1
|
Lv Y, Yuan Z, Chen D, Chen Z, Zhu X, Ying X, Huang Y, Ji W, Qi D. Circular RNA LMBR1 inhibits bladder cancer progression by enhancing expression of the protein ALDH1A3. Noncoding RNA Res 2024; 9:1235-1248. [PMID: 39036604 PMCID: PMC11259990 DOI: 10.1016/j.ncrna.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 05/11/2024] [Accepted: 05/12/2024] [Indexed: 07/23/2024] Open
Abstract
Background Circular RNAs (circRNAs) have been identified as playing an integral role in the development of bladder cancer (BC). However, the mechanism by which circRNAs operate in the chemical carcinogenesis of BC remains unclear. Methods To explore this mechanism, we used RNA high-throughput sequencing to identify differentially expressed circRNA in bladder epithelial cells and chemically induced malignant transformed BC cells. Subsequently, in vitro experiments were conducted to investigate the biological function and molecular mechanism of circLMBR1 in BC. Finally, animal experiments were conducted to examine the clinical relevance of circLMBR1 in vivo. Results Our profiling of circular RNA expression during cellular malignant transformation induced by chemical carcinogens identified a subset of circRNAs associated with cell transformation. We verified that the expression of circLMBR1 in bladder epithelial malignant transformed cells was decreased compared with control cells, as well as in BC tissues and bladder cell lines. Furthermore, circLMBR1 was seen to inhibit the proliferation, invasion, and migration of BC cells both in vitro and in vivo. Mechanistically, circLMBR1 was found to exert its antitumor effect by binding to the protein ALDH1A3. Conclusions Our findings have revealed that circLMBR1 inhibits the progression of BC cells by binding to ALDH1A3 and upregulating its expression. As such, circLMBR1 serves as a promising predictor of BC and may provide a novel therapeutic target for the treatment of BC.
Collapse
Affiliation(s)
- Yifan Lv
- Department of Urology, Minimally Invasive Surgery Center, Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510230, Guangdong, PR China
| | - Zusen Yuan
- Department of Pediatric Surgery, Maternal and Child Health Hospital of Hubei, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430071, Hubei, PR China
| | - Dongmao Chen
- Department of Urology, The First People's Hospital of Zhaoqing, Zhaoqing, 526060, Guangdong, PR China
| | - Zhibin Chen
- Department of Urology, Minimally Invasive Surgery Center, Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510230, Guangdong, PR China
| | - Xiaowei Zhu
- Department of Urology, The People's Hospital of Enping, Jiangmen, 529499, Guangdong, PR China
| | - Xiaoling Ying
- The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, Guangdong, PR China
| | - Yapeng Huang
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510062, Guangdong, PR China
| | - Weidong Ji
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510062, Guangdong, PR China
| | - Defeng Qi
- Department of Urology, Minimally Invasive Surgery Center, Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510230, Guangdong, PR China
| |
Collapse
|
2
|
Hejazian SM, Rahbar Saadat Y, Hosseiniyan Khatibi SM, Farnood F, Farzamikia N, Hejazian SS, Batoumchi S, Shoja MM, Zununi Vahed S, Ardalan M. Circular RNAs as novel biomarkers in glomerular diseases. Arch Physiol Biochem 2024; 130:568-580. [PMID: 37194131 DOI: 10.1080/13813455.2023.2212328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 05/03/2023] [Accepted: 05/03/2023] [Indexed: 05/18/2023]
Abstract
Circular RNAs (circRNAs) regulate gene expression and biological procedures by controlling target genes or downstream pathways by sponging their related miRNA (s). Three types of circRNAs have been identified; exonic circRNAs (ecircRNAs), intronic RNAs (ciRNAs), and exon-intron circRNAs (ElciRNAs). It is clarified that altered levels of circRNAs have dynamic pathological and physiological functions in kidney diseases. Evidence suggests that circRNAs can be considered novel diagnostic biomarkers and therapeutic targets for renal diseases. Glomerulonephritis (GN) is a general term used to refer to a wide range of glomerular diseases. GN is an important cause of chronic kidney diseases. Here, we review the biogenesis of circRNAs, and their molecular and physiological functions in the kidney. Moreover, the dysregulated expression of circRNAs and their biological functions are discussed in primary and secondary glomerulonephritis. Moreover, diagnostic and therapeutic values of circRNAs in distinguishing or treating different types of GN are highlighted.
Collapse
Affiliation(s)
| | | | | | - Farahnoosh Farnood
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Negin Farzamikia
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyyed Sina Hejazian
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sepideh Batoumchi
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammadali M Shoja
- College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, USA
| | | | | |
Collapse
|
3
|
Cui YB, Wang LJ, Xu JH, Nan HJ, Yang PY, Niu JW, Shi MY, Bai YL. Recent Progress of CircRNAs in Hematological Malignancies. Int J Med Sci 2024; 21:2544-2561. [PMID: 39439468 PMCID: PMC11492881 DOI: 10.7150/ijms.98156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 09/16/2024] [Indexed: 10/25/2024] Open
Abstract
Circular RNAs (circRNAs) are now recognized as key regulators in the epigenetic control of genetic expression, being involved in a wide range of cellular activities such as proliferation, differentiation, and apoptosis. Their unique closed-loop structure endows them with stability and resistance to exonuclease degradation, making them not only key regulatory molecules within the cell but also promising biomarkers for disease diagnosis and prognosis, particularly in hematological malignancies. This review comprehensively explores the role of circRNAs in the pathogenesis, progression, and therapeutic resistance of common hematological malignancies. Furthermore, the review delves into the prognostic significance of circRNAs, underscoring their potential in predicting disease outcomes and treatment response. Given their extensive involvement in cancer biology, circRNAs present a frontier for novel therapeutic strategies.
Collapse
Affiliation(s)
- Ya-Bin Cui
- Department of Hematology, Henan University People's Hospital and Henan Provincial People's Hospital, Zhengzhou 450003, P.R. China
| | - Li-Jie Wang
- Department of Hematology, Henan University People's Hospital and Henan Provincial People's Hospital, Zhengzhou 450003, P.R. China
| | - Jin-Hui Xu
- Department of Hematology, Zhengzhou University People's Hospital and Henan Provincial People's Hospital, Zhengzhou 450003, P.R. China
| | - Hui-Jie Nan
- Department of Hematology, Zhengzhou University People's Hospital and Henan Provincial People's Hospital, Zhengzhou 450003, P.R. China
| | - Pei-Yao Yang
- Department of Hematology, Zhengzhou University People's Hospital and Henan Provincial People's Hospital, Zhengzhou 450003, P.R. China
| | - Jun-Wei Niu
- Department of Hematology, Zhengzhou University People's Hospital and Henan Provincial People's Hospital, Zhengzhou 450003, P.R. China
| | - Ming-Yue Shi
- Department of Hematology, Zhengzhou University People's Hospital and Henan Provincial People's Hospital, Zhengzhou 450003, P.R. China
| | - Yan-Liang Bai
- Department of Hematology, Henan University People's Hospital and Henan Provincial People's Hospital, Zhengzhou 450003, P.R. China
| |
Collapse
|
4
|
Gervais NC, Shapiro RS. Discovering the hidden function in fungal genomes. Nat Commun 2024; 15:8219. [PMID: 39300175 DOI: 10.1038/s41467-024-52568-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 09/11/2024] [Indexed: 09/22/2024] Open
Abstract
New molecular technologies have helped unveil previously unexplored facets of the genome beyond the canonical proteome, including microproteins and short ORFs, products of alternative splicing, regulatory non-coding RNAs, as well as transposable elements, cis-regulatory DNA, and other highly repetitive regions of DNA. In this Review, we highlight what is known about this 'hidden genome' within the fungal kingdom. Using well-established model systems as a contextual framework, we describe key elements of this hidden genome in diverse fungal species, and explore how these factors perform critical functions in regulating fungal metabolism, stress tolerance, and pathogenesis. Finally, we discuss new technologies that may be adapted to further characterize the hidden genome in fungi.
Collapse
Affiliation(s)
- Nicholas C Gervais
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Rebecca S Shapiro
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada.
| |
Collapse
|
5
|
Morandell J, Monziani A, Lazioli M, Donzel D, Döring J, Oss Pegorar C, D'Anzi A, Pellegrini M, Mattiello A, Bortolotti D, Bergonzoni G, Tripathi T, Mattis VB, Kovalenko M, Rosati J, Dieterich C, Dassi E, Wheeler VC, Ellederová Z, Wilusz JE, Viero G, Biagioli M. CircHTT(2,3,4,5,6) - co-evolving with the HTT CAG-repeat tract - modulates Huntington's disease phenotypes. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102234. [PMID: 38974999 PMCID: PMC11225910 DOI: 10.1016/j.omtn.2024.102234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 05/29/2024] [Indexed: 07/09/2024]
Abstract
Circular RNA (circRNA) molecules have critical functions during brain development and in brain-related disorders. Here, we identified and validated a circRNA, circHTT(2,3,4,5,6), stemming from the Huntington's disease (HD) gene locus that is most abundant in the central nervous system (CNS). We uncovered its evolutionary conservation in diverse mammalian species, and a correlation between circHTT(2,3,4,5,6) levels and the length of the CAG-repeat tract in exon-1 of HTT in human and mouse HD model systems. The mouse orthologue, circHtt(2,3,4,5,6), is expressed during embryogenesis, increases during nervous system development, and is aberrantly upregulated in the presence of the expanded CAG tract. While an IRES-like motif was predicted in circH TT (2,3,4,5,6), the circRNA does not appear to be translated in adult mouse brain tissue. Nonetheless, a modest, but consistent fraction of circHtt(2,3,4,5,6) associates with the 40S ribosomal subunit, suggesting a possible role in the regulation of protein translation. Finally, circHtt(2,3,4,5,6) overexpression experiments in HD-relevant STHdh striatal cells revealed its ability to modulate CAG expansion-driven cellular defects in cell-to-substrate adhesion, thus uncovering an unconventional modifier of HD pathology.
Collapse
Affiliation(s)
- Jasmin Morandell
- NeuroEpigenetics Laboratory, Department of Cellular, Computational, and Integrative Biology - CIBIO, University of Trento, 38123 Trento, Italy
| | - Alan Monziani
- NeuroEpigenetics Laboratory, Department of Cellular, Computational, and Integrative Biology - CIBIO, University of Trento, 38123 Trento, Italy
| | - Martina Lazioli
- NeuroEpigenetics Laboratory, Department of Cellular, Computational, and Integrative Biology - CIBIO, University of Trento, 38123 Trento, Italy
| | - Deborah Donzel
- Institute of Biophysics Unit at Trento, National Research Council - CNR, 38123 Trento, Italy
| | - Jessica Döring
- NeuroEpigenetics Laboratory, Department of Cellular, Computational, and Integrative Biology - CIBIO, University of Trento, 38123 Trento, Italy
| | - Claudio Oss Pegorar
- NeuroEpigenetics Laboratory, Department of Cellular, Computational, and Integrative Biology - CIBIO, University of Trento, 38123 Trento, Italy
| | - Angela D'Anzi
- Cellular Reprogramming Unit Fondazione IRCCS, Casa Sollievo Della Sofferenza, Viale dei Cappuccini 1, 71013 San Giovanni Rotondo, FG, Italy
| | - Miguel Pellegrini
- NeuroEpigenetics Laboratory, Department of Cellular, Computational, and Integrative Biology - CIBIO, University of Trento, 38123 Trento, Italy
| | - Andrea Mattiello
- NeuroEpigenetics Laboratory, Department of Cellular, Computational, and Integrative Biology - CIBIO, University of Trento, 38123 Trento, Italy
| | - Dalia Bortolotti
- NeuroEpigenetics Laboratory, Department of Cellular, Computational, and Integrative Biology - CIBIO, University of Trento, 38123 Trento, Italy
| | - Guendalina Bergonzoni
- NeuroEpigenetics Laboratory, Department of Cellular, Computational, and Integrative Biology - CIBIO, University of Trento, 38123 Trento, Italy
| | - Takshashila Tripathi
- NeuroEpigenetics Laboratory, Department of Cellular, Computational, and Integrative Biology - CIBIO, University of Trento, 38123 Trento, Italy
| | - Virginia B Mattis
- Board of Governor's Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Marina Kovalenko
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Jessica Rosati
- Cellular Reprogramming Unit Fondazione IRCCS, Casa Sollievo Della Sofferenza, Viale dei Cappuccini 1, 71013 San Giovanni Rotondo, FG, Italy
| | - Christoph Dieterich
- Section of Bioinformatics and Systems Cardiology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Erik Dassi
- Laboratory of RNA Regulatory Networks, Department of Cellular, Computational, and Integrative Biology - CIBIO, University of Trento, 38123 Trento, Italy
| | - Vanessa C Wheeler
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Zdenka Ellederová
- Research Center PIGMOD, Institute of Animal Physiology and Genetics, Czech Academy of Science, 277 21 Libechov, Czech Republic
| | - Jeremy E Wilusz
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Therapeutic Innovation Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Gabriella Viero
- Institute of Biophysics Unit at Trento, National Research Council - CNR, 38123 Trento, Italy
| | - Marta Biagioli
- NeuroEpigenetics Laboratory, Department of Cellular, Computational, and Integrative Biology - CIBIO, University of Trento, 38123 Trento, Italy
| |
Collapse
|
6
|
Xu Y, Gao Z, Sun X, Li J, Ozaki T, Shi D, Yu M, Zhu Y. The role of circular RNA during the urological cancer metastasis: exploring regulatory mechanisms and potential therapeutic targets. Cancer Metastasis Rev 2024; 43:1055-1074. [PMID: 38558156 DOI: 10.1007/s10555-024-10182-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 03/02/2024] [Indexed: 04/04/2024]
Abstract
Metastasis is a major contributor to treatment failure and death in urological cancers, representing an important biomedical challenge at present. Metastases form as a result of cancer cells leaving the primary site, entering the vasculature and lymphatic vessels, and colonizing clones elsewhere in the body. However, the specific regulatory mechanisms of action underlying the metastatic process of urological cancers remain incompletely elucidated. With the deepening of research, circular RNAs (circRNAs) have been found to not only play a significant role in tumor progression and prognosis but also show aberrant expression in various tumor metastases, consequently impacting tumor metastasis through multiple pathways. Therefore, circRNAs are emerging as potential tumor markers and treatment targets. This review summarizes the research progress on elucidating how circRNAs regulate the urological cancer invasion-metastasis cascade response and related processes, as well as their role in immune microenvironment remodeling and circRNA vaccines. This body of work highlights circRNA regulation as an emerging therapeutic target for urological cancers, which should motivate further specific research in this regard.
Collapse
Affiliation(s)
- Yan Xu
- Department of Urology, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Zhipeng Gao
- Department of Urology, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Xiaoyu Sun
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110001, China
| | - Jun Li
- Department of Urology, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Toshinori Ozaki
- Laboratory of DNA Damage Signaling, Chiba Cancer Center Research Institute, Chiba, Japan
| | - Du Shi
- Department of Urology, The First Hospital of China Medical University, Shenyang, 110001, China.
| | - Meng Yu
- Department of Laboratory Animal Science, China Medical University, No. 77 Puhe Road, Shenyang, 110122, Liaoning, China.
| | - Yuyan Zhu
- Department of Urology, The First Hospital of China Medical University, Shenyang, 110001, China.
| |
Collapse
|
7
|
He S, Bing J, Zhong Y, Zheng X, Zhou Z, Wang Y, Hu J, Sun X. PlantCircRNA: a comprehensive database for plant circular RNAs. Nucleic Acids Res 2024:gkae709. [PMID: 39189447 DOI: 10.1093/nar/gkae709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/11/2024] [Accepted: 08/02/2024] [Indexed: 08/28/2024] Open
Abstract
Circular RNAs (circRNAs) represent recently discovered novel regulatory non-coding RNAs. While they are present in many eukaryotes, there has been limited research on plant circRNAs. We developed PlantCircRNA (https://plant.deepbiology.cn/PlantCircRNA/) to fill this gap. The two most important features of PlantCircRNA are (i) it incorporates circRNAs from 94 plant species based on 39 245 RNA-sequencing samples and (ii) it imports the original AtCircDB and CropCircDB databases. We manually curated all circRNAs from published articles, and imported them into the database. Furthermore, we added detailed information of tissue as well as abiotic stresses to the database. To help users understand these circRNAs, the database includes a detection score to measure their consistency and a naming system following the guidelines recently proposed for eukaryotes. Finally, we developed a comprehensive platform for users to visualize, analyze, and download data regarding specific circRNAs. This resource will serve as a home for plant circRNAs and provide the community with unprecedented insights into these mysterious molecule.
Collapse
Affiliation(s)
- Shutian He
- Agricultural Big Data Research Center, College of Information Science and Engineering, Shandong Agricultural University, Taian 271018, China
| | - Jianhao Bing
- Agricultural Big Data Research Center, College of Information Science and Engineering, Shandong Agricultural University, Taian 271018, China
| | - Yang Zhong
- Agricultural Big Data Research Center, College of Information Science and Engineering, Shandong Agricultural University, Taian 271018, China
| | - Xiaoyang Zheng
- Agricultural Big Data Research Center, College of Information Science and Engineering, Shandong Agricultural University, Taian 271018, China
| | - Ziyu Zhou
- Agricultural Big Data Research Center, College of Information Science and Engineering, Shandong Agricultural University, Taian 271018, China
| | - Yifei Wang
- Agricultural Big Data Research Center, College of Information Science and Engineering, Shandong Agricultural University, Taian 271018, China
| | - Jiming Hu
- Agricultural Big Data Research Center, College of Information Science and Engineering, Shandong Agricultural University, Taian 271018, China
| | - Xiaoyong Sun
- Agricultural Big Data Research Center, College of Information Science and Engineering, Shandong Agricultural University, Taian 271018, China
| |
Collapse
|
8
|
Son CJ, Carnino JM, Lee H, Jin Y. Emerging Roles of Circular RNA in Macrophage Activation and Inflammatory Lung Responses. Cells 2024; 13:1407. [PMID: 39272979 PMCID: PMC11394395 DOI: 10.3390/cells13171407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/20/2024] [Accepted: 08/20/2024] [Indexed: 09/15/2024] Open
Abstract
Circular RNA (circRNA) is a type of single-stranded RNA that forms a covalently closed continuous loop, unlike linear RNA. The expression of circRNAs in mammals is often conserved across species and shows tissue and cell specificity. Some circRNA serve as gene regulators. However, the biological function of most circRNAs is unclear. CircRNA does not have 5' or 3' ends. The unique structure of circRNAs provides them with a much longer half-life and more resistance to RNase R than linear RNAs. Inflammatory lung responses occur in the pathogenesis and recovery of many lung diseases. Macrophages form the first line of host defense/innate immune responses and initiate/mediate lung inflammation. For example, in bacterial pneumonia, upon pro-inflammatory activation, they release early response cytokines/chemokines that recruit neutrophils, macrophages, and lymphocytes to sites of infection and clear pathogens. The functional effects and mechanisms by which circRNAs exert physiological or pathological roles in macrophage activation and lung inflammation remain poorly understood. In this article, we will review the current understanding and progress of circRNA biogenesis, regulation, secretion, and degradation. Furthermore, we will review the current reports on the role of circRNAs in macrophage activation and polarization, as well as in the process of inflammatory lung responses.
Collapse
Affiliation(s)
- Chang Jun Son
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Boston University, Boston, MA 02118, USA; (C.J.S.); (J.M.C.); (H.L.)
| | - Jonathan M. Carnino
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Boston University, Boston, MA 02118, USA; (C.J.S.); (J.M.C.); (H.L.)
| | - Heedoo Lee
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Boston University, Boston, MA 02118, USA; (C.J.S.); (J.M.C.); (H.L.)
- Department of Biology and Chemistry, Changwon National University, Changwon 51140, Republic of Korea
| | - Yang Jin
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Boston University, Boston, MA 02118, USA; (C.J.S.); (J.M.C.); (H.L.)
| |
Collapse
|
9
|
Wang C, Liang C. CircCNNs, a convolutional neural network framework to better understand the biogenesis of exonic circRNAs. Sci Rep 2024; 14:18982. [PMID: 39152135 PMCID: PMC11329666 DOI: 10.1038/s41598-024-69262-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 08/02/2024] [Indexed: 08/19/2024] Open
Abstract
Circular RNAs (circRNAs) as biomarkers for cancer detection have been extensively explored, however, the biogenesis mechanism is still elusive. In contrast to linear splicing (LS) involved in linear transcript formation, the so-called back splicing (BS) process has been proposed to explain circRNA formation. To investigate the potential mechanism of BS via the machine learning approach, we curated a high-quality BS and LS exon pairs dataset with evidence-based stringent filtering. Two convolutional neural networks (CNN) base models with different structures for processing splicing junction sequences including motif extraction were created and compared after extensive hyperparameter tuning. In contrast to the previous study, we are able to identify motifs corresponding to well-established BS-associated genes such as MBNL1, QKI, and ESPR2. Importantly, despite prevalent high false positive rates in existing circRNA detection pipelines and databases, our base models demonstrated a notable high specificity (greater than 90%). To further improve the model performance, a novo fast numerical method was proposed and implemented to calculate the reverse complementary matches (RCMs) crossing two flanking regions and within each flanking region of exon pairs. Our CircCNNs framework that incorporated RCM information into the optimal base models further reduced the false positive rates leading to 88% prediction accuracy.
Collapse
Affiliation(s)
- Chao Wang
- Department of Biology, Miami University, Oxford, OH, 45056, USA.
| | - Chun Liang
- Department of Biology, Miami University, Oxford, OH, 45056, USA.
| |
Collapse
|
10
|
Zhang J, Luo Z, Zheng Y, Duan M, Qiu Z, Huang C. CircRNA as an Achilles heel of cancer: characterization, biomarker and therapeutic modalities. J Transl Med 2024; 22:752. [PMID: 39127679 DOI: 10.1186/s12967-024-05562-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024] Open
Abstract
Circular RNAs (circRNAs) are a class of endogenous noncoding RNAs characterized by their lack of 5' caps and 3' poly(A) tails. These molecules have garnered substantial attention from the scientific community. A wide range of circRNA types has been found to be expressed in various tissues of the human body, exhibiting unique characteristics such as high abundance, remarkable stability, and tissue-specific expression patterns. These attributes, along with their detectability in liquid biopsy samples such as plasma, position circRNAs an ideal choice as cancer diagnostic and prognostic biomarkers. Additionally, several studies have reported that the functions of circRNAs are associated with tumor proliferation, metastasis, and drug resistance. They achieve this through various mechanisms, including modulation of parental gene expression, regulation of gene transcription, acting as microRNA (miRNA) sponges, and encoding functional proteins. In recent years, a large number of studies have focused on synthesizing circRNAs in vitro and delivering them to tumor tissue to exert its effects in inhibit tumor progression. Herein, we briefly discuss the biogenesis, characteristics, functions, and detection of circRNAs, emphasizing their clinical potential as biomarkers for cancer diagnosis and prognosis. We also provide an overview the recent techniques for synthesizing circRNAs and delivery strategies, and outline the application of engineered circRNAs in clinical cancer therapy.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Gastrointestinal Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Hongkou District, Shanghai, 200080, China
| | - Zai Luo
- Department of Gastrointestinal Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Hongkou District, Shanghai, 200080, China.
| | - Yang Zheng
- Department of Gastrointestinal Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Hongkou District, Shanghai, 200080, China
| | - Mingyu Duan
- Department of Education, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 650 Xinsongjiang Road, Songjiang District, Shanghai, 201600, China
| | - Zhengjun Qiu
- Department of Gastrointestinal Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Hongkou District, Shanghai, 200080, China
| | - Chen Huang
- Department of Gastrointestinal Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Hongkou District, Shanghai, 200080, China.
| |
Collapse
|
11
|
Liu F, Gu W, Shao Y. Cross-talk between circRNAs and m6A modifications in solid tumors. J Transl Med 2024; 22:694. [PMID: 39075555 PMCID: PMC11288061 DOI: 10.1186/s12967-024-05500-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 07/10/2024] [Indexed: 07/31/2024] Open
Abstract
Circular RNAs (circRNAs) possess unique biological properties and distribution characteristics that enable a variety of biological functions. N6-methyladenosine (m6A), a prevalent epigenetic modification in organisms, is regulated by factors including methyltransferases (writers), demethylases (erasers), and m6A-binding proteins (readers). These factors play critical roles in various pathophysiological processes. There is growing evidence that m6A modifications are common within circRNAs, affecting their synthesis, translation, translocation, degradation, and stability. Additionally, circRNAs regulate biological processes that influence m6A modifications. This review explores the metabolism and functions of m6A modifications and circRNAs, their interactions, and their specific regulatory mechanisms in different tumors, offering insights into m6A-circRNA interaction in cancer.
Collapse
Affiliation(s)
- Fenfang Liu
- Department of Radiation Oncology, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, China
| | - Wendong Gu
- Department of Radiation Oncology, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, China.
| | - Yingjie Shao
- Department of Radiation Oncology, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, China.
| |
Collapse
|
12
|
Zhang D, Ma Y, Naz M, Ahmed N, Zhang L, Zhou JJ, Yang D, Chen Z. Advances in CircRNAs in the Past Decade: Review of CircRNAs Biogenesis, Regulatory Mechanisms, and Functions in Plants. Genes (Basel) 2024; 15:958. [PMID: 39062737 PMCID: PMC11276256 DOI: 10.3390/genes15070958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/12/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Circular RNA (circRNA) is a type of non-coding RNA with multiple biological functions. Whole circRNA genomes in plants have been identified, and circRNAs have been demonstrated to be widely present and highly expressed in various plant tissues and organs. CircRNAs are highly stable and conserved in plants, and exhibit tissue specificity and developmental stage specificity. CircRNAs often interact with other biomolecules, such as miRNAs and proteins, thereby regulating gene expression, interfering with gene function, and affecting plant growth and development or response to environmental stress. CircRNAs are less studied in plants than in animals, and their regulatory mechanisms of biogenesis and molecular functions are not fully understood. A variety of circRNAs in plants are involved in regulating growth and development and responding to environmental stress. This review focuses on the biogenesis and regulatory mechanisms of circRNAs, as well as their biological functions during growth, development, and stress responses in plants, including a discussion of plant circRNA research prospects. Understanding the generation and regulatory mechanisms of circRNAs is a challenging but important topic in the field of circRNAs in plants, as it can provide insights into plant life activities and their response mechanisms to biotic or abiotic stresses as well as new strategies for plant molecular breeding and pest control.
Collapse
Affiliation(s)
- Dongqin Zhang
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China; (D.Z.); (M.N.); (N.A.); (L.Z.); (J.-J.Z.); (D.Y.)
| | - Yue Ma
- College of Agriculture, Guizhou University, Guiyang 550025, China;
| | - Misbah Naz
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China; (D.Z.); (M.N.); (N.A.); (L.Z.); (J.-J.Z.); (D.Y.)
| | - Nazeer Ahmed
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China; (D.Z.); (M.N.); (N.A.); (L.Z.); (J.-J.Z.); (D.Y.)
| | - Libo Zhang
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China; (D.Z.); (M.N.); (N.A.); (L.Z.); (J.-J.Z.); (D.Y.)
| | - Jing-Jiang Zhou
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China; (D.Z.); (M.N.); (N.A.); (L.Z.); (J.-J.Z.); (D.Y.)
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, UK
| | - Ding Yang
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China; (D.Z.); (M.N.); (N.A.); (L.Z.); (J.-J.Z.); (D.Y.)
| | - Zhuo Chen
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China; (D.Z.); (M.N.); (N.A.); (L.Z.); (J.-J.Z.); (D.Y.)
| |
Collapse
|
13
|
Liu J, Guo C, Fu J, Liu D, Liu G, Sun B, Deng M, Guo Y, Li Y. Identification and Functional Analysis of circRNAs during Goat Follicular Development. Int J Mol Sci 2024; 25:7548. [PMID: 39062792 PMCID: PMC11277404 DOI: 10.3390/ijms25147548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/24/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Litter size is a crucial quantitative trait in animals, closely linked to follicular development. Circular RNA (circRNA), a type of single-stranded closed-loop endogenous RNA with stable expression, plays pivotal roles in various biological processes, yet its function in goat follicular development remains unclear. In this study, we collected large (follicle diameter > 3 mm) and small (1 mm < follicle diameter < 3 mm) follicles from black goats in the Chuanzhong region for circRNA sequencing, with the aim of elucidating the functional circRNAs that influence follicle development in goats. Differential analysis revealed that 17 circRNAs were upregulated in large follicles, and 28 circRNAs were upregulated in small follicles. Functional enrichment analysis revealed significant enrichment of pathways related to reproduction, including cellular response to follicle-stimulating hormone stimulus, the PI3K-Akt signaling pathway, the MAPK signaling pathway, and the Notch signaling pathway. Based on the ceRNA mechanism, 45 differentially expressed circRNAs were found to target and bind a total of 418 miRNAs, and an intercalation network including miR-324-3p (circRNA2497, circRNA5650), miR-202-5p (circRNA3333, circRNA5501), and miR-493-3p (circRNA4995, circRNA5508) was constructed. In addition, conservation analysis revealed that 2,239 circRNAs were conserved between goats and humans. Prediction of translation potential revealed that 154 circRNAs may potentially utilize both N6-methyladenosine (m6A) and internal ribosome entry site (IRES) translation mechanisms. Furthermore, the differential expression and circularization cleavage sites of five circRNAs were validated through RT-qPCR and DNA sequencing. Our study constructed a circRNA map in goat follicle development, offering a theoretical foundation for enhancing goat reproductive performance.
Collapse
Affiliation(s)
- Jie Liu
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (J.L.); (C.G.); (B.S.); (M.D.); (Y.G.)
- National Local Joint Engineering Research Center of Livestock and Poultry, South China Agricultural University, Guangzhou 510642, China
| | - Conghui Guo
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (J.L.); (C.G.); (B.S.); (M.D.); (Y.G.)
- National Local Joint Engineering Research Center of Livestock and Poultry, South China Agricultural University, Guangzhou 510642, China
| | - Junjie Fu
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (J.L.); (C.G.); (B.S.); (M.D.); (Y.G.)
- National Local Joint Engineering Research Center of Livestock and Poultry, South China Agricultural University, Guangzhou 510642, China
| | - Dewu Liu
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (J.L.); (C.G.); (B.S.); (M.D.); (Y.G.)
- National Local Joint Engineering Research Center of Livestock and Poultry, South China Agricultural University, Guangzhou 510642, China
| | - Guangbin Liu
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (J.L.); (C.G.); (B.S.); (M.D.); (Y.G.)
- National Local Joint Engineering Research Center of Livestock and Poultry, South China Agricultural University, Guangzhou 510642, China
| | - Baoli Sun
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (J.L.); (C.G.); (B.S.); (M.D.); (Y.G.)
- National Local Joint Engineering Research Center of Livestock and Poultry, South China Agricultural University, Guangzhou 510642, China
| | - Ming Deng
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (J.L.); (C.G.); (B.S.); (M.D.); (Y.G.)
- National Local Joint Engineering Research Center of Livestock and Poultry, South China Agricultural University, Guangzhou 510642, China
| | - Yongqing Guo
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (J.L.); (C.G.); (B.S.); (M.D.); (Y.G.)
- National Local Joint Engineering Research Center of Livestock and Poultry, South China Agricultural University, Guangzhou 510642, China
| | - Yaokun Li
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (J.L.); (C.G.); (B.S.); (M.D.); (Y.G.)
- National Local Joint Engineering Research Center of Livestock and Poultry, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
14
|
Guo Y, Wang T, Lu X, Li W, Lv X, Peng Q, Zhang J, Gao J, Hu M. Comparative genome-wide analysis of circular RNAs in Brassica napus L.: target-site versus non-target-site resistance to herbicide stress. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:176. [PMID: 38969812 DOI: 10.1007/s00122-024-04678-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 06/15/2024] [Indexed: 07/07/2024]
Abstract
Circular RNAs (circRNAs), a class of non-coding RNA molecules, are recognized for their unique functions; however, their responses to herbicide stress in Brassica napus remain unclear. In this study, the role of circRNAs in response to herbicide treatment was investigated in two rapeseed cultivars: MH33, which confers non-target-site resistance (NTSR), and EM28, which exhibits target-site resistance (TSR). The genome-wide circRNA profiles of herbicide-stressed and non-stressed seedlings were analyzed. The findings indicate that NTSR seedlings exhibited a greater abundance of circRNAs, shorter lengths of circRNAs and their parent genes, and more diverse functions of parent genes compared with TSR seedlings. Compared to normal-growth plants, the herbicide-stressed group exhibited similar trends in the number of circRNAs, functions of parent genes, and differentially expressed circRNAs as observed in NTSR seedlings. In addition, a greater number of circRNAs that function as competing microRNA (miRNA) sponges were identified in the herbicide stress and NTSR groups compared to the normal-growth and TSR groups, respectively. The differentially expressed circRNAs were validated by qPCR. The differntially expressed circRNA-miRNA networks were predicted, and the mRNAs targeted by these miRNAs were annotated. Our results suggest that circRNAs play a crucial role in responding to herbicide stress, exhibiting distinct responses between NTSR and TSR in rapeseed. These findings offer valuable insights into the mechanisms underlying herbicide resistance in rapeseed.
Collapse
Affiliation(s)
- Yue Guo
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Ting Wang
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Xinyu Lu
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Weilong Li
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Xinlei Lv
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Qi Peng
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Jiefu Zhang
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Jianqin Gao
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Maolong Hu
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China.
| |
Collapse
|
15
|
Wen K, Chen X, Gu J, Chen Z, Wang Z. Beyond traditional translation: ncRNA derived peptides as modulators of tumor behaviors. J Biomed Sci 2024; 31:63. [PMID: 38877495 PMCID: PMC11177406 DOI: 10.1186/s12929-024-01047-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 05/24/2024] [Indexed: 06/16/2024] Open
Abstract
Within the intricate tapestry of molecular research, noncoding RNAs (ncRNAs) were historically overshadowed by a pervasive presumption of their inability to encode proteins or peptides. However, groundbreaking revelations have challenged this notion, unveiling select ncRNAs that surprisingly encode peptides specifically those nearing a succinct 100 amino acids. At the forefront of this epiphany stand lncRNAs and circRNAs, distinctively characterized by their embedded small open reading frames (sORFs). Increasing evidence has revealed different functions and mechanisms of peptides/proteins encoded by ncRNAs in cancer, including promotion or inhibition of cancer cell proliferation, cellular metabolism (glucose metabolism and lipid metabolism), and promotion or concerted metastasis of cancer cells. The discoveries not only accentuate the depth of ncRNA functionality but also open novel avenues for oncological research and therapeutic innovations. The main difficulties in the study of these ncRNA-derived peptides hinge crucially on precise peptide detection and sORFs identification. Here, we illuminate cutting-edge methodologies, essential instrumentation, and dedicated databases tailored for unearthing sORFs and peptides. In addition, we also conclude the potential of clinical applications in cancer therapy.
Collapse
Affiliation(s)
- Kang Wen
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210011, P.R. China
| | - Xin Chen
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210011, P.R. China
| | - Jingyao Gu
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210011, P.R. China
| | - Zhenyao Chen
- Department of Respiratory Endoscopy, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, P.R. China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Zhaoxia Wang
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210011, P.R. China.
| |
Collapse
|
16
|
Choi SW, Nam JW. Optimal design of synthetic circular RNAs. Exp Mol Med 2024; 56:1281-1292. [PMID: 38871815 PMCID: PMC11263348 DOI: 10.1038/s12276-024-01251-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 03/20/2024] [Accepted: 04/03/2024] [Indexed: 06/15/2024] Open
Abstract
Circular RNAs are an unusual class of single-stranded RNAs whose ends are covalently linked via back-splicing. Due to their versatility, the need to express circular RNAs in vivo and in vitro has increased. Efforts have been made to efficiently and precisely synthesize circular RNAs. However, a review on the optimization of the processes of circular RNA design, synthesis, and delivery is lacking. Our review highlights the multifaceted aspects considered when producing optimal circular RNAs and summarizes the available options for each step of exogenous circular RNA design and synthesis, including circularization strategies. Additionally, this review describes several potential applications of circular RNAs.
Collapse
Affiliation(s)
- Seo-Won Choi
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, 04763, Republic of Korea
| | - Jin-Wu Nam
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, 04763, Republic of Korea.
- Bio-BigData Center, Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul, 04763, Republic of Korea.
- Research Institute for Convergence of Basic Sciences, Hanyang University, Seoul, 04763, Republic of Korea.
- Hanyang Institute of Advanced BioConvergence, Hanyang University, Seoul, 04763, Republic of Korea.
| |
Collapse
|
17
|
Thamjamrassri P, Ariyachet C. Circular RNAs in Cell Cycle Regulation of Cancers. Int J Mol Sci 2024; 25:6094. [PMID: 38892280 PMCID: PMC11173060 DOI: 10.3390/ijms25116094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/26/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Cancer has been one of the most problematic health issues globally. Typically, all cancers share a common characteristic or cancer hallmark, such as sustaining cell proliferation, evading growth suppressors, and enabling replicative immortality. Indeed, cell cycle regulation in cancer is often found to be dysregulated, leading to an increase in aggressiveness. These dysregulations are partly due to the aberrant cellular signaling pathway. In recent years, circular RNAs (circRNAs) have been widely studied and classified as one of the regulators in various cancers. Numerous studies have reported that circRNAs antagonize or promote cancer progression through the modulation of cell cycle regulators or their associated signaling pathways, directly or indirectly. Mostly, circRNAs are known to act as microRNA (miRNA) sponges. However, they also hold additional mechanisms for regulating cellular activity, including protein binding, RNA-binding protein (RBP) recruitment, and protein translation. This review will discuss the current knowledge of how circRNAs regulate cell cycle-related proteins through the abovementioned mechanisms in different cancers.
Collapse
Affiliation(s)
- Pannathon Thamjamrassri
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand;
- Center of Excellence in Hepatitis and Liver Cancer, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Medical Biochemistry Program, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Chaiyaboot Ariyachet
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand;
- Center of Excellence in Hepatitis and Liver Cancer, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
18
|
Giusti SA, Pino NS, Pannunzio C, Ogando MB, Armando NG, Garrett L, Zimprich A, Becker L, Gimeno ML, Lukin J, Merino FL, Pardi MB, Pedroncini O, Di Mauro GC, Durner VG, Fuchs H, de Angelis MH, Patop IL, Turck CW, Deussing JM, Vogt Weisenhorn DM, Jahn O, Kadener S, Hölter SM, Brose N, Giesert F, Wurst W, Marin-Burgin A, Refojo D. A brain-enriched circular RNA controls excitatory neurotransmission and restricts sensitivity to aversive stimuli. SCIENCE ADVANCES 2024; 10:eadj8769. [PMID: 38787942 PMCID: PMC11122670 DOI: 10.1126/sciadv.adj8769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 04/22/2024] [Indexed: 05/26/2024]
Abstract
Circular RNAs (circRNAs) are a large class of noncoding RNAs. Despite the identification of thousands of circular transcripts, the biological significance of most of them remains unexplored, partly because of the lack of effective methods for generating loss-of-function animal models. In this study, we focused on circTulp4, an abundant circRNA derived from the Tulp4 gene that is enriched in the brain and synaptic compartments. By creating a circTulp4-deficient mouse model, in which we mutated the splice acceptor site responsible for generating circTulp4 without affecting the linear mRNA or protein levels, we were able to conduct a comprehensive phenotypic analysis. Our results demonstrate that circTulp4 is critical in regulating neuronal and brain physiology, modulating the strength of excitatory neurotransmission and sensitivity to aversive stimuli. This study provides evidence that circRNAs can regulate biologically relevant functions in neurons, with modulatory effects at multiple levels of the phenotype, establishing a proof of principle for the regulatory role of circRNAs in neural processes.
Collapse
Affiliation(s)
- Sebastian A. Giusti
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)–CONICET–Partner Institute of the Max Planck Society, Buenos Aires, Argentina
- Molecular Neurobiology, Max Planck Institute of Psychiatry, Munich, Germany
| | - Natalia S. Pino
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
| | - Camila Pannunzio
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)–CONICET–Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Mora B. Ogando
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)–CONICET–Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Natalia G. Armando
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)–CONICET–Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Lillian Garrett
- German Mouse Clinic, Helmholtz Zentrum München, Munich, Germany
| | - Annemarie Zimprich
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
- German Mouse Clinic, Helmholtz Zentrum München, Munich, Germany
- Chair of Developmental Genetics, Munich School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Lore Becker
- German Mouse Clinic, Helmholtz Zentrum München, Munich, Germany
| | - Maria L. Gimeno
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)–CONICET–Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Jeronimo Lukin
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)–CONICET–Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Florencia L. Merino
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)–CONICET–Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - M. Belen Pardi
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)–CONICET–Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Olivia Pedroncini
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)–CONICET–Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Giuliana C. Di Mauro
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)–CONICET–Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | | | - Helmut Fuchs
- German Mouse Clinic, Helmholtz Zentrum München, Munich, Germany
| | - Martin Hrabe de Angelis
- German Mouse Clinic, Helmholtz Zentrum München, Munich, Germany
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
| | | | - Christoph W. Turck
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - Jan M. Deussing
- Molecular Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Daniela M. Vogt Weisenhorn
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
- Chair of Developmental Genetics, Munich School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Olaf Jahn
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Georg-August-University, Göttingen, Germany
| | | | - Sabine M. Hölter
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
| | - Nils Brose
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Florian Giesert
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
| | - Wolfgang Wurst
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
- Chair of Developmental Genetics, Munich School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE) Site Munich, Munich, Germany
| | - Antonia Marin-Burgin
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)–CONICET–Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Damian Refojo
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)–CONICET–Partner Institute of the Max Planck Society, Buenos Aires, Argentina
- Molecular Neurobiology, Max Planck Institute of Psychiatry, Munich, Germany
| |
Collapse
|
19
|
Luo D, Ottesen EW, Lee JH, Singh RN. Transcriptome- and proteome-wide effects of a circular RNA encompassing four early exons of the spinal muscular atrophy genes. Sci Rep 2024; 14:10442. [PMID: 38714739 PMCID: PMC11076517 DOI: 10.1038/s41598-024-60593-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 04/25/2024] [Indexed: 05/10/2024] Open
Abstract
Spinal muscular atrophy (SMA) genes, SMN1 and SMN2 (hereinafter referred to as SMN1/2), produce multiple circular RNAs (circRNAs), including C2A-2B-3-4 that encompasses early exons 2A, 2B, 3 and 4. C2A-2B-3-4 is a universally and abundantly expressed circRNA of SMN1/2. Here we report the transcriptome- and proteome-wide effects of overexpression of C2A-2B-3-4 in inducible HEK293 cells. Our RNA-Seq analysis revealed altered expression of ~ 15% genes (4172 genes) by C2A-2B-3-4. About half of the affected genes by C2A-2B-3-4 remained unaffected by L2A-2B-3-4, a linear transcript encompassing exons 2A, 2B, 3 and 4 of SMN1/2. These findings underscore the unique role of the structural context of C2A-2B-3-4 in gene regulation. A surprisingly high number of upregulated genes by C2A-2B-3-4 were located on chromosomes 4 and 7, whereas many of the downregulated genes were located on chromosomes 10 and X. Supporting a cross-regulation of SMN1/2 transcripts, C2A-2B-3-4 and L2A-2B-3-4 upregulated and downregulated SMN1/2 mRNAs, respectively. Proteome analysis revealed 61 upregulated and 57 downregulated proteins by C2A-2B-3-4 with very limited overlap with those affected by L2A-2B-3-4. Independent validations confirmed the effect of C2A-2B-3-4 on expression of genes associated with chromatin remodeling, transcription, spliceosome function, ribosome biogenesis, lipid metabolism, cytoskeletal formation, cell proliferation and neuromuscular junction formation. Our findings reveal a broad role of C2A-2B-3-4, and expands our understanding of functions of SMN1/2 genes.
Collapse
Affiliation(s)
- Diou Luo
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, 50011, USA
| | - Eric W Ottesen
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, 50011, USA
| | - Ji Heon Lee
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, 50011, USA
| | - Ravindra N Singh
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, 50011, USA.
| |
Collapse
|
20
|
Singh S, Shyamal S, Das A, Panda AC. Global identification of mRNA-interacting circular RNAs by CLiPPR-Seq. Nucleic Acids Res 2024; 52:e29. [PMID: 38324478 PMCID: PMC11014417 DOI: 10.1093/nar/gkae058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 01/04/2024] [Accepted: 01/18/2024] [Indexed: 02/09/2024] Open
Abstract
Although the functional role of circular RNA (circRNA) interaction with microRNAs and proteins has been studied extensively, circRNA interactions with the protein-coding mRNAs in intact cells remain largely unknown. Here, by employing AMT-mediated proximity ligation of RNA-RNA duplexes followed by circRNA enrichment and deep sequencing, we report a novel Cross-Linking Poly(A) Pulldown RNase R Sequencing (CLiPPR-seq) technology which identified hundreds of mRNA-interacting circRNAs in three different cell types, including βTC6, C2C12 and HeLa cells. Furthermore, CLiPP-seq without RNase R treatment was also performed to identify the mRNA expression in these cells. BLAST analysis of circRNAs in CLiPPR-seq sample with the mRNAs in CLiPP-seq samples determined their potential complementary sequences for circRNA-mRNA interaction. Pulldown of circRNAs and poly(A) RNAs confirmed the direct interaction of circRNAs with target mRNAs. Silencing of mRNA-interacting circRNAs led to the altered expression of target mRNAs in βTC6 cells, suggesting the role of direct interaction of circRNAs with mRNAs in gene expression regulation. CLiPPR-seq thus represents a novel method for illuminating the myriad of uncharacterized circRNA-mRNA hybrids that may regulate gene expression.
Collapse
Affiliation(s)
- Suman Singh
- Institute of Life Sciences, Nalco Square, Bhubaneswar, Odisha 751023, India
- Regional Center for Biotechnology, Faridabad, Haryana 121001, India
| | | | - Arundhati Das
- Institute of Life Sciences, Nalco Square, Bhubaneswar, Odisha 751023, India
| | - Amaresh C Panda
- Institute of Life Sciences, Nalco Square, Bhubaneswar, Odisha 751023, India
| |
Collapse
|
21
|
Teng M, Xia ZJ, Lo N, Daud K, He HH. Assembling the RNA therapeutics toolbox. MEDICAL REVIEW (2021) 2024; 4:110-128. [PMID: 38680684 PMCID: PMC11046573 DOI: 10.1515/mr-2023-0062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/29/2024] [Indexed: 05/01/2024]
Abstract
From the approval of COVID-19 mRNA vaccines to the 2023 Nobel Prize awarded for nucleoside base modifications, RNA therapeutics have entered the spotlight and are transforming drug development. While the term "RNA therapeutics" has been used in various contexts, this review focuses on treatments that utilize RNA as a component or target RNA for therapeutic effects. We summarize the latest advances in RNA-targeting tools and RNA-based technologies, including but not limited to mRNA, antisense oligos, siRNAs, small molecules and RNA editors. We focus on the mechanisms of current FDA-approved therapeutics but also provide a discussion on the upcoming workforces. The clinical utility of RNA-based therapeutics is enabled not only by the advances in RNA technologies but in conjunction with the significant improvements in chemical modifications and delivery platforms, which are also briefly discussed in the review. We summarize the latest RNA therapeutics based on their mechanisms and therapeutic effects, which include expressing proteins for vaccination and protein replacement therapies, degrading deleterious RNA, modulating transcription and translation efficiency, targeting noncoding RNAs, binding and modulating protein activity and editing RNA sequences and modifications. This review emphasizes the concept of an RNA therapeutic toolbox, pinpointing the readers to all the tools available for their desired research and clinical goals. As the field advances, the catalog of RNA therapeutic tools continues to grow, further allowing researchers to combine appropriate RNA technologies with suitable chemical modifications and delivery platforms to develop therapeutics tailored to their specific clinical challenges.
Collapse
Affiliation(s)
- Mona Teng
- Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Ziting Judy Xia
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Nicholas Lo
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Kashif Daud
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Housheng Hansen He
- Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| |
Collapse
|
22
|
Son S, Jeong H, Lee G, Park JH, Yoo S. Biogenesis of circular RNAs in vitro and in vivo from the Drosophila Nk2.1 / scarecrow gene. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.26.582126. [PMID: 38463984 PMCID: PMC10925093 DOI: 10.1101/2024.02.26.582126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
scarecrow ( scro ) encodes a fly homolog of mammalian Nkx2.1 that is vital for early fly development as well as for optic lobe development. Interestingly, scro was reported to produce a circular RNA (circRNA). In this study, we identified 12 different scro circRNAs, which are either mono- or multi-exonic forms. The most abundant forms are circE2 carrying the second exon only and bi-exonic circE3-E4. Levels of circE2 show an age-dependent increase in adult heads, supporting a general trend of high accumulation of circRNAs in aged fly brains. Aligning sequences of introns flanking exons uncovered two pairs of intronic complementary sequences (ICSs); one pair residing in introns 1 and 2 and the other in introns 2 and 4. The first pair was demonstrated to be essential for the circE2 production in cell-based assays; furthermore, deletion of the region including potential ICS components in the intron-2 reduced in vivo production of circE2 and circE3-E4 by 80%, indicating them to be essential for the biogenesis of these isoforms. Besides the ICS, the intron regions immediately abutting exons seemed to be responsible for a basal level of circRNA formation. Moreover, the replacement of scro -ICS with those derived from laccase2 was comparably effective in scro -circRNA production, buttressing the importance of the hairpin-loop structure formed by ICS for the biogenesis of circRNA. Lastly, overexpressed scro affected outcomes of both linear and circular RNAs from the endogenous scro locus, suggesting that Scro plays a direct or indirect role in regulating expression levels of either or both forms.
Collapse
|
23
|
Luo D, Ottesen E, Lee JH, Singh R. Transcriptome- and proteome-wide effects of a circular RNA encompassing four early exons of the spinal muscular atrophy genes. RESEARCH SQUARE 2024:rs.3.rs-3818622. [PMID: 38464174 PMCID: PMC10925445 DOI: 10.21203/rs.3.rs-3818622/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Spinal muscular atrophy (SMA) genes, SMN1 and SMN2, produce multiple circular RNAs (circRNAs), including C2A-2B-3-4 that encompasses early exons 2A, 2B, 3 and 4. Here we report the transcriptome- and proteome-wide effects of overexpression of C2A-2B-3-4 in inducible HEK293 cells. Our RNA-Seq analysis revealed altered expression of ~ 15% genes (4,172 genes) by C2A-2B-3-4. About half of the affected genes by C2A-2B-3-4 remained unaffected by L2A-2B-3-4, a linear transcript encompassing exons 2A, 2B, 3 and 4 of SMN1/SMN2. These fifindings underscore the unique role of the structural context of C2A-2B-3-4 in gene regulation. A surprisingly high number of upregulated genes by C2A-2B-3-4 were located on chromosomes 4 and 7, whereas many of the downregulated genes were located on chromosomes 10 and X. Supporting a cross-regulation of SMN1/SMN2 transcripts, C2A-2B-3-4 and L2A-2B-3-4 upregulated and downregulated SMN1/SMN2 mRNAs, respectively. Proteome analysis revealed 61 upregulated and 57 downregulated proteins by C2A-2B-3-4 with very limited overlap with those affected by L2A-2B-3-4. Independent validations confirmed the effect of C2A-2B-3-4 on expression of genes associated with chromatin remodeling, transcription, spliceosome function, ribosome biogenesis, lipid metabolism, cytoskeletal formation, cell proliferation and neuromuscular junction formation. Our findings reveal a broad role of C2A-2B-3-4, a universally expressed circRNA produced by SMN1/SMN2.
Collapse
|
24
|
Koonin EV. Circular RNAs from linear viral RNA genomes: A distinct dimension in the virus world. Proc Natl Acad Sci U S A 2024; 121:e2401335121. [PMID: 38349885 PMCID: PMC10895248 DOI: 10.1073/pnas.2401335121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024] Open
Affiliation(s)
- Eugene V. Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD20894
| |
Collapse
|
25
|
Sun L, Yeerkenbieke B, Yuemaierabola A, Liu F, Yeerxiati D, Dong X, Guo W. Expression of circular RNA has-circ-0009158 and identification of associated miRNA-mRNA network in hepatocellular carcinoma. Am J Transl Res 2024; 16:415-431. [PMID: 38463586 PMCID: PMC10918124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 01/10/2024] [Indexed: 03/12/2024]
Abstract
Primary hepatocellular carcinoma (HCC) affects people all over the world. Circular RNAs are involved in the growth and development of several malignancies and regulate a number of biological processes. However, the roles of has-circ-0009158 in HCC remain unknown. This study explored the expression and associated miRNA-mRNA network of has-circ-0009158 in HCC. Quantitative real-time polymerase chain reaction was used to measure the expression of hsa-circ-0009158 in the HCC tissues of 143 patients and four human HCC cell lines. Then, the potential relationship of hsa-circ-0009158 expression with clinical characteristics and prognosis of patients was analyzed using the GO and KEGG databases. Correlated miRNA-mRNA networks were forecasted using the TCGA database and Cytoscape software. The hsa-circ-0009158 expression was significantly upregulated in HCC tissues and cell lines (P<0.001). The multivariate Cox analysis revealed that HCC patients were associated with high hsa-circ-0009158 expression. The bioinformatics analysis screened 1 miRNA, and 248 mRNAs associated with the circRNA in HCC. A pathway analysis suggested that the differentially expressed genes (DEGs) may be linked to the development and growth of HCC tumors. Ten hub genes (MELK, NCAPG, BUB1B, BIRC5, CDCA8, CENPF, BUB1, CDK1, TTK, TPX2) were identified from the PPI network based on the 248 genes. Additionally, the 10 hub genes that were verified had an association between high expression levels and low overall survival rates. As a result, the high expression of hsa-circ-0009158 was found to be a separate risk factor for recurrence and a poor prognosis in HCC patients.
Collapse
Affiliation(s)
- Lili Sun
- Department of Cancer Research Institute, Affiliated Cancer Hospital of Xinjiang Medical UniversityUrumqi 830011, Xinjiang, China
| | - Buerlan Yeerkenbieke
- Department of Cancer Research Institute, Affiliated Cancer Hospital of Xinjiang Medical UniversityUrumqi 830011, Xinjiang, China
| | - Anwaier Yuemaierabola
- Department of Cancer Research Institute, Affiliated Cancer Hospital of Xinjiang Medical UniversityUrumqi 830011, Xinjiang, China
| | - Fuzhong Liu
- Department of Cancer Research Institute, Affiliated Cancer Hospital of Xinjiang Medical UniversityUrumqi 830011, Xinjiang, China
| | - Dilinaer Yeerxiati
- Department of Cancer Research Institute, Affiliated Cancer Hospital of Xinjiang Medical UniversityUrumqi 830011, Xinjiang, China
| | - Xiaogang Dong
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Cancer Hospital of Xinjiang Medical UniversityUrumqi 830011, Xinjiang, China
| | - Wenjia Guo
- Department of Cancer Research Institute, Affiliated Cancer Hospital of Xinjiang Medical UniversityUrumqi 830011, Xinjiang, China
| |
Collapse
|
26
|
Sabet Sarvestani F, Afshari A, Azarpira N. The role of non-protein-coding RNAs in ischemic acute kidney injury. Front Immunol 2024; 15:1230742. [PMID: 38390339 PMCID: PMC10881863 DOI: 10.3389/fimmu.2024.1230742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 01/26/2024] [Indexed: 02/24/2024] Open
Abstract
Acute kidney injury (AKI) is a condition characterized by a rapid decline in kidney function within a span of 48 hours. It is influenced by various factors including inflammation, oxidative stress, excessive calcium levels within cells, activation of the renin-angiotensin system, and dysfunction in microcirculation. Ischemia-reperfusion injury (IRI) is recognized as a major cause of AKI; however, the precise mechanisms behind this process are not yet fully understood and effective treatments are still needed. To enhance the accuracy of diagnosing AKI during its early stages, the utilization of innovative markers is crucial. Numerous studies suggest that certain noncoding RNAs (ncRNAs), such as long noncoding RNAs (lncRNAs), microRNAs (miRNAs), and circular RNAs (circRNAs), play a central role in regulating gene expression and protein synthesis. These ncRNAs are closely associated with the development and recovery of AKI and have been detected in both kidney tissue and bodily fluids. Furthermore, specific ncRNAs may serve as diagnostic markers and potential targets for therapeutic interventions in AKI. This review aims to summarize the functional roles and changes observed in noncoding RNAs during ischemic AKI, as well as explore their therapeutic potential.
Collapse
Affiliation(s)
| | - Afsoon Afshari
- Shiraz Nephro-Urology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negar Azarpira
- Shiraz Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
27
|
Wang R, Zhang M, Wang H, Chen L, Zhang X, Guo L, Qi T, Tang H, Shahzad K, Wang H, Qiao X, Wu J, Xing C. Identification and characterization of circular RNAs involved in the fertility stability of cotton CMS-D2 restorer line under heat stress. BMC PLANT BIOLOGY 2024; 24:32. [PMID: 38183049 PMCID: PMC10768462 DOI: 10.1186/s12870-023-04706-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 12/25/2023] [Indexed: 01/07/2024]
Abstract
BACKGROUND As a vital type of noncoding RNAs, circular RNAs (circRNAs) play important roles in plant growth and development and stress response. However, little is known about the biological roles of circRNAs in regulating the stability of male fertility restoration for cytoplasmic male sterility (CMS) conditioned by Gossypium harknessii cytoplasm (CMS-D2) cotton under high-temperature (HT) stress. RESULTS In this study, RNA-sequencing and bioinformatics analysis were performed on pollen grains of isonuclear alloplasmic near-isogenic restorer lines NH [N(Rf1rf1)] and SH [S(Rf1rf1)] with obvious differences in fertility stability under HT stress at two environments. A total of 967 circRNAs were identified, with 250 differentially expressed under HT stress. We confirmed the back-splicing sites of eight selected circRNAs using divergent primers and Sanger sequencing. Tissue-specific expression patterns of five differentially expressed circRNAs (DECs) were also verified by RT-PCR and qRT-PCR. Functional enrichment and metabolic pathway analysis revealed that the parental genes of DECs were significantly enriched in fertility-related biological processes such as pollen tube guidance and cell wall organization, as well as the Pentose and glucuronate interconversions, Steroid biosynthesis, and N-Glycan biosynthesis pathways. Moreover, we also constructed a putative circRNA-mediated competing endogenous RNA (ceRNA) network consisting of 21 DECs, eight predicted circRNA-binding miRNAs, and their corresponding 22 mRNA targets, especially the two ceRNA modules circRNA346-miR159a-MYB33 and circRNA484-miR319e-MYB33, which might play important biological roles in regulating pollen fertility stability of cotton CMS-D2 restorer line under HT stress. CONCLUSIONS Through systematic analysis of the abundance, characteristics and expression patterns of circRNAs, as well as the potential functions of their parent genes, our findings suggested that circRNAs and their mediated ceRNA networks acted vital biological roles in cotton pollen development, and might be also essential regulators for fertility stability of CMS-D2 restorer line under heat stress. This study will open a new door for further unlocking complex regulatory mechanisms underpinning the fertility restoration stability for CMS-D2 in cotton.
Collapse
Affiliation(s)
- Ruijie Wang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, 38 Huanghe Dadao, Anyang, 455000, Henan, China
| | - Meng Zhang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, 38 Huanghe Dadao, Anyang, 455000, Henan, China.
| | - Hui Wang
- Xiangyang Vocational and Technical College, Xiangyang, 441050, Hubei, China
| | - Liangliang Chen
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, 38 Huanghe Dadao, Anyang, 455000, Henan, China
| | - Xuexian Zhang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, 38 Huanghe Dadao, Anyang, 455000, Henan, China
| | - Liping Guo
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, 38 Huanghe Dadao, Anyang, 455000, Henan, China
| | - Tingxiang Qi
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, 38 Huanghe Dadao, Anyang, 455000, Henan, China
| | - Huini Tang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, 38 Huanghe Dadao, Anyang, 455000, Henan, China
| | - Kashif Shahzad
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, 38 Huanghe Dadao, Anyang, 455000, Henan, China
| | - Hailin Wang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, 38 Huanghe Dadao, Anyang, 455000, Henan, China
| | - Xiuqin Qiao
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, 38 Huanghe Dadao, Anyang, 455000, Henan, China
| | - Jianyong Wu
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, 38 Huanghe Dadao, Anyang, 455000, Henan, China.
| | - Chaozhu Xing
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, 38 Huanghe Dadao, Anyang, 455000, Henan, China.
| |
Collapse
|
28
|
Masante L, Susin G, Baudet ML. Droplet Digital PCR for the Detection and Quantification of Bona Fide CircRNAs. Methods Mol Biol 2024; 2765:107-126. [PMID: 38381336 DOI: 10.1007/978-1-0716-3678-7_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
CircRNAs are covalently closed RNA molecules gaining increasing attention over the years. Initially considered mere splicing errors, circRNAs are now recognized as a novel class of endogenous, conserved RNAs, expressed in many different species. The unique structure, the low levels of expression, and the almost complete sequence overlap with the cognate linear RNA make their detection and quantification challenging. Moreover, it has become crucial to prove the circular nature of the targeted transcript and unequivocally distinguish the circRNA from its linear counterpart. Nowadays, the most widely used technique to quantify circRNA expression is real-time quantitative PCR (qPCR). However, in the particular case of quantification of circles, it shows several technical shortcomings which affect the accuracy of the quantification. To precisely assess circRNA expression level, droplet digital PCR (ddPCR) is rapidly taking over for the more popular qPCR. In this chapter, we describe the detailed procedure based on droplets partitioning to quantify both linear and circRNA abundancy and demonstrate the circularity of the transcript under study with high precision, in a single experiment.
Collapse
Affiliation(s)
- Linda Masante
- Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Trento, Italy
| | - Giorgia Susin
- Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Trento, Italy
| | - Marie-Laure Baudet
- Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Trento, Italy.
| |
Collapse
|
29
|
Patop IL, Canori M, Kadener S. In Vivo Tissue-Specific Knockdown of circRNAs Using shRNAs in Drosophila melanogaster. Methods Mol Biol 2024; 2765:161-172. [PMID: 38381339 DOI: 10.1007/978-1-0716-3678-7_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Studying circular RNAs' function in vivo has been challenging due to the lack of generic tools to manipulate their levels without affecting their linear counterparts. This is particularly challenging as the back-splice junction is the only sequence not shared between the linear and circular version. In this chapter, we describe a method to study circRNA function in vivo targeting shRNAs against the desired back-splice junction to achieve knockdown with tissue-specific resolution in flies.
Collapse
|
30
|
Hansen CE, Springstubbe D, Müller S, Petkovic S. Directed Circularization of a Short RNA. Methods Mol Biol 2024; 2765:209-226. [PMID: 38381342 DOI: 10.1007/978-1-0716-3678-7_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Basic research and functional analyses of circular RNA (circRNA) have been limited by challenges in circRNA formation of desired length and sequence in adequate yields. Nowadays, circular RNA can be obtained using enzymatic, "ribozymatic," or modulated splice events. However, there are few records for the directed circularization of RNA. Here, we present a proof of principle for an affordable and efficient RNA-based system for the controlled synthesis of circRNA with a physiological 3',5'-phosphodiester conjunction. The engineered hairpin ribozyme variant circular ribozyme 3 (CRZ-3) performs self-cleavage poorly. We designed an activator-polyamine complex to complete cleavage as a prerequisite for subsequent circularization. The developed protocol allows synthesizing circRNA without external enzymatic assistance and adds a controllable way of circularization to the existing methods.
Collapse
Affiliation(s)
| | | | - Sabine Müller
- University Hospital Schleswig-Holstein, Campus Lübeck, Germany
| | - Sonja Petkovic
- University Hospital Schleswig-Holstein, Campus Lübeck, Germany.
| |
Collapse
|
31
|
Fu P, Cai Z, Zhang Z, Meng X, Peng Y. An updated database of virus circular RNAs provides new insights into the biogenesis mechanism of the molecule. Emerg Microbes Infect 2023; 12:2261558. [PMID: 37725485 PMCID: PMC10557547 DOI: 10.1080/22221751.2023.2261558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/17/2023] [Indexed: 09/21/2023]
Abstract
Virus circular RNAs (circRNA) have been reported to be extensively expressed and play important roles in viral infections. Previously we build the first database of virus circRNAs named VirusCircBase which has been widely used in the field. This study significantly improved the database on both the data quantity and database functionality: the number of virus circRNAs, virus species, host organisms was increased from 46440, 23, 9 to 60859, 43, 22, respectively, and 1902 full-length virus circRNAs were newly added; new functions were added such as visualization of the expression level of virus circRNAs and visualization of virus circRNAs in the Genome Browser. Analysis of the expression of virus circRNAs showed that they had low expression levels in most cells or tissues and showed strong expression heterogeneity. Analysis of the splicing of virus circRNAs showed that they used a much higher proportion of non-canonical back-splicing signals compared to those in animals and plants, and mainly used the A5SS (alternative 5' splice site) in alternative-splicing. Most virus circRNAs have no more than two isoforms. Finally, human genes associated with the virus circRNA production were investigated and more than 1000 human genes exhibited moderate correlations with the expression of virus circRNAs. Most of them showed negative correlations including 42 genes encoding RNA-binding proteins. They were significantly enriched in biological processes related to cell cycle and RNA processing. Overall, the study provides a valuable resource for further studies of virus circRNAs and also provides new insights into the biogenesis mechanisms of virus circRNAs.
Collapse
Affiliation(s)
- Ping Fu
- Bioinformatics Center, College of Biology, Hunan Provincial Key Laboratory of Medical Virology, Hunan University, Changsha, People’s Republic of China
| | - Zena Cai
- Bioinformatics Center, College of Biology, Hunan Provincial Key Laboratory of Medical Virology, Hunan University, Changsha, People’s Republic of China
| | - Zhiyuan Zhang
- Bioinformatics Center, College of Biology, Hunan Provincial Key Laboratory of Medical Virology, Hunan University, Changsha, People’s Republic of China
| | - Xiangxian Meng
- Bioinformatics Center, College of Biology, Hunan Provincial Key Laboratory of Medical Virology, Hunan University, Changsha, People’s Republic of China
| | - Yousong Peng
- Bioinformatics Center, College of Biology, Hunan Provincial Key Laboratory of Medical Virology, Hunan University, Changsha, People’s Republic of China
| |
Collapse
|
32
|
Tang S, Cai L, Wang Z, Pan D, Wang Q, Shen Y, Zhou Y, Chen Q. Emerging roles of circular RNAs in the invasion and metastasis of head and neck cancer: Possible functions and mechanisms. CANCER INNOVATION 2023; 2:463-487. [PMID: 38125767 PMCID: PMC10730008 DOI: 10.1002/cai2.50] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/27/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2023]
Abstract
Head and neck cancer (HNC) is the seventh most prevalent malignancy worldwide in 2020. Cancer metastasis is the main cause of poor prognosis in HNC patients. Recently, circular RNAs (circRNAs), initially thought to have no biological function, are attracting increasing attention, and their crucial roles in mediating HNC metastasis are being extensively investigated. Existing studies have shown that circRNAs primarily function through miRNA sponges, transcriptional regulation, interacting with RNA-binding proteins (RBPs) and as translation templates. Among these functions, the function of miRNA sponge is the most prominent. In this review, we summarized the reported circRNAs involved in HNC metastasis, aiming to elucidate the regulatory relationship between circRNAs and HNC metastasis. Furthermore, we summarized the latest advances in the epidemiological information of HNC metastasis and the tumor metastasis theories, the biogenesis, characterization and functional mechanisms of circRNAs, and their potential clinical applications. Although the research on circRNAs is still in its infancy, circRNAs are expected to serve as prognostic markers and effective therapeutic targets to inhibit HNC metastasis and significantly improve the prognosis of HNC patients.
Collapse
Affiliation(s)
- Shouyi Tang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of StomatologySichuan UniversityChengduChina
| | - Luyao Cai
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of StomatologySichuan UniversityChengduChina
| | - Zhen Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of StomatologySichuan UniversityChengduChina
| | - Dan Pan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of StomatologySichuan UniversityChengduChina
| | - Qing Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of StomatologySichuan UniversityChengduChina
| | - Yingqiang Shen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of StomatologySichuan UniversityChengduChina
| | - Yu Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of StomatologySichuan UniversityChengduChina
- State Institute of Drug/Medical Device Clinical TrialWest China Hospital of StomatologyChengduChina
| | - Qianming Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of StomatologySichuan UniversityChengduChina
| |
Collapse
|
33
|
Kong Z, Lu Y, Yang Y, Chang K, Lin Y, Huang Y, Wang C, Zhang L, Xu W, Zhao S, Li Y. m6A-Mediated Biogenesis of circDDIT4 Inhibits Prostate Cancer Progression by Sequestrating ELAVL1/HuR. Mol Cancer Res 2023; 21:1342-1355. [PMID: 37647111 PMCID: PMC10690048 DOI: 10.1158/1541-7786.mcr-22-0271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 08/11/2022] [Accepted: 08/28/2023] [Indexed: 09/01/2023]
Abstract
The pathologic significance of the circular RNA DDIT4 (circDDIT4), which is formed by backsplicing at the 3'-untranslated region (UTR) with a 5' splice acceptor site in exon 2 of linear DDIT4 mRNA, has yet to be determined. Our study found that circDDIT4 is downregulated in prostate cancer and functions as a tumor suppressor during prostate cancer progression. By competitively binding to ELAV-like RNA binding protein 1 (ELAVL1/HuR) through its 3'-UTR, circDDIT4 acts as a protein sponge to decrease the expression of prostate cancer-overexpressed anoctamin 7 (ANO7). This promotes prostate cancer cell apoptosis while inhibiting cell proliferation and metastasis. Furthermore, we discovered that N6-methyladenosine (m6A) modification facilitates the biogenesis of circDDIT4. The methyltransferase complex consisting of WTAP/METTL3/METTL14 increases the level of circDDIT4, while the RNA demethylase FTO decreases it. IMPLICATIONS These findings suggest that abnormal cotranscriptional modification of m6A promotes prostate cancer initiation and progression via a circular RNA-protein-cell signaling network.
Collapse
Affiliation(s)
- Zhe Kong
- Obstetrics and Gynecology Hospital of Fudan University, State Key Lab of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Key Laboratory of Reproduction Regulation of NPFPC (SIPPR, IRD), Fudan University, Shanghai, P.R. China
| | - Yali Lu
- Obstetrics and Gynecology Hospital of Fudan University, State Key Lab of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Key Laboratory of Reproduction Regulation of NPFPC (SIPPR, IRD), Fudan University, Shanghai, P.R. China
| | - Yue Yang
- Obstetrics and Gynecology Hospital of Fudan University, State Key Lab of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Key Laboratory of Reproduction Regulation of NPFPC (SIPPR, IRD), Fudan University, Shanghai, P.R. China
| | - Kun Chang
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, P.R. China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Yan Lin
- Institutes of Biomedical Sciences, Fudan University, Shanghai, P.R. China
| | - Yan Huang
- Obstetrics and Gynecology Hospital of Fudan University, State Key Lab of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Key Laboratory of Reproduction Regulation of NPFPC (SIPPR, IRD), Fudan University, Shanghai, P.R. China
| | - Chenji Wang
- Obstetrics and Gynecology Hospital of Fudan University, State Key Lab of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Key Laboratory of Reproduction Regulation of NPFPC (SIPPR, IRD), Fudan University, Shanghai, P.R. China
| | - Lu Zhang
- Obstetrics and Gynecology Hospital of Fudan University, State Key Lab of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Key Laboratory of Reproduction Regulation of NPFPC (SIPPR, IRD), Fudan University, Shanghai, P.R. China
| | - Wei Xu
- Institutes of Biomedical Sciences, Fudan University, Shanghai, P.R. China
| | - Shimin Zhao
- Obstetrics and Gynecology Hospital of Fudan University, State Key Lab of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Key Laboratory of Reproduction Regulation of NPFPC (SIPPR, IRD), Fudan University, Shanghai, P.R. China
- Institute of Metabolism and Integrative Biology (IMIB), Key Laboratory of Reproduction Regulation of NPFPC, Fudan University, Shanghai, P.R. China
| | - Yao Li
- Obstetrics and Gynecology Hospital of Fudan University, State Key Lab of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Key Laboratory of Reproduction Regulation of NPFPC (SIPPR, IRD), Fudan University, Shanghai, P.R. China
- Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Science, Fudan University, Shanghai, P.R. China
| |
Collapse
|
34
|
Stringer BW, Gabryelska M, Marri S, Clark L, Lin H, Gantley L, Liu R, Wilusz JE, Conn VM, Conn SJ. Versatile toolkit for highly-efficient and scarless overexpression of circular RNAs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.21.568171. [PMID: 38045421 PMCID: PMC10690289 DOI: 10.1101/2023.11.21.568171] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Circular RNAs (circRNAs) are a class of single-stranded, covalently closed RNA that contain a unique back-splice junction (bsj) sequence created by the ligation of their 5' and 3' ends via spliceosome-catalyzed back-splicing. A key step in illuminating the cellular roles of specific circRNAs is via increasing their expression. This is frequently done by transfecting cells with plasmid DNA containing cloned exons from which the circRNA is transcribed, flanked by sequences that promote back-splicing. We observed that commonly used plasmids lead to the production of circRNAs with molecular scars at the circRNA bsj. Stepwise redesign of the cloning vector corrected this problem, ensuring bona fide circRNAs are produced with their natural bsj at high efficiency. The fidelity of circRNAs produced from this new construct was validated by RNA sequencing and also functionally validated. To increase the utility of this modified resource for expressing circRNA, we developed an expanded set of vectors incorporating this design that (i) enables selection with a variety of antibiotics and fluorescent proteins, (ii) employs a range of promoters varying in promoter strength and (iii) generated a complementary set of lentiviral plasmids for difficult-to-transfect cells. These resources provide a novel and versatile toolkit for high-efficiency and scarless overexpression of circular RNAs that fulfill a critical need for the investigation of circRNA function.
Collapse
|
35
|
Nguyen DT. An integrative pipeline for circular RNA quantitative trait locus discovery with application in human T cells. Bioinformatics 2023; 39:btad667. [PMID: 37929995 PMCID: PMC10636286 DOI: 10.1093/bioinformatics/btad667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 10/25/2023] [Accepted: 10/30/2023] [Indexed: 11/07/2023] Open
Abstract
MOTIVATION Molecular quantitative trait locus (QTL) mapping has proven to be a powerful approach for prioritizing genetic regulatory variants and causal genes identified by genome-wide association studies. Recently, this success has been extended to circular RNA (circRNA), a potential group of RNAs that can serve as markers for the diagnosis, prognosis, or therapeutic targets of various human diseases. However, a well-developed computational pipeline for circRNA QTL (circQTL) discovery is still lacking. RESULTS We introduce an integrative method for circQTL mapping and implement it as an automated pipeline based on Nextflow, named cscQTL. The proposed method has two main advantages. Firstly, cscQTL improves the specificity by systematically combining outputs of multiple circRNA calling algorithms to obtain highly confident circRNA annotations. Secondly, cscQTL improves the sensitivity by accurately quantifying circRNA expression with the help of pseudo references. Compared to the single method approach, cscQTL effectively identifies circQTLs with an increase of 20%-100% circQTLs detected and recovered all circQTLs that are highly supported by the single method approach. We apply cscQTL to a dataset of human T cells and discover genetic variants that control the expression of 55 circRNAs. By colocalization tests, we further identify circBACH2 and circYY1AP1 as potential candidates for immune disease regulation. AVAILABILITY AND IMPLEMENTATION cscQTL is freely available at: https://github.com/datngu/cscQTL and https://doi.org/10.5281/zenodo.7851982.
Collapse
Affiliation(s)
- Dat Thanh Nguyen
- Centre for Integrative Genetics, Faculty of Biosciences, Norwegian University of Life Sciences, 1432 Ås, Norway
| |
Collapse
|
36
|
Bergonzini M, Loreni F, Lio A, Russo M, Saitto G, Cammardella A, Irace F, Tramontin C, Chello M, Lusini M, Nenna A, Ferrisi C, Ranocchi F, Musumeci F. Panoramic on Epigenetics in Coronary Artery Disease and the Approach of Personalized Medicine. Biomedicines 2023; 11:2864. [PMID: 37893238 PMCID: PMC10604795 DOI: 10.3390/biomedicines11102864] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/02/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Epigenetic modifications play a fundamental role in the progression of coronary artery disease (CAD). This panoramic review aims to provide an overview of the current understanding of the epigenetic mechanisms involved in CAD pathogenesis and highlights the potential implications for personalized medicine approaches. Epigenetics is the study of heritable changes that do not influence alterations in the DNA sequence of the genome. It has been shown that epigenetic processes, including DNA/histone methylation, acetylation, and phosphorylation, play an important role. Additionally, miRNAs, lncRNAs, and circRNAs are also involved in epigenetics, regulating gene expression patterns in response to various environmental factors and lifestyle choices. In the context of CAD, epigenetic alterations contribute to the dysregulation of genes involved in inflammation, oxidative stress, lipid metabolism, and vascular function. These epigenetic changes can occur during early developmental stages and persist throughout life, predisposing individuals to an increased risk of CAD. Furthermore, in recent years, the concept of personalized medicine has gained significant attention. Personalized medicine aims to tailor medical interventions based on an individual's unique genetic, epigenetic, environmental, and lifestyle factors. In the context of CAD, understanding the interplay between genetic variants and epigenetic modifications holds promise for the development of more precise diagnostic tools, risk stratification models, and targeted therapies. This review summarizes the current knowledge of epigenetic mechanisms in CAD and discusses the fundamental principles of personalized medicine.
Collapse
Affiliation(s)
- Marcello Bergonzini
- Department of Cardiac Surgery and Heart Transplantation, San Camillo Forlanini Hospital, 00152 Rome, Italy
| | - Francesco Loreni
- Cardiac Surgery, Università Campus Bio-Medico di Roma, 00128 Rome, Italy
| | - Antonio Lio
- Department of Cardiac Surgery and Heart Transplantation, San Camillo Forlanini Hospital, 00152 Rome, Italy
| | - Marco Russo
- Department of Cardiac Surgery and Heart Transplantation, San Camillo Forlanini Hospital, 00152 Rome, Italy
| | - Guglielmo Saitto
- Department of Cardiac Surgery and Heart Transplantation, San Camillo Forlanini Hospital, 00152 Rome, Italy
| | - Antonio Cammardella
- Department of Cardiac Surgery and Heart Transplantation, San Camillo Forlanini Hospital, 00152 Rome, Italy
| | - Francesco Irace
- Department of Cardiac Surgery and Heart Transplantation, San Camillo Forlanini Hospital, 00152 Rome, Italy
| | - Corrado Tramontin
- Department of Cardiac Surgery and Heart Transplantation, San Camillo Forlanini Hospital, 00152 Rome, Italy
| | - Massimo Chello
- Cardiac Surgery, Università Campus Bio-Medico di Roma, 00128 Rome, Italy
| | - Mario Lusini
- Cardiac Surgery, Università Campus Bio-Medico di Roma, 00128 Rome, Italy
| | - Antonio Nenna
- Cardiac Surgery, Università Campus Bio-Medico di Roma, 00128 Rome, Italy
| | - Chiara Ferrisi
- Cardiac Surgery, Università Campus Bio-Medico di Roma, 00128 Rome, Italy
| | - Federico Ranocchi
- Department of Cardiac Surgery and Heart Transplantation, San Camillo Forlanini Hospital, 00152 Rome, Italy
| | - Francesco Musumeci
- Department of Cardiac Surgery and Heart Transplantation, San Camillo Forlanini Hospital, 00152 Rome, Italy
| |
Collapse
|
37
|
Yu J, Wang H, Shen W, Zhou Y, Cui J, Li H, Gao B. Hsa_circ_0007823 Overexpression Suppresses the Progression of Triple-Negative Breast Cancer via Regulating miR-182-5p-FOXO1 Axis. BREAST CANCER (DOVE MEDICAL PRESS) 2023; 15:695-708. [PMID: 37873520 PMCID: PMC10590585 DOI: 10.2147/bctt.s417547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 10/10/2023] [Indexed: 10/25/2023]
Abstract
Background This study aimed to analyze the specific expression of hsa_circ_0007823 in triple-negative breast cancer (TNBC) and explore the roles and related molecular mechanisms of hsa_circ_0007823 in TNBC. Materials and Methods Relative hsa_circ_0007823 levels in TNBC tissues and cell lines were examined by reverse transcription-quantitative polymerase chain reaction. The value of hsa_circ_0007823 levels was evaluated in patients' clinicopathological characteristics and prognostic prediction. A dual-luciferase reporter assay was used to determine the relationship between hsa_circ_0007823, miR-182-5p, and FOXO1. The effect of circ_0007823 overexpression on the growth of TNBC cells was investigated in vitro and in vivo. Results Lower levels of hsa_circ_0007823 were found in TNBC tissues and cell lines and were closely associated with lymph node metastasis, poorer overall and disease-free survival rates. MiR-182-5p was significantly up-regulated, whereas FOXO1 was down-regulated in TNBC cell lines. The miR-182-5p inhibition up-regulated FOXO1 in TNBC cells. Dual-luciferase reporter assays showed that hsa_circ_0007823, miR-182-5p, and FOXO1 interacted with each other. Overexpression of circ_0007823 significantly inhibited the viability, migration, and invasion of TNBC cell lines, but promoted apoptosis. In vivo experiments showed that circ_0007823 overexpression inhibited tumor growth and down-regulated miR-182-5p and up-regulated FOXO1. Conclusion Hsa_circ_0007823 overexpression could suppress the growth, invasion, and migration of TNBC cells, and inhibit tumor growth by regulating miR-182-5p/FOXO1.
Collapse
Affiliation(s)
- Jinling Yu
- Department of Breast Surgery, Shanghai Changning Maternity and Infant Health Hospital, East China Normal University, Shanghai, 200050, People’s Republic of China
| | - Haofeng Wang
- Department of Breast Surgery, Shanghai Changning Maternity and Infant Health Hospital, East China Normal University, Shanghai, 200050, People’s Republic of China
| | - Weida Shen
- Department of Breast Surgery, Shanghai Changning Maternity and Infant Health Hospital, East China Normal University, Shanghai, 200050, People’s Republic of China
| | - Yingzi Zhou
- Department of Pathology, Shanghai Changning Maternity and Infant Health Hospital, East China Normal University, Shanghai, 200050, People’s Republic of China
| | - Jing Cui
- Department of Breast Surgery, Shanghai Changning Maternity and Infant Health Hospital, East China Normal University, Shanghai, 200050, People’s Republic of China
| | - Haichuan Li
- Department of Laboratory, Shanghai Changning Maternity and Infant Health Hospital, East China Normal University, Shanghai, 200050, People’s Republic of China
| | - Beimin Gao
- Department of Breast Surgery, Shanghai Changning Maternity and Infant Health Hospital, East China Normal University, Shanghai, 200050, People’s Republic of China
| |
Collapse
|
38
|
Yuan L, Duan J, Zhou H. Perspectives of circular RNAs in diabetic complications from biological markers to potential therapeutic targets (Review). Mol Med Rep 2023; 28:194. [PMID: 37681455 PMCID: PMC10502942 DOI: 10.3892/mmr.2023.13081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 08/17/2023] [Indexed: 09/09/2023] Open
Abstract
Chronic complications of diabetes increase mortality and disability of patients. It is crucial to find potential early biomarkers and provide novel therapeutic strategies for diabetic complications. Circular RNAs (circRNAs), covalently closed RNA molecules in eukaryotes, have high stability. Recent studies have confirmed that differentially expressed circRNAs have a vital role in diabetic complications. Certain circRNAs, such as circRNA ankyrin repeat domain 36, circRNA homeodomain‑interacting protein kinase 3 (circHIPK3) and circRNA WD repeat domain 77, are associated with inflammation, endothelial cell apoptosis and smooth muscle cell proliferation, leading to vascular endothelial dysfunction and atherosclerosis. CircRNA LDL receptor related protein 6, circRNA actin related protein 2, circ_0000064, circ‑0101383, circ_0123996, hsa_circ_0003928 and circ_0000285 mediate inflammation, apoptosis and autophagy of podocytes, mesangial cell hypertrophy and proliferation, as well as tubulointerstitial fibrosis, in diabetic nephropathy by regulating the expression of microRNAs and proteins. Circ_0005015, circRNA PWWP domain containing 2A, circRNA zinc finger protein 532, circRNA zinc finger protein 609, circRNA DNA methyltransferase 3β, circRNA collagen type I α2 chain and circHIPK3 widely affect multiple biological processes of diabetic retinopathy. Furthermore, circ_000203, circ_010567, circHIPK3, hsa_circ_0076631 and circRNA cerebellar degeneration‑related protein 1 antisense are involved in the pathology of diabetic cardiomyopathy. CircHIPK3 is the most well‑studied circRNA in the field of diabetic complications and is most likely to become a biological marker and therapeutic target for diabetic complications. The applications of circRNAs may be a promising treatment strategy for human diseases at the molecular level. The relationship between circRNAs and diabetic complications is summarized in the present study. Of note, circRNA‑targeted therapy and the role of circRNAs as biomarkers may potentially be used in diabetic complications in the future.
Collapse
Affiliation(s)
- Lingling Yuan
- Department of Endocrinology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Jinsheng Duan
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Hong Zhou
- Department of Endocrinology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| |
Collapse
|
39
|
Gao Z, Sun B, Fan Z, Su Y, Zheng C, Chen W, Yao Y, Ma C, Du Y. Vv-circSIZ1 mediated by pre-mRNA processing machinery contributes to salt tolerance. THE NEW PHYTOLOGIST 2023; 240:644-662. [PMID: 37530126 DOI: 10.1111/nph.19181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 07/11/2023] [Indexed: 08/03/2023]
Abstract
CircRNAs exist widely in plants, but the regulatory mechanisms for the biogenesis and function of plant circRNAs remain largely unknown. Using extensive mutagenesis of expression plasmids and genetic transformation methods, we analyzed the biogenesis and anti-salt functions of a new grape circRNA Vv-circSIZ1. We identified Vv-circSIZ1 that is mainly expressed in the cytoplasm of xylem. CircSIZ1 is species-specific, and genomic circSIZ1-forming region of seven tested species could be backspliced in Nicotiana benthamiana, but not in Arabidopsis. The retention length of Vv-circSIZ1 flanking introns was significantly positively correlated with its generation efficiency. The precise splicing of Vv-circSIZ1 does not depend on its mature exon sequence or internal intron sequences, but on the AG/GT splicing signal sites and branch site of the flanking introns. The spliceosome activity was inversely proportional to the expression level of Vv-circSIZ1. Furthermore, RNA-binding proteins can regulate the expression of Vv-circSIZ1. The overexpression of Vv-circSIZ1 improved salt tolerance of grape and N. benthamiana. Additionally, Vv-circSIZ1 could relieve the repressive effect of VvmiR3631 on its target VvVHAc1. Vv-circSIZ1 also promoted transcription of its parental gene. Overall, these results broaden our understanding of circRNAs in plants.
Collapse
Affiliation(s)
- Zhen Gao
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Baozhen Sun
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Zongbao Fan
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Yifan Su
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Chengchao Zheng
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Weiping Chen
- Institute of Horticulture, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, Ningxia, 750002, China
| | - Yuxin Yao
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Chao Ma
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yuanpeng Du
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong, 271018, China
| |
Collapse
|
40
|
Galang JN, Shen Y, Koitzsch U, Yu X, Eischeid-Scholz H, Bachurski D, Rau TT, Neppl C, Herling M, Bulimaga B, Vasyutina E, Schweiger MR, Büttner R, Odenthal M, Anokhina MM. Vesicular Release and Uptake of Circular LSD1-RNAs from Non-Cancer and Cancer Lung Cells. Int J Mol Sci 2023; 24:13981. [PMID: 37762282 PMCID: PMC10530930 DOI: 10.3390/ijms241813981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/03/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Lysine-specific demethylase 1 (LSD1) is highly expressed in many cancer types and strongly associated with cancer progression and metastasis. Circular RNAs (circRNAs) are produced by back-splicing and influence the interactive RNA network by microRNA and protein sponging. In the present study, we aimedto identify circRNAs that derive from the LSD1-encoding KDM1A gene, and to investigate their potential to be released and uptaken by lung cancer versus non-cancer epithelial cells. We identified four circLSD1-RNAs by RT-PCR with divergent primers, followed by sequencing. The expression level of circLSD1-RNAs was then studied by quantitative PCR on cellular and extracellular fractions of lung cancer (PC9) and non-cancer primary small airway epithelial (PSAE) cells. Moreover, we established the transgenic overexpression of circLSD1-RNAs. We show that circLSD1-RNAs are primarily located in the cytoplasm, but are packaged and released from lung cancer and non-cancer cells by extracellular vesicles (EVs) and ribonucleoprotein (RNP) complexes, respectively. Proteomics demonstrated a different protein pattern of EV fractions released from PC9 versus PSAE cells. Importantly, released circLSD1-RNAs were differently taken up by PSAE and PC9 cells. In conclusion, our findings provide primary evidence that circLSD1-RNAs participate in the intercellular communication of lung cancer cells with the tumor environment.
Collapse
Affiliation(s)
- Joelle Noriko Galang
- Institute of Pathology, University Hospital of Cologne, 50937 Cologne, Germany; (J.N.G.); (Y.S.); (X.Y.); (H.E.-S.); (B.B.); (R.B.)
- Center for Molecular Medicine Cologne, University of Cologne, 50937 Cologne, Germany;
| | - Yefeng Shen
- Institute of Pathology, University Hospital of Cologne, 50937 Cologne, Germany; (J.N.G.); (Y.S.); (X.Y.); (H.E.-S.); (B.B.); (R.B.)
- Center for Molecular Medicine Cologne, University of Cologne, 50937 Cologne, Germany;
| | - Ulrike Koitzsch
- Institute of Pathology, University Hospital of Cologne, 50937 Cologne, Germany; (J.N.G.); (Y.S.); (X.Y.); (H.E.-S.); (B.B.); (R.B.)
- Center for Molecular Medicine Cologne, University of Cologne, 50937 Cologne, Germany;
| | - Xiaojie Yu
- Institute of Pathology, University Hospital of Cologne, 50937 Cologne, Germany; (J.N.G.); (Y.S.); (X.Y.); (H.E.-S.); (B.B.); (R.B.)
- Center for Molecular Medicine Cologne, University of Cologne, 50937 Cologne, Germany;
| | - Hannah Eischeid-Scholz
- Institute of Pathology, University Hospital of Cologne, 50937 Cologne, Germany; (J.N.G.); (Y.S.); (X.Y.); (H.E.-S.); (B.B.); (R.B.)
- Center for Molecular Medicine Cologne, University of Cologne, 50937 Cologne, Germany;
| | - Daniel Bachurski
- CECAD Center of Excellence on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, 50937 Cologne, Germany;
- Department I of Internal Medicine, University Hospital of Cologne, 50937 Cologne, Germany; (M.H.)
| | - Tilman T. Rau
- Institute of Pathology, University Hospital of Duesseldorf, 40225 Duesseldorf, Germany; (T.T.R.); (C.N.)
| | - Christina Neppl
- Institute of Pathology, University Hospital of Duesseldorf, 40225 Duesseldorf, Germany; (T.T.R.); (C.N.)
| | - Marco Herling
- Department I of Internal Medicine, University Hospital of Cologne, 50937 Cologne, Germany; (M.H.)
- Department of Hematology, Cellular Therapy and Hemostaseology, University of Leipzig, 04103 Leipzig, Germany
| | - Bianca Bulimaga
- Institute of Pathology, University Hospital of Cologne, 50937 Cologne, Germany; (J.N.G.); (Y.S.); (X.Y.); (H.E.-S.); (B.B.); (R.B.)
- Center for Molecular Medicine Cologne, University of Cologne, 50937 Cologne, Germany;
| | - Elena Vasyutina
- Department I of Internal Medicine, University Hospital of Cologne, 50937 Cologne, Germany; (M.H.)
- Department of Hematology, Cellular Therapy and Hemostaseology, University of Leipzig, 04103 Leipzig, Germany
| | - Michal R. Schweiger
- Center for Molecular Medicine Cologne, University of Cologne, 50937 Cologne, Germany;
- Institute for Epigenetics, University Hospital of Cologne, 50937 Cologne, Germany
| | - Reinhard Büttner
- Institute of Pathology, University Hospital of Cologne, 50937 Cologne, Germany; (J.N.G.); (Y.S.); (X.Y.); (H.E.-S.); (B.B.); (R.B.)
- Center for Molecular Medicine Cologne, University of Cologne, 50937 Cologne, Germany;
| | - Margarete Odenthal
- Institute of Pathology, University Hospital of Cologne, 50937 Cologne, Germany; (J.N.G.); (Y.S.); (X.Y.); (H.E.-S.); (B.B.); (R.B.)
- Center for Molecular Medicine Cologne, University of Cologne, 50937 Cologne, Germany;
| | - Maria M. Anokhina
- Institute of Pathology, University Hospital of Cologne, 50937 Cologne, Germany; (J.N.G.); (Y.S.); (X.Y.); (H.E.-S.); (B.B.); (R.B.)
- Center for Molecular Medicine Cologne, University of Cologne, 50937 Cologne, Germany;
- Institute of Pathology, University Hospital of Duesseldorf, 40225 Duesseldorf, Germany; (T.T.R.); (C.N.)
| |
Collapse
|
41
|
Qiao LJ, Gao Z, Ji CM, Liu ZH, Zheng CH, Wang YT. Potential circRNA-Disease Association Prediction Using DeepWalk and Nonnegative Matrix Factorization. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2023; 20:3154-3162. [PMID: 37018084 DOI: 10.1109/tcbb.2023.3264466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Circular RNAs (circRNAs) are a category of noncoding RNAs that exist in great numbers in eukaryotes. They have recently been discovered to be crucial in the growth of tumors. Therefore, it is important to explore the association of circRNAs with disease. This paper proposes a new method based on DeepWalk and nonnegative matrix factorization (DWNMF) to predict circRNA-disease association. Based on the known circRNA-disease association, we calculate the topological similarity of circRNA and disease via the DeepWalk-based method to learn the node features on the association network. Next, the functional similarity of the circRNAs and the semantic similarity of the diseases are fused with their respective topological similarities at different scales. Then, we use the improved weighted K-nearest neighbor (IWKNN) method to preprocess the circRNA-disease association network and correct nonnegative associations by setting different parameters K1 and K2 in the circRNA and disease matrices. Finally, the L2,1-norm, dual-graph regularization term and Frobenius norm regularization term are introduced into the nonnegative matrix factorization model to predict the circRNA-disease correlation. We perform cross-validation on circR2Disease, circRNADisease, and MNDR. The numerical results show that DWNMF is an efficient tool for forecasting potential circRNA-disease relationships, outperforming other state-of-the-art approaches in terms of predictive performance.
Collapse
|
42
|
Wang MN, Xie XJ, You ZH, Wong L, Li LP, Chen ZH. Combining K Nearest Neighbor With Nonnegative Matrix Factorization for Predicting Circrna-Disease Associations. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2023; 20:2610-2618. [PMID: 35675235 DOI: 10.1109/tcbb.2022.3180903] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Accumulating evidences show that circular RNAs (circRNAs) play an important role in regulating gene expression, and involve in many complex human diseases. Identifying associations of circRNA with disease helps to understand the pathogenesis, treatment and diagnosis of complex diseases. Since inferring circRNA-disease associations by biological experiments is costly and time-consuming, there is an urgently need to develop a computational model to identify the association between them. In this paper, we proposed a novel method named KNN-NMF, which combines K nearest neighbors with nonnegative matrix factorization to infer associations between circRNA and disease (KNN-NMF). Frist, we compute the Gaussian Interaction Profile (GIP) kernel similarity of circRNA and disease, the semantic similarity of disease, respectively. Then, the circRNA-disease new interaction profiles are established using weight K nearest neighbors to reduce the false negative association impact on prediction performance. Finally, Nonnegative Matrix Factorization is implemented to predict associations of circRNA with disease. The experiment results indicate that the prediction performance of KNN-NMF outperforms the competing methods under five-fold cross-validation. Moreover, case studies of two common diseases further show that KNN-NMF can identify potential circRNA-disease associations effectively.
Collapse
|
43
|
Liu J, Xie J, Xu E, Xu B, Zhou J, Zhou J, Yang Q. CircRNA hsa_circ_0000043 acts as a miR-4492 sponge to promote lung cancer progression via BDNF and STAT3 expression regulation in anti-benzo[a]pyrene-trans-7,8-dihydrodiol-9,10-epoxide-transformed 16HBE cells. Toxicol Sci 2023; 195:87-102. [PMID: 37326964 DOI: 10.1093/toxsci/kfad060] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023] Open
Abstract
Increasing evidence shows that circular RNA (circRNA) plays an important role in the progression of lung cancer. In this study, we found that has_circ_0000043 was highly expressed in 16HBE-T human bronchial epithelial cells that were malignantly transformed by benzo[a]pyrene-trans-7,8-diol-9,10-epoxide via circRNA microarray. We verified that hsa_circ_0000043 was also significantly overexpressed in lung cancer cell lines and tissues. Moreover, hsa_circ_0000043 overexpression was positively correlated with poor clinicopathological parameters, such as tumor-node metastasis stage, distant metastasis, lymph-node metastasis, and overall survival. In vitro assays revealed that hsa_circ_0000043 inhibition suppressed 16HBE-T cell proliferation, migration, and invasion. Furthermore, hsa_circ_0000043 inhibition suppressed tumor growth in a mouse xenograft model. We discovered that hsa_circ_0000043 binds with miR-4492, acting as a miR-4492 sponge. Decreased miR-4492 expression was also associated with poor clinicopathological parameters. Thus, hsa_circ_0000043 was shown to contribute to the proliferation, malignant transformation ability, migration, and invasion of 16HBE-T cells via miR-4492 sponging and BDNF and STAT3 involvement.
Collapse
Affiliation(s)
- Jiayu Liu
- The Institute for Chemical Carcinogenesis, School of Public Health, Guangzhou Medical University, Xinzao, Guangzhou 511436, China
| | - Jiaying Xie
- The Institute for Chemical Carcinogenesis, School of Public Health, Guangzhou Medical University, Xinzao, Guangzhou 511436, China
| | - Enwu Xu
- Department of Thoracic Surgery, General Hospital of Southern Theater Command, PLA, Guangzhou 510010, China
| | - Binhe Xu
- Basic Medicine College, Zunyi Medical University, Zunyi 563000, China
| | - Jiaxin Zhou
- The Institute for Chemical Carcinogenesis, School of Public Health, Guangzhou Medical University, Xinzao, Guangzhou 511436, China
| | - Jiazhen Zhou
- The Institute for Chemical Carcinogenesis, School of Public Health, Guangzhou Medical University, Xinzao, Guangzhou 511436, China
| | - Qiaoyuan Yang
- The Institute for Chemical Carcinogenesis, School of Public Health, Guangzhou Medical University, Xinzao, Guangzhou 511436, China
| |
Collapse
|
44
|
Chen YC, Chen CY, Chiang TW, Chan MH, Hsiao M, Ke HM, Tsai I, Chuang TJ. Detecting intragenic trans-splicing events from non-co-linearly spliced junctions by hybrid sequencing. Nucleic Acids Res 2023; 51:7777-7797. [PMID: 37497782 PMCID: PMC10450196 DOI: 10.1093/nar/gkad623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/14/2023] [Indexed: 07/28/2023] Open
Abstract
Trans-spliced RNAs (ts-RNAs) are a type of non-co-linear (NCL) transcripts that consist of exons in an order topologically inconsistent with the corresponding DNA template. Detecting ts-RNAs is often interfered by experimental artifacts, circular RNAs (circRNAs) and genetic rearrangements. Particularly, intragenic ts-RNAs, which are derived from separate precursor mRNA molecules of the same gene, are often mistaken for circRNAs through analyses of RNA-seq data. Here we developed a bioinformatics pipeline (NCLscan-hybrid), which integrated short and long RNA-seq reads to minimize false positives and proposed out-of-circle and rolling-circle long reads to distinguish between intragenic ts-RNAs and circRNAs. Combining NCLscan-hybrid screening and multiple experimental validation steps successfully confirmed that four NCL events, which were previously regarded as circRNAs in databases, originated from trans-splicing. CRISPR-based endogenous genome modification experiments further showed that flanking intronic complementary sequences can significantly contribute to ts-RNA formation, providing an efficient/specific method to deplete ts-RNAs. We also experimentally validated that one ts-RNA (ts-ARFGEF1) played an important role for p53-mediated apoptosis through affecting the PERK/eIF2a/ATF4/CHOP signaling pathway in breast cancer cells. This study thus described both bioinformatics procedures and experimental validation steps for rigorous characterization of ts-RNAs, expanding future studies for identification, biogenesis, and function of these important but understudied transcripts.
Collapse
Affiliation(s)
- Yu-Chen Chen
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Chia-Ying Chen
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Tai-Wei Chiang
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Ming-Hsien Chan
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Huei-Mien Ke
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
- Department of Microbiology, Soochow University, Taipei, Taiwan
| | | | | |
Collapse
|
45
|
Li Q, Ren X, Wang Y, Xin X. CircRNA: a rising star in leukemia. PeerJ 2023; 11:e15577. [PMID: 37431465 PMCID: PMC10329819 DOI: 10.7717/peerj.15577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 05/25/2023] [Indexed: 07/12/2023] Open
Abstract
Non-coding RNA are a class of RNA that lack the potential to encode proteins. CircRNAs, generated by a post-splicing mechanism, are a newly discovered type of non-coding RNA with multi-functional covalent loop structures. CircRNAs may play an important role in the occurrence and progression of tumors. Research has shown that circRNAs are aberrantly expressed in various types of human cancers, including leukemia. In this review, we summarize the expression and function of circRNAs and their impact on different types of leukemia. We also illustrate the function of circRNAs on immune modulation and chemoresistance in leukemia and their impact on its diagnosis and prognosis. Herein, we provide an understanding of recent advances in research that highlight the importance of circRNAs in proliferation, apoptosis, migration, and autophagy in different types of leukemia. Furthermore, circRNAs make an indispensable difference in the modulation of the immunity and chemoresistance of leukemia. Increasing evidence suggests that circRNAs may play a vital role in the diagnostic and prognostic markers of leukemia because of their prominent properties. More detailed preclinical studies on circRNAs are needed to explore effective ways in which they can serve as biomarkers for the diagnosis and prognosis of leukemia in vivo.
Collapse
Affiliation(s)
- Qianan Li
- College of Life Sciences, Zhejiang Normal University, Jinhua, China
| | - Xinxin Ren
- College of Life Sciences, Zhejiang Normal University, Jinhua, China
| | - Ying Wang
- College of Life Sciences, Zhejiang Normal University, Jinhua, China
| | - Xiaoru Xin
- College of Life Sciences, Zhejiang Normal University, Jinhua, China
| |
Collapse
|
46
|
Centrón-Broco A, Rossi F, Grelloni C, Garraffo R, Dattilo D, Giuliani A, Di Timoteo G, Colantoni A, Bozzoni I, Beltran Nebot M. CircAFF1 Is a Circular RNA with a Role in Alveolar Rhabdomyosarcoma Cell Migration. Biomedicines 2023; 11:1893. [PMID: 37509532 PMCID: PMC10376778 DOI: 10.3390/biomedicines11071893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/22/2023] [Accepted: 06/28/2023] [Indexed: 07/30/2023] Open
Abstract
Circular RNAs (circRNAs), covalently closed RNAs that originate from back-splicing events, participate in the control of several processes, including those that occur in the development of pathological conditions such as cancer. Hereby, we describe circAFF1, a circular RNA overexpressed in alveolar rhabdomyosarcoma. Using RH4 and RH30 cell lines, a classical cell line models for alveolar rhabdomyosarcoma, we demonstrated that circAFF1 is a cytoplasmatic circRNA and its depletion impacts cell homeostasis favouring cell migration through the downregulation of genes involved in cell adhesion pathways. The presented data underline the importance of this circular RNA as a new partial suppressor of the alveolar rhabdomyosarcoma tumour progression and as a putative future therapeutic target.
Collapse
Affiliation(s)
- Alvaro Centrón-Broco
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, 00185 Rome, Italy
| | - Francesca Rossi
- The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Chiara Grelloni
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, 00185 Rome, Italy
| | - Raffaele Garraffo
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, 00185 Rome, Italy
| | - Dario Dattilo
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, 00185 Rome, Italy
| | - Andrea Giuliani
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, 00185 Rome, Italy
| | - Gaia Di Timoteo
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, 00185 Rome, Italy
| | - Alessio Colantoni
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, 00185 Rome, Italy
- Center for Life Nano- & Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), 00161 Rome, Italy
| | - Irene Bozzoni
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, 00185 Rome, Italy
- Center for Life Nano- & Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), 00161 Rome, Italy
| | - Manuel Beltran Nebot
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
47
|
Gu A, Jaijyan DK, Yang S, Zeng M, Pei S, Zhu H. Functions of Circular RNA in Human Diseases and Illnesses. Noncoding RNA 2023; 9:38. [PMID: 37489458 PMCID: PMC10366867 DOI: 10.3390/ncrna9040038] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/23/2023] [Accepted: 06/28/2023] [Indexed: 07/26/2023] Open
Abstract
Circular RNAs (circRNAs) represent single-stranded RNA species that contain covalently closed 3' and 5' ends that provide them more stability than linear RNA, which has free ends. Emerging evidence indicates that circRNAs perform essential functions in many DNA viruses, including coronaviruses, Epstein-Barr viruses, cytomegalovirus, and Kaposi sarcoma viruses. Recent studies have confirmed that circRNAs are present in viruses, including DNA and RNA viruses, and play various important functions such as evading host immune response, disease pathogenesis, protein translation, miRNA sponges, regulating cell proliferation, and virus replication. Studies have confirmed that circRNAs can be biological signatures or pathological markers for autoimmune diseases, neurological diseases, and cancers. However, our understanding of circRNAs in DNA and RNA viruses is still limited, and functional evaluation of viral and host circRNAs is essential to completely understand their biological functions. In the present review, we describe the metabolism and cellular roles of circRNA, including its roles in various diseases and viral and cellular circRNA functions. Circular RNAs are found to interact with RNA, proteins, and DNA, and thus can modulate cellular processes, including translation, transcription, splicing, and other functions. Circular RNAs interfere with various signaling pathways and take part in vital functions in various biological, physiological, cellular, and pathophysiological processes. We also summarize recent evidence demonstrating cellular and viral circRNA's roles in DNA and RNA viruses in this growing field of research.
Collapse
Affiliation(s)
- Alison Gu
- Department of Microbiology and Molecular Genetics, New Jersey Medical School, Rutgers University, 225 Warren Street, Newark, NJ 070101, USA
| | - Dabbu Kumar Jaijyan
- Department of Microbiology and Molecular Genetics, New Jersey Medical School, Rutgers University, 225 Warren Street, Newark, NJ 070101, USA
| | - Shaomin Yang
- Department of Pain Medicine and Shenzhen Municipal Key Laboratory for Pain Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518052, China
| | - Mulan Zeng
- Department of Microbiology and Molecular Genetics, New Jersey Medical School, Rutgers University, 225 Warren Street, Newark, NJ 070101, USA
| | - Shaokai Pei
- Department of Microbiology and Molecular Genetics, New Jersey Medical School, Rutgers University, 225 Warren Street, Newark, NJ 070101, USA
| | - Hua Zhu
- Department of Microbiology and Molecular Genetics, New Jersey Medical School, Rutgers University, 225 Warren Street, Newark, NJ 070101, USA
| |
Collapse
|
48
|
Fan YJ, Ding Z, Zhang Y, Su R, Yue JL, Liang AM, Huang QW, Meng YR, Li M, Xue Y, Xu YZ. Sex-lethal regulates back-splicing and generation of the sex-differentially expressed circular RNAs. Nucleic Acids Res 2023; 51:5228-5241. [PMID: 37070178 PMCID: PMC10250224 DOI: 10.1093/nar/gkad280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/21/2023] [Accepted: 04/06/2023] [Indexed: 04/19/2023] Open
Abstract
Conversely to canonical splicing, back-splicing connects the upstream 3' splice site (SS) with a downstream 5'SS and generates exonic circular RNAs (circRNAs) that are widely identified and have regulatory functions in eukaryotic gene expression. However, sex-specific back-splicing in Drosophila has not been investigated and its regulation remains unclear. Here, we performed multiple RNA analyses of a variety sex-specific Drosophila samples and identified over ten thousand circular RNAs, in which hundreds are sex-differentially and -specifically back-spliced. Intriguingly, we found that expression of SXL, an RNA-binding protein encoded by Sex-lethal (Sxl), the master Drosophila sex-determination gene that is only spliced into functional proteins in females, promoted back-splicing of many female-differential circRNAs in the male S2 cells, whereas expression of a SXL mutant (SXLRRM) did not promote those events. Using a monoclonal antibody, we further obtained the transcriptome-wide RNA-binding sites of SXL through PAR-CLIP. After splicing assay of mini-genes with mutations in the SXL-binding sites, we revealed that SXL-binding on flanking exons and introns of pre-mRNAs facilitates back-splicing, whereas SXL-binding on the circRNA exons inhibits back-splicing. This study provides strong evidence that SXL has a regulatory role in back-splicing to generate sex-specific and -differential circRNAs, as well as in the initiation of sex-determination cascade through canonical forward-splicing.
Collapse
Affiliation(s)
- Yu-Jie Fan
- The RNA Institute, State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Hubei430072, China
| | - Zhan Ding
- The RNA Institute, State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Hubei430072, China
| | - Yu Zhang
- The RNA Institute, State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Hubei430072, China
| | - Ruibao Su
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Jia-Le Yue
- The RNA Institute, State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Hubei430072, China
| | - An-Min Liang
- The RNA Institute, State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Hubei430072, China
| | - Qi-Wei Huang
- The RNA Institute, State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Hubei430072, China
| | - Yan-Ran Meng
- The RNA Institute, State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Hubei430072, China
| | - Muwang Li
- College of Biotechnology, Jiangsu University of Science and Technology, Jiangsu 212018, China
| | - Yuanchao Xue
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yong-Zhen Xu
- The RNA Institute, State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Hubei430072, China
| |
Collapse
|
49
|
Smoniewski CM, Mirzavand Borujeni P, Petersen A, Hampton M, Salavati R, Zimmer SL. Circular mitochondrial-encoded mRNAs are a distinct subpopulation of mitochondrial mRNA in Trypanosoma brucei. Sci Rep 2023; 13:7825. [PMID: 37188727 PMCID: PMC10185552 DOI: 10.1038/s41598-023-34255-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 04/26/2023] [Indexed: 05/17/2023] Open
Abstract
Since the first identification of circular RNA (circRNA) in viral-like systems, reports of circRNAs and their functions in various organisms, cell types, and organelles have greatly expanded. Here, we report the first evidence, to our knowledge, of circular mRNA in the mitochondrion of the eukaryotic parasite, Trypanosoma brucei. While using a circular RT-PCR technique developed to sequence mRNA tails of mitochondrial transcripts, we found that some mRNAs are circularized without an in vitro circularization step normally required to produce PCR products. Starting from total in vitro circularized RNA and in vivo circRNA, we high-throughput sequenced three transcripts from the 3' end of the coding region, through the 3' tail, to the 5' start of the coding region. We found that fewer reads in the circRNA libraries contained tails than in the total RNA libraries. When tails were present on circRNAs, they were shorter and less adenine-rich than the total population of RNA tails of the same transcript. Additionally, using hidden Markov modelling we determined that enzymatic activity during tail addition is different for circRNAs than for total RNA. Lastly, circRNA UTRs tended to be shorter and more variable than those of the same transcript sequenced from total RNA. We propose a revised model of Trypanosome mitochondrial tail addition, in which a fraction of mRNAs is circularized prior to the addition of adenine-rich tails and may act as a new regulatory molecule or in a degradation pathway.
Collapse
Affiliation(s)
- Clara M Smoniewski
- Department of Biomedical Sciences, University of Minnesota Medical School Duluth Campus, Duluth, MN, USA
| | | | - Austin Petersen
- Department of Biology, University of Minnesota Duluth, Duluth, MN, USA
| | - Marshall Hampton
- Department of Mathematics and Statistics, University of Minnesota Duluth, Duluth, MN, USA
| | - Reza Salavati
- Institute of Parasitology, McGill University, Montreal, QC, Canada
| | - Sara L Zimmer
- Department of Biomedical Sciences, University of Minnesota Medical School Duluth Campus, Duluth, MN, USA.
| |
Collapse
|
50
|
Feng H, Deng Z, Peng W, Wei X, Liu J, Wang T. Circular RNA EPHA3 suppresses progression and metastasis in prostate cancer through the miR-513a-3p/BMP2 axis. J Transl Med 2023; 21:288. [PMID: 37118847 PMCID: PMC10148471 DOI: 10.1186/s12967-023-04132-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 04/13/2023] [Indexed: 04/30/2023] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) may regulate the onset and progression of human malignancies by competitively binding to microRNA (miRNA) sponges, thus regulating the downstream genes. However, aberrant circRNA expression patterns and their biological functions in prostate cancer (PCa) warrant further studies. Our research sought to shed further light on the possible role and molecular mechanism of circEPHA3 action in controlling the growth and metastasis of PCa cells. MATERIALS AND METHODS circEPHA3 (has_circ_0066596) was initially screened from a previous circRNA microarray and identified following Actinomycin D and RNase R assays. Fluorescence in situ hybridization, biotin-coupled probe RNA pulldown, and dual-luciferase reporter gene assays were performed to examine the relationship between circEPHA3 and miR-513a-3p. The biological role of circEPHA3 in PCa was assessed by CCK8, wound healing, Transwell assays, and animal experiments. RESULTS We identified a novel circular RNA, circEPHA3 (has_circ_0066596), which was down-regulated in high-grade PCa tissues and cell lines. The outcomes of CCK8, wound healing, Transwell assays, and animal experiments revealed that circEPHA3 prohibited the progression and metastasis of PCa in vivo and in vitro. Mechanistically, circEPHA3 was directly bound to miR-513a-3p and regulated the downstream gene, BMP2, thereby serving as a tumor suppressor in PCa. CONCLUSIONS As a tumor suppressor, circEPHA3 inhibited the proliferation and metastasis of PCa cells through the miR-513a-3p/BMP2 axis, suggesting that circEPHA3 might be a potential therapeutic target for PCa.
Collapse
Affiliation(s)
- Huan Feng
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, Guangdong, China
| | - Zhiyao Deng
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, Guangdong, China
| | - Wei Peng
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xian Wei
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jihong Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Tao Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
- Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, Guangdong, China.
| |
Collapse
|