Hauffe R, Zanov F, Lacquaniti F, Ivanenko YP. EMG patterns during assisted walking in the exoskeleton. Front Hum Neurosci 2014; 8:423. [PMID: 24982628 PMCID: PMC4058900 DOI: 10.3389/fnhum.2014.00423] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 05/27/2014] [Indexed: 12/30/2022] Open
Abstract
Neuroprosthetic technology and robotic exoskeletons are being developed to facilitate stepping, reduce muscle efforts, and promote motor recovery. Nevertheless, the guidance forces of an exoskeleton may influence the sensory inputs, sensorimotor interactions and resulting muscle activity patterns during stepping. The aim of this study was to report the muscle activation patterns in a sample of intact and injured subjects while walking with a robotic exoskeleton and, in particular, to quantify the level of muscle activity during assisted gait. We recorded electromyographic (EMG) activity of different leg and arm muscles during overground walking in an exoskeleton in six healthy individuals and four spinal cord injury (SCI) participants. In SCI patients, EMG activity of the upper limb muscles was augmented while activation of leg muscles was typically small. Contrary to our expectations, however, in neurologically intact subjects, EMG activity of leg muscles was similar or even larger during exoskeleton-assisted walking compared to normal overground walking. In addition, significant variations in the EMG waveforms were found across different walking conditions. The most variable pattern was observed in the hamstring muscles. Overall, the results are consistent with a non-linear reorganization of the locomotor output when using the robotic stepping devices. The findings may contribute to our understanding of human-machine interactions and adaptation of locomotor activity patterns.
Collapse
Affiliation(s)
- Francesca Sylos-Labini
- Laboratory of Neuromotor Physiology, Santa Lucia Foundation Rome, Italy ; Centre of Space Bio-medicine, University of Rome Tor Vergata Rome, Italy
| | - Valentina La Scaleia
- Laboratory of Neuromotor Physiology, Santa Lucia Foundation Rome, Italy ; Centre of Space Bio-medicine, University of Rome Tor Vergata Rome, Italy
| | - Andrea d'Avella
- Laboratory of Neuromotor Physiology, Santa Lucia Foundation Rome, Italy
| | - Iolanda Pisotta
- Spinal Cord Rehab Unit and CaRMA Lab, Santa Lucia Foundation Rome, Italy
| | | | - Giorgio Scivoletto
- Spinal Cord Rehab Unit and CaRMA Lab, Santa Lucia Foundation Rome, Italy
| | - Marco Molinari
- Spinal Cord Rehab Unit and CaRMA Lab, Santa Lucia Foundation Rome, Italy
| | - Shiqian Wang
- Biomechanical Engineering, Delft University of Technology Delft, Netherlands
| | - Letian Wang
- Biomechanical Engineering, University of Twente Enschede, Netherlands
| | | | - Herman van der Kooij
- Biomechanical Engineering, Delft University of Technology Delft, Netherlands ; Biomechanical Engineering, University of Twente Enschede, Netherlands
| | - Thomas Hoellinger
- Laboratory of Neurophysiology and Movement Biomechanics, Université Libre de Bruxelles Brussels, Belgium
| | - Guy Cheron
- Laboratory of Neurophysiology and Movement Biomechanics, Université Libre de Bruxelles Brussels, Belgium
| | | | | | - Jeremi Gancet
- Space Applications Services N.V./S.A. Zaventem, Belgium
| | | | | | - Francesco Lacquaniti
- Laboratory of Neuromotor Physiology, Santa Lucia Foundation Rome, Italy ; Centre of Space Bio-medicine, University of Rome Tor Vergata Rome, Italy ; Department of Systems Medicine, University of Rome Tor Vergata Rome, Italy
| | - Yuri P Ivanenko
- Laboratory of Neuromotor Physiology, Santa Lucia Foundation Rome, Italy
| |
Collapse
|