1
|
May DA, Taha F, Child MA, Ewald SE. How colonization bottlenecks, tissue niches, and transmission strategies shape protozoan infections. Trends Parasitol 2023; 39:1074-1086. [PMID: 37839913 DOI: 10.1016/j.pt.2023.09.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/25/2023] [Accepted: 09/25/2023] [Indexed: 10/17/2023]
Abstract
Protozoan pathogens such as Plasmodium spp., Leishmania spp., Toxoplasma gondii, and Trypanosoma spp. are often associated with high-mortality, acute and chronic diseases of global health concern. For transmission and immune evasion, protozoans have evolved diverse strategies to interact with a range of host tissue environments. These interactions are linked to disease pathology, yet our understanding of the association between parasite colonization and host homeostatic disruption is limited. Recently developed techniques for cellular barcoding have the potential to uncover the biology regulating parasite transmission, dissemination, and the stability of infection. Understanding bottlenecks to infection and the in vivo tissue niches that facilitate chronic infection and spread has the potential to reveal new aspects of parasite biology.
Collapse
Affiliation(s)
- Dana A May
- Department of Microbiology, Immunology, and Cancer Biology at the Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Fatima Taha
- Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Matthew A Child
- Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK.
| | - Sarah E Ewald
- Department of Microbiology, Immunology, and Cancer Biology at the Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA.
| |
Collapse
|
2
|
Ndungu K, Thuita J, Murilla G, Kagira J, Auma J, Mireji P, Ngae G, Okumu P, Gitonga P, Guya S, Mdachi R. The pathogenicity of blood stream and central nervous system forms of Trypanosoma brucei rhodesiense trypanosomes in laboratory mice: a comparative study. F1000Res 2023; 11:260. [PMID: 38162635 PMCID: PMC10755267 DOI: 10.12688/f1000research.75518.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/01/2023] [Indexed: 01/03/2024] Open
Abstract
Background: Human African trypanosomiasis (HAT) develops in two stages namely early stage when trypanosomes are found in the blood and late stage when trypanosomes are found in the central nervous system (CNS). The two environments are different with CNS environment reported as being hostile to the trypanosomes than the blood environment. The clinical symptoms manifested by the disease in the two environments are different. Information on whether blood stream are pathologically different from CNS trypanosomes is lacking. This study undertook to compare the inter-isolate pathological differences caused by bloodstream forms (BSF) and central nervous system (CNS) of five Trypanosoma brucei rhodesiense ( Tbr) isolates in Swiss white mice. Methods: Donor mice infected with each of the five isolates were euthanized at 21 days post infection (DPI) for recovery of BSF trypanosomes in heart blood and CNS trypanosomes in brain supernatants. Groups of Swiss white mice (n = 10) were then infected with BSF or CNS forms of each isolate and monitored for parasitaemia, packed cell volume (PCV), body weight, survivorship, trypanosome length, gross and histopathology characteristics. Results: Amplification of SRA gene prior to trypanosome morphology and pathogenicity studies confirmed all isolates as T. b. rhodesiense. At 21 DPI, CNS trypanosomes were predominantly long slender (LS) while BSF were a mixture of short stumpy and intermediate forms. The density of BSF trypanosomes was on average 2-3 log-scales greater than that of CNS trypanosomes with isolate KETRI 2656 having the highest CNS trypanosome density. Conclusions: The pathogenicity study revealed clear differences in the virulence/pathogenicity of the five (5) isolates but no distinct and consistent differences between CNS and BSF forms of the same isolate. We also identified KETRI 2656 as a suitable isolate for acute menigo- encephalitic studies.
Collapse
Affiliation(s)
- Kariuki Ndungu
- Biochemistry, Kenya Agricultural and Livestock Research Organization, Nairobi, P.O. Box 362 -00902, Kenya
| | - John Thuita
- Animal Science, Meru University of Science and Technology, Meru, P.O Box, 972-60200, Kenya
| | - Grace Murilla
- Administration, KAG East University, Nairobi, P.O.BOX 46328-00100, Kenya
| | - John Kagira
- Animal Science, Jomo Keyatta University of Science and Technology, Nairobi, P.O. Box 62000–00200, Kenya
| | - Joanna Auma
- Biochemistry, Kenya Agricultural and Livestock Research Organization, Nairobi, P.O. Box 362 -00902, Kenya
| | - Paul Mireji
- Bioinformatics, Centre for Geographic Medicine Research, Kilifi, P. O. Box 428-80108, Kenya
| | - Geoffrey Ngae
- Food Crops Research Institute, Kenya Agricultural and Livestock Research Organization, Nairobi, P. O. Box 30148-00200, Kenya
| | - Paul Okumu
- Veterinary Pathology, University of Nairobi, Nairobi, P.O. Box 30197-00100, Kenya
| | - Purity Gitonga
- Biochemistry, Kenya Agricultural and Livestock Research Organization, Nairobi, P.O. Box 362 -00902, Kenya
| | - Samuel Guya
- Biochemistry, Kenya Agricultural and Livestock Research Organization, Nairobi, P.O. Box 362 -00902, Kenya
| | - Raymond Mdachi
- Biochemistry, Kenya Agricultural and Livestock Research Organization, Nairobi, P.O. Box 362 -00902, Kenya
| |
Collapse
|
3
|
Smith JT, Tylec B, Naguleswaran A, Roditi I, Read LK. Developmental dynamics of mitochondrial mRNA abundance and editing reveal roles for temperature and the differentiation-repressive kinase RDK1 in cytochrome oxidase subunit II mRNA editing. mBio 2023; 14:e0185423. [PMID: 37795988 PMCID: PMC10653865 DOI: 10.1128/mbio.01854-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 08/15/2023] [Indexed: 10/06/2023] Open
Abstract
IMPORTANCE Trypanosoma brucei is the unicellular parasite that causes African sleeping sickness and nagana disease in livestock. The parasite has a complex life cycle consisting of several developmental forms in the human and tsetse fly insect vector. Both the mammalian and insect hosts provide different nutritional environments, so T. brucei must adapt its metabolism to promote its survival and to complete its life cycle. As T. brucei is transmitted from the human host to the fly, the parasite must regulate its mitochondrial gene expression through a process called uridine insertion/deletion editing to achieve mRNAs capable of being translated into functional respiratory chain proteins required for energy production in the insect host. Therefore, it is essential to understand the mechanisms by which T. brucei regulates mitochondrial gene expression during transmission from the mammalian host to the insect vector.
Collapse
Affiliation(s)
- Joseph T. Smith
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA
| | - Brianna Tylec
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA
| | | | - Isabel Roditi
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| | - Laurie K. Read
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA
| |
Collapse
|
4
|
Uzcategui NL, Güçer S, Richter C, Speidel A, Zirdum E, Duszenko M, Garaschuk O, Figarella K. Live imaging of microglia during sleeping sickness reveals early and heterogeneous inflammatory responses. Front Immunol 2023; 14:1253648. [PMID: 37781403 PMCID: PMC10534015 DOI: 10.3389/fimmu.2023.1253648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 08/30/2023] [Indexed: 10/03/2023] Open
Abstract
Introduction Invasion of the central nervous system (CNS) is the most serious consequence of Trypanosoma brucei infection, which causes sleeping sickness. Recent experimental data have revealed some more insights into the disease during the meningoencephalitic stage. However, detailed cellular processes befalling the CNS during the disease are poorly understood. Methods To further address this issue, we implanted a cranial window on the cortex of B6.129P2(Cg)-Cx3cr1tm1Litt/J mice, infected them with Trypanosoma brucei expressing RFP via intraperitoneal injection, and monitored microglial cells and parasites longitudinally over 30 days using in vivo 2-photon imaging. We correlated the observed changes with histological analyses to evaluate the recruitment of peripheral immune cells. Results and discussion We uncovered an early involvement of microglia that precedes invasion of the CNS by the parasite. We accomplished a detailed characterization of the progressive sequence of events that correlates with microglial morphological changes and microgliosis. Our findings unveiled a heterogeneous microglial response in places of initial homeostatic disruption near brain barriers and pointed out an exceptional capability of microglia to hamper parasite proliferation inside the brain. We also found early signs of inflammation in the meninges, which synchronize with the microglial response. Moreover, we observed a massive infiltration of peripheral immune cells into the parenchyma as a signature in the final disease stage. Overall, our study provides new insights into the host-pathogen immune interactions in the meningeal and parenchymal compartments of the neocortex.
Collapse
Affiliation(s)
- Nestor L. Uzcategui
- Department of Neurophysiology, Institute of Physiology, University of Tuebingen, Tuebingen, Germany
- Institute of Tropical Medicine, University of Tuebingen, Tuebingen, Germany
- Institute of Anatomy, Central University of Venezuela, Caracas, Venezuela
| | - Sena Güçer
- Department of Neurophysiology, Institute of Physiology, University of Tuebingen, Tuebingen, Germany
| | - Cris Richter
- Department of Neurophysiology, Institute of Physiology, University of Tuebingen, Tuebingen, Germany
| | - Annika Speidel
- Department of Neurophysiology, Institute of Physiology, University of Tuebingen, Tuebingen, Germany
| | - Elizabeta Zirdum
- Department of Neurophysiology, Institute of Physiology, University of Tuebingen, Tuebingen, Germany
| | - Michael Duszenko
- Department of Neurophysiology, Institute of Physiology, University of Tuebingen, Tuebingen, Germany
| | - Olga Garaschuk
- Department of Neurophysiology, Institute of Physiology, University of Tuebingen, Tuebingen, Germany
| | - Katherine Figarella
- Department of Neurophysiology, Institute of Physiology, University of Tuebingen, Tuebingen, Germany
| |
Collapse
|
5
|
Oula JO, Mose JM, Waiganjo NN, Chepukosi KW, Mitalo NS, Isaac AO, Nyariki JN. Vitamin B12 blocked Trypanosoma brucei rhodesiense-driven disruption of the blood brain barrier, and normalized nitric oxide and malondialdehyde levels in a mouse model. Parasitol Int 2023; 96:102775. [PMID: 37390918 DOI: 10.1016/j.parint.2023.102775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/20/2023] [Accepted: 06/27/2023] [Indexed: 07/02/2023]
Abstract
Infection with Trypanosoma brucei rhodesiense (T.b.r) causes acute Human African Trypanosomiasis (HAT) in Africa. This study determined the effect of vitamin B12 on T.b.r -driven pathological events in a mouse model. Mice were randomly assigned into four groups; group one was the control. Group two was infected with T.b.r; group three was supplemented with 8 mg/kg vitamin B12 for two weeks; before infection with T.b.r. For group four, administration of vitamin B12 was started from the 4th days post-infection with T.b.r. At 40 days post-infection, the mice were sacrificed to obtain blood, tissues, and organs for various analyses. The results showed that vitamin B12 administration enhanced the survival rate of T.b.r infected mice, and prevented T.b.r-induced disruption of the blood-brain barrier and decline in neurological performance. Notably, T.b.r-induced hematological alteration leading to anaemia, leukocytosis and dyslipidemia was alleviated by vitamin B12. T.b.r-induced elevation of the liver alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase and total bilirubin as well as the kidney damage markers urea, uric acid and creatinine were attenuated by vitamin B12. Vitamin B12 blocked T.b.r-driven rise in TNF-α and IFN-γ, nitric oxide and malondialdehyde. T.b.r-induced depletion of GSH levels were attenuated in the presence of vitamin B12 in the brain, spleen and liver tissues; a clear indication of the antioxidant activity of vitamin B12. In conclusion, treatment with vitamin B12 potentially protects against various pathological events associated with severe late-stage HAT and presents a great opportunity for further scrutiny to develop an adjunct therapy for severe late-stage HAT.
Collapse
Affiliation(s)
- James O Oula
- Department of Biomedical Science & Technology, Technical University of Kenya, P. O. Box 52428, 00200 Nairobi, Kenya
| | - John Mokua Mose
- Department of Biomedical Science & Technology, Technical University of Kenya, P. O. Box 52428, 00200 Nairobi, Kenya
| | - Naomi N Waiganjo
- Department of Biomedical Science & Technology, Technical University of Kenya, P. O. Box 52428, 00200 Nairobi, Kenya
| | - Kennedy W Chepukosi
- Department of Biochemistry and Biotechnology, Technical University of Kenya, P. O. Box 52428, 00200 Nairobi, Kenya
| | - Nancy S Mitalo
- Department of Biomedical Science & Technology, Technical University of Kenya, P. O. Box 52428, 00200 Nairobi, Kenya
| | - Alfred Orina Isaac
- Department of Pharmaceutical Sciences and Technology, Technical University of Kenya, P. O. Box 52428, 00200 Nairobi, Kenya
| | - James Nyabuga Nyariki
- Department of Biochemistry and Biotechnology, Technical University of Kenya, P. O. Box 52428, 00200 Nairobi, Kenya.
| |
Collapse
|
6
|
Moianos D, Prifti GM, Makri M, Zoidis G. Targeting Metalloenzymes: The "Achilles' Heel" of Viruses and Parasites. Pharmaceuticals (Basel) 2023; 16:901. [PMID: 37375848 DOI: 10.3390/ph16060901] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/12/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
Metalloenzymes are central to the regulation of a wide range of essential viral and parasitic functions, including protein degradation, nucleic acid modification, and many others. Given the impact of infectious diseases on human health, inhibiting metalloenzymes offers an attractive approach to disease therapy. Metal-chelating agents have been expansively studied as antivirals and antiparasitics, resulting in important classes of metal-dependent enzyme inhibitors. This review provides the recent advances in targeting the metalloenzymes of viruses and parasites that impose a significant burden on global public health, including influenza A and B, hepatitis B and C, and human immunodeficiency viruses as well as Trypanosoma brucei and Trypanosoma cruzi.
Collapse
Affiliation(s)
- Dimitrios Moianos
- Department of Pharmacy, Division of Pharmaceutical Chemistry, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Georgia-Myrto Prifti
- Department of Pharmacy, Division of Pharmaceutical Chemistry, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Maria Makri
- Department of Pharmacy, Division of Pharmaceutical Chemistry, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Grigoris Zoidis
- Department of Pharmacy, Division of Pharmaceutical Chemistry, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| |
Collapse
|
7
|
Poudyal NR, Paul KS. Fatty acid uptake in Trypanosoma brucei: Host resources and possible mechanisms. Front Cell Infect Microbiol 2022; 12:949409. [PMID: 36478671 PMCID: PMC9719944 DOI: 10.3389/fcimb.2022.949409] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 10/24/2022] [Indexed: 11/22/2022] Open
Abstract
Trypanosoma brucei spp. causes African Sleeping Sickness in humans and nagana, a wasting disease, in cattle. As T. brucei goes through its life cycle in its mammalian and insect vector hosts, it is exposed to distinct environments that differ in their nutrient resources. One such nutrient resource is fatty acids, which T. brucei uses to build complex lipids or as a potential carbon source for oxidative metabolism. Of note, fatty acids are the membrane anchoring moiety of the glycosylphosphatidylinositol (GPI)-anchors of the major surface proteins, Variant Surface Glycoprotein (VSG) and the Procyclins, which are implicated in parasite survival in the host. While T. brucei can synthesize fatty acids de novo, it also readily acquires fatty acids from its surroundings. The relative contribution of parasite-derived vs. host-derived fatty acids to T. brucei growth and survival is not known, nor have the molecular mechanisms of fatty acid uptake been defined. To facilitate experimental inquiry into these important aspects of T. brucei biology, we addressed two questions in this review: (1) What is known about the availability of fatty acids in different host tissues where T. brucei can live? (2) What is known about the molecular mechanisms mediating fatty acid uptake in T. brucei? Finally, based on existing biochemical and genomic data, we suggest a model for T. brucei fatty acid uptake that proposes two major routes of fatty acid uptake: diffusion across membranes followed by intracellular trapping, and endocytosis of host lipoproteins.
Collapse
Affiliation(s)
- Nava Raj Poudyal
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC, United States
- Eukaryotic Pathogens Innovation Center (EPIC), Clemson University, Clemson, SC, United States
| | - Kimberly S. Paul
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC, United States
- Eukaryotic Pathogens Innovation Center (EPIC), Clemson University, Clemson, SC, United States
| |
Collapse
|
8
|
Adams Y, Jensen AR. Cerebral malaria - modelling interactions at the blood-brain barrier in vitro. Dis Model Mech 2022; 15:275963. [PMID: 35815443 PMCID: PMC9302004 DOI: 10.1242/dmm.049410] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The blood–brain barrier (BBB) is a continuous endothelial barrier that is supported by pericytes and astrocytes and regulates the passage of solutes between the bloodstream and the brain. This structure is called the neurovascular unit and serves to protect the brain from blood-borne disease-causing agents and other risk factors. In the past decade, great strides have been made to investigate the neurovascular unit for delivery of chemotherapeutics and for understanding how pathogens can circumvent the barrier, leading to severe and, at times, fatal complications. One such complication is cerebral malaria, in which Plasmodium falciparum-infected red blood cells disrupt the barrier function of the BBB, causing severe brain swelling. Multiple in vitro models of the BBB are available to investigate the mechanisms underlying the pathogenesis of cerebral malaria and other diseases. These range from single-cell monolayer cultures to multicellular BBB organoids and highly complex cerebral organoids. Here, we review the technologies available in malaria research to investigate the interaction between P. falciparum-infected red blood cells and the BBB, and discuss the advantages and disadvantages of each model. Summary: This Review discusses the available in vitro models to investigate the impact of adhesion of Plasmodium falciparum-infected red blood cells on the blood–brain barrier, a process associated with cerebral malaria.
Collapse
Affiliation(s)
- Yvonne Adams
- Centre for Medical Parasitology at the Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Anja Ramstedt Jensen
- Centre for Medical Parasitology at the Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark
| |
Collapse
|
9
|
Speidel A, Theile M, Pfeiffer L, Herrmann A, Figarella K, Ishikawa H, Schwerk C, Schroten H, Duszenko M, Mogk S. Transmigration of Trypanosoma brucei across an in vitro blood-cerebrospinal fluid barrier. iScience 2022; 25:104014. [PMID: 35313698 PMCID: PMC8933718 DOI: 10.1016/j.isci.2022.104014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 01/24/2022] [Accepted: 02/28/2022] [Indexed: 11/28/2022] Open
Abstract
Trypanosoma brucei is the causative agent of human African trypanosomiasis. The parasite transmigrates from blood vessels across the choroid plexus epithelium to enter the central nervous system, a process that leads to the manifestation of second stage sleeping sickness. Using an in vitro model of the blood-cerebrospinal fluid barrier, we investigated the mechanism of the transmigration process. For this, a monolayer of human choroid plexus papilloma cells was cultivated on a permeable membrane that mimics the basal lamina underlying the choroid plexus epithelial cells. Plexus cells polarize and interconnect forming tight junctions. Deploying different T. brucei brucei strains, we observed that geometry and motility are important for tissue invasion. Using fluorescent microscopy, the parasite's moving was visualized between plexus epithelial cells. The presented model provides a simple tool to screen trypanosome libraries for their ability to infect cerebrospinal fluid or to test the impact of chemical substances on transmigration.
Collapse
Affiliation(s)
- Annika Speidel
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Marianne Theile
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Lena Pfeiffer
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Alexander Herrmann
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | | | - Hiroshi Ishikawa
- Laboratory of Clinical Regenerative Medicine, Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Christian Schwerk
- Pediatric Infectious Diseases, Department of Pediatrics, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Horst Schroten
- Pediatric Infectious Diseases, Department of Pediatrics, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Michael Duszenko
- Department of Neurophysiology, University of Tübingen, Tübingen, Germany
| | - Stefan Mogk
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| |
Collapse
|
10
|
Soudah B, Essodina T, Toï N, Balabadi D, Yao L, Martin Bienvenu S, Wendemanegde Ernest S. Assessment of α-Cypermethrin Pour-On Application and Diminazene Aceturate for Treating Trypanosome-Related Diseases Caused by Tsetse Flies on Cattle in Mô, Togo. JOURNAL OF MEDICAL ENTOMOLOGY 2022; 59:598-606. [PMID: 34935041 DOI: 10.1093/jme/tjab201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Indexed: 06/14/2023]
Abstract
The effects of tsetse-transmitted trypanosomosis control in high tsetse flies (Glossina spp.) challenge and trypanocidal drug resistance settings remain poorly understood in Togo owing to poor data coverage on the current disease impact. From March 2014 to November 2017, a database of zoo-sanitary surveys integrating the evolution of disease incidence and intervention coverage made it possible to quantify the apparent effects attributable to the control effort, focused on all sedentary cattle breeds in the 1,000 km² area of Mô in Togo. The strategy involved an initial phase with cross-sectional entomological and parasitological. Then, three times a year, 20% of the bovine animals of the study area received α-cypermethrin pour-on, and infected cattle with poor health (798 cattle in 2014 and 358 in 2017) were individually given diminazene aceturate at 7 mg/kg of body weight. The tsetse density in the area decreased significantly, from 1.78 ± 0.37 in March 2014 before the α-cypermethrin application to 0.48 ± 0.07 in February 2017. The α-cypermethrin pour-on application and diminazene aceturate treatment of cattle led to the largest reduction in disease incidence, from 28.1% in 2014 to 7.8% in 2017, an improvement in hematocrit from 24.27 ± 4.9% to 27.5 ± 4.6%, and a reduction in calf mortality from 15.9 ± 11% to 5.9%. Improved access to these interventions for different types of livestock and maintaining their effectiveness, despite high tsetse (Diptera: Glossinidae) challenges, should be the primary focus of control strategies in many areas of Togo.
Collapse
Affiliation(s)
- Boma Soudah
- Centre International de Recherche-Développement sur l'Elevage en zone Subhumide (CIRDES), rue 5-31 Avenu du Gouverneur Louveau, 01BP 454 Bobo-Dioulasso 01, Bobo Dioulasso, Burkina Faso/Institut Togolais de Recherche Agronomique (ITRA-Togo)
| | - Talaki Essodina
- Université de Lomé, Ecole Supérieure d'Agronomie (ESA), rue N°1, Bd Gnassingbe, 01 BP: 1515 Lomé, Togo
| | - N'feide Toï
- Institut Togolais de Recherche Agronomique (ITRA-Togo), rue N°1, Bd Gnassingbe, BP: 1163 Cacaveli, Lomé, Togo
| | - Dao Balabadi
- Institut Togolais de Recherche Agronomique (ITRA-Togo), rue N°1, Bd Gnassingbe, BP: 1163 Cacaveli, Lomé, Togo
| | - Lombo Yao
- Institut Togolais de Recherche Agronomique (ITRA-Togo), rue N°1, Bd Gnassingbe, BP: 1163 Cacaveli, Lomé, Togo
| | - Somda Martin Bienvenu
- Université Nazi Boni (UNB), Département de Sciences biologiques/UFR-ST (UNB), BP 1091 Bobo-Dioulasso, Burkina Faso
| | - Salou Wendemanegde Ernest
- Université Nazi Boni (UNB), Département de Sciences biologiques/UFR-ST (UNB), BP 1091 Bobo-Dioulasso, Burkina Faso
| |
Collapse
|
11
|
Figueiredo CA, Steffen J, Morton L, Arumugam S, Liesenfeld O, Deli MA, Kröger A, Schüler T, Dunay IR. Immune response and pathogen invasion at the choroid plexus in the onset of cerebral toxoplasmosis. J Neuroinflammation 2022; 19:17. [PMID: 35027063 PMCID: PMC8759173 DOI: 10.1186/s12974-021-02370-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 12/22/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Toxoplasma gondii (T. gondii) is a highly successful parasite being able to cross all biological barriers of the body, finally reaching the central nervous system (CNS). Previous studies have highlighted the critical involvement of the blood-brain barrier (BBB) during T. gondii invasion and development of subsequent neuroinflammation. Still, the potential contribution of the choroid plexus (CP), the main structure forming the blood-cerebrospinal fluid (CSF) barrier (BCSFB) have not been addressed. METHODS To investigate T. gondii invasion at the onset of neuroinflammation, the CP and brain microvessels (BMV) were isolated and analyzed for parasite burden. Additionally, immuno-stained brain sections and three-dimensional whole mount preparations were evaluated for parasite localization and morphological alterations. Activation of choroidal and brain endothelial cells were characterized by flow cytometry. To evaluate the impact of early immune responses on CP and BMV, expression levels of inflammatory mediators, tight junctions (TJ) and matrix metalloproteinases (MMPs) were quantified. Additionally, FITC-dextran was applied to determine infection-related changes in BCSFB permeability. Finally, the response of primary CP epithelial cells to T. gondii parasites was tested in vitro. RESULTS Here we revealed that endothelial cells in the CP are initially infected by T. gondii, and become activated prior to BBB endothelial cells indicated by MHCII upregulation. Additionally, CP elicited early local immune response with upregulation of IFN-γ, TNF, IL-6, host-defence factors as well as swift expression of CXCL9 chemokine, when compared to the BMV. Consequently, we uncovered distinct TJ disturbances of claudins, associated with upregulation of MMP-8 and MMP-13 expression in infected CP in vivo, which was confirmed by in vitro infection of primary CP epithelial cells. Notably, we detected early barrier damage and functional loss by increased BCSFB permeability to FITC-dextran in vivo, which was extended over the infection course. CONCLUSIONS Altogether, our data reveal a close interaction between T. gondii infection at the CP and the impairment of the BCSFB function indicating that infection-related neuroinflammation is initiated in the CP.
Collapse
Affiliation(s)
- Caio Andreeta Figueiredo
- Institute of Inflammation and Neurodegeneration, Medical Faculty, Otto-Von-Guericke University Magdeburg, Magdeburg, Germany
| | - Johannes Steffen
- Institute of Inflammation and Neurodegeneration, Medical Faculty, Otto-Von-Guericke University Magdeburg, Magdeburg, Germany
| | - Lorena Morton
- Institute of Inflammation and Neurodegeneration, Medical Faculty, Otto-Von-Guericke University Magdeburg, Magdeburg, Germany
| | - Sushmitha Arumugam
- Institute of Inflammation and Neurodegeneration, Medical Faculty, Otto-Von-Guericke University Magdeburg, Magdeburg, Germany
| | - Oliver Liesenfeld
- Institute for Microbiology and Hygiene, Charité Medical School, Berlin, Germany
| | - Mária A Deli
- Institute of Biophysics, Biological Research Centre, 6726, Szeged, Hungary
| | - Andrea Kröger
- Institute for Medical Microbiology and Hospital Hygiene, Medical Faculty, Otto-Von-Guericke University Magdeburg, Magdeburg, Germany
| | - Thomas Schüler
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-Von-Guericke University Magdeburg, Magdeburg, Germany
| | - Ildiko Rita Dunay
- Institute of Inflammation and Neurodegeneration, Medical Faculty, Otto-Von-Guericke University Magdeburg, Magdeburg, Germany. .,Center for Behavioral Brain Sciences, CBBS, Magdeburg, Germany.
| |
Collapse
|
12
|
Abstract
Trypanosoma brucei is a protozoan parasite that causes human and animal African trypanosomiases (HAT and AAT). In the mammalian host, the parasite lives entirely extracellularly, in both the blood and interstitial spaces in tissues. Although most T. brucei research has focused on the biology of blood- and central nervous system (CNS)-resident parasites, a number of recent studies have highlighted parasite reservoirs in the dermis and adipose tissue, leading to a renewed interest in tissue-resident parasite populations. In light of this renewed interest, work describing tissue-resident parasites can serve as a valuable resource to inform future investigations of tissue-resident T. brucei. Here, we review this body of literature, which describes infections in humans, natural hosts, and experimental animal models, providing a wealth of information on the distribution and biology of extravascular parasites, the corresponding immune response in each tissue, and resulting host pathology. We discuss the implications of these studies and future questions in the study of extravascular T. brucei.
Collapse
Affiliation(s)
- Nathan P. Crilly
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
- Department of Molecular and Comparative Pathology, Johns Hopkins School of Medicine, Baltimore Maryland, United States of America
| | - Monica R. Mugnier
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| |
Collapse
|
13
|
Figarella K. Neuropathogenesis caused by Trypanosoma brucei, still an enigma to be unveiled. MICROBIAL CELL 2021; 8:73-76. [PMID: 33816592 PMCID: PMC8010903 DOI: 10.15698/mic2021.04.745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Trypanosoma brucei is one of the protozoa parasites that can enter the brain and cause injury associated with toxic effects of parasite-derived molecules or with immune responses against infection. Other protozoa parasites with brain tropism include Toxoplasma, Plasmodium, Amoeba, and, eventually, other Trypanosomatids such as T. cruzi and Leishmania. Together, these parasites affect billions of people worldwide and are responsible for more than 500.000 deaths annually. Factors determining brain tropism, mechanisms of invasion as well as processes ongoing inside the brain are not well understood. But, they depend on the parasite involved. The pathogenesis caused by T. brucei initiates locally in the area of parasite inoculation, soon trypanosomes rich the blood, and the disease enters in the so-called early stage. The pathomechanisms in this phase have been described, even molecules used to combat the disease are effective during this period. Later, the disease evolves towards a late-stage, characterized by the presence of parasites in the central nervous system (CNS), the so-called meningo-encephalitic stage. This phase of the disease has not been sufficiently examined and remains a matter of investigation. Here, I stress the importance of delve into the study of the neuropathogenesis caused by T. brucei, which will enable the identification of pathways that may be targeted to overcome parasites that reached the CNS. Finally, I highlight the impact that the application of tools developed in the last years in the field of neuroscience will have on the study of neglected tropical diseases.
Collapse
Affiliation(s)
- Katherine Figarella
- Department of Neurophysiology, Institute of Physiology, University of Tübingen, Germany
| |
Collapse
|
14
|
Parthasarathy A, Kalesh K. Defeating the trypanosomatid trio: proteomics of the protozoan parasites causing neglected tropical diseases. RSC Med Chem 2020; 11:625-645. [PMID: 33479664 PMCID: PMC7549140 DOI: 10.1039/d0md00122h] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 05/12/2020] [Indexed: 12/20/2022] Open
Abstract
Mass spectrometry-based proteomics enables accurate measurement of the modulations of proteins on a large scale upon perturbation and facilitates the understanding of the functional roles of proteins in biological systems. It is a particularly relevant methodology for studying Leishmania spp., Trypanosoma cruzi and Trypanosoma brucei, as the gene expression in these parasites is primarily regulated by posttranscriptional mechanisms. Large-scale proteomics studies have revealed a plethora of information regarding modulated proteins and their molecular interactions during various life processes of the protozoans, including stress adaptation, life cycle changes and interactions with the host. Important molecular processes within the parasite that regulate the activity and subcellular localisation of its proteins, including several co- and post-translational modifications, are also accurately captured by modern proteomics mass spectrometry techniques. Finally, in combination with synthetic chemistry, proteomic techniques facilitate unbiased profiling of targets and off-targets of pharmacologically active compounds in the parasites. This provides important data sets for their mechanism of action studies, thereby aiding drug development programmes.
Collapse
Affiliation(s)
- Anutthaman Parthasarathy
- Rochester Institute of Technology , Thomas H. Gosnell School of Life Sciences , 85 Lomb Memorial Dr , Rochester , NY 14623 , USA
| | - Karunakaran Kalesh
- Department of Chemistry , Durham University , Lower Mount Joy, South Road , Durham DH1 3LE , UK .
| |
Collapse
|
15
|
Neopterin and CXCL-13 in Diagnosis and Follow-Up of Trypanosoma brucei gambiense Sleeping Sickness: Lessons from the Field in Angola. BIOMED RESEARCH INTERNATIONAL 2019; 2019:6070176. [PMID: 31886231 PMCID: PMC6914994 DOI: 10.1155/2019/6070176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 09/10/2019] [Accepted: 10/08/2019] [Indexed: 11/26/2022]
Abstract
Human African Trypanosomiasis may become manageable in the next decade with fexinidazole. However, currently stage diagnosis remains difficult to implement in the field and requires a lumbar puncture. Our study of an Angolan cohort of T. b. gambiense-infected patients used other staging criteria than those recommended by the WHO. We compared WHO criteria (cell count and parasite identification in the CSF) with two biomarkers (neopterin and CXCL-13) which have proven potential to diagnose disease stage or relapse. Biological, clinical, and neurological data were analysed from a cohort of 83 patients. A neopterin concentration below 15.5 nmol/L in the CSF denoted patients with stage 1 disease, and a concentration above 60.31 nmol/L characterized patients with advanced stage 2 (trypanosomes in CSF and/or cytorachia higher than 20 cells) disease. CXCL-13 levels below 91.208 pg/mL denoted patients with stage 1 disease, and levels of CXCL-13 above 395.45 pg/mL denoted patients with advanced stage 2 disease. Values between these cut-offs may represent patients with intermediate stage disease. Our work supports the existence of an intermediate stage in HAT, and CXCL-13 and neopterin levels may help to characterize it.
Collapse
|
16
|
Figarella K, Wolburg H, Garaschuk O, Duszenko M. Microglia in neuropathology caused by protozoan parasites. Biol Rev Camb Philos Soc 2019; 95:333-349. [PMID: 31682077 DOI: 10.1111/brv.12566] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 10/04/2019] [Accepted: 10/07/2019] [Indexed: 12/31/2022]
Abstract
Involvement of the central nervous system (CNS) is the most severe consequence of some parasitic infections. Protozoal infections comprise a group of diseases that together affect billions of people worldwide and, according to the World Health Organization, are responsible for more than 500000 deaths annually. They include African and American trypanosomiasis, leishmaniasis, malaria, toxoplasmosis, and amoebiasis. Mechanisms underlying invasion of the brain parenchyma by protozoa are not well understood and may depend on parasite nature: a vascular invasion route is most common. Immunosuppression favors parasite invasion into the CNS and therefore the host immune response plays a pivotal role in the development of a neuropathology in these infectious diseases. In the brain, microglia are the resident immune cells active in defense against pathogens that target the CNS. Beside their direct role in innate immunity, they also play a principal role in coordinating the trafficking and recruitment of other immune cells from the periphery to the CNS. Despite their evident involvement in the neuropathology of protozoan infections, little attention has given to microglia-parasite interactions. This review describes the most prominent features of microglial cells and protozoan parasites and summarizes the most recent information regarding the reaction of microglial cells to parasitic infections. We highlight the involvement of the periphery-brain axis and emphasize possible scenarios for microglia-parasite interactions.
Collapse
Affiliation(s)
- Katherine Figarella
- Institute of Physiology, Department of Neurophysiology, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Hartwig Wolburg
- Institute of Pathology and Neuropathology, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Olga Garaschuk
- Institute of Physiology, Department of Neurophysiology, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Michael Duszenko
- Institute of Physiology, Department of Neurophysiology, Eberhard Karls University of Tübingen, Tübingen, Germany
| |
Collapse
|
17
|
Variable Surface Glycoprotein from Trypanosoma brucei Undergoes Cleavage by Matrix Metalloproteinases: An in silico Approach. Pathogens 2019; 8:pathogens8040178. [PMID: 31597256 PMCID: PMC6963732 DOI: 10.3390/pathogens8040178] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/24/2019] [Accepted: 09/25/2019] [Indexed: 12/13/2022] Open
Abstract
In order to survive as extracellular parasites in the mammalian host environment, Trypanosoma brucei has developed efficient mechanisms of immune system evasion, which include the abundant expression of a variable surface glycoprotein (VSG) coat. VSGs are anchored in the parasite membrane by covalent C-terminal binding to glycosylphosphatidylinositol and may be periodically removed by a phospholipase C (PLC) and a major surface protein (TbMSP). VSG molecules show extraordinary antigenic diversity and a comparative analysis of protein sequences suggests that conserved elements may be a suitable target against African trypanosomiasis. However, the cleavage mechanisms of these molecules remain unclear. Moreover, in protozoan infections, including those caused by Trypanosoma brucei, it is possible to observe an increased expression of the matrix metalloproteinases (MMPs). To address the cleavage mechanism of VSGs, the PROSPER server was used for the identification of VSG sequence cleavage sites. After data compilation, it was observed that 64 VSG consensus sequences showed a high conservation of hydrophobic residues, such as valine (V), methionine (M), leucine (L) and isoleucine (I) in the fifth position—the exact location of the cleavage site. In addition, the PROSPER server identified conserved cleavage site portions of VSG proteins recognized by three matrix metalloproteases (gelatinases: MMP-2, MMP-3 and MMP-9). However, further biological studies are needed in order to analyze and confirm this prediction.
Collapse
|
18
|
Rodgers J, Steiner I, Kennedy PGE. Generation of neuroinflammation in human African trypanosomiasis. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2019; 6:6/6/e610. [PMID: 31467039 PMCID: PMC6745723 DOI: 10.1212/nxi.0000000000000610] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 07/29/2019] [Indexed: 11/26/2022]
Abstract
Human African trypanosomiasis (HAT) is caused by infection due to protozoan parasites of the Trypanosoma genus and is a major fatal disease throughout sub-Saharan Africa. After an early hemolymphatic stage in which the peripheral tissues are infected, the parasites enter the CNS causing a constellation of neurologic features. Although the CNS stage of HAT has been recognized for over a century, the mechanisms generating the neuroinflammatory response are complex and not well understood. Therefore a better understanding of the mechanisms utilized by the parasites to gain access to the CNS compartment is critical to explaining the generation of neuroinflammation. Contrast-enhanced MRI in a murine model of HAT has shown an early and progressive deterioration of blood-CNS barrier function after trypanosome infection that can be reversed following curative treatment. However, further studies are required to clarify the molecules involved in this process. Another important determinant of brain inflammation is the delicate balance of proinflammatory and counterinflammatory mediators. In mouse models of HAT, proinflammatory mediators such as tumor necrosis factor (TNF)-α, interferon (IFN)-γ, and CXCL10 have been shown to be crucial to parasite CNS invasion while administration of interleukin (IL)-10, a counter inflammatory molecule, reduces the CNS parasite burden as well as the severity of the neuroinflammatory response and the clinical symptoms associated with the infection. This review focuses on information, gained from both infected human samples and animal models of HAT, with an emphasis on parasite CNS invasion and the development of neuroinflammation.
Collapse
Affiliation(s)
- Jean Rodgers
- From the Institute of Biodiversity (J.R.), Animal Health and Comparative Medicine, University of Glasgow; the Department of Neurology (I.S.), Rabin Medical Center, Campus Beilinson, Petach Tikva, Israel; and the Institute of Infection (P.G.E.K), Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow.
| | - Israel Steiner
- From the Institute of Biodiversity (J.R.), Animal Health and Comparative Medicine, University of Glasgow; the Department of Neurology (I.S.), Rabin Medical Center, Campus Beilinson, Petach Tikva, Israel; and the Institute of Infection (P.G.E.K), Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow
| | - Peter G E Kennedy
- From the Institute of Biodiversity (J.R.), Animal Health and Comparative Medicine, University of Glasgow; the Department of Neurology (I.S.), Rabin Medical Center, Campus Beilinson, Petach Tikva, Israel; and the Institute of Infection (P.G.E.K), Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow
| |
Collapse
|
19
|
Mitoma H, Manto M. Disruption of the Blood-Brain Barrier During Neuroinflammatory and Neuroinfectious Diseases. NEUROIMMUNE DISEASES 2019. [PMCID: PMC7121618 DOI: 10.1007/978-3-030-19515-1_7] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
As the organ of highest metabolic demand, utilizing over 25% of total body glucose utilization via an enormous vasculature with one capillary every 73 μm, the brain evolves a barrier at the capillary and postcapillary venules to prevent toxicity during serum fluctuations in metabolites and hormones, to limit brain swelling during inflammation, and to prevent pathogen invasion. Understanding of neuroprotective barriers has since evolved to incorporate the neurovascular unit (NVU), the blood-cerebrospinal fluid (CSF) barrier, and the presence of CNS lymphatics that allow leukocyte egress. Identification of the cellular and molecular participants in BBB function at the NVU has allowed detailed analyses of mechanisms that contribute to BBB dysfunction in various disease states, which include both autoimmune and infectious etiologies. This chapter will introduce some of the cellular and molecular components that promote barrier function but may be manipulated by inflammatory mediators or pathogens during neuroinflammation or neuroinfectious diseases.
Collapse
Affiliation(s)
- Hiroshi Mitoma
- Medical Education Promotion Center, Tokyo Medical University, Tokyo, Japan
| | - Mario Manto
- Department of Neurology, CHU-Charleroi, Charleroi, Belgium, Department of Neurosciences, University of Mons, Mons, Belgium
| |
Collapse
|
20
|
Moreno CJG, Temporão A, Torres T, Sousa Silva M. Trypanosoma brucei Interaction with Host: Mechanism of VSG Release as Target for Drug Discovery for African Trypanosomiasis. Int J Mol Sci 2019; 20:ijms20061484. [PMID: 30934540 PMCID: PMC6471236 DOI: 10.3390/ijms20061484] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 03/05/2019] [Accepted: 03/07/2019] [Indexed: 01/18/2023] Open
Abstract
The protozoan Trypanosoma brucei, responsible for animal and human trypanosomiasis, has a family of major surface proteases (MSPs) and phospholipase-C (PLC), both involved in some mechanisms of virulence during mammalian infections. During parasitism in the mammalian host, this protozoan is exclusively extracellular and presents a robust mechanism of antigenic variation that allows the persistence of infection. There has been incredible progress in our understanding of how variable surface glycoproteins (VSGs) are organised and expressed, and how expression is switched, particularly through recombination. The objective of this manuscript is to create a reflection about the mechanisms of antigenic variation in T. brucei, more specifically, in the process of variable surface glycoprotein (VSG) release. We firstly explore the mechanism of VSG release as a potential pathway and target for the development of anti-T. brucei drugs.
Collapse
Affiliation(s)
- Cláudia Jassica Gonçalves Moreno
- Programa de Pós-graduação em Bioquímica, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal 59064-741, Brazil.
| | - Adriana Temporão
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2775-412 Oeiras, Portugal.
| | - Taffarel Torres
- Centro de Ciências Biológicas e da Saúde, Universidade Federal Rural de Semi-árido, Mossoró 59625-900, Brazil.
| | - Marcelo Sousa Silva
- Programa de Pós-graduação em Bioquímica, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal 59064-741, Brazil.
- Departamento de Análises Clínicas e Toxicológicas, Centro de Ciências da Saúde, Universidade Federal do Rio Grande do Norte, Natal 59012-570, Brazil.
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, 1349-008 Lisbon, Portugal.
| |
Collapse
|
21
|
Krüger T, Schuster S, Engstler M. Beyond Blood: African Trypanosomes on the Move. Trends Parasitol 2018; 34:1056-1067. [DOI: 10.1016/j.pt.2018.08.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 08/01/2018] [Accepted: 08/03/2018] [Indexed: 01/07/2023]
|
22
|
Bonnet J, Garcia C, Leger T, Couquet MP, Vignoles P, Vatunga G, Ndung'u J, Boudot C, Bisser S, Courtioux B. Proteome characterization in various biological fluids of Trypanosoma brucei gambiense-infected subjects. J Proteomics 2018; 196:150-161. [PMID: 30414516 DOI: 10.1016/j.jprot.2018.11.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 10/02/2018] [Accepted: 11/05/2018] [Indexed: 02/04/2023]
Abstract
Human African trypanosomiasis (HAT) is a neglected tropical disease that is endemic in sub-Saharan Africa. Control of the disease has been recently improved by better screening and treatment strategies, and the disease is on the WHO list of possible elimination. However, some physiopathological aspects of the disease transmission and progression remain unclear. We propose a new proteomic approach to identify new targets and thus possible new biomarkers of the disease. We also focused our attention on fluids classically associated with HAT (serum and cerebrospinal fluid (CSF)) and on the more easily accessible biological fluids urine and saliva. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) established the proteomic profile of patients with early and late stage disease. The serum, CSF, urine and saliva of 3 uninfected controls, 3 early stage patients and 4 late stage patients were analyzed. Among proteins identified, in CSF, urine and saliva, respectively, 37, 8 and 24 proteins were differentially expressed and showed particular interest with regards to their function. The most promising proteins (Neogenin, Neuroserpin, secretogranin 2 in CSF; moesin in urine and intelectin 2 in saliva) were quantified by enzyme-linked immunosorbent assay in a confirmatory cohort of 14 uninfected controls, 23 patients with early stage disease and 43 patients with late stage disease. The potential of two proteins, neuroserpin and moesin, with the latter present in urine, were further characterized. Our results showed the potential of proteomic analysis to discover new biomarkers and provide the basis of the establishment of a new proteomic catalogue applied to HAT-infected subjects and controls. SIGNIFICANCE: Sleeping sickness, also called Human African Trypanosomiasis (HAT), is a parasitic infection caused by a parasitic protozoan, Trypanosoma brucei gambiense or T. b. rhodesiense which are transmitted via an infected tsetse fly: Glossina. For both, the haemolymphatic stage (or first stage) signs and symptoms are intermittent fever, lymphadenopathy, hepatosplenomegaly, headaches, pruritus, and for T. b. rhodesiense infection a chancre is often formed at the bite site. Meningoencephalitic stage (or second stage) occurs when parasites invade the CNS, it is characterised by neurological signs and symptoms such as altered gait, tremors, neuropathy, somnolence which can lead to coma and death if untreated. first stage of the disease is characterizing by fevers, headaches, itchiness, and joint pains and progressive lethargy corresponding to the second stage with confusion, poor coordination, numbness and trouble sleeping. Actually, diagnosing HAT requires specialized expertise and significant resources such as well-equipped health centers and qualified staff. Such resources are lacking in many endemic areas that are often in rural locales, so many individuals with HAT die before the diagnosis is established. In this study, we analysed by mass spectrometry the entire proteome of serum, CSF, urine and saliva samples from infected and non-infected Angolan individuals to define new biomarkers of the disease. This work of proteomics analysis is a preliminary stage to the characterization of the whole proteome, of these 4 biological fluids, of HAT patients. We have identified 69 new biomarkers. Five of them have been thoroughly investigated by ELISA quantification. Neuroserpine and Moesin are respectively promising new biomarkers in CSF and urine's patient for a better diagnosis.
Collapse
Affiliation(s)
- Julien Bonnet
- Institute of Neuroepidemiology and Tropical Neurology, School of Medicine, CNRS FR 3503 GEIST, University of Limoges, INSERM UMR 1094 Tropical Neuroepidemiology, Limoges, France.
| | - Camille Garcia
- Jacques Monod Institute, Proteomics Facility, University Paris Diderot Sorbonne Paris Cité, Paris, France..
| | - Thibaut Leger
- Jacques Monod Institute, Proteomics Facility, University Paris Diderot Sorbonne Paris Cité, Paris, France..
| | - Marie-Pauline Couquet
- Institute of Neuroepidemiology and Tropical Neurology, School of Medicine, CNRS FR 3503 GEIST, University of Limoges, INSERM UMR 1094 Tropical Neuroepidemiology, Limoges, France.
| | - Philippe Vignoles
- Institute of Neuroepidemiology and Tropical Neurology, School of Medicine, CNRS FR 3503 GEIST, University of Limoges, INSERM UMR 1094 Tropical Neuroepidemiology, Limoges, France.
| | - Gedeao Vatunga
- Instituto de Combate e controlo das Tripanossomiases (ICCT), Luanda, Angola.
| | - Joseph Ndung'u
- Foundation for Innovative New Diagnostics (FIND), Geneva, Switzerland.
| | - Clotilde Boudot
- Institute of Neuroepidemiology and Tropical Neurology, School of Medicine, CNRS FR 3503 GEIST, University of Limoges, INSERM UMR 1094 Tropical Neuroepidemiology, Limoges, France.
| | - Sylvie Bisser
- Institute of Neuroepidemiology and Tropical Neurology, School of Medicine, CNRS FR 3503 GEIST, University of Limoges, INSERM UMR 1094 Tropical Neuroepidemiology, Limoges, France; Pasteur Institute in French Guiana, 23 Boulevard Pasteur, 973006, Cayenne Cedex, French Guiana.
| | - Bertrand Courtioux
- Institute of Neuroepidemiology and Tropical Neurology, School of Medicine, CNRS FR 3503 GEIST, University of Limoges, INSERM UMR 1094 Tropical Neuroepidemiology, Limoges, France.
| |
Collapse
|
23
|
Figarella K, Uzcategui NL, Mogk S, Wild K, Fallier-Becker P, Neher JJ, Duszenko M. Morphological changes, nitric oxide production, and phagocytosis are triggered in vitro in microglia by bloodstream forms of Trypanosoma brucei. Sci Rep 2018; 8:15002. [PMID: 30302029 PMCID: PMC6177420 DOI: 10.1038/s41598-018-33395-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 09/27/2018] [Indexed: 01/18/2023] Open
Abstract
The flagellated parasite Trypanosoma brucei is the causative agent of Human African Trypanosomiasis (HAT). By a mechanism not well understood yet, trypanosomes enter the central nervous system (CNS), invade the brain parenchyma, and cause a fatal encephalopathy if is not treated. Trypanosomes are fast dividing organisms that, without any immune response, would kill the host in a short time. However, infected individuals survive either 6-12 months or more than 3 years for the acute and chronic forms, respectively. Thus, only when the brain defense collapses a lethal encephalopathy will occur. Here, we evaluated interactions between trypanosomes and microglial cells, which are the primary immune effector cells within the CNS. Using co-cultures of primary microglia and parasites, we found clear evidences of trypanosome phagocytosis by microglial cells. Microglia activation was also evident; analysis of its ultrastructure showed changes that have been reported in activated microglia undergoing oxidative stress caused by infections or degenerative diseases. Accordingly, an increase of the nitric oxide production was detected in supernatants of microglia/parasite co-cultures. Altogether, our results demonstrate that microglial cells respond to the presence of the parasite, leading to parasite's engulfment and elimination.
Collapse
Affiliation(s)
- Katherine Figarella
- Interfaculty Institute for Biochemistry, University of Tübingen, Tübingen, Germany.
- Institute for Neurophysiology, University of Tübingen, Tübingen, Germany.
| | - Nestor L Uzcategui
- Institute for Anatomy, Central University of Venezuela, Caracas, Venezuela
| | - Stefan Mogk
- Interfaculty Institute for Biochemistry, University of Tübingen, Tübingen, Germany
| | - Katleen Wild
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany and Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Petra Fallier-Becker
- Institute of Pathology and Neuropathology, University Hospital of Tübingen, Tübingen, Germany
| | - Jonas J Neher
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany and Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Michael Duszenko
- Interfaculty Institute for Biochemistry, University of Tübingen, Tübingen, Germany
- Faculty of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
24
|
Masocha W, Kristensson K. Human African trypanosomiasis: How do the parasites enter and cause dysfunctions of the nervous system in murine models? Brain Res Bull 2018; 145:18-29. [PMID: 29870779 DOI: 10.1016/j.brainresbull.2018.05.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 05/24/2018] [Accepted: 05/30/2018] [Indexed: 12/27/2022]
Abstract
In this review we describe how Trypanosoma brucei brucei, a rodent pathogenic strain of African trypanosomes, can invade the nervous system, first by localization to the choroid plexus, the circumventricular organs (CVOs) and peripheral ganglia, which have fenestrated vessels, followed by crossing of the blood-brain barrier (BBB) into the white matter, hypothalamus, thalamus and basal ganglia. White blood cells (WBCs) pave the way for the trypanosome neuroinvasion. Experiments with immune deficient mice show that the invasion of WBCs is initiated by the toll-like receptor 9, followed by an augmentation phase that depends on the cytokine IFN-γ and the chemokine CXCL10. Nitric oxide (NO) derived from iNOS then prevents a break-down of the BBB and non-regulated passage of cells. This chain of events is relevant for design of better diagnostic tools to distinguish the different stages of the disease as well as for better understanding of the pathogenesis of the nervous system dysfunctions, which include circadian rhythm changes with sleep pattern disruption, pain syndromes, movement disorders and mental disturbances including dementia.
Collapse
Affiliation(s)
- Willias Masocha
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Kuwait University, Kuwait.
| | | |
Collapse
|
25
|
Mulindwa J, Leiss K, Ibberson D, Kamanyi Marucha K, Helbig C, Melo do Nascimento L, Silvester E, Matthews K, Matovu E, Enyaru J, Clayton C. Transcriptomes of Trypanosoma brucei rhodesiense from sleeping sickness patients, rodents and culture: Effects of strain, growth conditions and RNA preparation methods. PLoS Negl Trop Dis 2018; 12:e0006280. [PMID: 29474390 PMCID: PMC5842037 DOI: 10.1371/journal.pntd.0006280] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 03/07/2018] [Accepted: 01/29/2018] [Indexed: 11/18/2022] Open
Abstract
All of our current knowledge of African trypanosome metabolism is based on results from trypanosomes grown in culture or in rodents. Drugs against sleeping sickness must however treat trypanosomes in humans. We here compare the transcriptomes of Trypanosoma brucei rhodesiense from the blood and cerebrospinal fluid of human patients with those of trypanosomes from culture and rodents. The data were aligned and analysed using new user-friendly applications designed for Kinetoplastid RNA-Seq data. The transcriptomes of trypanosomes from human blood and cerebrospinal fluid did not predict major metabolic differences that might affect drug susceptibility. Usefully, there were relatively few differences between the transcriptomes of trypanosomes from patients and those of similar trypanosomes grown in rats. Transcriptomes of monomorphic laboratory-adapted parasites grown in in vitro culture closely resembled those of the human parasites, but some differences were seen. In poly(A)-selected mRNA transcriptomes, mRNAs encoding some protein kinases and RNA-binding proteins were under-represented relative to mRNA that had not been poly(A) selected; further investigation revealed that the selection tends to result in loss of longer mRNAs.
Collapse
Affiliation(s)
- Julius Mulindwa
- Centre for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Im Neuenheimer Feld 282, Heidelberg, Germany
- Department of Biochemistry and Sports Science, College of Natural Sciences, Makerere University, Kampala, Uganda
| | - Kevin Leiss
- Centre for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Im Neuenheimer Feld 282, Heidelberg, Germany
| | | | - Kevin Kamanyi Marucha
- Centre for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Im Neuenheimer Feld 282, Heidelberg, Germany
| | - Claudia Helbig
- Centre for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Im Neuenheimer Feld 282, Heidelberg, Germany
| | - Larissa Melo do Nascimento
- Centre for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Im Neuenheimer Feld 282, Heidelberg, Germany
| | - Eleanor Silvester
- Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Keith Matthews
- Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Enock Matovu
- Department of Biotechnology and Diagnostic Sciences, College of Veterinary medicine, Animal resources and Biosecurity, Makerere University, Kampala, Uganda
| | - John Enyaru
- Department of Biochemistry and Sports Science, College of Natural Sciences, Makerere University, Kampala, Uganda
| | - Christine Clayton
- Centre for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Im Neuenheimer Feld 282, Heidelberg, Germany
- * E-mail:
| |
Collapse
|
26
|
Franco J, Scarone L, Comini MA. Drugs and Drug Resistance in African and American Trypanosomiasis. ANNUAL REPORTS IN MEDICINAL CHEMISTRY 2018. [DOI: 10.1016/bs.armc.2018.08.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
27
|
Lauer AN, Tenenbaum T, Schroten H, Schwerk C. The diverse cellular responses of the choroid plexus during infection of the central nervous system. Am J Physiol Cell Physiol 2017; 314:C152-C165. [PMID: 29070490 DOI: 10.1152/ajpcell.00137.2017] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The choroid plexus (CP) is responsible for the production of a large amount of the cerebrospinal fluid (CSF). As a highly vascularized structure, the CP also presents a significant frontier between the blood and the central nervous system (CNS). To seal this border, the epithelium of the CP forms the blood-CSF barrier, one of the most important barriers separating the CNS from the blood. During the course of infectious disease, cells of the CP can experience interactions with intruding pathogens, especially when the CP is used as gateway for entry into the CNS. In return, the CP answers to these encounters with diverse measures. Here, we will review the distinct responses of the CP during infection of the CNS, which include engaging of signal transduction pathways, the regulation of gene expression in the host cells, inflammatory cell response, alterations of the barrier, and, under certain circumstances, cell death. Many of these actions may contribute to stage an immunological response against the pathogen and subsequently help in the clearance of the infection.
Collapse
Affiliation(s)
- Alexa N Lauer
- Department of Pediatrics, Pediatric Infectious Diseases, Medical Faculty Mannheim, Heidelberg University , Mannheim , Germany
| | - Tobias Tenenbaum
- Department of Pediatrics, Pediatric Infectious Diseases, Medical Faculty Mannheim, Heidelberg University , Mannheim , Germany
| | - Horst Schroten
- Department of Pediatrics, Pediatric Infectious Diseases, Medical Faculty Mannheim, Heidelberg University , Mannheim , Germany
| | - Christian Schwerk
- Department of Pediatrics, Pediatric Infectious Diseases, Medical Faculty Mannheim, Heidelberg University , Mannheim , Germany
| |
Collapse
|
28
|
Rodgers J, Bradley B, Kennedy PGE. Delineating neuroinflammation, parasite CNS invasion, and blood-brain barrier dysfunction in an experimental murine model of human African trypanosomiasis. Methods 2017; 127:79-87. [PMID: 28636879 PMCID: PMC5595161 DOI: 10.1016/j.ymeth.2017.06.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 06/08/2017] [Accepted: 06/16/2017] [Indexed: 12/22/2022] Open
Abstract
Although Trypanosoma brucei spp. was first detected by Aldo Castellani in CSF samples taken from sleeping sickness patients over a century ago there is still a great deal of debate surrounding the timing, route and effects of transmigration of the parasite from the blood to the CNS. In this investigation, we have applied contrast-enhance magnetic resonance imaging (MRI) to study the effects of trypanosome infection on the blood-brain barrier (BBB) in the well-established GVR35 mouse model of sleeping sickness. In addition, we have measured the trypanosome load present in the brain using quantitative Taqman PCR and assessed the severity of the neuroinflammatory reaction at specific time points over the course of the infection. Contrast enhanced-MRI detected a significant degree of BBB impairment in mice at 14days following trypanosome infection, which increased in a step-wise fashion as the disease progressed. Parasite DNA was present in the brain tissue on day 7 after infection. This increased significantly in quantity by day 14 post-infection and continued to rise as the infection advanced. A progressive increase in neuroinflammation was detected following trypanosome infection, reaching a significant level of severity on day 14 post-infection and rising further at later time-points. In this model stage-2 disease presents at 21days post-infection. The combination of the three methodologies indicates that changes in the CNS become apparent prior to the onset of established stage-2 disease. This could in part account for the difficulties associated with defining specific criteria to distinguish stage-1 and stage-2 infections and highlights the need for improved staging diagnostics.
Collapse
Affiliation(s)
- Jean Rodgers
- Institute of Biodiversity, Animal Health & Comparative Medicine, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow G61 1QH, UK.
| | - Barbara Bradley
- Institute of Biodiversity, Animal Health & Comparative Medicine, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow G61 1QH, UK
| | - Peter G E Kennedy
- Institute of Infection, Inflammation and Immunity, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow G61 1QH, UK
| |
Collapse
|
29
|
Stijlemans B, Radwanska M, De Trez C, Magez S. African Trypanosomes Undermine Humoral Responses and Vaccine Development: Link with Inflammatory Responses? Front Immunol 2017; 8:582. [PMID: 28596768 PMCID: PMC5442186 DOI: 10.3389/fimmu.2017.00582] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 05/01/2017] [Indexed: 01/15/2023] Open
Abstract
African trypanosomosis is a debilitating disease of great medical and socioeconomical importance. It is caused by strictly extracellular protozoan parasites capable of infecting all vertebrate classes including human, livestock, and game animals. To survive within their mammalian host, trypanosomes have evolved efficient immune escape mechanisms and manipulate the entire host immune response, including the humoral response. This report provides an overview of how trypanosomes initially trigger and subsequently undermine the development of an effective host antibody response. Indeed, results available to date obtained in both natural and experimental infection models show that trypanosomes impair homeostatic B-cell lymphopoiesis, B-cell maturation and survival and B-cell memory development. Data on B-cell dysfunctioning in correlation with parasite virulence and trypanosome-mediated inflammation will be discussed, as well as the impact of trypanosomosis on heterologous vaccine efficacy and diagnosis. Therefore, new strategies aiming at enhancing vaccination efficacy could benefit from a combination of (i) early parasite diagnosis, (ii) anti-trypanosome (drugs) treatment, and (iii) anti-inflammatory treatment that collectively might allow B-cell recovery and improve vaccination.
Collapse
Affiliation(s)
- Benoit Stijlemans
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium.,Myeloid Cell Immunology Lab, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Magdalena Radwanska
- Laboratory for Biomedical Research, Ghent University Global Campus, Yeonsu-Gu, Incheon, South Korea
| | - Carl De Trez
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium.,Structural Biology Research Centre (SBRC), VIB, Brussels, Belgium
| | - Stefan Magez
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium.,Laboratory for Biomedical Research, Ghent University Global Campus, Yeonsu-Gu, Incheon, South Korea
| |
Collapse
|
30
|
Thonnus M, Guérin A, Rivière L. A multigene family encoding surface glycoproteins in Trypanosoma congolense. MICROBIAL CELL 2017; 4:90-97. [PMID: 28357394 PMCID: PMC5349194 DOI: 10.15698/mic2017.03.562] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Trypanosoma congolense, the causative agent of the most important livestock disease in Africa, expresses specific surface proteins involved in its parasitic lifestyle. Unfortunately, the complete repertoire of such molecules is far from being deciphered. As these membrane components are exposed to the host environment, they could be used as therapeutic or diagnostic targets. By mining the T. congolense genome database, we identified a novel family of lectin-like glycoproteins (TcoClecs). These molecules are predicted to have a transmembrane domain, a tandem repeat amino acid motif, a signal peptide and a C-type lectin-like domain (CTLD). This paper depicts several experimental arguments in favor of a surface localization in bloodstream forms of T. congolense. A TcoClec gene was heterologously expressed in U-2 OS cells and the product could be partially found at the plasma membrane. TcoClecs were also localized at the surface of T. congolense bloodstream forms. The signal was suppressed when the cells were treated with a detergent to remove the plasma membrane or with trypsin to « shave » the parasites and remove their external proteins. This suggests that TcoClecs could be potential diagnostic or therapeutic antigens of African animal trypanosomiasis. The potential role of these proteins in T. congolense as well as in other trypanosomatids is discussed.
Collapse
Affiliation(s)
- Magali Thonnus
- Fundamental Microbiology and Pathogenicity Unit, CNRS UMR 5234, Bordeaux University, France
| | - Amandine Guérin
- Fundamental Microbiology and Pathogenicity Unit, CNRS UMR 5234, Bordeaux University, France. ; Current affiliation: CNRS UMR 5235, Montpellier 2 University, France
| | - Loïc Rivière
- Fundamental Microbiology and Pathogenicity Unit, CNRS UMR 5234, Bordeaux University, France
| |
Collapse
|
31
|
Laperchia C, Palomba M, Seke Etet PF, Rodgers J, Bradley B, Montague P, Grassi-Zucconi G, Kennedy PGE, Bentivoglio M. Trypanosoma brucei Invasion and T-Cell Infiltration of the Brain Parenchyma in Experimental Sleeping Sickness: Timing and Correlation with Functional Changes. PLoS Negl Trop Dis 2016; 10:e0005242. [PMID: 28002454 PMCID: PMC5217973 DOI: 10.1371/journal.pntd.0005242] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 01/06/2017] [Accepted: 12/07/2016] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The timing of Trypanosoma brucei entry into the brain parenchyma to initiate the second, meningoencephalitic stage of human African trypanosomiasis or sleeping sickness is currently debated and even parasite invasion of the neuropil has been recently questioned. Furthermore, the relationship between neurological features and disease stage are unclear, despite the important diagnostic and therapeutic implications. METHODOLOGY Using a rat model of chronic Trypanosoma brucei brucei infection we determined the timing of parasite and T-cell neuropil infiltration and its correlation with functional changes. Parasite DNA was detected using trypanosome-specific PCR. Body weight and sleep structure alterations represented by sleep-onset rapid eye movement (SOREM) periods, reported in human and experimental African trypanosomiasis, were monitored. The presence of parasites, as well as CD4+ and CD8+ T-cells in the neuropil was assessed over time in the brain of the same animals by immunocytochemistry and quantitative analyses. PRINCIPAL FINDINGS Trypanosome DNA was present in the brain at day 6 post-infection and increased more than 15-fold by day 21. Parasites and T-cells were observed in the parenchyma from day 9 onwards. Parasites traversing blood vessel walls were observed in the hypothalamus and other brain regions. Body weight gain was reduced from day 7 onwards. SOREM episodes started in most cases early after infection, with an increase in number and duration after parasite neuroinvasion. CONCLUSION These findings demonstrate invasion of the neuropil over time, after an initial interval, by parasites and lymphocytes crossing the blood-brain barrier, and show that neurological features can precede this event. The data thus challenge the current clinical and cerebrospinal fluid criteria of disease staging.
Collapse
Affiliation(s)
- Claudia Laperchia
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Maria Palomba
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Paul F. Seke Etet
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Jean Rodgers
- Institute of Biodiversity Animal Health and Comparative Medicine, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Barbara Bradley
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Paul Montague
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Gigliola Grassi-Zucconi
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Peter G. E. Kennedy
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Marina Bentivoglio
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
- National Institute of Neuroscience (INN), Verona Unit, Verona, Italy
| |
Collapse
|
32
|
Targeting and alteration of tight junctions by bacteria and their virulence factors such as Clostridium perfringens enterotoxin. Pflugers Arch 2016; 469:77-90. [DOI: 10.1007/s00424-016-1902-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 11/01/2016] [Accepted: 11/06/2016] [Indexed: 01/01/2023]
|
33
|
Crystal structures and inhibition of Trypanosoma brucei hypoxanthine-guanine phosphoribosyltransferase. Sci Rep 2016; 6:35894. [PMID: 27786284 PMCID: PMC5081515 DOI: 10.1038/srep35894] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 10/06/2016] [Indexed: 01/29/2023] Open
Abstract
Human African Trypanosomiasis (HAT) is a life-threatening infectious disease caused by the protozoan parasite, Trypanosoma brucei (Tbr). Due to the debilitating side effects of the current therapeutics and the emergence of resistance to these drugs, new medications for this disease need to be developed. One potential new drug target is 6-oxopurine phosphoribosyltransferase (PRT), an enzyme central to the purine salvage pathway and whose activity is critical for the production of the nucleotides (GMP and IMP) required for DNA/RNA synthesis within this protozoan parasite. Here, the first crystal structures of this enzyme have been determined, these in complex with GMP and IMP and with three acyclic nucleoside phosphonate (ANP) inhibitors. The Ki values for GMP and IMP are 30.5 μM and 77 μM, respectively. Two of the ANPs have Ki values considerably lower than for the nucleotides, 2.3 μM (with guanine as base) and 15.8 μM (with hypoxanthine as base). The crystal structures show that when two of the ANPs bind, they induce an unusual conformation change to the loop where the reaction product, pyrophosphate, is expected to bind. This and other structural differences between the Tbr and human enzymes suggest selective inhibitors for the Tbr enzyme can be designed.
Collapse
|
34
|
Mogk S, Boßelmann CM, Mudogo CN, Stein J, Wolburg H, Duszenko M. African trypanosomes and brain infection - the unsolved question. Biol Rev Camb Philos Soc 2016; 92:1675-1687. [PMID: 27739621 DOI: 10.1111/brv.12301] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 09/07/2016] [Accepted: 09/08/2016] [Indexed: 12/14/2022]
Abstract
African trypanosomes induce sleeping sickness. The parasites are transmitted during the blood meal of a tsetse fly and appear primarily in blood and lymph vessels, before they enter the central nervous system. During the latter stage, trypanosomes induce a deregulation of sleep-wake cycles and some additional neurological disorders. Historically, it was assumed that trypanosomes cross the blood-brain barrier and settle somewhere between the brain cells. The brain, however, is a strictly controlled and immune-privileged area that is completely surrounded by a dense barrier that covers the blood vessels: this is the blood-brain barrier. It is known that some immune cells are able to cross this barrier, but this requires a sophisticated mechanism and highly specific cell-cell interactions that have not been observed for trypanosomes within the mammalian host. Interestingly, trypanosomes injected directly into the brain parenchyma did not induce an infection. Likewise, after an intraperitoneal infection of rats, Trypanosoma brucei brucei was not observed within the brain, but appeared readily within the cerebrospinal fluid (CSF) and the meninges. Therefore, the parasite did not cross the blood-brain barrier, but the blood-CSF barrier, which is formed by the choroid plexus, i.e. the part of the ventricles where CSF is produced from blood. While there is no question that trypanosomes are able to invade the brain to induce a deadly encephalopathy, controversy exists about the pathway involved. This review lists experimental results that support crossing of the blood-brain barrier and of the blood-CSF barrier and discuss the implications that either pathway would have on infection progress and on the survival strategy of the parasite. For reasons discussed below, we prefer the latter pathway and suggest the existence of an additional distinct meningeal stage, from which trypanosomes could invade the brain via the Virchow-Robin space thereby bypassing the blood-brain barrier. We also consider healthy carriers, i.e. people living symptomless with the disease for up to several decades, and discuss implications the proposed meningeal stage would have for new anti-trypanosomal drug development. Considering the re-infection of blood, a process called relapse, we discuss the likely involvement of the newly described glymphatic connection between the meningeal space and the lymphatic system, that seems also be important for other infectious diseases.
Collapse
Affiliation(s)
- Stefan Mogk
- Department of Natural Sciences, Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, 72076, Hoppe-Seyler-Str. 4, Germany
| | - Christian M Boßelmann
- Department of Natural Sciences, Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, 72076, Hoppe-Seyler-Str. 4, Germany
| | - Celestin N Mudogo
- Department of Natural Sciences, Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, 72076, Hoppe-Seyler-Str. 4, Germany.,Department of Basic Sciences, School of Medicine, University of Kinshasa, BP 834 KIN XI, Kinshasa, D.R. Congo
| | - Jasmin Stein
- Department of Natural Sciences, Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, 72076, Hoppe-Seyler-Str. 4, Germany
| | - Hartwig Wolburg
- Medical Department, Institute of Pathology and Neuropathology, University of Tübingen, Tübingen, 72076, Liebermeister Str. 8, Germany
| | - Michael Duszenko
- Department of Natural Sciences, Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, 72076, Hoppe-Seyler-Str. 4, Germany.,Medical Department, School of Medicine, Tongji University, 1239 Siping Road, Shanghai, P.R. China
| |
Collapse
|
35
|
Steinemann A, Galm I, Chip S, Nitsch C, Maly IP. Claudin-1, -2 and -3 Are Selectively Expressed in the Epithelia of the Choroid Plexus of the Mouse from Early Development and into Adulthood While Claudin-5 is Restricted to Endothelial Cells. Front Neuroanat 2016; 10:16. [PMID: 26941614 PMCID: PMC4761916 DOI: 10.3389/fnana.2016.00016] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 02/05/2016] [Indexed: 12/22/2022] Open
Abstract
A primary function of epithelial and endothelial monolayers is the formation of barriers that separate tissues into functional compartments. Tight junctions (TJs) seal the intercellular space between the single cells of a monolayer. TJs thus contribute importantly to the homeostasis of the cerebrospinal fluid as they help in maintaining the blood-brain barrier (BBB) and the blood-cerebrospinal fluid barrier (CSF). The composition of TJs differs by its localization as well as the stage of development according to its respective function. Claudin-3 is typically present in the epithelia and has been claimed to be a constituent of the BBB. It is, however, notoriously difficult to demonstrate its expression in endothelial cells of the brain vasculature at the morphological level by means of immunohistochemical techniques. Using an improved fixation strategy (4% paraformaldehyde at pH 11, in the presence of EDTA) and the sensitive alkaline phosphatase as a detection system, we show that claudin-3 is present in mouse epithelia from embryonic day 14 onwards. In brain, it is restricted to the anlage of choroid plexus in the ventricles, together with claudin-1 and -2. In adult mice, it is clearly delineating the epithelium of the choroid plexus in the lateral and fourth ventricles. In contrast, in cerebral blood vessels claudin-3 as well as claudin-1 and -2 are absent in cerebral blood vessels during all developmental stages up to adulthood. Rather, the BBB is characterized by the presence of claudin-5, ZO-1 and occludin. Thus, in mice claudin-3 is an important constituent of TJ in the embryonic and in the adult choroid plexus.
Collapse
Affiliation(s)
- Alexandra Steinemann
- Department of Biomedicine, Section of Functional Neuroanatomy, University of Basel Basel, Switzerland
| | - Isabel Galm
- Department of Biomedicine, Section of Functional Neuroanatomy, University of Basel Basel, Switzerland
| | - Sophorn Chip
- Department of Biomedicine, Section of Functional Neuroanatomy, University of Basel Basel, Switzerland
| | - Cordula Nitsch
- Department of Biomedicine, Section of Functional Neuroanatomy, University of Basel Basel, Switzerland
| | - Ireneusz Piotr Maly
- Department of Biomedicine, Section of Functional Neuroanatomy, University of Basel Basel, Switzerland
| |
Collapse
|
36
|
In vivo trypanocidal activity of Nymphaea lotus Linn. methanol extract against Trypanosoma brucei brucei. ASIAN PACIFIC JOURNAL OF TROPICAL DISEASE 2015. [DOI: 10.1016/s2222-1808(15)60935-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
37
|
Krüger T, Engstler M. Flagellar motility in eukaryotic human parasites. Semin Cell Dev Biol 2015; 46:113-27. [DOI: 10.1016/j.semcdb.2015.10.034] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 10/26/2015] [Accepted: 10/26/2015] [Indexed: 12/31/2022]
|
38
|
Zimmermann S, Hall L, Riley S, Sørensen J, Amaro RE, Schnaufer A. A novel high-throughput activity assay for the Trypanosoma brucei editosome enzyme REL1 and other RNA ligases. Nucleic Acids Res 2015; 44:e24. [PMID: 26400159 PMCID: PMC4756849 DOI: 10.1093/nar/gkv938] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 09/08/2015] [Indexed: 01/12/2023] Open
Abstract
The protist parasite Trypanosoma brucei causes Human African trypanosomiasis (HAT), which threatens millions of people in sub-Saharan Africa. Without treatment the infection is almost always lethal. Current drugs for HAT are difficult to administer and have severe side effects. Together with increasing drug resistance this results in urgent need for new treatments. T. brucei and other trypanosomatid pathogens require a distinct form of post-transcriptional mRNA modification for mitochondrial gene expression. A multi-protein complex called the editosome cleaves mitochondrial mRNA, inserts or deletes uridine nucleotides at specific positions and re-ligates the mRNA. RNA editing ligase 1 (REL1) is essential for the re-ligation step and has no close homolog in the mammalian host, making it a promising target for drug discovery. However, traditional assays for RELs use radioactive substrates coupled with gel analysis and are not suitable for high-throughput screening of compound libraries. Here we describe a fluorescence-based REL activity assay. This assay is compatible with a 384-well microplate format and sensitive, satisfies statistical criteria for high-throughput methods and is readily adaptable for other polynucleotide ligases. We validated the assay by determining kinetic properties of REL1 and by identifying REL1 inhibitors in a library of small, pharmacologically active compounds.
Collapse
Affiliation(s)
- Stephan Zimmermann
- Institute of Immunology & Infection Research and Centre for Immunity, Infection & Evolution, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Laurence Hall
- Institute of Immunology & Infection Research and Centre for Immunity, Infection & Evolution, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Sean Riley
- The Scripps Research Institute, 4122 Sorrento Valley Boulevard, San Diego, CA 92121, USA
| | - Jesper Sørensen
- Department of Chemistry & Biochemistry and the National Biomedical Computation Resource, University of California, San Diego, CA 92093, USA
| | - Rommie E Amaro
- Department of Chemistry & Biochemistry and the National Biomedical Computation Resource, University of California, San Diego, CA 92093, USA
| | - Achim Schnaufer
- Institute of Immunology & Infection Research and Centre for Immunity, Infection & Evolution, University of Edinburgh, Edinburgh EH9 3FL, UK
| |
Collapse
|
39
|
Ueno N, Lodoen MB. From the blood to the brain: avenues of eukaryotic pathogen dissemination to the central nervous system. Curr Opin Microbiol 2015; 26:53-9. [PMID: 26048316 PMCID: PMC10538213 DOI: 10.1016/j.mib.2015.05.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 05/07/2015] [Accepted: 05/08/2015] [Indexed: 12/25/2022]
Abstract
Infection of the central nervous system (CNS) is a significant cause of morbidity and mortality, and treatments available to combat the highly debilitating symptoms of CNS infection are limited. The mechanisms by which pathogens in the circulation overcome host immunity and breach the blood-brain barrier are active areas of investigation. In this review, we discuss recent work that has significantly advanced our understanding of the avenues of pathogen dissemination to the CNS for four eukaryotic pathogens of global health importance: Toxoplasma gondii, Plasmodium falciparum, Trypanosoma brucei, and Cryptococcus neoformans. These studies highlight the remarkable diversity of pathogen strategies for trafficking to the brain and will ultimately contribute to an improved ability to combat life-threatening CNS disease.
Collapse
Affiliation(s)
- Norikiyo Ueno
- Department of Molecular Biology and Biochemistry and the Institute for Immunology, University of California, Irvine, CA, USA
| | - Melissa B Lodoen
- Department of Molecular Biology and Biochemistry and the Institute for Immunology, University of California, Irvine, CA, USA.
| |
Collapse
|
40
|
Schwerk C, Tenenbaum T, Kim KS, Schroten H. The choroid plexus-a multi-role player during infectious diseases of the CNS. Front Cell Neurosci 2015; 9:80. [PMID: 25814932 PMCID: PMC4357259 DOI: 10.3389/fncel.2015.00080] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 02/23/2015] [Indexed: 12/22/2022] Open
Abstract
The choroid plexus (CP) is the source of cerebrospinal fluid (CSF) production and location of the blood-CSF barrier (BCSFB), which is constituted by the epithelial cells of the CP. Several infectious pathogens including viruses, bacteria, fungi and parasites cross the BCSFB to enter the central nervous system (CNS), ultimately leading to inflammatory infectious diseases like meningitis and meningoencephalitis. The CP responds to this challenge by the production of chemokines and cytokines as well as alterations of the barrier function of the BCSFB. During the course of CNS infectious disease host immune cells enter the CNS, eventually contributing to the cellular damage caused by the disease. Additional complications, which are in certain cases caused by choroid plexitis, can arise due to the response of the CP to the pathogens. In this review we will give an overview on the multiple functions of the CP during brain infections highlighting the CP as a multi-role player during infectious diseases of the CNS. In this context the importance of tools for investigation of these CP functions and a possible suitability of the CP as therapeutic target will be discussed.
Collapse
Affiliation(s)
- Christian Schwerk
- Department of Pediatrics, Pediatric Infectious Diseases, Medical Faculty Mannheim, Heidelberg University Mannheim, Germany
| | - Tobias Tenenbaum
- Department of Pediatrics, Pediatric Infectious Diseases, Medical Faculty Mannheim, Heidelberg University Mannheim, Germany
| | - Kwang Sik Kim
- Division of Pediatric Infectious Diseases, Johns Hopkins University School of Medicine Baltimore, MD, USA
| | - Horst Schroten
- Department of Pediatrics, Pediatric Infectious Diseases, Medical Faculty Mannheim, Heidelberg University Mannheim, Germany
| |
Collapse
|
41
|
Munday JC, Settimo L, de Koning HP. Transport proteins determine drug sensitivity and resistance in a protozoan parasite, Trypanosoma brucei. Front Pharmacol 2015; 6:32. [PMID: 25814953 PMCID: PMC4356943 DOI: 10.3389/fphar.2015.00032] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 02/05/2015] [Indexed: 12/02/2022] Open
Abstract
Drug resistance in pathogenic protozoa is very often caused by changes to the ‘transportome’ of the parasites. In Trypanosoma brucei, several transporters have been implicated in uptake of the main classes of drugs, diamidines and melaminophenyl arsenicals. The resistance mechanism had been thought to be due to loss of a transporter known to carry both types of agents: the aminopurine transporter P2, encoded by the gene TbAT1. However, although loss of P2 activity is well-documented as the cause of resistance to the veterinary diamidine diminazene aceturate (DA; Berenil®), cross-resistance between the human-use arsenical melarsoprol and the diamidine pentamidine (melarsoprol/pentamidine cross resistance, MPXR) is the result of loss of a separate high affinity pentamidine transporter (HAPT1). A genome-wide RNAi library screen for resistance to pentamidine, published in 2012, gave the key to the genetic identity of HAPT1 by linking the phenomenon to a locus that contains the closely related T. brucei aquaglyceroporin genes TbAQP2 and TbAQP3. Further analysis determined that knockdown of only one pore, TbAQP2, produced the MPXR phenotype. TbAQP2 is an unconventional aquaglyceroporin with unique residues in the “selectivity region” of the pore, and it was found that in several MPXR lab strains the WT gene was either absent or replaced by a chimeric protein, recombined with parts of TbAQP3. Importantly, wild-type AQP2 was also absent in field isolates of T. b. gambiense, correlating with the outcome of melarsoprol treatment. Expression of a wild-type copy of TbAQP2 in even the most resistant strain completely reversed MPXR and re-introduced HAPT1 function and transport kinetics. Expression of TbAQP2 in Leishmania mexicana introduced a pentamidine transport activity indistinguishable from HAPT1. Although TbAQP2 has been shown to function as a classical aquaglyceroporin it is now clear that it is also a high affinity drug transporter, HAPT1. We discuss here a possible structural rationale for this remarkable ability.
Collapse
Affiliation(s)
- Jane C Munday
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow Glasgow, UK
| | - Luca Settimo
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow Glasgow, UK ; Department of Chemistry and Chemical Biology, Northeastern University Boston, MA, USA
| | - Harry P de Koning
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow Glasgow, UK
| |
Collapse
|
42
|
Mogk S, Meiwes A, Boßelmann CM, Wolburg H, Duszenko M. The lane to the brain: how African trypanosomes invade the CNS. Trends Parasitol 2014; 30:470-7. [DOI: 10.1016/j.pt.2014.08.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 08/08/2014] [Accepted: 08/08/2014] [Indexed: 12/13/2022]
|