1
|
Deimel LP, Moynié L, Sun G, Lewis V, Turner A, Buchanan CJ, Burnap SA, Kutuzov M, Kobras CM, Demyanenko Y, Mohammed S, Stracy M, Struwe WB, Baldwin AJ, Naismith J, Davis BG, Sattentau QJ. Covalent penicillin-protein conjugates elicit anti-drug antibodies that are clonally and functionally restricted. Nat Commun 2024; 15:6851. [PMID: 39127707 PMCID: PMC11316840 DOI: 10.1038/s41467-024-51138-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 07/31/2024] [Indexed: 08/12/2024] Open
Abstract
Many archetypal and emerging classes of small-molecule therapeutics form covalent protein adducts. In vivo, both the resulting conjugates and their off-target side-conjugates have the potential to elicit antibodies, with implications for allergy and drug sequestration. Although β-lactam antibiotics are a drug class long associated with these immunological phenomena, the molecular underpinnings of off-target drug-protein conjugation and consequent drug-specific immune responses remain incomplete. Here, using the classical β-lactam penicillin G (PenG), we probe the B and T cell determinants of drug-specific IgG responses to such conjugates in mice. Deep B cell clonotyping reveals a dominant murine clonal antibody class encompassing phylogenetically-related IGHV1, IGHV5 and IGHV10 subgroup gene segments. Protein NMR and x-ray structural analyses reveal that these drive structurally convergent binding modes in adduct-specific antibody clones. Their common primary recognition mechanisms of the penicillin side-chain moiety (phenylacetamide in PenG)-regardless of CDRH3 length-limits cross-reactivity against other β-lactam antibiotics. This immunogenetics-guided discovery of the limited binding solutions available to antibodies against side products of an archetypal covalent inhibitor now suggests future potential strategies for the 'germline-guided reverse engineering' of such drugs away from unwanted immune responses.
Collapse
Affiliation(s)
- Lachlan P Deimel
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK.
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, 10065, USA.
| | - Lucile Moynié
- Rosalind Franklin Institute, Harwell Science and Innovation Campus, Oxford, OX11 0FA, UK
| | - Guoxuan Sun
- Rosalind Franklin Institute, Harwell Science and Innovation Campus, Oxford, OX11 0FA, UK
| | - Viliyana Lewis
- Rosalind Franklin Institute, Harwell Science and Innovation Campus, Oxford, OX11 0FA, UK
| | - Abigail Turner
- Rosalind Franklin Institute, Harwell Science and Innovation Campus, Oxford, OX11 0FA, UK
| | - Charles J Buchanan
- Rosalind Franklin Institute, Harwell Science and Innovation Campus, Oxford, OX11 0FA, UK
- Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, Oxford, OX1 3QU, UK
| | - Sean A Burnap
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, Oxford, OX1 3QU, UK
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
| | - Mikhail Kutuzov
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK
| | - Carolin M Kobras
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK
| | - Yana Demyanenko
- Rosalind Franklin Institute, Harwell Science and Innovation Campus, Oxford, OX11 0FA, UK
- Department of Pharmacology, University of Oxford, Oxford, OX1 3QT, UK
| | - Shabaz Mohammed
- Rosalind Franklin Institute, Harwell Science and Innovation Campus, Oxford, OX11 0FA, UK
- Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
| | - Mathew Stracy
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK
| | - Weston B Struwe
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, Oxford, OX1 3QU, UK
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
| | - Andrew J Baldwin
- Rosalind Franklin Institute, Harwell Science and Innovation Campus, Oxford, OX11 0FA, UK
- Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, Oxford, OX1 3QU, UK
| | - James Naismith
- Rosalind Franklin Institute, Harwell Science and Innovation Campus, Oxford, OX11 0FA, UK
| | - Benjamin G Davis
- Rosalind Franklin Institute, Harwell Science and Innovation Campus, Oxford, OX11 0FA, UK.
- Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK.
- Department of Pharmacology, University of Oxford, Oxford, OX1 3QT, UK.
| | - Quentin J Sattentau
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK.
- The Max Delbrück Centre for Molecular Medicine, Campus Berlin-Buch, 13125, Berlin, Germany.
- Experimental and Clinical Research Center (ECRC), Charité Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Lindenberger Weg 80, 13125, Berlin, Germany.
| |
Collapse
|
2
|
Calvo-Serrano S, Matamoros E, Céspedes JA, Fernández-Santamaría R, Gil-Ocaña V, Perez-Inestrosa E, Frecha C, Montañez MI, Vida Y, Mayorga C, Torres MJ. New Approaches for Basophil Activation Tests Employing Dendrimeric Antigen-Silica Nanoparticle Composites. Pharmaceutics 2024; 16:1039. [PMID: 39204384 PMCID: PMC11359297 DOI: 10.3390/pharmaceutics16081039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/26/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024] Open
Abstract
In vitro cell activation through specific IgE bound to high-affinity receptors on the basophil surface is a widely used strategy for the evaluation of IgE-mediated immediate hypersensitivity reactions to betalactams. Cellular activation requires drug conjugation to a protein to form a large enough structure displaying a certain distance between haptens to allow the cross-linking of two IgE antibodies bound to the basophil's surface, triggering their degranulation. However, no information about the size and composition of these conjugates is available. Routine in vitro diagnosis using the basophil activation test uses free amoxicillin, which is assumed to conjugate to a carrier present in blood. To standardize the methodology, we propose the use of well-controlled and defined nanomaterials functionalized with amoxicilloyl. Silica nanoparticles decorated with PAMAM-dendrimer-amoxicilloyl conjugates (NpDeAXO) of different sizes and amoxicilloyl densities (50-300 µmol amoxicilloyl/gram nanoparticle) have been prepared and chemically characterized. Two methods of synthesis were performed to ensure reproducibility and stability. Their functional effect on basophils was measured using an in-house basophil activation test (BAT) that determines CD63+ or CD203chigh activation markers. It was observed that NpDeAXO nanocomposites are not only able to specifically activate basophils but also do so in a more effective way than free amoxicillin, pointing to a translational potential diagnosis.
Collapse
Affiliation(s)
- Silvia Calvo-Serrano
- Allergy Research Group, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina—IBIMA Plataforma Bionand, Parque Tecnológico de Andalucía, 29590 Málaga, Spain; (S.C.-S.); (J.A.C.); (R.F.-S.); (C.F.); (C.M.); (M.J.T.)
- RICORS Red de Enfermedades Inflamatorias (REI), 28029 Madrid, Spain
- Departamento de Medicina y Dermatología, Universidad de Málaga, 29071 Málaga, Spain
| | - Esther Matamoros
- Departamento de Química Orgánica, Universidad de Málaga, Campus Teatinos s/n, 29071 Málaga, Spain; (E.M.); (V.G.-O.); (E.P.-I.)
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina—IBIMA Plataforma Bionand, Parque Tecnológico de Andalucía, 29590 Málaga, Spain
| | - Jose Antonio Céspedes
- Allergy Research Group, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina—IBIMA Plataforma Bionand, Parque Tecnológico de Andalucía, 29590 Málaga, Spain; (S.C.-S.); (J.A.C.); (R.F.-S.); (C.F.); (C.M.); (M.J.T.)
- RICORS Red de Enfermedades Inflamatorias (REI), 28029 Madrid, Spain
| | - Rubén Fernández-Santamaría
- Allergy Research Group, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina—IBIMA Plataforma Bionand, Parque Tecnológico de Andalucía, 29590 Málaga, Spain; (S.C.-S.); (J.A.C.); (R.F.-S.); (C.F.); (C.M.); (M.J.T.)
- RICORS Red de Enfermedades Inflamatorias (REI), 28029 Madrid, Spain
| | - Violeta Gil-Ocaña
- Departamento de Química Orgánica, Universidad de Málaga, Campus Teatinos s/n, 29071 Málaga, Spain; (E.M.); (V.G.-O.); (E.P.-I.)
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina—IBIMA Plataforma Bionand, Parque Tecnológico de Andalucía, 29590 Málaga, Spain
| | - Ezequiel Perez-Inestrosa
- Departamento de Química Orgánica, Universidad de Málaga, Campus Teatinos s/n, 29071 Málaga, Spain; (E.M.); (V.G.-O.); (E.P.-I.)
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina—IBIMA Plataforma Bionand, Parque Tecnológico de Andalucía, 29590 Málaga, Spain
| | - Cecilia Frecha
- Allergy Research Group, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina—IBIMA Plataforma Bionand, Parque Tecnológico de Andalucía, 29590 Málaga, Spain; (S.C.-S.); (J.A.C.); (R.F.-S.); (C.F.); (C.M.); (M.J.T.)
- RICORS Red de Enfermedades Inflamatorias (REI), 28029 Madrid, Spain
| | - Maria I. Montañez
- Allergy Research Group, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina—IBIMA Plataforma Bionand, Parque Tecnológico de Andalucía, 29590 Málaga, Spain; (S.C.-S.); (J.A.C.); (R.F.-S.); (C.F.); (C.M.); (M.J.T.)
- RICORS Red de Enfermedades Inflamatorias (REI), 28029 Madrid, Spain
- Departamento de Química Orgánica, Universidad de Málaga, Campus Teatinos s/n, 29071 Málaga, Spain; (E.M.); (V.G.-O.); (E.P.-I.)
| | - Yolanda Vida
- Departamento de Química Orgánica, Universidad de Málaga, Campus Teatinos s/n, 29071 Málaga, Spain; (E.M.); (V.G.-O.); (E.P.-I.)
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina—IBIMA Plataforma Bionand, Parque Tecnológico de Andalucía, 29590 Málaga, Spain
| | - Cristobalina Mayorga
- Allergy Research Group, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina—IBIMA Plataforma Bionand, Parque Tecnológico de Andalucía, 29590 Málaga, Spain; (S.C.-S.); (J.A.C.); (R.F.-S.); (C.F.); (C.M.); (M.J.T.)
- RICORS Red de Enfermedades Inflamatorias (REI), 28029 Madrid, Spain
- Allergy Unit, Hospital Regional Universitario de Málaga-HRUM, 29010 Málaga, Spain
| | - Maria J. Torres
- Allergy Research Group, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina—IBIMA Plataforma Bionand, Parque Tecnológico de Andalucía, 29590 Málaga, Spain; (S.C.-S.); (J.A.C.); (R.F.-S.); (C.F.); (C.M.); (M.J.T.)
- RICORS Red de Enfermedades Inflamatorias (REI), 28029 Madrid, Spain
- Departamento de Medicina y Dermatología, Universidad de Málaga, 29071 Málaga, Spain
- Allergy Unit, Hospital Regional Universitario de Málaga-HRUM, 29010 Málaga, Spain
| |
Collapse
|
3
|
Chen L, Fan Z, Chang J, Yang R, Hou H, Guo H, Zhang Y, Yang T, Zhou C, Sui Q, Chen Z, Zheng C, Hao X, Zhang K, Cui R, Zhang Z, Ma H, Ding Y, Zhang N, Lu X, Luo X, Jiang H, Zhang S, Zheng M. Sequence-based drug design as a concept in computational drug design. Nat Commun 2023; 14:4217. [PMID: 37452028 PMCID: PMC10349078 DOI: 10.1038/s41467-023-39856-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 06/27/2023] [Indexed: 07/18/2023] Open
Abstract
Drug development based on target proteins has been a successful approach in recent decades. However, the conventional structure-based drug design (SBDD) pipeline is a complex, human-engineered process with multiple independently optimized steps. Here, we propose a sequence-to-drug concept for computational drug design based on protein sequence information by end-to-end differentiable learning. We validate this concept in three stages. First, we design TransformerCPI2.0 as a core tool for the concept, which demonstrates generalization ability across proteins and compounds. Second, we interpret the binding knowledge that TransformerCPI2.0 learned. Finally, we use TransformerCPI2.0 to discover new hits for challenging drug targets, and identify new target for an existing drug based on an inverse application of the concept. Overall, this proof-of-concept study shows that the sequence-to-drug concept adds a perspective on drug design. It can serve as an alternative method to SBDD, particularly for proteins that do not yet have high-quality 3D structures available.
Collapse
Affiliation(s)
- Lifan Chen
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Zisheng Fan
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 Xianlin Road, Jiangsu, Nanjing, 210023, China
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, No. 393 Huaxia Middle Road, Shanghai, 200031, China
| | - Jie Chang
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 Xianlin Road, Jiangsu, Nanjing, 210023, China
| | - Ruirui Yang
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, No. 393 Huaxia Middle Road, Shanghai, 200031, China
| | - Hui Hou
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
| | - Hao Guo
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
| | - Yinghui Zhang
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Tianbiao Yang
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Chenmao Zhou
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 Xianlin Road, Jiangsu, Nanjing, 210023, China
| | - Qibang Sui
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Zhengyang Chen
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Chen Zheng
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
| | - Xinyue Hao
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 Xianlin Road, Jiangsu, Nanjing, 210023, China
| | - Keke Zhang
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 Xianlin Road, Jiangsu, Nanjing, 210023, China
| | - Rongrong Cui
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
| | - Zehong Zhang
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Hudson Ma
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
| | - Yiluan Ding
- Department of Analytical Chemistry, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
| | - Naixia Zhang
- Department of Analytical Chemistry, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
| | - Xiaojie Lu
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Xiaomin Luo
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Hualiang Jiang
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 Xianlin Road, Jiangsu, Nanjing, 210023, China
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, No. 393 Huaxia Middle Road, Shanghai, 200031, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, China
| | - Sulin Zhang
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China.
| | - Mingyue Zheng
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China.
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 Xianlin Road, Jiangsu, Nanjing, 210023, China.
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, No. 393 Huaxia Middle Road, Shanghai, 200031, China.
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, China.
| |
Collapse
|
4
|
Fernandez‐Santamaria R, Bogas G, Montañez MI, Ariza A, Salas M, Cespedes JA, Labella M, Paris JL, Perez‐Sanchez N, Perez‐Inestrosa E, Vida Y, Fernandez TD, Mayorga C, Torres MJ. Synthetic antigenic determinants of clavulanic acid induce dendritic cell maturation and specific T cell proliferation in patients with immediate hypersensitivity reactions. Allergy 2022; 77:3070-3083. [PMID: 35611454 PMCID: PMC9796838 DOI: 10.1111/all.15383] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 04/19/2022] [Accepted: 05/04/2022] [Indexed: 01/28/2023]
Abstract
BACKGROUND Immediate drug hypersensitivity reactions (IDHRs) to clavulanic acid (CLV) have increased in the last decades due to a higher consumption alongside amoxicillin (AX). Due to its chemical instability, diagnostic procedures to evaluate IDHRs to CLV are difficult, and current in vitro assays do not have an optimal sensitivity. The inclusion of the specific metabolites after CLV degradation, which are efficiently recognised by the immune system, could help to improve sensitivity of in vitro tests. METHODS Recognition by dendritic cells (DCs) of CLV and the synthetic analogues of two of its hypothesised antigenic determinants (ADs) was evaluated by flow cytometry in 27 allergic patients (AP) and healthy controls (HC). Their ability to trigger the proliferation of T cells was also analysed by flow cytometry. RESULTS The inclusion of synthetic analogues of CLV ADs, significantly increased the expression of maturation markers on DCs from AP compared to HC. A different recognition pattern could be observed with each AD, and, therefore, the inclusion of both ADs achieves an improved sensitivity. The addition of synthetic ADs analogues increased the proliferative response of CD4+ Th2 compared to the addition of native CLV. The combination of results from both ADs increased the sensitivity of proliferative assays from 19% to 65% with a specificity higher than 90%. CONCLUSIONS Synthetic ADs from CLV are efficiently recognised by DCs with ability to activate CD4+ Th2 cells from AP. The combination of analogues from both ADs, significantly increased the sensitivity of DC maturation and T-cell proliferation compared to native CLV.
Collapse
Affiliation(s)
- Ruben Fernandez‐Santamaria
- Allergy Research Group, Instituto de Investigación Biomédica de Málaga‐IBIMA‐ARADyALMálagaSpain,Departmento de Medicina, Universidad de Málaga‐UMAMálagaSpain
| | - Gador Bogas
- Allergy Research Group, Instituto de Investigación Biomédica de Málaga‐IBIMA‐ARADyALMálagaSpain,Allergy Unit, Hospital Regional Universitario de Málaga‐HRUMMálagaSpain
| | - Maria Isabel Montañez
- Allergy Research Group, Instituto de Investigación Biomédica de Málaga‐IBIMA‐ARADyALMálagaSpain,Departamento de Química Orgánica, Universidad de Málaga‐UMAMálagaSpain,Nanostructures for Diagnosing and Treatment of Allergic Diseases Laboratory, Centro Andaluz de Nanomedicina y Biotecnología‐BIONANDMálagaSpain
| | - Adriana Ariza
- Allergy Research Group, Instituto de Investigación Biomédica de Málaga‐IBIMA‐ARADyALMálagaSpain
| | - Maria Salas
- Allergy Research Group, Instituto de Investigación Biomédica de Málaga‐IBIMA‐ARADyALMálagaSpain,Allergy Unit, Hospital Regional Universitario de Málaga‐HRUMMálagaSpain
| | - Jose Antonio Cespedes
- Allergy Research Group, Instituto de Investigación Biomédica de Málaga‐IBIMA‐ARADyALMálagaSpain,Departmento de Medicina, Universidad de Málaga‐UMAMálagaSpain
| | - Marina Labella
- Allergy Research Group, Instituto de Investigación Biomédica de Málaga‐IBIMA‐ARADyALMálagaSpain,Allergy Unit, Hospital Regional Universitario de Málaga‐HRUMMálagaSpain
| | - Juan Luis Paris
- Allergy Research Group, Instituto de Investigación Biomédica de Málaga‐IBIMA‐ARADyALMálagaSpain,Nanostructures for Diagnosing and Treatment of Allergic Diseases Laboratory, Centro Andaluz de Nanomedicina y Biotecnología‐BIONANDMálagaSpain
| | - Natalia Perez‐Sanchez
- Allergy Research Group, Instituto de Investigación Biomédica de Málaga‐IBIMA‐ARADyALMálagaSpain,Allergy Unit, Hospital Regional Universitario de Málaga‐HRUMMálagaSpain
| | - Ezequiel Perez‐Inestrosa
- Departamento de Química Orgánica, Universidad de Málaga‐UMAMálagaSpain,Nanostructures for Diagnosing and Treatment of Allergic Diseases Laboratory, Centro Andaluz de Nanomedicina y Biotecnología‐BIONANDMálagaSpain
| | - Yolanda Vida
- Departamento de Química Orgánica, Universidad de Málaga‐UMAMálagaSpain,Nanostructures for Diagnosing and Treatment of Allergic Diseases Laboratory, Centro Andaluz de Nanomedicina y Biotecnología‐BIONANDMálagaSpain
| | - Tahia D. Fernandez
- Allergy Research Group, Instituto de Investigación Biomédica de Málaga‐IBIMA‐ARADyALMálagaSpain,Departamento de Biología Celular, Genética y Fisiología, Universidad de Málaga‐UMAMálagaSpain
| | - Cristobalina Mayorga
- Allergy Research Group, Instituto de Investigación Biomédica de Málaga‐IBIMA‐ARADyALMálagaSpain,Allergy Unit, Hospital Regional Universitario de Málaga‐HRUMMálagaSpain,Nanostructures for Diagnosing and Treatment of Allergic Diseases Laboratory, Centro Andaluz de Nanomedicina y Biotecnología‐BIONANDMálagaSpain
| | - Maria Jose Torres
- Allergy Research Group, Instituto de Investigación Biomédica de Málaga‐IBIMA‐ARADyALMálagaSpain,Departmento de Medicina, Universidad de Málaga‐UMAMálagaSpain,Allergy Unit, Hospital Regional Universitario de Málaga‐HRUMMálagaSpain,Nanostructures for Diagnosing and Treatment of Allergic Diseases Laboratory, Centro Andaluz de Nanomedicina y Biotecnología‐BIONANDMálagaSpain
| |
Collapse
|
5
|
Ghosh A, Pawar AB, Chirmade T, Jathar SM, Bhambure R, Sengupta D, Giri AP, Kulkarni MJ. Investigation of the Captopril-Insulin Interaction by Mass Spectrometry and Computational Approaches Reveals that Captopril Induces Structural Changes in Insulin. ACS OMEGA 2022; 7:23115-23126. [PMID: 35847342 PMCID: PMC9280767 DOI: 10.1021/acsomega.2c00660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Post-translational modifications remarkably regulate proteins' biological function. Small molecules such as reactive thiols, metabolites, and drugs may covalently modify the proteins and cause structural changes. This study reports the covalent modification and noncovalent interaction of insulin and captopril, an FDA-approved antihypertensive drug, through mass spectrometric and computation-based approaches. Mass spectrometric analysis shows that captopril modifies intact insulin, reduces it into its "A" and "B" chains, and covalently modifies them by forming adducts. Since captopril has a reactive thiol group, it might reduce the insulin dimer or modify it by reacting with cysteine residues. This was proven with dithiothreitol treatment, which reduced the abundance of captopril adducts of insulin A and B chains and intact Insulin. Liquid chromatography tandem mass spectrometric analysis identified the modification of a total of four cysteine residues, two in each of the A and B chains of insulin. These modifications were identified to be Cys6 and Cys7 of the A chain and Cys7 and Cys19 of the B chain. Mass spectrometric analysis indicated that captopril may simultaneously modify the cysteine residues of intact insulin or its subunits A and B chains. Biophysical studies involving light scattering and thioflavin T assay suggested that the binding of captopril to the protein leads to the formation of aggregates. Docking and molecular dynamics studies provided insights into the noncovalent interactions and associated structural changes in insulin. This work is a maiden attempt to understand the detailed molecular interactions between captopril and insulin. These findings suggest that further investigations are required to understand the long-term effect of drugs like captopril.
Collapse
Affiliation(s)
- Amrita Ghosh
- Biochemical
Sciences Division, CSIR-National Chemical
Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Aiswarya B. Pawar
- Physical
and Materials Chemistry Division, CSIR-National
Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
| | - Tejas Chirmade
- Chemical
Engineering and Process Development, CSIR-National
Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
| | - Swaraj M. Jathar
- Biochemical
Sciences Division, CSIR-National Chemical
Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Rahul Bhambure
- Chemical
Engineering and Process Development, CSIR-National
Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Durba Sengupta
- Physical
and Materials Chemistry Division, CSIR-National
Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ashok P. Giri
- Biochemical
Sciences Division, CSIR-National Chemical
Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Mahesh J. Kulkarni
- Biochemical
Sciences Division, CSIR-National Chemical
Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
6
|
Fernandez‐Santamaria R, Ariza A, Fernandez TD, Cespedes JA, Labella M, Mayorga C, Torres MJ. Advances and highlights in T and B cell responses to drug antigens. Allergy 2022; 77:1129-1138. [PMID: 34617287 DOI: 10.1111/all.15126] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 03/31/2021] [Accepted: 09/15/2021] [Indexed: 12/15/2022]
Abstract
The immunological mechanisms involved in drug hypersensitivity reactions (DHRs) are complex, and despite important advances, multiple aspects remain poorly understood. These not fully known aspects are mainly related to the factors that drive towards either a tolerant or a hypersensitivity response and specifically regarding the role of B and T cells. In this review, we focus on recent findings on this knowledge area within the last 2 years. We highlight new evidences of covalent and non-covalent interactions of drug antigen with proteins, as well as the very first characterization of naturally processed flucloxacillin-haptenated human leukocyte antigen (HLA) ligands. Moreover, we have analysed new insights into the identification of risk factors associated with the development of DHRs, such as the role of oxidative metabolism of drugs in the activation of the immune system and the discovery of new associations between DHRs and HLA variants. Finally, evidence of IgG-mediated anaphylaxis in humans and the involvement of specific subpopulations of effector cells associated with different clinical entities are also topics explored in this review. All these recent findings are relevant for the underlying pathology mechanisms and advance the field towards a more precise diagnosis, management and treatment approach for DHRs.
Collapse
Affiliation(s)
| | - Adriana Ariza
- Allergy Research Group Instituto de Investigación Biomédica de Málaga‐IBIMA‐ARADyAL Málaga Spain
| | - Tahia D. Fernandez
- Allergy Research Group Instituto de Investigación Biomédica de Málaga‐IBIMA‐ARADyAL Málaga Spain
- Departamento de Biología Celular Genética y Fisiología Universidad de Málaga Málaga Spain
| | - José A Cespedes
- Allergy Research Group Instituto de Investigación Biomédica de Málaga‐IBIMA‐ARADyAL Málaga Spain
| | - Marina Labella
- Allergy Research Group Instituto de Investigación Biomédica de Málaga‐IBIMA‐ARADyAL Málaga Spain
- Allergy Unit Hospital Regional Universitario de Málaga‐ARADyAL Málaga Spain
| | - Cristobalina Mayorga
- Allergy Research Group Instituto de Investigación Biomédica de Málaga‐IBIMA‐ARADyAL Málaga Spain
- Allergy Unit Hospital Regional Universitario de Málaga‐ARADyAL Málaga Spain
- Andalusian Center for Nanomedicine and Biotechnology‐BIONAND Málaga Spain
| | - María J Torres
- Allergy Research Group Instituto de Investigación Biomédica de Málaga‐IBIMA‐ARADyAL Málaga Spain
- Allergy Unit Hospital Regional Universitario de Málaga‐ARADyAL Málaga Spain
- Andalusian Center for Nanomedicine and Biotechnology‐BIONAND Málaga Spain
- Departamento de Medicina Universidad de Málaga Málaga Spain
| |
Collapse
|
7
|
González-Morena JM, Sánchez-Gómez FJ, Vida Y, Pérez-Inestrosa E, Salas M, Montañez MI, Altomare A, Aldini G, Pajares MA, Pérez-Sala D. Amoxicillin Haptenation of α-Enolase is Modulated by Active Site Occupancy and Acetylation. Front Pharmacol 2022; 12:807742. [PMID: 35095517 PMCID: PMC8793629 DOI: 10.3389/fphar.2021.807742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/20/2021] [Indexed: 11/13/2022] Open
Abstract
Allergic reactions to antibiotics are a major concern in the clinic. ß-lactam antibiotics are the class most frequently reported to cause hypersensitivity reactions. One of the mechanisms involved in this outcome is the modification of proteins by covalent binding of the drug (haptenation). Hence, interest in identifying the corresponding serum and cellular protein targets arises. Importantly, haptenation susceptibility and extent can be modulated by the context, including factors affecting protein conformation or the occurrence of other posttranslational modifications. We previously identified the glycolytic enzyme α-enolase as a target for haptenation by amoxicillin, both in cells and in the extracellular milieu. Here, we performed an in vitro study to analyze amoxicillin haptenation of α-enolase using gel-based and activity assays. Moreover, the possible interplay or interference between amoxicillin haptenation and acetylation of α-enolase was studied in 1D- and 2D-gels that showed decreased haptenation and displacement of the haptenation signal to lower pI spots after chemical acetylation of the protein, respectively. In addition, the peptide containing lysine 239 was identified by mass spectrometry as the amoxicillin target sequence on α-enolase, thus suggesting a selective haptenation under our conditions. The putative amoxicillin binding site and the surrounding interactions were investigated using the α-enolase crystal structure and molecular docking. Altogether, the results obtained provide the basis for the design of novel diagnostic tools or approaches in the study of amoxicillin-induced allergic reactions.
Collapse
Affiliation(s)
- Juan M González-Morena
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas (CSIC), Madrid, Spain
| | - Francisco J Sánchez-Gómez
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas (CSIC), Madrid, Spain
| | - Yolanda Vida
- Dpto. Química Orgánica, Universidad de Málaga-IBIMA, Málaga, Spain.,Centro Andaluz de Nanomedicina y Biotecnología-BIONAND, Parque Tecnológico de Andalucía, Málaga, Spain
| | - Ezequiel Pérez-Inestrosa
- Dpto. Química Orgánica, Universidad de Málaga-IBIMA, Málaga, Spain.,Centro Andaluz de Nanomedicina y Biotecnología-BIONAND, Parque Tecnológico de Andalucía, Málaga, Spain
| | - María Salas
- Allergy Research Group, Instituto de Investigación Biomédica de Málaga-IBIMA, Allergy Unit, Hospital Regional Universitario de Málaga, Málaga, Spain
| | - María I Montañez
- Allergy Research Group, Instituto de Investigación Biomédica de Málaga-IBIMA, Andalusian Centre for Nanomedicine Biotechnology-BIONAND, Parque Tecnológico de Andalucía, Málaga, Spain
| | - Alessandra Altomare
- Department of Scienze Farmaceutiche, Universita degli Studi di Milano, Milan, Italy
| | - Giancarlo Aldini
- Department of Scienze Farmaceutiche, Universita degli Studi di Milano, Milan, Italy
| | - María A Pajares
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas (CSIC), Madrid, Spain
| | - Dolores Pérez-Sala
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas (CSIC), Madrid, Spain
| |
Collapse
|
8
|
Tailor A, Meng X, Adair K, Farrell J, Waddington JC, Daly A, Pirmohamed M, Dear G, Park BK, Naisbitt DJ. HLA DRB1*15:01-DQB1*06:02-Restricted Human CD4+ T Cells Are Selectively Activated With Amoxicillin-Peptide Adducts. Toxicol Sci 2021; 178:115-126. [PMID: 32777075 DOI: 10.1093/toxsci/kfaa128] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Amoxicillin-clavulanate is the most common cause of idiosyncratic drug-induced liver injury (DILI). Drug-specific CD4+ T cells have been detected in patients with DILI, suggestive of an immune etiology. Furthermore, genetic associations including the human leucocyte antigen (HLA) DRB1*15:01-DQB1*06:02 haplotype influence susceptibility. Amoxicillin forms protein adducts that are postulated to activate T cells, by conjugating with lysine residues. However, a role for such adducts has not been described. This study aimed to (1) investigate whether amoxicillin-modified HLA-DRB1*15:01-DQB1*06:02 binding peptides selectively activate DILI patient T cells and (2) define the nature of the T-cell response with respective to antigen structure. Peptides carrying lysine residues for amoxicillin binding in positions (KP) 2-6 and anchors for the HLA-DRB1*15:01-DQB1*06:02 haplotype were designed. The amoxicillin-modified peptides were characterized by mass spectrometry prior to culturing with patient peripheral blood mononuclear cell. T-cell clones were then tested for specificity with amoxicillin, unmodified- and amoxicillin-modified peptides, and structural variants. Amoxicillin-modified KP-2 and KP-3 peptide-specific CD4+ clones proliferated and secreted interferon gamma (IFN-γ), interleukin (IL)-10, perforin and/or IL-17/IL-22 in a dose-dependent manner and displayed no cross-reactivity with amoxicillin, unmodified peptide or with positional derivatives. The T cells response was HLA class II restricted and the amoxicillin-modified peptides bound selectively to HLA-DRB1*15:01 and/or DQB1*06:02. To conclude, we show that amoxicillin-modified peptides bind to both components of the risk haplotype to stimulate DILI patient T cells and describe the importance of the position of nucleophilic lysine residue in the HLA binding peptide sequence.
Collapse
Affiliation(s)
- Arun Tailor
- Department of Molecular & Clinical Pharmacology, MRC Centre for Drug Safety Science, University of Liverpool, Liverpool L693GE, UK
| | - Xiaoli Meng
- Department of Molecular & Clinical Pharmacology, MRC Centre for Drug Safety Science, University of Liverpool, Liverpool L693GE, UK
| | - Kareena Adair
- Department of Molecular & Clinical Pharmacology, MRC Centre for Drug Safety Science, University of Liverpool, Liverpool L693GE, UK
| | - John Farrell
- Department of Molecular & Clinical Pharmacology, MRC Centre for Drug Safety Science, University of Liverpool, Liverpool L693GE, UK
| | - James C Waddington
- Department of Molecular & Clinical Pharmacology, MRC Centre for Drug Safety Science, University of Liverpool, Liverpool L693GE, UK
| | - Ann Daly
- Medical School, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Munir Pirmohamed
- Department of Molecular & Clinical Pharmacology, MRC Centre for Drug Safety Science, University of Liverpool, Liverpool L693GE, UK
| | | | - B Kevin Park
- Department of Molecular & Clinical Pharmacology, MRC Centre for Drug Safety Science, University of Liverpool, Liverpool L693GE, UK
| | - Dean J Naisbitt
- Department of Molecular & Clinical Pharmacology, MRC Centre for Drug Safety Science, University of Liverpool, Liverpool L693GE, UK
| |
Collapse
|
9
|
Fernandez J, Jimenez-Rodriguez TW, Blanca-Lopez N. Classifying cephalosporins: from generation to cross-reactivity. Curr Opin Allergy Clin Immunol 2021; 21:346-354. [PMID: 34074874 DOI: 10.1097/aci.0000000000000755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
PURPOSE OF REVIEW To review the most recent literature studying the classifications, immunochemistry, and crossreactivity of allergy reactions to cephalosporins. RECENT FINDINGS Over the last five years, research interest has focused on three areas related to cephalosporin allergy: cross-reactivity among cephalosporins and with other beta-lactams; the incidence of adverse reactions in penicillin allergy patients or in reported penicillin allergy labels; and new cephalosporins structures involved in the immunological recognition. SUMMARY Meta-analysis of a substantial number of studies shows that cephalosporins are safer than previously thought. Evidence supports two main conclusions in that regard. First, there is a relatively low percentage of cross-reactivity between cephalosporins and other beta-lactams with penicillins in penicillin allergy patients. Second, there is a very low incidence of allergy reactions in nonselected as well as in selected penicillin allergy patients when cephalosporins are used prior to surgical intervention.On the other hand, few structures have been discovered related to the immune mechanism of cephalosporin allergy reactions, and these are far from being ready to use in clinical practice.
Collapse
Affiliation(s)
- Javier Fernandez
- Allergy Section, Alicante General University Hospital, ISABIAL-UMH, Alicante
| | | | | |
Collapse
|
10
|
Pichler WJ. Anaphylaxis to drugs: Overcoming mast cell unresponsiveness by fake antigens. Allergy 2021; 76:1340-1349. [PMID: 32780486 PMCID: PMC8247404 DOI: 10.1111/all.14554] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/16/2020] [Accepted: 07/20/2020] [Indexed: 12/26/2022]
Abstract
Our understanding of IgE‐mediated drug allergy relies on the hapten concept, which is well established in inducing adaptive reactions of the immune system to small molecules like drugs. The role of hapten‐carrier adducts in re‐challenge reactions leading to mast cell degranulation and anaphylaxis is unclear. Based on clinical observations, the speed of adduct formation, skin and in vitro tests to inert drug molecules, a different explanation of IgE‐mediated reactions to drugs is proposed: These are (a) A natural role of reduced mast cell (MC) reactivity in developing IgE‐mediated reactions to drugs. This MC unresponsiveness is antigen‐specific and covers the serum drug concentrations, but allows reactivity to locally higher concentrations. (b) Some non‐covalent drug‐protein complexes rely on rather affine bindings and have a similar appearance as covalent hapten‐protein adducts. Such drug‐protein complexes represent so‐called “fake antigens,” as they are unable to induce immunity, but may react with and cross‐link preformed drug‐specific IgE. As they are formed very rapidly and in high concentrations, they may cause fulminant MC degranulation and anaphylaxis. (c) The generation of covalent hapten‐protein adducts requires hours, either because the formation of covalent bonds requires time or because first a metabolic step for forming a reactive metabolite is required. This slow process of stable adduct formation has the advantage that it may give time to desensitize mast cells, even in already sensitized individuals. The consequences of this new interpretation of IgE‐mediated reactions to drugs are potentially wide‐reaching for IgE‐mediated drug allergy but also allergy in general.
Collapse
|
11
|
Adair K, Meng X, Naisbitt DJ. Drug hapten-specific T-cell activation: Current status and unanswered questions. Proteomics 2021; 21:e2000267. [PMID: 33651918 DOI: 10.1002/pmic.202000267] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 02/14/2021] [Accepted: 02/16/2021] [Indexed: 11/07/2022]
Abstract
Drug haptens are formed from the irreversible, covalent binding of drugs to nucleophilic moieties on proteins, which can warrant adverse reactions in the body including severe delayed-type, T-cell mediated, drug hypersensitivity reactions (DHRs). While three main pathways exist for the activation of T-cells in DHRs, namely the hapten model, the pharmacological interaction model and the altered peptide repertoire model, the exact antigenic determinants responsible have not yet been defined. In recent years, progress has been made using advanced mass spectrometry-based proteomic methods to identify protein carriers and characterise the structure of drug-haptenated proteins. Since genome-wide association studies discovered a link between human leukocyte antigens (HLA) and an individual's susceptibility to DHRs, much effort has been made to define the drug-associated HLA ligands driving T-cell activation, including the elution of natural HLA peptides from HLA molecules and the generation of HLA-binding peptides. In this review, we discuss our current methodology used to design and synthesise drug-modified HLA ligands to investigate their immunogenicity using T-cell models, and thus their implication in drug hypersensitivity.
Collapse
Affiliation(s)
- Kareena Adair
- Department of Molecular and Clinical Pharmacology, MRC Centre for Drug Safety Science, University of Liverpool, Liverpool, UK
| | - Xiaoli Meng
- Department of Molecular and Clinical Pharmacology, MRC Centre for Drug Safety Science, University of Liverpool, Liverpool, UK
| | - Dean J Naisbitt
- Department of Molecular and Clinical Pharmacology, MRC Centre for Drug Safety Science, University of Liverpool, Liverpool, UK
| |
Collapse
|
12
|
Martín-Serrano Á, Gonzalez-Morena JM, Barbero N, Ariza A, Sánchez Gómez FJ, Pérez-Inestrosa E, Pérez-Sala D, Torres MJ, Montañez MI. Biotin-Labelled Clavulanic Acid to Identify Proteins Target for Haptenation in Serum: Implications in Allergy Studies. Front Pharmacol 2021; 11:594755. [PMID: 33442385 PMCID: PMC7797785 DOI: 10.3389/fphar.2020.594755] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 10/06/2020] [Indexed: 12/19/2022] Open
Abstract
Clavulanic acid (CLV) and amoxicillin, frequently administered in combination, can be independently involved in allergic reactions. Protein haptenation with β-lactams is considered necessary to activate the immune system. The aim of this study was to assess the suitability of biotinylated analogues of CLV as probes to study protein haptenation by this β-lactam. Two synthetic approaches afforded the labeling of CLV through esterification of its carboxylic group with a biotin moiety, via either direct binding (CLV-B) or tetraethylenglycol linker (CLV-TEG-B). The second analogue offered advantages as solubility in aqueous solution and potential lower steric hindrance for both intended interactions, with the protein and with avidin. NMR reactivity studies showed that both CLV and CLV-TEG-B reacts through β-lactam ring opening by aliphatic amino nitrogen, however with different stability of resulting conjugates. Unlike CLV conjugates, that promoted the decomposition of clavulanate fragment, the conjugates obtained with the CLV-TEG-B remained linked, as a whole structure including biotin, to nucleophile and showed a better stability. This was a desired key feature to allow CLV-TEG-B conjugated protein detection at great sensitivity. We have used biotin detection and mass spectrometry (MS) to detect the haptenation of human serum albumin (HSA) and human serum proteins. MS of conjugates showed that HSA could be modified by CLV-TEG-B. Remarkably, HSA preincubation with CLV excess only reduced moderately the incorporation of CLV-TEG-B, which could be attributed to different protein interferences. The CLV-TEG-B fragment with opened β-lactam was detected bound to the 404-430HSA peptide of the treated protein. Incubation of human serum with CLV-TEG-B resulted in the haptenation of several proteins that were identified by 2D-electrophoresis and peptide mass fingerprinting as HSA, haptoglobin, and heavy and light chains of immunoglobulins. Taken together, our results show that tagged-CLV keeps some of the CLV features. Moreover, although we observe a different behavior in the conjugate stability and in the site of protein modification, the similar reactivity indicates that it could constitute a valuable tool to identify protein targets for haptenation by CLV with high sensitivity to get insights into the activation of the immune system by CLV and mechanisms involved in β-lactams allergy.
Collapse
Affiliation(s)
- Ángela Martín-Serrano
- Allergy Research Group, Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain.,Centro Andaluz de Nanomedicina y Biotecnología-BIONAND, Málaga, Spain
| | - Juan M Gonzalez-Morena
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas (CSIC), Madrid, Spain
| | - Nekane Barbero
- Centro Andaluz de Nanomedicina y Biotecnología-BIONAND, Málaga, Spain.,Department Química Orgánica, Universidad de Málaga-IBIMA, Málaga, Spain
| | - Adriana Ariza
- Allergy Research Group, Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain
| | - Francisco J Sánchez Gómez
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas (CSIC), Madrid, Spain
| | - Ezequiel Pérez-Inestrosa
- Centro Andaluz de Nanomedicina y Biotecnología-BIONAND, Málaga, Spain.,Department Química Orgánica, Universidad de Málaga-IBIMA, Málaga, Spain
| | - Dolores Pérez-Sala
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas (CSIC), Madrid, Spain
| | - Maria J Torres
- Allergy Research Group, Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain.,Centro Andaluz de Nanomedicina y Biotecnología-BIONAND, Málaga, Spain.,Allergy Unit, Hospital Regional Universitario de Málaga, Málaga, Spain.,Department of Medicina, Universidad de Málaga, Málaga, Spain
| | - María I Montañez
- Allergy Research Group, Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain.,Centro Andaluz de Nanomedicina y Biotecnología-BIONAND, Málaga, Spain
| |
Collapse
|
13
|
Goh SJR, Tuomisto JEE, Purcell AW, Mifsud NA, Illing PT. The complexity of T cell-mediated penicillin hypersensitivity reactions. Allergy 2021; 76:150-167. [PMID: 32383256 DOI: 10.1111/all.14355] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 04/16/2020] [Accepted: 04/30/2020] [Indexed: 12/20/2022]
Abstract
Penicillin refers to a group of beta-lactam antibiotics that are the first-line treatment for a range of infections. However, they also possess the ability to form novel antigens, or neoantigens, through haptenation of proteins and can stimulate a range of immune-mediated adverse reactions-collectively known as drug hypersensitivity reactions (DHRs). IgE-mediated reactions towards these neoantigens are well studied; however, IgE-independent reactions are less well understood. These reactions usually manifest in a delayed manner as different forms of cutaneous eruptions or liver injury consistent with priming of an immune response. Ex vivo studies have confirmed the infiltration of T cells into the site of inflammation, and the subsets of T cells involved appear dependent on the nature of the reaction. Here, we review the evidence that has led to our current understanding of these immune-mediated reactions, discussing the nature of the lesional T cells, the characterization of drug-responsive T cells isolated from patient blood, and the potential mechanisms by which penicillins enter the antigen processing and presentation pathway to stimulate these deleterious responses. Thus, we highlight the need for a more comprehensive understanding of the underlying genetic and molecular basis of penicillin-induced DHRs.
Collapse
Affiliation(s)
- Shawn J. R. Goh
- Infection and Immunity Program Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology Monash University Clayton Vic. Australia
| | - Johanna E. E. Tuomisto
- Infection and Immunity Program Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology Monash University Clayton Vic. Australia
| | - Anthony W. Purcell
- Infection and Immunity Program Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology Monash University Clayton Vic. Australia
| | - Nicole A. Mifsud
- Infection and Immunity Program Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology Monash University Clayton Vic. Australia
| | - Patricia T. Illing
- Infection and Immunity Program Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology Monash University Clayton Vic. Australia
| |
Collapse
|
14
|
Firman JW, Pestana CB, Rathman JF, Vinken M, Yang C, Cronin MTD. A Robust, Mechanistically Based In Silico Structural Profiler for Hepatic Cholestasis. Chem Res Toxicol 2020; 34:641-655. [PMID: 33314907 DOI: 10.1021/acs.chemrestox.0c00465] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Owing to the primary role which it holds within metabolism of xenobiotics, the liver stands at heightened risk of exposure to, and injury from, potentially hazardous substances. A principal manifestation of liver dysfunction is cholestasis-the impairment of physiological bile circulation from its point of origin within the organ to the site of action in the small intestine. The capacity for early identification of compounds liable to exert cholestatic effects is of particular utility within the field of pharmaceutical development, where contribution toward candidate attrition is great. Shortcomings associated with the present in vitro methodologies forecasting cholestasis render their predictivity questionable, permitting scope for the adoption of computational toxicology techniques. As such, the intention of this study has been to construct an in silico profiler, founded upon clinical data, highlighting structural motifs most reliably associated with the end point. Drawing upon a list of >1500 small molecular drugs, compiled and annotated by Kotsampasakou, E. and Ecker, G. F. (J. Chem. Inf. Model. 2017, 57, 608-615), we have formulated a series of 15 structural alerts. These describe fragments intrinsic within distinct pharmaceutical classes including psychoactive tricyclics, β-lactam antimicrobials, and estrogenic/androgenic steroids. Description of the coverage and selectivity of each are provided, alongside consideration of the underlying reactive mechanisms and relevant structure-activity concerns. Provision of mechanistic anchoring ensures that potential exists for framing within the adverse outcome pathway paradigm-the chemistry conveyed through the alert, in particular enabling rationalization at the level of the molecular initiating event.
Collapse
Affiliation(s)
- James W Firman
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, United Kingdom
| | - Cynthia B Pestana
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, United Kingdom
| | - James F Rathman
- Molecular Networks GmbH, Neumeyerstraße 28, 90411 Nuremberg, Germany.,Altamira, LLC, Columbus, Ohio 43210, United States.,Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Mathieu Vinken
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Chihae Yang
- Molecular Networks GmbH, Neumeyerstraße 28, 90411 Nuremberg, Germany.,Altamira, LLC, Columbus, Ohio 43210, United States
| | - Mark T D Cronin
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, United Kingdom
| |
Collapse
|
15
|
Naisbitt DJ, Olsson‐Brown A, Gibson A, Meng X, Ogese MO, Tailor A, Thomson P. Immune dysregulation increases the incidence of delayed-type drug hypersensitivity reactions. Allergy 2020; 75:781-797. [PMID: 31758810 DOI: 10.1111/all.14127] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 11/05/2019] [Accepted: 11/18/2019] [Indexed: 12/14/2022]
Abstract
Delayed-type, T cell-mediated, drug hypersensitivity reactions are a serious unwanted manifestation of drug exposure that develops in a small percentage of the human population. Drugs and drug metabolites are known to interact directly and indirectly (through irreversible protein binding and processing to the derived adducts) with HLA proteins that present the drug-peptide complex to T cells. Multiple forms of drug hypersensitivity are strongly linked to expression of a single HLA allele, and there is increasing evidence that drugs and peptides interact selectively with the protein encoded by the HLA allele. Despite this, many individuals expressing HLA risk alleles do not develop hypersensitivity when exposed to culprit drugs suggesting a nonlinear, multifactorial relationship in which HLA risk alleles are one factor. This has prompted a search for additional susceptibility factors. Herein, we argue that immune regulatory pathways are one key determinant of susceptibility. As expression and activity of these pathways are influenced by disease, environmental and patient factors, it is currently impossible to predict whether drug exposure will result in a health benefit, hypersensitivity or both. Thus, a concerted effort is required to investigate how immune dysregulation influences susceptibility towards drug hypersensitivity.
Collapse
Affiliation(s)
- Dean J. Naisbitt
- MRC Centre for Drug Safety Science Department of Clinical and Molecular Pharmacology The University of Liverpool Liverpool UK
| | - Anna Olsson‐Brown
- MRC Centre for Drug Safety Science Department of Clinical and Molecular Pharmacology The University of Liverpool Liverpool UK
| | - Andrew Gibson
- MRC Centre for Drug Safety Science Department of Clinical and Molecular Pharmacology The University of Liverpool Liverpool UK
| | - Xiaoli Meng
- MRC Centre for Drug Safety Science Department of Clinical and Molecular Pharmacology The University of Liverpool Liverpool UK
| | - Monday O. Ogese
- MRC Centre for Drug Safety Science Department of Clinical and Molecular Pharmacology The University of Liverpool Liverpool UK
| | - Arun Tailor
- MRC Centre for Drug Safety Science Department of Clinical and Molecular Pharmacology The University of Liverpool Liverpool UK
| | - Paul Thomson
- MRC Centre for Drug Safety Science Department of Clinical and Molecular Pharmacology The University of Liverpool Liverpool UK
| |
Collapse
|
16
|
Pajares MA, Zimmerman T, Sánchez-Gómez FJ, Ariza A, Torres MJ, Blanca M, Cañada FJ, Montañez MI, Pérez-Sala D. Amoxicillin Inactivation by Thiol-Catalyzed Cyclization Reduces Protein Haptenation and Antibacterial Potency. Front Pharmacol 2020; 11:189. [PMID: 32210804 PMCID: PMC7065267 DOI: 10.3389/fphar.2020.00189] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 02/10/2020] [Indexed: 11/25/2022] Open
Abstract
Serum and cellular proteins are targets for the formation of adducts with the β-lactam antibiotic amoxicillin. This process could be important for the development of adverse, and in particular, allergic reactions to this antibiotic. In studies exploring protein haptenation by amoxicillin, we observed that reducing agents influenced the extent of amoxicillin-protein adducts formation. Consequently, we show that several thiol-containing compounds, including dithiothreitol, N-acetyl-L-cysteine, and glutathione, perform a nucleophilic attack on the amoxicillin molecule that is followed by an internal rearrangement leading to amoxicillin diketopiperazine, a known amoxicillin metabolite with residual activity. Increased diketopiperazine conversion is also observed with human serum albumin but not with L-cysteine, which mainly forms the amoxicilloyl amide. The effect of thiols is catalytic and can render complete amoxicillin conversion. Interestingly, this process is dependent on the presence of an amino group in the antibiotic lateral chain, as in amoxicillin and ampicillin. Furthermore, it does not occur for other β-lactam antibiotics, including cefaclor or benzylpenicillin. Biological consequences of thiol-mediated amoxicillin transformation are exemplified by a reduced bacteriostatic action and a lower capacity of thiol-treated amoxicillin to form protein adducts. Finally, modulation of the intracellular redox status through inhibition of glutathione synthesis influenced the extent of amoxicillin adduct formation with cellular proteins. These results open novel perspectives for the understanding of amoxicillin metabolism and actions, including the formation of adducts involved in allergic reactions.
Collapse
Affiliation(s)
- María A. Pajares
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas (CSIC), Madrid, Spain
| | - Tahl Zimmerman
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas (CSIC), Madrid, Spain
| | - Francisco J. Sánchez-Gómez
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas (CSIC), Madrid, Spain
| | - Adriana Ariza
- Allergy Research Group, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Civil, Málaga, Spain
- Nanostructures for Diagnosing and Treatment of Allergic Diseases Laboratory, Andalusian Center for Nanomedicine and Biotechnology-BIONAND, Málaga, Spain
| | - María J. Torres
- Allergy Research Group, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Civil, Málaga, Spain
- Nanostructures for Diagnosing and Treatment of Allergic Diseases Laboratory, Andalusian Center for Nanomedicine and Biotechnology-BIONAND, Málaga, Spain
- Allergy Unit, Hospital Regional Universitario de Málaga, Hospital Civil, Málaga, Spain
| | - Miguel Blanca
- Servicio de Alergología, Hospital Infanta Leonor, Madrid, Spain
| | - F. Javier Cañada
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas (CSIC), Madrid, Spain
| | - María I. Montañez
- Allergy Research Group, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Civil, Málaga, Spain
- Nanostructures for Diagnosing and Treatment of Allergic Diseases Laboratory, Andalusian Center for Nanomedicine and Biotechnology-BIONAND, Málaga, Spain
| | - Dolores Pérez-Sala
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas (CSIC), Madrid, Spain
| |
Collapse
|
17
|
Ariza A, Fernández T, Bogas G, Torres M, Mayorga C. How Mechanism Knowledge Can Help to Management of Drug Hypersensitivity. CURRENT TREATMENT OPTIONS IN ALLERGY 2020. [DOI: 10.1007/s40521-020-00244-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
18
|
Abdin AY, Auker-Howlett D, Landes J, Mulla G, Jacob C, Osimani B. Reviewing the Mechanistic Evidence Assessors E-Synthesis and EBM+: A Case Study of Amoxicillin and Drug Reaction with Eosinophilia and Systemic Symptoms (DRESS). Curr Pharm Des 2019; 25:1866-1880. [DOI: 10.2174/1381612825666190628160603] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 06/19/2019] [Indexed: 12/20/2022]
Abstract
Background:
Basic science has delivered unprecedented insights into intricate relationships on the
smallest scales within well-controlled environments. Addressing pressing societal decision problems requires an
understanding of systems on larger scales in real-world situations.
Objective:
To assess how well the evidence assessors E-Synthesis and EBM+ assess basic science findings to
support medical decision making.
Method:
We demonstrate the workings of E-Synthesis and EBM+ on a case study: the suspected causal connection
between the widely-used drug amoxicillin (AMX) and the putative adverse drug reaction: Drug Reaction
with Eosinophilia and Systemic Symptoms (DRESS).
Results:
We determine an increase in the probability that AMX can cause DRESS within the E-Synthesis approach
and using the EBM+ standards assess the basic science findings as supporting the existence of a mechanism
linking AMX and DRESS.
Conclusions:
While progress is made towards developing methodologies which allow the incorporation of basic
science research in the decision making process for pressing societal questions, there is still considerable need for
further developments. A continued dialogue between basic science researchers and methodologists, philosophers
and statisticians seems to offer the best prospects for developing and evaluating continuously evolving methodologies.
Collapse
Affiliation(s)
- Ahmad Y. Abdin
- Department of Bioorganic Chemistry, Faculty of Natural Sciences and Technology, University of Saarland, Saarbrucken, Germany
| | - Daniel Auker-Howlett
- Department of Philosophy, School of European Culture and Languages, University of Kent, Canterbury, United Kingdom
| | - Jürgen Landes
- Munich Center for Mathematical Philosophy, LMU Munich, Germany
| | - Glorjen Mulla
- Department of Bioorganic Chemistry, Faculty of Natural Sciences and Technology, University of Saarland, Saarbrucken, Germany
| | - Claus Jacob
- Department of Bioorganic Chemistry, Faculty of Natural Sciences and Technology, University of Saarland, Saarbrucken, Germany
| | - Barbara Osimani
- Munich Center for Mathematical Philosophy, LMU Munich, Germany
| |
Collapse
|
19
|
Blanca-Lopez N, Jimenez-Rodriguez TW, Somoza ML, Gomez E, Al-Ahmad M, Perez-Sala D, Blanca M. Allergic reactions to penicillins and cephalosporins: diagnosis, assessment of cross-reactivity and management. Expert Rev Clin Immunol 2019; 15:707-721. [DOI: 10.1080/1744666x.2019.1619548] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
| | | | - Maria L. Somoza
- Allergy Service, Infanta Leonor University Hospital, Madrid, Spain
| | - Enrique Gomez
- Roche Innovation Center Basel, F Hoffmann-La Roche AG, Basel, Switzerland
| | - Mona Al-Ahmad
- Department of Microbiology, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Dolores Perez-Sala
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas, C.S.I.C, Madrid, Spain
| | - Miguel Blanca
- Allergy Service, Infanta Leonor University Hospital, Madrid, Spain
| |
Collapse
|
20
|
Umamaheswari S, Renuka SS, Ramesh M, Poopal RK. Chronic amoxicillin exposure affects Labeo rohita: assessment of hematological, ionic compounds, biochemical, and enzymological activities. Heliyon 2019; 5:e01434. [PMID: 31008385 PMCID: PMC6458497 DOI: 10.1016/j.heliyon.2019.e01434] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 12/03/2018] [Accepted: 03/25/2019] [Indexed: 11/28/2022] Open
Abstract
Labeo rohita were exposed to amoxicillin at a concentration of 1 mg/L (Treatment -I) and 0.5 mg/L (Treatment-II) for a period of 35 days. Numerous alterations were found in amoxicillin treatment groups when compared to the control group. Hemoglobin (Hb), hematocrit (Hct), and erythrocytes (RBCs) levels were significantly (P < 0.05) decreased. Leukocytes (WBC), mean cell volume (MCV), mean corpuscular hemoglobin (MCH) and mean corpuscular hemoglobin concentration (MCHC) levels were significantly (P < 0.05) increased. In the plasma and gill tissues, ionic compounds (sodium, potassium, and chloride) levels were significantly declined throughout the treatment period. The plasma biochemical profiles were significantly altered: glucose level remained low (except at the end of 7th day in Treatment -I) till 35 days of the treatment period. Biphasic trend occurred in the protein level, significant increase was observed on 7th and 28th day (Treatment -I and -II), and 35th day (Treatment -I), and in remaining days its level was found to be decreased. Glutamate oxaloacetate transaminase (GOT) activity in the plasma was inhibited significantly, whereas in the gill, liver, and kidney tissues the enzyme activity was elevated. Plasma glutamate pyruvate transaminase (GPT) activity was inhibited throughout the study period. GPT activity in the gill was found to be elevated during the treatment period. Liver GPT activity was elevated in all the treatments except 28th (Treatment-I) and 35th day (Treatment-I, and II). GPT activity in the kidney was elevated (except 14th day in Treatment-II). Lactate dehydrogenase (LDH) activity was inhibited in plasma (except 14th day in Treatment-II), gill, liver (except 7th day in Treatment-I), and kidney tissues significantly (P < 0.05). The present study emphasizes that amoxicillin at 1 and 0.5 mg/L concentrations affects the hematological/biochemical/electrolytes/enzymological parameters of fish and these biomarkers serve as an effective test system for environmental risk assessment of pharmaceuticals in the aquatic environment.
Collapse
Affiliation(s)
- Sathisaran Umamaheswari
- Unit of Toxicology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore 641 046, TamilNadu, India
| | - Siva Shankar Renuka
- Unit of Toxicology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore 641 046, TamilNadu, India
| | - Mathan Ramesh
- Unit of Toxicology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore 641 046, TamilNadu, India
| | - Rama-Krishnan Poopal
- Institute of Environment and Ecology, Shandong Normal University, Jinan, PR China
| |
Collapse
|
21
|
Bechara R, Maillere B, Joseph D, Weaver RJ, Pallardy M. Identification and characterization of a naïve
CD
8+ T cell repertoire for benzylpenicillin. Clin Exp Allergy 2019; 49:636-643. [DOI: 10.1111/cea.13338] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 12/18/2018] [Accepted: 01/09/2019] [Indexed: 02/02/2023]
Affiliation(s)
- Rami Bechara
- Inflammation Chimiokines et Immunopathologie INSERM, Fac de pharmacie Univ.Paris‐Sud Université Paris‐Saclay Châtenay‐Malabry France
| | | | - Delphine Joseph
- BioCIS, Univ Paris‐Sud, CNRS Université Paris‐Saclay Châtenay‐Malabry France
| | | | - Marc Pallardy
- Inflammation Chimiokines et Immunopathologie INSERM, Fac de pharmacie Univ.Paris‐Sud Université Paris‐Saclay Châtenay‐Malabry France
| |
Collapse
|
22
|
|
23
|
Molina N, Martin-Serrano A, Fernandez TD, Tesfaye A, Najera F, Torres MJ, Mayorga C, Vida Y, Montañez MI, Perez-Inestrosa E. Dendrimeric Antigens for Drug Allergy Diagnosis: A New Approach for Basophil Activation Tests. Molecules 2018; 23:E997. [PMID: 29695102 PMCID: PMC6100007 DOI: 10.3390/molecules23050997] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 04/06/2018] [Accepted: 04/20/2018] [Indexed: 12/03/2022] Open
Abstract
Dendrimeric Antigens (DeAns) consist of dendrimers decorated with multiple units of drug antigenic determinants. These conjugates have been shown to be a powerful tool for diagnosing penicillin allergy using in vitro immunoassays, in which they are recognized by specific IgE from allergic patients. Here we propose a new diagnostic approach using DeAns in cellular tests, in which recognition occurs through IgE bound to the basophil surface. Both IgE molecular recognition and subsequent cell activation may be influenced by the tridimensional architecture and size of the immunogens. Structural features of benzylpenicilloyl-DeAn and amoxicilloyl-DeAn (G2 and G4 PAMAM) were studied by diffusion Nuclear Magnetic Resonance (NMR) experiments and are discussed in relation to molecular dynamics simulation (MDS) observations. IgE recognition was clinically evaluated using the basophil activation test (BAT) for allergic patients and tolerant subjects. Diffusion NMR experiments, MDS and cellular studies provide evidence that the size of the DeAn, its antigen composition and tridimensional distribution play key roles in IgE-antigen recognition at the effector cell surface. These results indicate that the fourth generation DeAns induce a higher level of basophil activation in allergic patients. This approach can be considered as a potential complementary diagnostic method for evaluating penicillin allergy.
Collapse
Affiliation(s)
- Noemi Molina
- Departamento de Química Orgánica, Universidad de Málaga-IBIMA, 29071 Málaga, Spain.
- Andalusian Centre for Nanomedicine and Biotechnology-BIONAND, Parque Tecnológico de Andalucía, 29590 Málaga, Spain.
| | - Angela Martin-Serrano
- Andalusian Centre for Nanomedicine and Biotechnology-BIONAND, Parque Tecnológico de Andalucía, 29590 Málaga, Spain.
- Research Laboratory, IBIMA-Regional University Hospital of Málaga-UMA, 29009 Málaga, Spain.
| | - Tahia D Fernandez
- Andalusian Centre for Nanomedicine and Biotechnology-BIONAND, Parque Tecnológico de Andalucía, 29590 Málaga, Spain.
- Research Laboratory, IBIMA-Regional University Hospital of Málaga-UMA, 29009 Málaga, Spain.
| | - Amene Tesfaye
- Andalusian Centre for Nanomedicine and Biotechnology-BIONAND, Parque Tecnológico de Andalucía, 29590 Málaga, Spain.
- Research Laboratory, IBIMA-Regional University Hospital of Málaga-UMA, 29009 Málaga, Spain.
| | - Francisco Najera
- Departamento de Química Orgánica, Universidad de Málaga-IBIMA, 29071 Málaga, Spain.
- Andalusian Centre for Nanomedicine and Biotechnology-BIONAND, Parque Tecnológico de Andalucía, 29590 Málaga, Spain.
| | - María J Torres
- Andalusian Centre for Nanomedicine and Biotechnology-BIONAND, Parque Tecnológico de Andalucía, 29590 Málaga, Spain.
- Allergy Unit, IBIMA-Regional University Hospital of Málaga-UMA, 29009 Málaga, Spain.
| | - Cristobalina Mayorga
- Andalusian Centre for Nanomedicine and Biotechnology-BIONAND, Parque Tecnológico de Andalucía, 29590 Málaga, Spain.
- Research Laboratory, IBIMA-Regional University Hospital of Málaga-UMA, 29009 Málaga, Spain.
- Allergy Unit, IBIMA-Regional University Hospital of Málaga-UMA, 29009 Málaga, Spain.
| | - Yolanda Vida
- Departamento de Química Orgánica, Universidad de Málaga-IBIMA, 29071 Málaga, Spain.
- Andalusian Centre for Nanomedicine and Biotechnology-BIONAND, Parque Tecnológico de Andalucía, 29590 Málaga, Spain.
| | - Maria I Montañez
- Andalusian Centre for Nanomedicine and Biotechnology-BIONAND, Parque Tecnológico de Andalucía, 29590 Málaga, Spain.
- Research Laboratory, IBIMA-Regional University Hospital of Málaga-UMA, 29009 Málaga, Spain.
| | - Ezequiel Perez-Inestrosa
- Departamento de Química Orgánica, Universidad de Málaga-IBIMA, 29071 Málaga, Spain.
- Andalusian Centre for Nanomedicine and Biotechnology-BIONAND, Parque Tecnológico de Andalucía, 29590 Málaga, Spain.
| |
Collapse
|
24
|
Meng X, Al-Attar Z, Yaseen FS, Jenkins R, Earnshaw C, Whitaker P, Peckham D, French NS, Naisbitt DJ, Park BK. Definition of the Nature and Hapten Threshold of the β-Lactam Antigen Required for T Cell Activation In Vitro and in Patients. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2017; 198:4217-4227. [PMID: 28438900 PMCID: PMC5444528 DOI: 10.4049/jimmunol.1700209] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 03/29/2017] [Indexed: 11/19/2022]
Abstract
Covalent modification of protein by drugs may disrupt self-tolerance, leading to lymphocyte activation. Until now, determination of the threshold required for this process has not been possible. Therefore, we performed quantitative mass spectrometric analyses to define the epitopes formed in tolerant and hypersensitive patients taking the β-lactam antibiotic piperacillin and the threshold required for T cell activation. A hydrolyzed piperacillin hapten was detected on four lysine residues of human serum albumin (HSA) isolated from tolerant patients. The level of modified Lys541 ranged from 2.6 to 4.8%. Analysis of plasma from hypersensitive patients revealed the same pattern and levels of modification 1-10 d after the commencement of therapy. Piperacillin-responsive skin-homing CD4+ clones expressing an array of Vβ receptors were activated in a dose-, time-, and processing-dependent manner; analysis of incubation medium revealed that 2.6% of Lys541 in HSA was modified when T cells were activated. Piperacillin-HSA conjugates that had levels and epitopes identical to those detected in patients were shown to selectively stimulate additional CD4+ clones, which expressed a more restricted Vβ repertoire. To conclude, the levels of piperacillin-HSA modification that activated T cells are equivalent to the ones formed in hypersensitive and tolerant patients, which indicates that threshold levels of drug Ag are formed in all patients. Thus, the propensity to develop hypersensitivity is dependent on other factors, such as the presence of T cells within an individual's repertoire that can be activated with the β-lactam hapten and/or an imbalance in immune regulation.
Collapse
Affiliation(s)
- Xiaoli Meng
- Medical Research Council Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, The University of Liverpool, Liverpool L69 3GE, United Kingdom; and
| | - Zaid Al-Attar
- Medical Research Council Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, The University of Liverpool, Liverpool L69 3GE, United Kingdom; and
| | - Fiazia S Yaseen
- Medical Research Council Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, The University of Liverpool, Liverpool L69 3GE, United Kingdom; and
| | - Rosalind Jenkins
- Medical Research Council Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, The University of Liverpool, Liverpool L69 3GE, United Kingdom; and
| | - Caroline Earnshaw
- Medical Research Council Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, The University of Liverpool, Liverpool L69 3GE, United Kingdom; and
| | - Paul Whitaker
- Regional Adult Cystic Fibrosis Unit, St James's Hospital, Leeds LS9 7TF, United Kingdom
| | - Daniel Peckham
- Regional Adult Cystic Fibrosis Unit, St James's Hospital, Leeds LS9 7TF, United Kingdom
| | - Neil S French
- Medical Research Council Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, The University of Liverpool, Liverpool L69 3GE, United Kingdom; and
| | - Dean J Naisbitt
- Medical Research Council Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, The University of Liverpool, Liverpool L69 3GE, United Kingdom; and
| | - B Kevin Park
- Medical Research Council Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, The University of Liverpool, Liverpool L69 3GE, United Kingdom; and
| |
Collapse
|
25
|
Ogese MO, Faulkner L, Jenkins RE, French NS, Copple IM, Antoine DJ, Elmasry M, Malik H, Goldring CE, Park BK, Betts CJ, Naisbitt DJ. Characterization of Drug-Specific Signaling Between Primary Human Hepatocytes and Immune Cells. Toxicol Sci 2017; 158:76-89. [DOI: 10.1093/toxsci/kfx069] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
26
|
Sánchez-Gómez FJ, González-Morena JM, Vida Y, Pérez-Inestrosa E, Blanca M, Torres MJ, Pérez-Sala D. Amoxicillin haptenates intracellular proteins that can be transported in exosomes to target cells. Allergy 2017; 72:385-396. [PMID: 27319758 DOI: 10.1111/all.12958] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2016] [Indexed: 12/17/2022]
Abstract
BACKGROUND Allergic reactions to β-lactams are among the most frequent causes of drug allergy and constitute an important clinical problem. Drug covalent binding to endogenous proteins (haptenation) is thought to be required for activation of the immune system. Nevertheless, neither the nature nor the role of the drug protein targets involved in this process is fully understood. Here, we aim to identify novel intracellular targets for haptenation by amoxicillin (AX) and their cellular fate. METHODS We have treated B lymphocytes with either AX or a biotinylated analog (AX-B). The identification of protein targets for haptenation by AX has been approached by mass spectrometry and immunoaffinity techniques. In addition, intercellular communication mediated by the delivery of vesicles loaded with AX-B-protein adducts has been explored by microscopy techniques. RESULTS We have observed a complex pattern of AX-haptenated proteins. Several novel targets for haptenation by AX in B lymphocytes have been identified. AX-haptenated proteins were detected in cell lysates and extracellularly, either as soluble proteins or in lymphocyte-derived extracellular vesicles. Interestingly, exosomes from AX-B-treated cells showed a positive biotin signal in electron microscopy. Moreover, they were internalized by endothelial cells, thus supporting their involvement in intercellular transfer of haptenated proteins. CONCLUSIONS These results represent the first identification of AX-mediated haptenation of intracellular proteins. Moreover, they show that exosomes can constitute a novel vehicle for haptenated proteins, and raise the hypothesis that they could provide antigens for activation of the immune system during the allergic response.
Collapse
Affiliation(s)
- F. J. Sánchez-Gómez
- Department of Chemical and Physical Biology; Centro de Investigaciones Biológicas; CSIC; Madrid Spain
| | - J. M. González-Morena
- Department of Chemical and Physical Biology; Centro de Investigaciones Biológicas; CSIC; Madrid Spain
| | - Y. Vida
- Department of Organic Chemistry; University of Málaga; IBIMA; Málaga Spain
- Andalusian Center for Nanomedicine and Biotechnology-BIONAND; Parque Tecnológico de Andalucía; Málaga Spain
| | - E. Pérez-Inestrosa
- Department of Organic Chemistry; University of Málaga; IBIMA; Málaga Spain
- Andalusian Center for Nanomedicine and Biotechnology-BIONAND; Parque Tecnológico de Andalucía; Málaga Spain
| | - M. Blanca
- Allergy Unit; IBIMA-Regional University Hospital of Málaga; UMA; Málaga Spain
| | - M. J. Torres
- Allergy Unit; IBIMA-Regional University Hospital of Málaga; UMA; Málaga Spain
| | - D. Pérez-Sala
- Department of Chemical and Physical Biology; Centro de Investigaciones Biológicas; CSIC; Madrid Spain
| |
Collapse
|
27
|
Raimondo S. Exosomes as delivery vehicles: a commentary on "Amoxicillin haptenates intracellular proteins that can be transported in exosomes to target cells". ANNALS OF TRANSLATIONAL MEDICINE 2017; 5:89. [PMID: 28275634 DOI: 10.21037/atm.2017.01.55] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Stefania Raimondo
- Dipartimento di Biopatologia e Biotecnologie Mediche, University of Palermo, Palermo, Italy
| |
Collapse
|
28
|
Ogese MO, Ahmed S, Alferivic A, Betts CJ, Dickinson A, Faulkner L, French N, Gibson A, Hirschfield GM, Kammüller M, Meng X, Martin SF, Musette P, Norris A, Pirmohamed M, Park BK, Purcell AW, Spraggs CF, Whritenour J, Naisbitt DJ. New Approaches to Investigate Drug-Induced Hypersensitivity. Chem Res Toxicol 2016; 30:239-259. [DOI: 10.1021/acs.chemrestox.6b00333] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Monday O. Ogese
- Pathology Sciences, Drug Safety and Metabolism, AstraZeneca R&D, Darwin Building 310, Cambridge Science Park, Milton Road, Cambridge CB4 0WG, U.K
- MRC Centre for Drug Safety Science, Department of Molecular
and Clinical Pharmacology, University of Liverpool, Ashton Street, Liverpool L69 3GE, U.K
| | - Shaheda Ahmed
- Alcyomics
Ltd c/o Haematological Sciences, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne NE2 4HH, U.K
| | - Ana Alferivic
- MRC Centre for Drug Safety Science, Department of Molecular
and Clinical Pharmacology, University of Liverpool, Ashton Street, Liverpool L69 3GE, U.K
| | - Catherine J. Betts
- Pathology Sciences, Drug Safety and Metabolism, AstraZeneca R&D, Darwin Building 310, Cambridge Science Park, Milton Road, Cambridge CB4 0WG, U.K
| | - Anne Dickinson
- Alcyomics
Ltd c/o Haematological Sciences, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne NE2 4HH, U.K
| | - Lee Faulkner
- MRC Centre for Drug Safety Science, Department of Molecular
and Clinical Pharmacology, University of Liverpool, Ashton Street, Liverpool L69 3GE, U.K
| | - Neil French
- MRC Centre for Drug Safety Science, Department of Molecular
and Clinical Pharmacology, University of Liverpool, Ashton Street, Liverpool L69 3GE, U.K
| | - Andrew Gibson
- MRC Centre for Drug Safety Science, Department of Molecular
and Clinical Pharmacology, University of Liverpool, Ashton Street, Liverpool L69 3GE, U.K
| | - Gideon M. Hirschfield
- Centre for Liver Research, NIHR Birmingham Liver Biomedical
Research Unit, Institute of Immunology and Immunotherapy, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K
| | - Michael Kammüller
- Novartis Institutes for Biomedical Research, Klybeckstrasse 141, CH-4057 Basel, Switzerland
| | - Xiaoli Meng
- MRC Centre for Drug Safety Science, Department of Molecular
and Clinical Pharmacology, University of Liverpool, Ashton Street, Liverpool L69 3GE, U.K
| | - Stefan F. Martin
- Department of Dermatology and Venereology,
Allergy Research Group, University of Freiburg, Hauptstraße 7, 79104 Freiburg, Germany
| | - Philippe Musette
- Department of Dermatology and INSERM, University of Rouen, 905 Rouen, France
| | - Alan Norris
- MRC Centre for Drug Safety Science, Department of Molecular
and Clinical Pharmacology, University of Liverpool, Ashton Street, Liverpool L69 3GE, U.K
| | - Munir Pirmohamed
- MRC Centre for Drug Safety Science, Department of Molecular
and Clinical Pharmacology, University of Liverpool, Ashton Street, Liverpool L69 3GE, U.K
- The Wolfson Centre
for Personalised Medicine, Department of Molecular and Clinical Pharmacology, University of Liverpool, Ashton Street, Liverpool L69 3GE, U.K
| | - B. Kevin Park
- MRC Centre for Drug Safety Science, Department of Molecular
and Clinical Pharmacology, University of Liverpool, Ashton Street, Liverpool L69 3GE, U.K
| | - Anthony W. Purcell
- Infection and Immunity
Program and Department of Biochemistry and Molecular Biology, Biomedicine
Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Colin F. Spraggs
- Medicines
Research Centre, GlaxoSmithKline, Gunnels Wood Road, Stevenage SG1 2NY, U.K
| | - Jessica Whritenour
- Drug Safety Research and Development, Pfizer, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Dean J. Naisbitt
- MRC Centre for Drug Safety Science, Department of Molecular
and Clinical Pharmacology, University of Liverpool, Ashton Street, Liverpool L69 3GE, U.K
| |
Collapse
|
29
|
Ariza A, Mayorga C, Salas M, Doña I, Martín-Serrano Á, Pérez-Inestrosa E, Pérez-Sala D, Guzmán AE, Montañez MI, Torres MJ. The influence of the carrier molecule on amoxicillin recognition by specific IgE in patients with immediate hypersensitivity reactions to betalactams. Sci Rep 2016; 6:35113. [PMID: 27731424 PMCID: PMC5059705 DOI: 10.1038/srep35113] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 09/23/2016] [Indexed: 11/26/2022] Open
Abstract
The optimal recognition of penicillin determinants, including amoxicillin (AX), by specific IgE antibodies is widely believed to require covalent binding to a carrier molecule. The nature of the carrier and its contribution to the antigenic determinant is not well known. Here we aimed to evaluate the specific-IgE recognition of different AX-derived structures. We studied patients with immediate hypersensitivity reactions to AX, classified as selective or cross-reactors to penicillins. Competitive immunoassays were performed using AX itself, amoxicilloic acid, AX bound to butylamine (AXO-BA) or to human serum albumin (AXO-HSA) in the fluid phase, as inhibitors, and amoxicilloyl-poli-L-lysine (AXO-PLL) in the solid-phase. Two distinct patterns of AX recognition by IgE were found: Group A showed a higher recognition of AX itself and AX-modified components of low molecular weights, whilst Group B showed similar recognition of both unconjugated and conjugated AX. Amoxicilloic acid was poorly recognized in both groups, which reinforces the need for AX conjugation to a carrier for optimal recognition. Remarkably, IgE recognition in Group A (selective responders to AX) is influenced by the mode of binding and/or the nature of the carrier; whereas IgE in Group B (cross-responders to penicillins) recognizes AX independently of the nature of the carrier.
Collapse
Affiliation(s)
- Adriana Ariza
- Research Laboratory, IBIMA–Regional University Hospital of Malaga–UMA, Málaga, Spain
| | - Cristobalina Mayorga
- Research Laboratory, IBIMA–Regional University Hospital of Malaga–UMA, Málaga, Spain
- Allergy Unit, IBIMA–Regional University Hospital of Malaga–UMA, Málaga, Spain
- Andalusian Center for Nanomedicine and Biotechnology - BIONAND, Málaga, Spain
| | - María Salas
- Allergy Unit, IBIMA–Regional University Hospital of Malaga–UMA, Málaga, Spain
| | - Inmaculada Doña
- Allergy Unit, IBIMA–Regional University Hospital of Malaga–UMA, Málaga, Spain
| | - Ángela Martín-Serrano
- Research Laboratory, IBIMA–Regional University Hospital of Malaga–UMA, Málaga, Spain
- Andalusian Center for Nanomedicine and Biotechnology - BIONAND, Málaga, Spain
| | - Ezequiel Pérez-Inestrosa
- Andalusian Center for Nanomedicine and Biotechnology - BIONAND, Málaga, Spain
- Department of Organic Chemistry, University of Málaga, IBIMA, Málaga, Spain
| | | | - Antonio E. Guzmán
- Pharmacy Unit, Regional University Hospital of Malaga, Málaga, Spain
| | - María I. Montañez
- Research Laboratory, IBIMA–Regional University Hospital of Malaga–UMA, Málaga, Spain
- Andalusian Center for Nanomedicine and Biotechnology - BIONAND, Málaga, Spain
| | - María J. Torres
- Allergy Unit, IBIMA–Regional University Hospital of Malaga–UMA, Málaga, Spain
- Andalusian Center for Nanomedicine and Biotechnology - BIONAND, Málaga, Spain
| |
Collapse
|
30
|
Salas M, Barrionuevo E, Fernandez TD, Ruiz A, Andreu I, Torres MJ, Mayorga C. Hypersensitivity Reactions to Fluoroquinolones. CURRENT TREATMENT OPTIONS IN ALLERGY 2016. [DOI: 10.1007/s40521-016-0079-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
31
|
Abstract
PURPOSE OF REVIEW The aim of the present review was to discuss recent advances supporting a role of drug metabolism, and particularly of the generation of reactive metabolites, in hypersensitivity reactions to drugs. RECENT FINDINGS The development of novel mass-spectrometry procedures has allowed the identification of reactive metabolites from drugs known to be involved in hypersensitivity reactions, including amoxicillin and nonsteroidal antiinflammatory drugs such as aspirin, diclofenac or metamizole. Recent studies demonstrated that reactive metabolites may efficiently bind plasma proteins, thus suggesting that drug metabolites, rather than - or in addition to - parent drugs, may elicit an immune response. As drug metabolic profiles are often determined by variability in the genes coding for drug-metabolizing enzymes, it is conceivable that an altered drug metabolism may predispose to the generation of reactive drug metabolites and hence to hypersensitivity reactions. These findings support the potential for the use of pharmacogenomics tests in hypersensitivity (type B) adverse reactions, in addition to the well known utility of these tests in type A adverse reactions. SUMMARY Growing evidence supports a link between genetically determined drug metabolism, altered metabolic profiles, generation of highly reactive metabolites and haptenization. Additional research is required to developing robust biomarkers for drug-induced hypersensitivity reactions.
Collapse
|
32
|
Torres MJ, Montañez MI, Ariza A, Salas M, Fernandez TD, Barbero N, Mayorga C, Blanca M. The role of IgE recognition in allergic reactions to amoxicillin and clavulanic acid. Clin Exp Allergy 2016; 46:264-74. [DOI: 10.1111/cea.12689] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- M. J. Torres
- Allergy Unit; IBIMA-Regional University Hospital of Malaga; Malaga Spain
| | - M. I. Montañez
- Research Laboratory; IBIMA-Regional University Hospital of Malaga; Malaga Spain
- BIONAND-Andalusian Centre for Nanomedicine and Biotechnology; Malaga Spain
| | - A. Ariza
- Research Laboratory; IBIMA-Regional University Hospital of Malaga; Malaga Spain
| | - M. Salas
- Allergy Unit; IBIMA-Regional University Hospital of Malaga; Malaga Spain
| | - T. D. Fernandez
- Research Laboratory; IBIMA-Regional University Hospital of Malaga; Malaga Spain
| | - N. Barbero
- BIONAND-Andalusian Centre for Nanomedicine and Biotechnology; Malaga Spain
- Department of Organic Chemistry; IBIMA; University of Malaga; Malaga Spain
| | - C. Mayorga
- Allergy Unit; IBIMA-Regional University Hospital of Malaga; Malaga Spain
- Research Laboratory; IBIMA-Regional University Hospital of Malaga; Malaga Spain
| | - M. Blanca
- Allergy Unit; IBIMA-Regional University Hospital of Malaga; Malaga Spain
| |
Collapse
|
33
|
Yang Y, Shu YZ, Humphreys WG. Label-Free Bottom-Up Proteomic Workflow for Simultaneously Assessing the Target Specificity of Covalent Drug Candidates and Their Off-Target Reactivity to Selected Proteins. Chem Res Toxicol 2015; 29:109-16. [DOI: 10.1021/acs.chemrestox.5b00460] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yanou Yang
- Bristol-Myers Squibb Research and Development, 311 Pennington-Rocky Hill Road, Pennington, New Jersey 08534, United States
| | - Yue-Zhong Shu
- Bristol-Myers Squibb Research and Development, 311 Pennington-Rocky Hill Road, Pennington, New Jersey 08534, United States
| | - W. Griffith Humphreys
- Bristol-Myers Squibb Research and Development, 311 Pennington-Rocky Hill Road, Pennington, New Jersey 08534, United States
| |
Collapse
|
34
|
Duran-Figueroa N, Badillo-Corona JA, Naisbitt DJ, Castrejon-Flores JL. Towards the development of mechanism-based biomarkers to diagnose drug hypersensitivity. Toxicol Res (Camb) 2015. [DOI: 10.1039/c4tx00238e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
T-cells are activated by different mechanisms in the presence of drugs, metabolites or haptens, and they release several molecules that can be used in the diagnosis of drug hypersensitivity.
Collapse
Affiliation(s)
- N. Duran-Figueroa
- Instituto Politécnico Nacional
- Unidad Profesional Interdisciplinaria de Biotecnología
- Mexico City
- Mexico
| | - J. A. Badillo-Corona
- Instituto Politécnico Nacional
- Unidad Profesional Interdisciplinaria de Biotecnología
- Mexico City
- Mexico
| | - D. J. Naisbitt
- MRC Centre for Drug Safety Science
- Department of Pharmacology
- University of Liverpool
- Liverpool
- UK
| | - J. L. Castrejon-Flores
- Instituto Politécnico Nacional
- Unidad Profesional Interdisciplinaria de Biotecnología
- Mexico City
- Mexico
| |
Collapse
|
35
|
Sullivan A, Gibson A, Park BK, Naisbitt DJ. Are drug metabolites able to cause T-cell-mediated hypersensitivity reactions? Expert Opin Drug Metab Toxicol 2014; 11:357-68. [DOI: 10.1517/17425255.2015.992780] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
36
|
Hypersensitivity drug reactions. Curr Opin Allergy Clin Immunol 2014; 14:269-70. [DOI: 10.1097/aci.0000000000000079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|