1
|
Coelho DRA, Gersten M, Jimenez AS, Fregni F, Cassano P, Vieira WF. Treating neuropathic pain and comorbid affective disorders: Preclinical and clinical evidence. Pain Pract 2024; 24:937-955. [PMID: 38572653 DOI: 10.1111/papr.13370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
INTRODUCTION Neuropathic pain (NP) significantly impacts quality of life and often coexists with affective disorders such as anxiety and depression. Addressing both NP and its psychiatric manifestations requires a comprehensive understanding of therapeutic options. This study aimed to review the main pharmacological and non-pharmacological treatments for NP and comorbid affective disorders to describe their mechanisms of action and how they are commonly used in clinical practice. METHODS A review was conducted across five electronic databases, focusing on pharmacological and non-pharmacological treatments for NP and its associated affective disorders. The following combination of MeSH and title/abstract keywords were used: "neuropathic pain," "affective disorders," "depression," "anxiety," "treatment," and "therapy." Both animal and human studies were included to discuss the underlying therapeutic mechanisms of these interventions. RESULTS Pharmacological interventions, including antidepressants, anticonvulsants, and opioids, modulate neural synaptic transmission to alleviate NP. Topical agents, such as capsaicin, lidocaine patches, and botulinum toxin A, offer localized relief by desensitizing pain pathways. Some of these drugs, especially antidepressants, also treat comorbid affective disorders. Non-pharmacological techniques, including repetitive transcranial magnetic stimulation, transcranial direct current stimulation, and photobiomodulation therapy, modulate cortical activity and have shown promise for NP and mood disorders. CONCLUSIONS The interconnection between NP and comorbid affective disorders necessitates holistic therapeutic strategies. Some pharmacological treatments can be used for both conditions, and non-pharmacological interventions have emerged as promising complementary approaches. Future research should explore novel molecular pathways to enhance treatment options for these interrelated conditions.
Collapse
Affiliation(s)
- David Richer Araujo Coelho
- Division of Neuropsychiatry and Neuromodulation, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, USA
- Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Maia Gersten
- Division of Neuropsychiatry and Neuromodulation, Massachusetts General Hospital, Boston, Massachusetts, USA
| | | | - Felipe Fregni
- Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital, Boston, Massachusetts, USA
| | - Paolo Cassano
- Division of Neuropsychiatry and Neuromodulation, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, USA
| | - Willians Fernando Vieira
- Division of Neuropsychiatry and Neuromodulation, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, USA
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
2
|
Hu Y, Girdenyté M, Roest L, Liukkonen I, Siskou M, Bällgren F, Hammarlund-Udenaes M, Loryan I. Analysis of the contributing role of drug transport across biological barriers in the development and treatment of chemotherapy-induced peripheral neuropathy. Fluids Barriers CNS 2024; 21:13. [PMID: 38331886 PMCID: PMC10854123 DOI: 10.1186/s12987-024-00519-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 01/30/2024] [Indexed: 02/10/2024] Open
Abstract
BACKGROUND Chemotherapy-induced peripheral neuropathy (CIPN) represents a major unmet medical need that currently has no preventive and/or curative treatment. This is, among others, driven by a poor understanding of the contributive role of drug transport across biological barriers to target-site exposure. METHODS Here, we systematically investigated the transport of 11 small-molecule drugs, both, associated and not with CIPN development, at conventional (dorsal root ganglia, sciatic nerve) and non-conventional (brain, spinal cord, skeletal muscle) CIPN sites. We developed a Combinatory Mapping Approach for CIPN, CMA-CIPN, combining in vivo and in vitro elements. RESULTS Using CMA-CIPN, we determined the unbound tissue-to-plasma concentration ratio (Kp,uu) and the unbound intracellular-to-extracellular concentration ratio (Kp,uu,cell), to quantitatively assess the extent of unbound drug transport across endothelial interfaces and parenchymal cellular barriers of investigated CIPN-sites, respectively, in a rat model. The analysis revealed that unique pharmacokinetic characteristics underly time-dependent accumulation of the CIPN-positive drugs paclitaxel and vincristine at conventional (dorsal root ganglia and sciatic nerve) and non-conventional (skeletal muscle) CIPN sites. Investigated CIPN-positive drugs displayed intracellular accumulation contrary to CIPN-negative drugs nilotinib and methotrexate, which lacked this feature in all investigated tissues. CONCLUSIONS Hence, high unbound drug intracellular and extracellular exposure at target sites, driven by an interplay of drug transport across the endothelial and parenchymal cellular barriers, is a predisposing factor to CIPN development for CIPN-positive drugs. Critical drug-specific features of unbound drug disposition at various CIPN- sites provide invaluable insights into understanding the pharmacological/toxicological effects at the target-sites which will inform new strategies for monitoring and treatment of CIPN.
Collapse
Affiliation(s)
- Yang Hu
- Translational Pharmacokinetics-Pharmacodynamics Group, tPKPD, Department of Pharmacy, Faculty of Pharmacy, Uppsala University, Box 580, 751 23, Uppsala, Sweden
- Current Affiliation: Discovery ADME, Drug Discovery Sciences, Boehringer Ingelheim RCV, GmbH & Co KG, 1121, Vienna, Austria
| | - Milda Girdenyté
- Translational Pharmacokinetics-Pharmacodynamics Group, tPKPD, Department of Pharmacy, Faculty of Pharmacy, Uppsala University, Box 580, 751 23, Uppsala, Sweden
- Pharmacy and Pharmacology Center, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, M.K. Čiurlionio, Str. 21/27, 03101, Vilnius, Lithuania
| | - Lieke Roest
- Translational Pharmacokinetics-Pharmacodynamics Group, tPKPD, Department of Pharmacy, Faculty of Pharmacy, Uppsala University, Box 580, 751 23, Uppsala, Sweden
| | - Iida Liukkonen
- Translational Pharmacokinetics-Pharmacodynamics Group, tPKPD, Department of Pharmacy, Faculty of Pharmacy, Uppsala University, Box 580, 751 23, Uppsala, Sweden
| | - Maria Siskou
- Translational Pharmacokinetics-Pharmacodynamics Group, tPKPD, Department of Pharmacy, Faculty of Pharmacy, Uppsala University, Box 580, 751 23, Uppsala, Sweden
| | - Frida Bällgren
- Translational Pharmacokinetics-Pharmacodynamics Group, tPKPD, Department of Pharmacy, Faculty of Pharmacy, Uppsala University, Box 580, 751 23, Uppsala, Sweden
| | - Margareta Hammarlund-Udenaes
- Translational Pharmacokinetics-Pharmacodynamics Group, tPKPD, Department of Pharmacy, Faculty of Pharmacy, Uppsala University, Box 580, 751 23, Uppsala, Sweden
| | - Irena Loryan
- Translational Pharmacokinetics-Pharmacodynamics Group, tPKPD, Department of Pharmacy, Faculty of Pharmacy, Uppsala University, Box 580, 751 23, Uppsala, Sweden.
| |
Collapse
|
3
|
Falconnier C, Caparros-Roissard A, Decraene C, Lutz PE. Functional genomic mechanisms of opioid action and opioid use disorder: a systematic review of animal models and human studies. Mol Psychiatry 2023; 28:4568-4584. [PMID: 37723284 PMCID: PMC10914629 DOI: 10.1038/s41380-023-02238-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 08/17/2023] [Accepted: 08/24/2023] [Indexed: 09/20/2023]
Abstract
In the past two decades, over-prescription of opioids for pain management has driven a steep increase in opioid use disorder (OUD) and death by overdose, exerting a dramatic toll on western countries. OUD is a chronic relapsing disease associated with a lifetime struggle to control drug consumption, suggesting that opioids trigger long-lasting brain adaptations, notably through functional genomic and epigenomic mechanisms. Current understanding of these processes, however, remain scarce, and have not been previously reviewed systematically. To do so, the goal of the present work was to synthesize current knowledge on genome-wide transcriptomic and epigenetic mechanisms of opioid action, in primate and rodent species. Using a prospectively registered methodology, comprehensive literature searches were completed in PubMed, Embase, and Web of Science. Of the 2709 articles identified, 73 met our inclusion criteria and were considered for qualitative analysis. Focusing on the 5 most studied nervous system structures (nucleus accumbens, frontal cortex, whole striatum, dorsal striatum, spinal cord; 44 articles), we also conducted a quantitative analysis of differentially expressed genes, in an effort to identify a putative core transcriptional signature of opioids. Only one gene, Cdkn1a, was consistently identified in eleven studies, and globally, our results unveil surprisingly low consistency across published work, even when considering most recent single-cell approaches. Analysis of sources of variability detected significant contributions from species, brain structure, duration of opioid exposure, strain, time-point of analysis, and batch effects, but not type of opioid. To go beyond those limitations, we leveraged threshold-free methods to illustrate how genome-wide comparisons may generate new findings and hypotheses. Finally, we discuss current methodological development in the field, and their implication for future research and, ultimately, better care.
Collapse
Affiliation(s)
- Camille Falconnier
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives UPR 3212, 67000, Strasbourg, France
| | - Alba Caparros-Roissard
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives UPR 3212, 67000, Strasbourg, France
| | - Charles Decraene
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives UPR 3212, 67000, Strasbourg, France
- Centre National de la Recherche Scientifique, Université de Strasbourg, Laboratoire de Neurosciences Cognitives et Adaptatives UMR 7364, 67000, Strasbourg, France
| | - Pierre-Eric Lutz
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives UPR 3212, 67000, Strasbourg, France.
- Douglas Mental Health University Institute, Montreal, QC, Canada.
| |
Collapse
|
4
|
Maffioli E, Nonnis S, Grassi Scalvini F, Negri A, Tedeschi G, Toni M. The Neurotoxic Effect of Environmental Temperature Variation in Adult Zebrafish ( Danio rerio). Int J Mol Sci 2023; 24:15735. [PMID: 37958719 PMCID: PMC10648238 DOI: 10.3390/ijms242115735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/18/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
Neurotoxicity consists of the altered functionality of the nervous system caused by exposure to chemical agents or altered chemical-physical parameters. The neurotoxic effect can be evaluated from the molecular to the behavioural level. The zebrafish Danio rerio is a model organism used in many research fields, including ecotoxicology and neurotoxicology. Recent studies by our research group have demonstrated that the exposure of adult zebrafish to low (18 °C) or high (34 °C) temperatures alters their brain proteome and fish behaviour compared to control (26 °C). These results showed that thermal variation alters the functionality of the nervous system, suggesting a temperature-induced neurotoxic effect. To demonstrate that temperature variation can be counted among the factors that generate neurotoxicity, eight different protein datasets, previously published by our research group, were subjected to new analyses using an integrated proteomic approach by means of the Ingenuity Pathway Analysis (IPA) software (Release December 2022). The datasets consist of brain proteome analyses of wild type adult zebrafish kept at three different temperatures (18 °C, 26 °C, and 34 °C) for 4 days (acute) or 21 days (chronic treatment), and of BDNF+/- and BDNF-/- zebrafish kept at 26 °C or 34 °C for 21 days. The results (a) demonstrate that thermal alterations generate an effect that can be defined as neurotoxic (p value ≤ 0.05, activation Z score ≤ -2 or ≥2), (b) identify 16 proteins that can be used as hallmarks of the neurotoxic processes common to all the treatments applied and (c) provide three protein panels (p value ≤ 0.05) related to 18 °C, 34 °C, and BDNF depletion that can be linked to anxiety-like or boldness behaviour upon these treatments.
Collapse
Affiliation(s)
- Elisa Maffioli
- Department of Veterinary Medicine and Animal Science (DIVAS), Università degli Studi di Milano, Via dell’Università 6, 26900 Lodi, Italy; (E.M.); (S.N.); (F.G.S.); (A.N.)
| | - Simona Nonnis
- Department of Veterinary Medicine and Animal Science (DIVAS), Università degli Studi di Milano, Via dell’Università 6, 26900 Lodi, Italy; (E.M.); (S.N.); (F.G.S.); (A.N.)
- CRC “Innovation for Well-Being and Environment” (I-WE), Università degli Studi di Milano, 20126 Milano, Italy
| | - Francesca Grassi Scalvini
- Department of Veterinary Medicine and Animal Science (DIVAS), Università degli Studi di Milano, Via dell’Università 6, 26900 Lodi, Italy; (E.M.); (S.N.); (F.G.S.); (A.N.)
| | - Armando Negri
- Department of Veterinary Medicine and Animal Science (DIVAS), Università degli Studi di Milano, Via dell’Università 6, 26900 Lodi, Italy; (E.M.); (S.N.); (F.G.S.); (A.N.)
| | - Gabriella Tedeschi
- Department of Veterinary Medicine and Animal Science (DIVAS), Università degli Studi di Milano, Via dell’Università 6, 26900 Lodi, Italy; (E.M.); (S.N.); (F.G.S.); (A.N.)
- CRC “Innovation for Well-Being and Environment” (I-WE), Università degli Studi di Milano, 20126 Milano, Italy
| | - Mattia Toni
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University, Via Alfonso Borrelli 50, 00161 Rome, Italy
| |
Collapse
|
5
|
Mikaeili H, Habib AM, Yeung CWL, Santana-Varela S, Luiz AP, Panteleeva K, Zuberi S, Athanasiou-Fragkouli A, Houlden H, Wood JN, Okorokov AL, Cox JJ. Molecular basis of FAAH-OUT-associated human pain insensitivity. Brain 2023; 146:3851-3865. [PMID: 37222214 PMCID: PMC10473560 DOI: 10.1093/brain/awad098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 03/03/2023] [Accepted: 03/10/2023] [Indexed: 05/25/2023] Open
Abstract
Chronic pain affects millions of people worldwide and new treatments are needed urgently. One way to identify novel analgesic strategies is to understand the biological dysfunctions that lead to human inherited pain insensitivity disorders. Here we report how the recently discovered brain and dorsal root ganglia-expressed FAAH-OUT long non-coding RNA (lncRNA) gene, which was found from studying a pain-insensitive patient with reduced anxiety and fast wound healing, regulates the adjacent key endocannabinoid system gene FAAH, which encodes the anandamide-degrading fatty acid amide hydrolase enzyme. We demonstrate that the disruption in FAAH-OUT lncRNA transcription leads to DNMT1-dependent DNA methylation within the FAAH promoter. In addition, FAAH-OUT contains a conserved regulatory element, FAAH-AMP, that acts as an enhancer for FAAH expression. Furthermore, using transcriptomic analyses in patient-derived cells we have uncovered a network of genes that are dysregulated from disruption of the FAAH-FAAH-OUT axis, thus providing a coherent mechanistic basis to understand the human phenotype observed. Given that FAAH is a potential target for the treatment of pain, anxiety, depression and other neurological disorders, this new understanding of the regulatory role of the FAAH-OUT gene provides a platform for the development of future gene and small molecule therapies.
Collapse
Affiliation(s)
- Hajar Mikaeili
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, UK
| | - Abdella M Habib
- College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Charlix Wai-Lok Yeung
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, UK
| | - Sonia Santana-Varela
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, UK
| | - Ana P Luiz
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, UK
| | - Kseniia Panteleeva
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, UK
| | - Sana Zuberi
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, UK
| | | | - Henry Houlden
- Department of Molecular Neuroscience, Institute of Neurology, University College London, London WC1N 3BG, UK
| | - John N Wood
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, UK
| | - Andrei L Okorokov
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, UK
| | - James J Cox
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, UK
| |
Collapse
|
6
|
Feng X, Yang P, Liao Z, Zhou R, Chen L, Ye L. Comparison of oxycodone and sufentanil in patient-controlled intravenous analgesia for postoperative patients: a meta-analysis of randomized controlled trials. Chin Med J (Engl) 2023; 136:45-52. [PMID: 36878002 PMCID: PMC10106226 DOI: 10.1097/cm9.0000000000002259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Indexed: 03/08/2023] Open
Abstract
BACKGROUND Managing acute postoperative pain is challenging for anesthesiologists, surgeons, and patients, leading to adverse events despite making significant progress. Patient-controlled intravenous analgesia (PCIA) is a recommended solution, where oxycodone has depicted unique advantages in recent years. However, controversy still exists in clinical practice and this study aimed to compare two drugs in PCIA. METHODS We performed a literature search in PubMed, Embase, the Cochrane Central Register of Controlled Trials, Web of Science, Chinese National Knowledge Infrastructure, Wanfang, and VIP databases up to December 2020 to select specific randomized controlled trials (RCTs) comparing the efficacy of oxycodone with sufentanil in PCIA. The analgesic effect was the primary outcome and the secondary outcome included PCIA consumption, the Ramsay sedation scale, patients' satisfaction and side effects. RESULTS Fifteen RCTs were included in the meta-analysis. Compared with sufentanil, oxycodone showed lower Numerical Rating Scale scores (mean difference [MD] = -0.71, 95% confidence interval [CI]: -1.01 to -0.41; P < 0.001; I2 = 93%), demonstrated better relief from visceral pain (MD = -1.22, 95% CI: -1.58 to -0.85; P < 0.001; I2 = 90%), promoted a deeper sedative level as confirmed by the Ramsay Score (MD = 0.77, 95% CI: 0.35-1.19; P < 0.001; I2 = 97%), and resulted in fewer side effects (odds ratio [OR] = 0.46, 95% CI: 0.35-0.60; P < 0.001; I2 = 11%). There was no statistical difference in the degree of patients' satisfaction (OR = 1.13, 95% CI: 0.88-1.44; P = 0.33; I2 = 72%) and drug consumption (MD = -5.55, 95% CI: -14.18 to 3.08; P = 0.21; I2 = 93%). CONCLUSION Oxycodone improves postoperative analgesia and causes fewer adverse effects, and could be recommended for PCIA, especially after abdominal surgeries. REGISTRATION PROSPERO; https://www.crd.york.ac.uk/PROSPERO/; CRD42021229973.
Collapse
Affiliation(s)
- Xixia Feng
- Department of Pain Management, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Pingliang Yang
- Department of Anesthesiology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan 610500, China
| | - Zaibo Liao
- The Center of Gerontology and Geriatrics, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, Sichuan 610041, China
| | - Ruihao Zhou
- Department of Pain Management, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Lu Chen
- Department of Pain Management, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Ling Ye
- Department of Pain Management, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
7
|
Neurotransmitter and Neurotransmitter Receptor Expression in the Saccule of the Human Vestibular System. Prog Neurobiol 2022; 212:102238. [DOI: 10.1016/j.pneurobio.2022.102238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 01/19/2022] [Accepted: 01/28/2022] [Indexed: 11/18/2022]
|
8
|
Omran M, Belcher EK, Mohile NA, Kesler SR, Janelsins MC, Hohmann AG, Kleckner IR. Review of the Role of the Brain in Chemotherapy-Induced Peripheral Neuropathy. Front Mol Biosci 2021; 8:693133. [PMID: 34179101 PMCID: PMC8226121 DOI: 10.3389/fmolb.2021.693133] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 05/24/2021] [Indexed: 12/18/2022] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a common, debilitating, and dose-limiting side effect of many chemotherapy regimens yet has limited treatments due to incomplete knowledge of its pathophysiology. Research on the pathophysiology of CIPN has focused on peripheral nerves because CIPN symptoms are felt in the hands and feet. However, better understanding the role of the brain in CIPN may accelerate understanding, diagnosing, and treating CIPN. The goals of this review are to (1) investigate the role of the brain in CIPN, and (2) use this knowledge to inform future research and treatment of CIPN. We identified 16 papers using brain interventions in animal models of CIPN and five papers using brain imaging in humans or monkeys with CIPN. These studies suggest that CIPN is partly caused by (1) brain hyperactivity, (2) reduced GABAergic inhibition, (3) neuroinflammation, and (4) overactivation of GPCR/MAPK pathways. These four features were observed in several brain regions including the thalamus, periaqueductal gray, anterior cingulate cortex, somatosensory cortex, and insula. We discuss how to leverage this knowledge for future preclinical research, clinical research, and brain-based treatments for CIPN.
Collapse
Affiliation(s)
- Maryam Omran
- University of Rochester Medical Center, Rochester, NY, United States
| | | | - Nimish A Mohile
- University of Rochester Medical Center, Rochester, NY, United States
| | - Shelli R Kesler
- The University of Texas at Austin, Austin, TX, United States
| | | | - Andrea G Hohmann
- Psychological and Brain Sciences, Program in Neuroscience and Gill Center for Biomolecular Science, Indiana University Bloomington, Bloomington, IN, United States
| | - Ian R Kleckner
- University of Rochester Medical Center, Rochester, NY, United States
| |
Collapse
|
9
|
Claron J, Hingot V, Rivals I, Rahal L, Couture O, Deffieux T, Tanter M, Pezet S. Large-scale functional ultrasound imaging of the spinal cord reveals in-depth spatiotemporal responses of spinal nociceptive circuits in both normal and inflammatory states. Pain 2021; 162:1047-1059. [PMID: 32947542 PMCID: PMC7977620 DOI: 10.1097/j.pain.0000000000002078] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 07/28/2020] [Accepted: 08/20/2020] [Indexed: 12/13/2022]
Abstract
Despite a century of research on the physiology/pathophysiology of the spinal cord in chronic pain condition, the properties of the spinal cord were rarely studied at the large-scale level from a neurovascular point of view. This is mostly due to the limited spatial and/or temporal resolution of the available techniques. Functional ultrasound imaging (fUS) is an emerging neuroimaging approach that allows, through the measurement of cerebral blood volume, the study of brain functional connectivity or functional activations with excellent spatial (100 μm) and temporal (1 msec) resolutions and a high sensitivity. The aim of this study was to increase our understanding of the spinal cord physiology through the study of the properties of spinal hemodynamic response to the natural or electrical stimulation of afferent fibers. Using a combination of fUS and ultrasound localization microscopy, the first step of this study was the fine description of the vascular structures in the rat spinal cord. Then, using either natural or electrical stimulations of different categories of afferent fibers (Aβ, Aδ, and C fibers), we could define the characteristics of the typical hemodynamic response of the rat spinal cord experimentally. We showed that the responses are fiber-specific, located ipsilaterally in the dorsal horn, and that they follow the somatotopy of afferent fiber entries in the dorsal horn and that the C-fiber response is an N-methyl-D-aspartate receptor-dependent mechanism. Finally, fUS imaging of the mesoscopic hemodynamic response induced by natural tactile stimulations revealed a potentiated response in inflammatory condition, suggesting an enhanced response to allodynic stimulations.
Collapse
Affiliation(s)
- Julien Claron
- Laboratory of Brain Plasticity, ESPCI Paris, PSL Research University, CNRS UMR 8249, Paris, France
- Physics for Medicine Paris, Inserm, ESPCI Paris, CNRS, PSL Research, University, Paris, France
| | - Vincent Hingot
- Physics for Medicine Paris, Inserm, ESPCI Paris, CNRS, PSL Research, University, Paris, France
| | - Isabelle Rivals
- Equipe de Statistique Appliquée, ESPCI Paris, PSL Research University, CNRS UMRS 1158, Paris, France
| | - Line Rahal
- Laboratory of Brain Plasticity, ESPCI Paris, PSL Research University, CNRS UMR 8249, Paris, France
- Physics for Medicine Paris, Inserm, ESPCI Paris, CNRS, PSL Research, University, Paris, France
| | - Olivier Couture
- Physics for Medicine Paris, Inserm, ESPCI Paris, CNRS, PSL Research, University, Paris, France
| | - Thomas Deffieux
- Physics for Medicine Paris, Inserm, ESPCI Paris, CNRS, PSL Research, University, Paris, France
| | - Mickael Tanter
- Physics for Medicine Paris, Inserm, ESPCI Paris, CNRS, PSL Research, University, Paris, France
| | - Sophie Pezet
- Laboratory of Brain Plasticity, ESPCI Paris, PSL Research University, CNRS UMR 8249, Paris, France
- Physics for Medicine Paris, Inserm, ESPCI Paris, CNRS, PSL Research, University, Paris, France
| |
Collapse
|
10
|
Gao Y, Tang Y, Zhang H, Chu X, Yan B, Li J, Liu C. Vincristine leads to colonic myenteric neurons injury via pro-inflammatory macrophages activation. Biochem Pharmacol 2021; 186:114479. [PMID: 33617842 DOI: 10.1016/j.bcp.2021.114479] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/27/2021] [Accepted: 02/15/2021] [Indexed: 01/28/2023]
Abstract
Vincristine is widely used in treatment of various malignant tumors. The clinical application of vincristine is accompanied by peripheral neurotoxicity which might not be strictly related to the mechanism of anti-tumor action. There are several possible mechanisms but the effect of vincristine on enteric neurons and the underlying mechanism are still unclear. C57BL6/J mice were systematically treated with vincristine for 10 days, and macrophages were depleted using clodronate liposomes. The colonic myenteric plexus neurons were extracted and cultured in vitro. Macrophages from different parts were extracted in an improved way. In the current study, we demonstrated that system treatment of vincristine resulted in colonic myenteric neurons injury, pro-inflammatory macrophages activation and total gastrointestinal transport time increase. Vincristine promoted the pro-inflammatory macrophages activation individually or in coordination with LPS and increased the expression of pro-inflammatory factors IL-1β, IL-6, TNF-α via increasing the phosphorylation of ERK1/2 and p38. In addition, pro-inflammatory macrophages led to colonic myenteric neurons apoptosis targeting on SGK1-FOXO3 pathway. These effects were attenuated by inhibitors of the ERK1/2 and p38-MAPK pathways. Importantly, macrophages depletion alleviated colonic myenteric neurons injury and the delay of gastrointestinal motility caused by system treatment of vincristine. Taken together, system treatment of vincristine led to colonic myenteric neurons injury via pro-inflammatory macrophages activation which was alleviated by depletion of macrophages.
Collapse
Affiliation(s)
- Yifei Gao
- Department of Physiology, School of Basic Medical Sciences, Cheeloo Medical College, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong 250012, PR China
| | - Yan Tang
- Department of Gastroenterology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, Shandong 266035, PR China
| | - Haojie Zhang
- Department of Physiology, School of Basic Medical Sciences, Cheeloo Medical College, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong 250012, PR China
| | - Xili Chu
- Department of Physiology, School of Basic Medical Sciences, Cheeloo Medical College, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong 250012, PR China
| | - Bing Yan
- Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong 250012, PR China
| | - Jingxin Li
- Department of Physiology, School of Basic Medical Sciences, Cheeloo Medical College, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong 250012, PR China
| | - Chuanyong Liu
- Department of Physiology, School of Basic Medical Sciences, Cheeloo Medical College, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong 250012, PR China; Provincial Key Lab of Mental Disorders, Shandong University, Jinan, Shandong 250012, PR China.
| |
Collapse
|
11
|
Viisanen H, Lilius TO, Sagalajev B, Rauhala P, Kalso E, Pertovaara A. Neurophysiological response properties of medullary pain-control neurons following chronic treatment with morphine or oxycodone: modulation by acute ketamine. J Neurophysiol 2020; 124:790-801. [DOI: 10.1152/jn.00343.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Morphine and oxycodone are two clinically used strong opioids. Chronic treatment with oxycodone as well as morphine can lead to analgesic tolerance and paradoxical hyperalgesia. Here we show that an N-methyl-d-aspartate receptor-dependent pronociceptive change in discharge properties of rostroventromedial medullary neurons controlling spinal nociception has an important role in antinociceptive tolerance to morphine but not oxycodone. Interestingly, chronic oxycodone did not induce pronociceptive changes in the rostroventromedial medulla.
Collapse
Affiliation(s)
- Hanna Viisanen
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Tuomas O. Lilius
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Clinical Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Boriss Sagalajev
- Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Pekka Rauhala
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Eija Kalso
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Anaesthesiology, Intensive Care Medicine and Pain Medicine, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
- SleepWell Research Programme, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Antti Pertovaara
- Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
12
|
Leng X, Zhang F, Yao S, Weng X, Lu K, Chen G, Huang M, Huang Y, Zeng X, Hopp M, Lu G. Prolonged-Release (PR) Oxycodone/Naloxone Improves Bowel Function Compared with Oxycodone PR and Provides Effective Analgesia in Chinese Patients with Non-malignant Pain: A Randomized, Double-Blind Trial. Adv Ther 2020; 37:1188-1202. [PMID: 32020565 PMCID: PMC7089730 DOI: 10.1007/s12325-020-01244-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Indexed: 12/17/2022]
Abstract
Introduction Prolonged-release oxycodone/naloxone (OXN PR), combining an opioid analgesic with selective blockade of enteric µ-opioid receptors, provided effective analgesia and improved bowel function in patients with moderate-to-severe pain and opioid-induced constipation in clinical trials predominantly conducted in Western countries. This double-blind randomized controlled trial investigated OXN PR (N = 116) versus prolonged-release oxycodone (OXY PR, N = 115) for 8 weeks at doses up to 50 mg/day in patients with moderate-to-severe, chronic, non-malignant musculoskeletal pain and opioid-induced constipation recruited in China. Methods A total of 234 patients at least 18 years of age with non-malignant musculoskeletal pain for more than 4 weeks that was moderate-to-severe in intensity and required round-the-clock opioid therapy were randomized (1:1) to OXN PR or OXY PR. The primary endpoint was bowel function using the Bowel Function Index (BFI). Secondary endpoints included safety, Brief Pain Inventory-Short Form (BPI-SF), use of analgesic and laxative rescue medication, and health-related quality of life (EQ-5D). Results While BFI scores were comparable at baseline, at week 8 improvements were greater with OXN PR vs OXY PR (least squares mean [LSM] difference (95% CI) − 9.1 (− 14.0, − 4.2); P < 0.001. From weeks 2 to 8, mean BFI scores were in the range of normal bowel function (≤ 28.8) with OXN PR but were in the range of constipation (> 28.8) at all timepoints with OXY PR. Analgesia with OXN PR was similar and non-inferior to OXY PR on the basis of modified BPI-SF average 24-h pain scores at week 8: LSM difference (95% CI) − 0.3 (− 0.5, − 0.1); P < 0.001. The most frequent treatment-related AEs were nausea (OXN PR 5% vs OXY PR 6%) and dizziness (4% vs 4%). Conclusion OXN PR provided clinically meaningful improvements in bowel function and effective analgesia in Chinese patients with moderate-to-severe musculoskeletal pain and pre-existing opioid-induced constipation. Trial Registration ClinicalTrials.gov, identifier NCT01918098. Electronic supplementary material The online version of this article (10.1007/s12325-020-01244-x) contains supplementary material, which is available to authorized users.
Collapse
|
13
|
Zhou L, Ao L, Yan Y, Li C, Li W, Ye A, Liu J, Hu Y, Fang W, Li Y. Levo-corydalmine Attenuates Vincristine-Induced Neuropathic Pain in Mice by Upregulating the Nrf2/HO-1/CO Pathway to Inhibit Connexin 43 Expression. Neurotherapeutics 2020; 17:340-355. [PMID: 31617070 PMCID: PMC7007458 DOI: 10.1007/s13311-019-00784-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Antimicrotubulin chemotherapeutic agents, including plant-derived vincaalkaloids such as vincristine, can cause peripheral neuropathic pain. Exogenously activated heme oxygenase 1 (HO-1) is a potential therapy for chemotherapy-induced neuroinflammation. In this study, we investigated a role for Nrf2/HO-1/CO in mediating vincristine-induced neuroinflammation by inhibiting connexin 43 (Cx43) production in the spinal cord following the intrathecal application of the HO-1 inducer protoporphyrin IX cobalt chloride (CoPP) or inhibitor protoporphyrin IX zinc (ZnPP), and we analyzed the underlying mechanisms by which levo-corydalmine (l-CDL, a tetrahydroprotoberberine) attenuates vincristine-induced pain. Treatment with levo-corydalmine or oxycodone hydrochloride (a semisynthetic opioid analgesic, used as a positive control) attenuated vincristine-induced persistent pain hypersensitivity and degeneration of the sciatic nerve. In addition, the increased prevalence of atypical mitochondria induced by vincristine was ameliorated by l-CDL in both A-fibers and C-fibers. Next, we evaluated whether nuclear factor E2-related factor 2 (Nrf2), an upstream activator of HO-1, directly bound to the HO-1 promoter sequence and degraded heme to produce carbon monoxide (CO) following stimulation with vincristine. Notably, l-CDL dose-dependently increased HO-1/CO expression by activating Nrf2 to inhibit Cx43 expression in both the spinal cord and in cultured astrocytes stimulated with TNF-α, corresponding to decreased Cx43-mediated hemichannel. Furthermore, l-CDL had no effect on Cx43 following the silencing of the HO-1 gene. Taken together, our findings reveal a novel mechanism by which Nrf2/HO-1/CO mediates Cx43 expression in vincristine-induced neuropathic pain. In addition, the present findings suggest that l-CDL likely protects against nerve damage and attenuates vincristine-induced neuroinflammation by upregulating Nrf2/HO-1/CO to inhibit Cx43 expression.
Collapse
Affiliation(s)
- Lin Zhou
- State Key Laboratory of Natural Medicines, Department of Physiology, China Pharmaceutical University, Mailbox 207, Tongjiaxiang 24, Nanjing, 210009, Jiangsu, People's Republic of China
| | - Luyao Ao
- State Key Laboratory of Natural Medicines, Department of Physiology, China Pharmaceutical University, Mailbox 207, Tongjiaxiang 24, Nanjing, 210009, Jiangsu, People's Republic of China
| | - Yunyi Yan
- State Key Laboratory of Natural Medicines, Department of Physiology, China Pharmaceutical University, Mailbox 207, Tongjiaxiang 24, Nanjing, 210009, Jiangsu, People's Republic of China
| | - Chengyuan Li
- State Key Laboratory of Natural Medicines, Department of Physiology, China Pharmaceutical University, Mailbox 207, Tongjiaxiang 24, Nanjing, 210009, Jiangsu, People's Republic of China
| | - Wanting Li
- State Key Laboratory of Natural Medicines, Department of Physiology, China Pharmaceutical University, Mailbox 207, Tongjiaxiang 24, Nanjing, 210009, Jiangsu, People's Republic of China
| | - Anqi Ye
- State Key Laboratory of Natural Medicines, Department of Physiology, China Pharmaceutical University, Mailbox 207, Tongjiaxiang 24, Nanjing, 210009, Jiangsu, People's Republic of China
| | - Jihua Liu
- Biotechnology of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Yahui Hu
- Department of Pharmacy, Children's Hospital of Nanjing Medical University, # 72 GuangZhou Road, Nanjing, 210008, People's Republic of China.
| | - Weirong Fang
- State Key Laboratory of Natural Medicines, Department of Physiology, China Pharmaceutical University, Mailbox 207, Tongjiaxiang 24, Nanjing, 210009, Jiangsu, People's Republic of China.
| | - Yunman Li
- State Key Laboratory of Natural Medicines, Department of Physiology, China Pharmaceutical University, Mailbox 207, Tongjiaxiang 24, Nanjing, 210009, Jiangsu, People's Republic of China.
| |
Collapse
|
14
|
Hooijmans CR, Draper D, Ergün M, Scheffer GJ. The effect of analgesics on stimulus evoked pain-like behaviour in animal models for chemotherapy induced peripheral neuropathy- a meta-analysis. Sci Rep 2019; 9:17549. [PMID: 31772391 PMCID: PMC6879539 DOI: 10.1038/s41598-019-54152-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 11/09/2019] [Indexed: 12/28/2022] Open
Abstract
Chemotherapy induced painful peripheral neuropathy (CIPN) is a common dose-limiting side effect of several chemotherapeutic agents. Despite large amounts of human and animal studies, there is no sufficiently effective pharmacological treatment for CIPN. Although reducing pain is often a focus of CIPN treatment, remarkably few analgesics have been tested for this indication in clinical trials. We conducted a systematic review and meta-analyses regarding the effects of analgesics on stimulus evoked pain-like behaviour during CIPN in animal models. This will form a scientific basis for the development of prospective human clinical trials. A comprehensive search identified forty-six studies. Risk of bias (RoB) analyses revealed that the design and conduct of the included experiments were poorly reported, and therefore RoB was unclear in most studies. Meta-analyses showed that administration of analgesics significantly increases pain threshold for mechanical (SMD: 1.68 [1.41; 1.82]) and cold (SMD: 1. 41 [0.99; 1.83]) evoked pain. Subgroup analyses revealed that dexmedetomidine, celecoxib, fentanyl, morphine, oxycodone and tramadol increased the pain threshold for mechanically evoked pain, and lidocaine and morphine for cold evoked pain. Altogether, this meta-analysis shows that there is ground to investigate the use of morphine in clinical trials. Lidocaine, dexmedetomidine, celecoxib, fentanyl, oxycodone and tramadol might be good alternatives, but more animal-based research is necessary.
Collapse
Affiliation(s)
- Carlijn R Hooijmans
- Department of Anesthesiology, Pain and Palliative Medicine, Radboud University Medical Center, Nijmegen, The Netherlands. .,Department for Health Evidence unit SYRCLE, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - Derk Draper
- Department for Health Evidence unit SYRCLE, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Mehmet Ergün
- Department of Anesthesiology, Pain and Palliative Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Gert Jan Scheffer
- Department of Anesthesiology, Pain and Palliative Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
15
|
George RP, Howarth GS, Whittaker AL. Use of the Rat Grimace Scale to Evaluate Visceral Pain in a Model of Chemotherapy-Induced Mucositis. Animals (Basel) 2019; 9:ani9090678. [PMID: 31547463 PMCID: PMC6769932 DOI: 10.3390/ani9090678] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 08/30/2019] [Accepted: 09/09/2019] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Mucositis is a painful and often debilitating condition associated with cancer treatment. Management of associated symptoms is an important clinical consideration. Animal models are used in mucositis research to model the condition in humans in order to develop novel therapeutic agents to relieve symptoms. Previous animal studies have focused on disease severity and outcomes, but often failed to measure pain. The rat grimace scale (RGS) is a validated observational measure used to gauge pain levels experienced by rats. The aim of this study was to assess the rat grimace scale in a rat model of mucositis, and to examine whether changes in clinical signs and anxiety reflected the grimace responses recorded. We also aimed to determine whether the responses were pain-specific by administering potent opioid painkilling agents. In the present study rat grimace scores did not change significantly between treatments. Development of reliable pain assessment methods in animal models is urgently required to improve model relevance to human clinical practice, in addition to safeguarding animal welfare. Abstract The rat grimace scale (RGS) is a measure of spontaneous pain that evaluates pain response. The ability to characterize pain through a non-invasive method has considerable utility for numerous animal models of disease, including mucositis, a painful, self-limiting side-effect of chemotherapy treatment. Preclinical studies investigating novel therapeutics for mucositis often focus on pathological outcomes and disease severity. These investigations fail to measure pain, in spite of reduction of pain being a key clinical therapeutic goal. This study assessed the utility of the RGS for pain assessment in a rat model of mucositis, and whether changes in disease activity index (DAI) and open field test (OFT) reflected the grimace responses recorded. Sixty tumor-bearing female Dark Agouti rats were injected with either saline or 5-Fluourouracil alone, or with co-administration of opioid analgesics. Whilst differences in DAI were observed between treatment groups, no difference in RGS scores or OFT were demonstrated. Significant increases in grimace scores were observed across time. However, whilst a statistically significant change may have been noted, the biological relevance is questionable in terms of practical usage, since an observer is only able to score whole numbers. Development of effective pain assessment methods in animal models is required to improve welfare, satisfy regulatory requirements, and increase translational validity of the model to human patients.
Collapse
Affiliation(s)
- Rebecca P George
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy Campus, Roseworthy, SA 5371, Australia.
| | - Gordon S Howarth
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy Campus, Roseworthy, SA 5371, Australia.
- Department of Gastroenterology, Women's and Children's Hospital, North Adelaide, SA 5006, Australia.
| | - Alexandra L Whittaker
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy Campus, Roseworthy, SA 5371, Australia.
| |
Collapse
|
16
|
Raff M, Belbachir A, El-Tallawy S, Ho KY, Nagtalon E, Salti A, Seo JH, Tantri AR, Wang H, Wang T, Buemio KC, Gutierrez C, Hadjiat Y. Intravenous Oxycodone Versus Other Intravenous Strong Opioids for Acute Postoperative Pain Control: A Systematic Review of Randomized Controlled Trials. Pain Ther 2019; 8:19-39. [PMID: 31004317 PMCID: PMC6514019 DOI: 10.1007/s40122-019-0122-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Indexed: 11/29/2022] Open
Abstract
Introduction Optimal pain management is crucial to the postoperative recovery process. We aimed to evaluate the efficacy and safety of intravenous oxycodone with intravenous fentanyl, morphine, sufentanil, pethidine, and hydromorphone for acute postoperative pain. Methods A systematic literature search of PubMed, Cochrane Library, and EMBASE databases was performed for randomized controlled trials published from 2008 through 2017 (inclusive) that evaluated the acute postoperative analgesic efficacy of intravenous oxycodone against fentanyl, morphine, sufentanil, pethidine, and hydromorphone in adult patients (age ≥ 18 years). Outcomes examined included analgesic consumption, pain intensity levels, side effects, and patient satisfaction. Results Eleven studies were included in the review; six compared oxycodone with fentanyl, two compared oxycodone with morphine, and three compared oxycodone with sufentanil. There were no eligible studies comparing oxycodone with pethidine or hydromorphone. Overall, analgesic consumption was lower with oxycodone than with fentanyl or sufentanil. Oxycodone exhibited better analgesic efficacy than fentanyl and sufentanil, and comparable analgesic efficacy to morphine. In terms of safety, there was a tendency towards more side effects with oxycodone than with fentanyl, but the incidence of side effects with oxycodone was comparable to morphine and sufentanil. Where patient satisfaction was evaluated, higher satisfaction levels were observed with oxycodone than with sufentanil and comparable satisfaction was noted when comparing oxycodone with fentanyl. Patient satisfaction was not evaluated in the studies comparing oxycodone with morphine. Conclusions Our findings suggest that intravenous oxycodone provides better analgesic efficacy than fentanyl and sufentanil, and comparable efficacy to morphine with less adverse events such as sedation. No studies comparing intravenous oxycodone with pethidine or hydromorphone were identified in this review. Better alignment of study methodologies for future research in this area is recommended to provide the best evidence base for a meta-analysis. Funding Mundipharma Singapore Holding Pte Ltd, Singapore. Electronic supplementary material The online version of this article (10.1007/s40122-019-0122-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Milton Raff
- Pain Clinic, Christiaan Barnard Memorial Hospital, Cape Town, South Africa.
| | - Anissa Belbachir
- Faculté de médecine, Université Paris-Descartes, Pôle d'anesthésie-réanimation, Hôpital Cochin, Paris, France
| | - Salah El-Tallawy
- Department of Anesthesia and Pain Management, College of Medicine, King Khalid University Hospital, King Saud University, Riyadh, Saudi Arabia
| | - Kok Yuen Ho
- The Pain Clinic, Mount Alvernia Medical Centre, Singapore, Singapore
| | - Eric Nagtalon
- Department of Anesthesia, University of the East Ramon Magsaysay Memorial Medical Center, Quezon City, Philippines
| | - Amar Salti
- Anesthesiology Institute, Sheikh Khalifa Medical City, Abu Dhabi, United Arab Emirates
| | - Jeong-Hwa Seo
- Department of Anesthesiology and Pain Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Aida Rosita Tantri
- Department of Anesthesiology and Intensive Care, Universitas Indonesia, Dr. Ciptomangunkusumo National General Hospital, Jakarta, Indonesia
| | - Hongwei Wang
- Department of Anesthesiology, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Tianlong Wang
- Department of Anesthesiology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | | | | | - Yacine Hadjiat
- Mundipharma Singapore Holding Pte. Ltd., Singapore, Singapore
| |
Collapse
|
17
|
Investigation of Key Genes and Pathways in Inhibition of Oxycodone on Vincristine-Induced Microglia Activation by Using Bioinformatics Analysis. DISEASE MARKERS 2019; 2019:3521746. [PMID: 30881521 PMCID: PMC6387694 DOI: 10.1155/2019/3521746] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 12/31/2018] [Indexed: 02/07/2023]
Abstract
Introduction The neurobiological mechanisms underlying the chemotherapy-induced neuropathic pain are only partially understood. Among them, microglia activation was identified as the key component of neuropathic pain. The aim of this study was to identify differentially expressed genes (DEGs) and pathways associated with vincristine-induced neuropathic pain by using bioinformatics analysis and observe the effects of oxycodone on these DEG expressions in a vincristine-induced microglia activation model. Methods Based on microarray profile GSE53897, we identified DEGs between vincristine-induced neuropathic pain rats and the control group. Using the ToppGene database, the prioritization DEGs were screened and performed by gene ontology (GO) and signaling pathway enrichment. A protein-protein interaction (PPI) network was used to explore the relationship among DEGs. Then, we built the vincristine-induced microglia activation model and detected several DEG expressions by real-time polymerase chain reaction (PCR) and western blotting. Meanwhile, the effects of different concentrations of oxycodone on inflammatory response in primary microglia induced by vincristine were observed. Results A total of 38 genes were differentially expressed between normal and vincristine-treated rats. GO and pathway enrichment analysis showed that prioritization DEGs are involved in cAMP metabolic process, inflammatory response, regulation of cell proliferation, and chemokine pathway. The in vitro studies showed that vincristine had dose-dependent cytotoxic effects in microglia. Compared to the control group, vincristine (0.001 μg/ml) could lead to inflammation in primary microglia induced by vincristine and upregulated the CXCL10, CXCL9, SFRP2, and PF4 mRNA and made an obvious reduction in IRF7 mRNA. At protein levels, oxycodone (50, 100 ng/ml) decreased the expression of CXCL10 and CXCL9 in activated microglia. Conclusion Our study obtained several DEG expressions and signaling pathways in the vincristine-induced neuropathic pain rat model by bioinformatics analysis. Oxycodone could alleviate the vincristine-induced inflammatory signaling in primary microglia and downregulate some DEGs. Further molecular mechanisms need to be explored in the future.
Collapse
|
18
|
|
19
|
Levo-corydalmine alleviates vincristine-induced neuropathic pain in mice by inhibiting an NF-kappa B-dependent CXCL1/CXCR2 signaling pathway. Neuropharmacology 2018. [DOI: 10.1016/j.neuropharm.2018.03.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
20
|
Starobova H, S. W. A. H, Lewis RJ, Vetter I. Transcriptomics in pain research: insights from new and old technologies. Mol Omics 2018; 14:389-404. [DOI: 10.1039/c8mo00181b] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Physiological and pathological pain involves a complex interplay of multiple cell types and signaling pathways.
Collapse
Affiliation(s)
- H. Starobova
- Centre for Pain Research
- Institute for Molecular Bioscience
- University of Queensland
- St Lucia
- Australia
| | - Himaya S. W. A.
- Centre for Pain Research
- Institute for Molecular Bioscience
- University of Queensland
- St Lucia
- Australia
| | - R. J. Lewis
- Centre for Pain Research
- Institute for Molecular Bioscience
- University of Queensland
- St Lucia
- Australia
| | - I. Vetter
- Centre for Pain Research
- Institute for Molecular Bioscience
- University of Queensland
- St Lucia
- Australia
| |
Collapse
|
21
|
Wu YY, Jiang YL, He XF, Zhao XY, Shao XM, Sun J, Shen Z, Shou SY, Wei JJ, Ye JY, Yan SS, Fang JQ. 5-HT in the dorsal raphe nucleus is involved in the effects of 100-Hz electro-acupuncture on the pain-depression dyad in rats. Exp Ther Med 2017; 14:107-114. [PMID: 28672900 PMCID: PMC5488474 DOI: 10.3892/etm.2017.4479] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 02/17/2017] [Indexed: 01/07/2023] Open
Abstract
The pain-depression dyad is becoming widespread in the clinic and is attracting increasing attention. A previous study by our group found that 100-Hz electro-acupuncture (EA), but not 2-, 50- and 2/100-Hz EA, was effective against the reserpine-induced pain-depression dyad. This finding is in contrast to the fact that low-frequency EA is commonly used to treat supraspinal-originating diseases. The present study aimed to investigate the mechanism underlying the effects of 100-Hz EA on the pain-depression dyad. Repeated reserpine injection was found to induce allodynia and depressive behaviors in rats. It decreased 5-hydroxytryptamine (5-HT) levels and immunoreactive expressions in the dorsal raphe nucleus (DRN). 100-Hz EA alleviated the pain-depression dyad and upregulated 5-HT in the DRN of reserpine-injected rats. Intracerebroventricular injection of para-chlorophenylalanine, an inhibitor of 5-HT resynthesis, suppressed the upregulation of 5-HT in the DRN by 100-Hz EA and partially counteracted the analgesic and anti-depressive effects of 100-Hz EA. The present study was the first to demonstrate that 5-HT in the DRN is involved in mediating the analgesic and anti-depressive effects of 100-Hz EA on the pain-depression dyad. This finding provided a scientific basis for high-frequency EA as a potential treatment for the pain-depression dyad.
Collapse
Affiliation(s)
- Yuan-Yuan Wu
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Yong-Liang Jiang
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Xiao-Fen He
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Xiao-Yun Zhao
- Department of Orthopedics and Traumatology, Shanxi Hospital of Traditional Chinese Medicine, Xian, Shanxi 710000, P.R. China
| | - Xiao-Mei Shao
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Jing Sun
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Zui Shen
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Shen-Yun Shou
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Jun-Jun Wei
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Jia-Yu Ye
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Si-Si Yan
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Jian-Qiao Fang
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| |
Collapse
|
22
|
Abstract
Over the past three decades the research on GABAB receptor biology and pharmacology in pain processing has been a fascinating experience. Norman Bowery's fundamental discovery of the existence of the GABAB receptor has led the way to the definition of GABAB molecular mechanisms; patterns of receptor expression in the peripheral and central nervous system; GABAB modulatory functions within the pain pathways. We are now harnessing this acquired knowledge to develop innovative approaches to the therapeutic management of chronic pain through allosteric modulation of the GABAB. Norman's legacy would be ultimately fulfilled by the development of novel analgesics that activate the GABAB receptor. This article is part of the "Special Issue Dedicated to Norman G. Bowery".
Collapse
Affiliation(s)
- Marzia Malcangio
- Wolfson Centre for Age Related Diseases, King's College London, London SE1 1UL, UK.
| |
Collapse
|
23
|
Olczak B, Kowalski G, Leppert W, Zaporowska-Stachowiak I, Wieczorowska-Tobis K. Analgesic efficacy, adverse effects, and safety of oxycodone administered as continuous intravenous infusion in patients after total hip arthroplasty. J Pain Res 2017; 10:1027-1032. [PMID: 28496358 PMCID: PMC5422568 DOI: 10.2147/jpr.s125449] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background Total hip arthroplasty (THA) causes extensive tissue damage and severe pain. This study aimed to assess the analgesic efficacy, adverse effects (AEs), and safety of continuous intravenous (iv) oxycodone infusion with ketoprofen (injected into the iv line) in patients after THA, and to assay serum oxycodone levels. Patients and methods Fourteen patients, aged 59‒82 years with American Society of Anesthesiologists (ASA) classification I or III, underwent THA with intrathecal analgesia and sedation induced by iv propofol. After the surgery, oxycodone (continuous iv infusion) at a dose of 1 mg/h (five patients) or 2 mg/h (nine patients) with 100 mg ketoprofen (injected into the iv line) was administered to each patient every 12 h. Pain was assessed using a numerical rating scale (NRS: 0 – no pain, 10 – the most severe pain) at rest and during movement. AEs, including hemodynamic unsteadiness, nausea, vomiting, pruritus, cognitive impairment, and respiratory depression, were registered during the first 24 h after surgery. Results Oxycodone (continuous iv infusion) at a dose of 2 mg/h with ketoprofen (100 mg) administered every 12 h provided satisfactory analgesia in all nine patients without the need of rescue analgesics within the first 24 h after THA. In three out of five patients, oxycodone at 1 mg/h was effective. Oxycodone did not induce drowsiness, vomiting, pruritus, respiratory depression, or changes in blood pressure. Bradycardia appeared in two patients, and nausea was observed in one patient. Conclusion Oxycodone infusion with ketoprofen administered by iv is effective in patients after THA. Intravenous infusion of oxycodone is a predictable, stable, and safe method of drug administration.
Collapse
Affiliation(s)
- Bogumił Olczak
- Department of Anesthesiology, Józef Struś Multiprofile Municipal Hospital
| | - Grzegorz Kowalski
- Department of Anesthesiology, Józef Struś Multiprofile Municipal Hospital.,Department of Palliative Medicine, Poznan University of Medical Sciences
| | - Wojciech Leppert
- Department of Palliative Medicine, Poznan University of Medical Sciences
| | | | | |
Collapse
|
24
|
Johnston D, Franklin K, Rigby P, Bergman K, Davidson SB. Sedation and Analgesia in Transportation of Acutely and Critically Ill Patients. Crit Care Nurs Clin North Am 2017; 28:137-54. [PMID: 27215353 DOI: 10.1016/j.cnc.2016.02.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Transportation of acutely or critically ill patients is a challenge for health care providers. Among the difficulties that providers face is the balance between adequate sedation and analgesia for the transportation event and maintaining acceptable respiratory and physiologic parameters of the patient. This article describes common challenges in providing sedation and analgesia during various phases of transport.
Collapse
Affiliation(s)
- Dawn Johnston
- West Michigan Air Care, PO Box 50406, Kalamazoo, MI 49005, USA.
| | - Kevin Franklin
- West Michigan Air Care, PO Box 50406, Kalamazoo, MI 49005, USA
| | - Paul Rigby
- West Michigan Air Care, PO Box 50406, Kalamazoo, MI 49005, USA
| | - Karen Bergman
- Bronson Hospital, Western Michigan University, 601 John Street, Box 88, Kalamazoo, MI 49007, USA
| | - Scott B Davidson
- Trauma Surgery Services, Bronson Hospital, 601 John Street, Kalamazoo, MI 49007, USA
| |
Collapse
|
25
|
Schuler U, Heller S. [Chemotherapy-induced peripheral neuropathy and neuropathic pain]. Schmerz 2017; 31:413-425. [PMID: 28293734 DOI: 10.1007/s00482-017-0198-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The perception of the media is that chemotherapy is mainly associated with nausea, vomiting and hair loss. In the longer term the development of peripheral neuropathy, i.e. chemotherapy-induced peripheral neuropathy (CIPN) is often more important for patients. The CIPN represents a side effect of many antineoplastic substances with severe functional impairment and its prevention and treatment is an important task. In addition to many interventions, which have been shown to be ineffective, physiotherapeutic measures and possibly the prophylactic application of cold are helpful for prevention. Randomized studies on the treatment of painful CIPN provided positive data for duloxetine and to a lesser extent for venlafaxine.
Collapse
Affiliation(s)
- U Schuler
- PalliativCentrum, Universitätsklinikum Carl Gustav Carus, Fetscherstr. 74, 01307, Dresden, Deutschland.
| | - S Heller
- PalliativCentrum, Universitätsklinikum Carl Gustav Carus, Fetscherstr. 74, 01307, Dresden, Deutschland
| |
Collapse
|
26
|
Gautier A, El Ouaraki H, Bazin N, Salam S, Vodjdani G, Bourgoin S, Pezet S, Bernard JF, Hamon M. Lentiviral vector-driven inhibition of 5-HT synthesis in B3 bulbo-spinal serotonergic projections – Consequences on nociception, inflammatory and neuropathic pain in rats. Exp Neurol 2017; 288:11-24. [DOI: 10.1016/j.expneurol.2016.10.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 10/24/2016] [Accepted: 10/27/2016] [Indexed: 01/19/2023]
|
27
|
Hu C, Zhao YT, Zhang G, Xu MF. Antinociceptive effects of fucoidan in rat models of vincristine-induced neuropathic pain. Mol Med Rep 2016; 15:975-980. [DOI: 10.3892/mmr.2016.6071] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 11/22/2016] [Indexed: 11/05/2022] Open
|
28
|
Gupta B, Chakraborty S, Saha S, Chandel SG, Baranwal AK, Banerjee M, Chatterjee M, Chaudhury A. Antinociceptive properties of shikonin: in vitro and in vivo studies. Can J Physiol Pharmacol 2016; 94:788-96. [PMID: 27223482 DOI: 10.1139/cjpp-2015-0465] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Shikonin possess a diverse spectrum of pharmacological properties in multiple therapeutic areas. However, the nociceptive effect of shikonin is not largely known. To investigate the antinociceptive potential of shikonin, panel of GPCRs, ion channels, and enzymes involved in pain pathogenesis were studied. To evaluate the translation of shikonin efficacy in vivo, it was tested in 3 established rat pain models. Our study reveals that shikonin has significant inhibitory effect on pan sodium channel/N1E115 and NaV1.7 channel with half maximal inhibitory concentration (IC50) value of 7.6 μmol/L and 6.4 μmol/L, respectively, in a cell-based assay. Shikonin exerted significant dose dependent antinociceptive activity at doses of 0.08%, 0.05%, and 0.02% w/v in pinch pain model. In mechanical hyperalgesia model, dose of 10 and 3 mg/kg (intraperitoneal) produced dose-dependent analgesia and showed 67% and 35% reversal of hyperalgesia respectively at 0.5 h. Following oral administration, it showed 39% reversal at 30 mg/kg dose. When tested in first phase of formalin induced pain, shikonin at 10 mg/kg dose inhibited paw flinching by ∼71%. In all studied preclinical models, analgesic effect was similar or better than standard analgesic drugs. The present study unveils the mechanistic role of shikonin on pain modulation, predominantly via sodium channel modulation, suggesting that shikonin could be developed as a potential pain blocker.
Collapse
Affiliation(s)
- Bhawana Gupta
- a Department of Bio and Nano Technology, Bio and Nano Technology Centre, Guru Jambheshwar University of Science and Technology, Hisar 125 001 (Haryana), India.,b TCG Life Sciences Private Ltd., R&D Centre Biology, Bengal Intelligent Park Ltd., Block EP and GP, Sector V, Salt Lake, Kolkata 700091 (West Bengal), India
| | - Sabyasachi Chakraborty
- b TCG Life Sciences Private Ltd., R&D Centre Biology, Bengal Intelligent Park Ltd., Block EP and GP, Sector V, Salt Lake, Kolkata 700091 (West Bengal), India
| | - Soumya Saha
- b TCG Life Sciences Private Ltd., R&D Centre Biology, Bengal Intelligent Park Ltd., Block EP and GP, Sector V, Salt Lake, Kolkata 700091 (West Bengal), India
| | - Sunita Gulabsingh Chandel
- b TCG Life Sciences Private Ltd., R&D Centre Biology, Bengal Intelligent Park Ltd., Block EP and GP, Sector V, Salt Lake, Kolkata 700091 (West Bengal), India
| | - Atul Kumar Baranwal
- b TCG Life Sciences Private Ltd., R&D Centre Biology, Bengal Intelligent Park Ltd., Block EP and GP, Sector V, Salt Lake, Kolkata 700091 (West Bengal), India
| | - Manish Banerjee
- b TCG Life Sciences Private Ltd., R&D Centre Biology, Bengal Intelligent Park Ltd., Block EP and GP, Sector V, Salt Lake, Kolkata 700091 (West Bengal), India
| | - Mousumi Chatterjee
- b TCG Life Sciences Private Ltd., R&D Centre Biology, Bengal Intelligent Park Ltd., Block EP and GP, Sector V, Salt Lake, Kolkata 700091 (West Bengal), India
| | - Ashok Chaudhury
- a Department of Bio and Nano Technology, Bio and Nano Technology Centre, Guru Jambheshwar University of Science and Technology, Hisar 125 001 (Haryana), India
| |
Collapse
|
29
|
Abstract
This paper is the thirty-seventh consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2014 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (endogenous opioids and receptors), and the roles of these opioid peptides and receptors in pain and analgesia (pain and analgesia); stress and social status (human studies); tolerance and dependence (opioid mediation of other analgesic responses); learning and memory (stress and social status); eating and drinking (stress-induced analgesia); alcohol and drugs of abuse (emotional responses in opioid-mediated behaviors); sexual activity and hormones, pregnancy, development and endocrinology (opioid involvement in stress response regulation); mental illness and mood (tolerance and dependence); seizures and neurologic disorders (learning and memory); electrical-related activity and neurophysiology (opiates and conditioned place preferences (CPP)); general activity and locomotion (eating and drinking); gastrointestinal, renal and hepatic functions (alcohol and drugs of abuse); cardiovascular responses (opiates and ethanol); respiration and thermoregulation (opiates and THC); and immunological responses (opiates and stimulants). This paper is the thirty-seventh consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2014 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (endogenous opioids and receptors), and the roles of these opioid peptides and receptors in pain and analgesia (pain and analgesia); stress and social status (human studies); tolerance and dependence (opioid mediation of other analgesic responses); learning and memory (stress and social status); eating and drinking (stress-induced analgesia); alcohol and drugs of abuse (emotional responses in opioid-mediated behaviors); sexual activity and hormones, pregnancy, development and endocrinology (opioid involvement in stress response regulation); mental illness and mood (tolerance and dependence); seizures and neurologic disorders (learning and memory); electrical-related activity and neurophysiology (opiates and conditioned place preferences (CPP)); general activity and locomotion (eating and drinking); gastrointestinal, renal and hepatic functions (alcohol and drugs of abuse); cardiovascular responses (opiates and ethanol); respiration and thermoregulation (opiates and THC); and immunological responses (opiates and stimulants).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY 11367, United States.
| |
Collapse
|
30
|
Yeh CC, Sun HL, Huang CJ, Wong CS, Cherng CH, Huh BK, Wang JS, Chien CC. Long-Term Anti-Allodynic Effect of Immediate Pulsed Radiofrequency Modulation through Down-Regulation of Insulin-Like Growth Factor 2 in a Neuropathic Pain Model. Int J Mol Sci 2015; 16:27156-70. [PMID: 26580597 PMCID: PMC4661871 DOI: 10.3390/ijms161126013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 10/30/2015] [Accepted: 11/04/2015] [Indexed: 12/15/2022] Open
Abstract
Pulsed radiofrequency (PRF) is effective in the treatment of neuropathic pain in clinical practice. Its application to sites proximal to nerve injury can inhibit the activity of extra-cellular signal-regulated kinase (ERK) for up to 28 days. The spared nerve injury (SNI)+ immPRF group (immediate exposure to PRF for 6 min after SNI) exhibited a greater anti-allodynic effect compared with the control group (SNI alone) or the SNI + postPRF group (application of PRF for 6 min on the 14th day after SNI). Insulin-like growth factor 2 (IGF2) was selected using microarray assays and according to web-based gene ontology annotations in the SNI + immPRF group. An increase in IGF2 and activation of ERK1/2 were attenuated by the immPRF treatment compared with an SNI control group. Using immunofluorescent staining, we detected co-localized phosphorylated ERK1/2 and IGF2 in the dorsal horn regions of rats from the SNI group, where the IGF2 protein predominantly arose in CD11b- or NeuN-positive cells, whereas IGF2 immunoreactivity was not detected in the SNI + immPRF group. Taken together, these results suggest that PRF treatment immediately after nerve injury significantly inhibited the development of neuropathic pain with a lasting effect, most likely through IGF2 down-regulation and the inhibition of ERK1/2 activity primarily in microglial cells.
Collapse
Affiliation(s)
- Chun-Chang Yeh
- Department of Chemistry, Fu-Jen Catholic University and Graduate Institute of Basic Medicine, Fu-Jen Catholic University, New Taipei City 24205, Taiwan.
- Department of Anesthesiology and Integrated Pain Management Center, Tri-Service General Hospital and National Defense Medical Center, Taipei 11490, Taiwan.
- School of Medicine, Fu Jen Catholic University, New Taipei City 24205, Taiwan.
| | - Hsiao-Lun Sun
- School of Medicine, Fu Jen Catholic University, New Taipei City 24205, Taiwan.
- Department of Anesthesiology, Sijhih Cathay General Hospital, New Taipei City 22174, Taiwan.
| | - Chi-Jung Huang
- Department of Medical Research, Cathay General Hospital, Taipei 10631, Taiwan.
- Department of Biochemistry, National Defense Medical Center, Taipei 11490, Taiwan.
| | - Chih-Shung Wong
- Department of Anesthesiology and Integrated Pain Management Center, Tri-Service General Hospital and National Defense Medical Center, Taipei 11490, Taiwan.
- Department of Anesthesiology, Cathay General Hospital, Taipei 10631, Taiwan.
| | - Chen-Hwan Cherng
- Department of Anesthesiology and Integrated Pain Management Center, Tri-Service General Hospital and National Defense Medical Center, Taipei 11490, Taiwan.
| | - Billy Keon Huh
- Department of Pain Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Jinn-Shyan Wang
- School of Medicine, Fu Jen Catholic University, New Taipei City 24205, Taiwan.
| | - Chih-Cheng Chien
- School of Medicine, Fu Jen Catholic University, New Taipei City 24205, Taiwan.
- Department of Medical Research, Cathay General Hospital, Taipei 10631, Taiwan.
- Department of Anesthesiology, Cathay General Hospital, Taipei 10631, Taiwan.
| |
Collapse
|
31
|
Konopka-Filippow M, Zabrocka E, Wójtowicz A, Skalij P, Wojtukiewicz MZ, Sierko E. Pain management during radiotherapy and radiochemotherapy in oropharyngeal cancer patients: single-institution experience. Int Dent J 2015; 65:242-8. [DOI: 10.1111/idj.12181] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
32
|
Effects of dextromethorphan and oxycodone on treatment of neuropathic pain in mice. J Biomed Sci 2015; 22:81. [PMID: 26391752 PMCID: PMC4578273 DOI: 10.1186/s12929-015-0186-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 09/10/2015] [Indexed: 01/22/2023] Open
Abstract
Background Neuropathic pain is a very troublesome and difficult pain to treat. Although opioids are the best analgesics for cancer and surgical pain in clinic, only oxycodone among opioids shows better efficacy to alleviate neuropathic pain. However, many side effects associated with the use of oxycodone render the continued use of it in neuropathic pain treatment undesirable. Hence, we explored whether dextromethorphan (DM, a known N-methyl-D-aspartate receptor antagonist with neuroprotective properties) could potentiate the anti-allodynic effect of oxycodone and underlying mechanisms regarding to glial cells (astrocytes and microglia) activation and proinflammatory cytokines release in a spinal nerve injury (SNL) mice model. Results Oxycodone produced a dose-dependent anti-allodynic effect. Co-administration of DM at a dose of 10 mg/kg (i.p.) (DM10) which had no anti-allodynic effect by itself enhanced the acute oxycodone (1 mg/kg, s.c.) effect. When the chronic anti-allodynic effects were examined, co-administration of DM10 also significantly enhanced the oxycodone effect at 3 mg/kg. Furthermore, oxycodone decreased SNL-induced activation of glial cells (astrocytes and microglia) and plasma levels of proinflammatory cytokines (IL-6, IL-1β and TNF-α). Co-administration of DM10 potentiated these effects of oxycodone. Conclusion The combined use of DM with oxycodone may have therapeutic potential for decreasing the effective dose of oxycodone on the treatment of neuropathic pain. Attenuation of the glial activation and proinflammatory cytokines in the spinal cord may be important mechanisms for these effects of DM.
Collapse
|
33
|
Poupon L, Kerckhove N, Vein J, Lamoine S, Authier N, Busserolles J, Balayssac D. Minimizing chemotherapy-induced peripheral neuropathy: preclinical and clinical development of new perspectives. Expert Opin Drug Saf 2015; 14:1269-82. [DOI: 10.1517/14740338.2015.1056777] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
34
|
Effects of Electroacupuncture with Dominant Frequency at SP 6 and ST 36 Based on Meridian Theory on Pain-Depression Dyad in Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:732845. [PMID: 25821498 PMCID: PMC4364048 DOI: 10.1155/2015/732845] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2014] [Revised: 02/15/2015] [Accepted: 02/16/2015] [Indexed: 01/30/2023]
Abstract
Epidemic investigations reveal an intimate interrelationship between pain and depression. The effect of electroacupuncture (EA) on pain or depression has been demonstrated individually, but its effect on pain-depression dyad is unknown. Our study aimed to screen a dominant EA frequency on pain-depression dyad and determine the validity of acupoint selection based on meridian theory. The pain-depression dyad rat model was induced by reserpine and treated using EA with different frequencies at identical acupoints to extract a dominant frequency and then administrated dominant-frequency EA at different acupoints in the above models. Paw withdrawal latency (PWL), emotional behavior of elevated zero maze (EZM) test, and open field (OF) test were conducted. We found that 100 Hz EA at Zusanli (ST 36) and Sanyinjiao (SP 6) (classical acupoints for spleen-deficiency syndrome) were the most effective in improving PWL, travelling distance in the EZM, and maximum velocity in OF compared to EA with other frequencies; ST 36 and SP 6 were proved more effective than other acupoints beyond the meridian theory and nonacupoints under the same administration of EA. Therefore, we concluded that 100 Hz is the dominant frequency for treating the pain-depression dyad with EA, and acupoints on spleen and stomach meridians are preferable choices.
Collapse
|
35
|
BDNF-dependent plasticity induced by peripheral inflammation in the primary sensory and the cingulate cortex triggers cold allodynia and reveals a major role for endogenous BDNF as a tuner of the affective aspect of pain. J Neurosci 2015; 34:14739-51. [PMID: 25355226 DOI: 10.1523/jneurosci.0860-14.2014] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Painful experiences are multilayered, composed of sensory, affective, cognitive and behavioral facets. Whereas it is well accepted that the development of chronic pain is due to maladaptive neuronal changes, the underlying molecular mechanisms, their relationship to the different pain modalities, and indeed the localization of these changes are still unknown. Brain-derived neurotrophic factor (BDNF) is an activity-dependent neuromodulator in the adult brain, which enhances neuronal excitability. In the spinal cord, BDNF underlies the development and maintenance of inflammatory and neuropathic pain. Here, we hypothesized that BDNF could be a trigger of some of these plastic changes. Our results demonstrate that BDNF is upregulated in the anterior cingulate cortex (ACC) and the primary sensory cortex (S1) in rats with inflammatory pain. Injections of recombinant BDNF (into the ACC) or a viral vector synthesizing BDNF (into the ACC or S1) triggered both neuronal hyperexcitability, as shown by elevated long-term potentiation, and sustained pain hypersensitivity. Finally, pharmacological blockade of BDNF-tropomyosin receptor kinase B (TrkB) signaling in the ACC, through local injection of cyclotraxin-B (a novel, highly potent, and selective TrkB antagonist) prevented neuronal hyperexcitability, the emergence of cold hypersensitivity, and passive avoidance behavior. These findings show that BDNF-dependent neuronal plasticity in the ACC, a structure known to be involved in the affective-emotional aspect of pain, is a key mechanism in the development and maintenance of the emotional aspect of chronic pain.
Collapse
|
36
|
Fresno N, Pérez-Fernández R, Goicoechea C, Alkorta I, Fernández-Carvajal A, de la Torre-Martínez R, Quirce S, Ferrer-Montiel A, Martín MI, Goya P, Elguero J. Adamantyl analogues of paracetamol as potent analgesic drugs via inhibition of TRPA1. PLoS One 2014; 9:e113841. [PMID: 25438056 PMCID: PMC4249970 DOI: 10.1371/journal.pone.0113841] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 10/31/2014] [Indexed: 01/31/2023] Open
Abstract
Paracetamol also known as acetaminophen, is a widely used analgesic and antipyretic agent. We report the synthesis and biological evaluation of adamantyl analogues of paracetamol with important analgesic properties. The mechanism of nociception of compound 6a/b, an analog of paracetamol, is not exerted through direct interaction with cannabinoid receptors, nor by inhibiting COX. It behaves as an interesting selective TRPA1 channel antagonist, which may be responsible for its analgesic properties, whereas it has no effect on the TRPM8 nor TRPV1 channels. The possibility of replacing a phenyl ring by an adamantyl ring opens new avenues in other fields of medicinal chemistry.
Collapse
Affiliation(s)
- Nieves Fresno
- Instituto de Química Médica, IQM-CSIC, Madrid, Spain
| | | | - Carlos Goicoechea
- Departamento de Farmacología y Nutrición, Unidad Asociada de I+D+i al CSIC, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Alcorcón, Madrid, Spain
| | - Ibon Alkorta
- Instituto de Química Médica, IQM-CSIC, Madrid, Spain
- * E-mail:
| | | | | | - Susana Quirce
- Institute of Molecular and Cellular Biology, Universidad Miguel Hernández, Alicante, Spain
| | - Antonio Ferrer-Montiel
- Institute of Molecular and Cellular Biology, Universidad Miguel Hernández, Alicante, Spain
| | - M. Isabel Martín
- Departamento de Farmacología y Nutrición, Unidad Asociada de I+D+i al CSIC, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Alcorcón, Madrid, Spain
| | - Pilar Goya
- Instituto de Química Médica, IQM-CSIC, Madrid, Spain
| | - José Elguero
- Instituto de Química Médica, IQM-CSIC, Madrid, Spain
| |
Collapse
|
37
|
|
38
|
Carozzi VA, Canta A, Chiorazzi A. Chemotherapy-induced peripheral neuropathy: What do we know about mechanisms? Neurosci Lett 2014; 596:90-107. [PMID: 25459280 DOI: 10.1016/j.neulet.2014.10.014] [Citation(s) in RCA: 292] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 10/09/2014] [Indexed: 12/14/2022]
Abstract
Cisplatin, oxaliplatin, paclitaxel, vincristine and bortezomib are some of the most effective drugs successfully employed (alone or in combinations) as first-line treatment for common cancers. However they often caused severe peripheral neurotoxicity and neuropathic pain. Structural deficits in Dorsal Root Ganglia and sensory nerves caused symptoms as sensory loss, paresthesia, dysaesthesia and numbness that result in patient' suffering and also limit the life-saving therapy. Several scientists have explored the various mechanisms involved in the onset of chemotherapy-related peripheral neurotoxicity identifying molecular targets useful for the development of selected neuroprotective strategies. Dorsal Root Ganglia sensory neurons, satellite cells, Schwann cells, as well as neuronal and glial cells in the spinal cord, are the preferential sites in which chemotherapy neurotoxicity occurs. DNA damage, alterations in cellular system repairs, mitochondria changes, increased intracellular reactive oxygen species, alterations in ion channels, glutamate signalling, MAP-kinases and nociceptors ectopic activation are among the events that trigger the onset of peripheral neurotoxicity and neuropathic pain. In the present work we review the role of the main players in determining the pathogenesis of anticancer drugs-induced peripheral neuropathy.
Collapse
Affiliation(s)
- V A Carozzi
- Department of Surgery and Translational Medicine, University of Milan-Bicocca, Monza, Italy.
| | - A Canta
- Department of Surgery and Translational Medicine, University of Milan-Bicocca, Monza, Italy
| | - A Chiorazzi
- Department of Surgery and Translational Medicine, University of Milan-Bicocca, Monza, Italy
| |
Collapse
|
39
|
Serotonin, morphine, and neuropathic pain: not a simple story. Anesthesiology 2014; 121:217-8. [PMID: 24887969 DOI: 10.1097/aln.0000000000000325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|