1
|
Bills BL, Hulser ML, Knowles MK. Phospholipase D1 produces phosphatidic acid at sites of secretory vesicle docking and fusion. Mol Biol Cell 2024; 35:ar39. [PMID: 38117597 PMCID: PMC10916877 DOI: 10.1091/mbc.e23-05-0189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 11/29/2023] [Accepted: 12/13/2023] [Indexed: 12/22/2023] Open
Abstract
Phospholipase D1 (PLD1) activity is essential for the stimulated exocytosis of secretory vesicles where it acts as a lipid-modifying enzyme to produces phosphatidic acid (PA). PLD1 localizes to the plasma membrane and secretory vesicles, and PLD1 inhibition or knockdowns reduce the rate of fusion. However, temporal data resolving when and where PLD1 and PA are required during exocytosis is lacking. In this work, PLD1 and production of PA are measured during the trafficking, docking, and fusion of secretory vesicles in PC12 cells. Using fluorescently tagged PLD1 and a PA-binding protein, cells were imaged using TIRF microscopy to monitor the presence of PLD1 and the formation of PA throughout the stages of exocytosis. Single docking and fusion events were imaged to measure the recruitment of PLD1 and the formation of PA. PLD1 is present on mobile, docking, and fusing vesicles and also colocalizes with Syx1a clusters. Treatment of cells with PLD inhibitors significantly reduces fusion, but not PLD1 localization to secretory vesicles. Inhibitors also alter the formation of PA; when PLD1 is active, PA slowly accumulates on docked vesicles. During fusion, PA is reduced in cells treated with PLD1 inhibitors, indicating that PLD1 produces PA during exocytosis.
Collapse
Affiliation(s)
- Broderick L. Bills
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO 80210
- Molecular and Cellular Biophysics Program, University of Denver, Denver, CO 80210
| | - Megan L. Hulser
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO 80210
- Molecular and Cellular Biophysics Program, University of Denver, Denver, CO 80210
| | - Michelle K. Knowles
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO 80210
- Molecular and Cellular Biophysics Program, University of Denver, Denver, CO 80210
| |
Collapse
|
2
|
Hipkaeo W, Kondo H. Localization of phospholipid-related signal molecules in salivary glands of rodents: A review. J Oral Biosci 2023; 65:146-155. [PMID: 37061129 DOI: 10.1016/j.job.2023.04.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/08/2023] [Accepted: 04/10/2023] [Indexed: 04/17/2023]
Abstract
BACKGROUND In the 1950s, Hokin conducted initial studies on phosphoinositide turnover/cycle in salivary glandular cells. From these studies, the idea emerged that receptor-mediated changes in intramembranous levels of phosphoinositides represent an early step in the stimulus-response pathway. Based on this idea and the general view that knowledge of the exact localization of a given endogenous molecule in cells in situ is important for understanding its functional significance, we have reviewed available information about the localization of several representative phosphoinositide-signaling molecules in the salivary glands in situ in mice. HIGHLIGHT We focused on phosphatidylinositol 4-kinase, phosphatidylinositol 4 phosphate 5-kinase α, β, γ, phospholipase Cβ, muscarinic cholinoceptors 1 and 3, diacylglycerol kinase ζ, phospholipase D1 and 2, ADP-ribosylation factor 6 and its exchange factors for Arf6, and cannabinoid receptors. These molecules individually exhibit differential localization in a spatiotemporal manner in the exocrine glands, making it possible to deduce their functional significance, such as their involvement in secretion and cell differentiation. CONCLUSION Although phosphoinositide-signaling molecules whose in situ localization in glandular cells has been clarified are still limited, the obtained information on their localization suggests that their functional significance is more valuable in glandular ducts than in acini. It thus suggests the necessity of greater attention to the ducts in their physio-pharmacological analyses. The purpose of this review is to encourage more in situ localization studies of phosphoinositide-signaling molecules with an aim to further understand their possible involvement in the pathogenesis of salivary gland diseases.
Collapse
Affiliation(s)
- Wiphawi Hipkaeo
- Electron Microscopy Laboratory, Division of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.
| | - Hisatake Kondo
- Electron Microscopy Laboratory, Division of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand; Department of Anatomy, Graduate School of Medicine, Tohoku University, Sendai, JAPAN
| |
Collapse
|
3
|
Chang YC, Chang PMH, Li CH, Chan MH, Lee YJ, Chen MH, Hsiao M. Aldolase A and Phospholipase D1 Synergistically Resist Alkylating Agents and Radiation in Lung Cancer. Front Oncol 2022; 11:811635. [PMID: 35127525 PMCID: PMC8813753 DOI: 10.3389/fonc.2021.811635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 12/27/2021] [Indexed: 11/13/2022] Open
Abstract
Exposure to alkylating agents and radiation may cause damage and apoptosis in cancer cells. Meanwhile, this exposure involves resistance and leads to metabolic reprogramming to benefit cancer cells. At present, the detailed mechanism is still unclear. Based on the profiles of several transcriptomes, we found that the activity of phospholipase D (PLD) and the production of specific metabolites are related to these events. Comparing several particular inhibitors, we determined that phospholipase D1 (PLD1) plays a dominant role over other PLD members. Using the existing metabolomics platform, we demonstrated that lysophosphatidylethanolamine (LPE) and lysophosphatidylcholine (LPC) are the most critical metabolites, and are highly dependent on aldolase A (ALDOA). We further demonstrated that ALDOA could modulate total PLD enzyme activity and phosphatidic acid products. Particularly after exposure to alkylating agents and radiation, the proliferation of lung cancer cells, autophagy, and DNA repair capabilities are enhanced. The above phenotypes are closely related to the performance of the ALDOA/PLD1 axis. Moreover, we found that ALDOA inhibited PLD2 activity and enzyme function through direct protein–protein interaction (PPI) with PLD2 to enhance PLD1 and additional carcinogenic features. Most importantly, the combination of ALDOA and PLD1 can be used as an independent prognostic factor and is correlated with several clinical parameters in lung cancer. These findings indicate that, based on the PPI status between ALDOA and PLD2, a combination of radiation and/or alkylating agents with regulating ALDOA-PLD1 may be considered as a new lung cancer treatment option.
Collapse
Affiliation(s)
- Yu-Chan Chang
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Peter Mu-Hsin Chang
- Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan
- Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Institute of Biopharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chien-Hsiu Li
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | | | - Yi-Jang Lee
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ming-Huang Chen
- Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Center of Immuno-Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
- Department of Biochemistry, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- *Correspondence: Michael Hsiao,
| |
Collapse
|
4
|
McDermott MI, Wang Y, Wakelam MJO, Bankaitis VA. Mammalian phospholipase D: Function, and therapeutics. Prog Lipid Res 2019; 78:101018. [PMID: 31830503 DOI: 10.1016/j.plipres.2019.101018] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 10/08/2019] [Accepted: 10/14/2019] [Indexed: 01/23/2023]
Abstract
Despite being discovered over 60 years ago, the precise role of phospholipase D (PLD) is still being elucidated. PLD enzymes catalyze the hydrolysis of the phosphodiester bond of glycerophospholipids producing phosphatidic acid and the free headgroup. PLD family members are found in organisms ranging from viruses, and bacteria to plants, and mammals. They display a range of substrate specificities, are regulated by a diverse range of molecules, and have been implicated in a broad range of cellular processes including receptor signaling, cytoskeletal regulation and membrane trafficking. Recent technological advances including: the development of PLD knockout mice, isoform-specific antibodies, and specific inhibitors are finally permitting a thorough analysis of the in vivo role of mammalian PLDs. These studies are facilitating increased recognition of PLD's role in disease states including cancers and Alzheimer's disease, offering potential as a target for therapeutic intervention.
Collapse
Affiliation(s)
- M I McDermott
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, TX 77843-1114, United States of America.
| | - Y Wang
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, TX 77843-1114, United States of America; Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843-2128, United States of America
| | - M J O Wakelam
- Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, United Kingdom
| | - V A Bankaitis
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, TX 77843-1114, United States of America; Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843-2128, United States of America; Department of Chemistry, Texas A&M University, College Station, Texas 77840, United States of America
| |
Collapse
|
5
|
Khrongyut S, Polsan Y, Sakaew W, Sawatpanich T, Banno Y, Nozawa Y, Kondo H, Hipkaeo W. Expression of endogenous phospholipase D1, localized in mouse submandibular gland, is greater in females and is suppressed by testosterone. J Anat 2019; 235:1125-1136. [PMID: 31402458 DOI: 10.1111/joa.13073] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2019] [Indexed: 11/29/2022] Open
Abstract
To clarify the signal transduction mechanism in the differentiation and secretion of salivary glandular cells, the present study was attempted to examine in the submandibular gland (SMG) of mice, the expression and localization of phospholipase D1 (PLD1), one of the important effector molecules working in response to the activation of intramembranous receptors by first messengers. In immunoblotting analysis, the expression of PLD1 was high at postnatal 4 weeks (P4W) and decreased at P8W, and it was at negligible levels at newborn stage (P0W) and postnatal 2 weeks (P2W). The expression of PLD1 was greater in females, and it was suppressed by administration of testosterone to female mice. In immuno-light microscopy, immunoreactivity for PLD1 at P4W was moderate to intense, in the forms of dots and globules mainly in the apical domains of immature granular convoluted tubule (GCT)-cells localized largely in the proximal portion of the female GCT. By P8W, it decreased in intensity and remained weak to moderate along the apical plasmalemma of cells throughout the course of the female GCT, whereas it was faint throughout the GCT of the male SMG at P4W and negligible at P8W. In immuno-electron microscopy, immature GCT-cells characterized by electron-lucent granules were immunoreactive and the immunoreactive materials were deposited close to, but not within, those granules. Typical GCT cells, characterized by electron-dense granules, were immunonegative. No significant immunoreaction for PLD1 was seen in acini of SMGs of either sex at any time point examined. It is suggested that PLD1 is involved in the signaling for secretion of immature GCT cells and influences differentiation of these cells, probably through their own secretory substances.
Collapse
Affiliation(s)
- Suthankamon Khrongyut
- Electron Microscopy Unit, Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Yada Polsan
- Electron Microscopy Unit, Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Waraporn Sakaew
- Electron Microscopy Unit, Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Tarinee Sawatpanich
- Electron Microscopy Unit, Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Yoshiko Banno
- Department of Biochemistry, School of Medicine, Gifu University, Gifu, Japan
| | - Yoshinori Nozawa
- Department of Biochemistry, School of Medicine, Gifu University, Gifu, Japan
| | - Hisatake Kondo
- Electron Microscopy Unit, Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.,Department of Anatomy, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Wiphawi Hipkaeo
- Electron Microscopy Unit, Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
6
|
Bolomini-Vittori M, Mennens SFB, Joosten B, Fransen J, Du G, van den Dries K, Cambi A. PLD-dependent phosphatidic acid microdomains are signaling platforms for podosome formation. Sci Rep 2019; 9:3556. [PMID: 30837487 PMCID: PMC6401089 DOI: 10.1038/s41598-019-39358-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 01/22/2019] [Indexed: 01/07/2023] Open
Abstract
Local membrane phospholipid enrichment serves as docking platform for signaling proteins involved in many processes including cell adhesion and migration. Tissue-resident dendritic cells (DCs) assemble actomyosin-based structures called podosomes, which mediate adhesion and degradation of extracellular matrix for migration and antigen sampling. Recent evidence suggested the involvement of phospholipase D (PLD) and its product phosphatidic acid (PA) in podosome formation, but the spatiotemporal control of this process is poorly characterized. Here we determined the role of PLD1 and PLD2 isoforms in regulating podosome formation and dynamics in human primary DCs by combining PLD pharmacological inhibition with a fluorescent PA sensor and fluorescence microscopy. We found that ongoing PLD2 activity is required for the maintenance of podosomes, whereas both PLD1 and PLD2 control the early stages of podosome assembly. Furthermore, we captured the formation of PA microdomains accumulating at the membrane cytoplasmic leaflet of living DCs, in dynamic coordination with nascent podosome actin cores. Finally, we show that both PLD1 and PLD2 activity are important for podosome-mediated matrix degradation. Our results provide novel insight into the isoform-specific spatiotemporal regulation of PLD activity and further our understanding of the role of cell membrane phospholipids in controlling localized actin polymerization and cell protrusion.
Collapse
Affiliation(s)
- Matteo Bolomini-Vittori
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Svenja F B Mennens
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ben Joosten
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands.,Microscopic Imaging Center, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jack Fransen
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands.,Microscopic Imaging Center, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Guangwei Du
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center, Houston, Texas, USA
| | - Koen van den Dries
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Alessandra Cambi
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
7
|
Park SY, Han JS. Phospholipase D1 Signaling: Essential Roles in Neural Stem Cell Differentiation. J Mol Neurosci 2018; 64:333-340. [PMID: 29478139 PMCID: PMC5874277 DOI: 10.1007/s12031-018-1042-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 02/06/2018] [Indexed: 12/17/2022]
Abstract
Phospholipase D1 (PLD1) is generally accepted as playing an important role in the regulation of multiple cell functions, such as cell growth, survival, differentiation, membrane trafficking, and cytoskeletal organization. Recent findings suggest that PLD1 also plays an important role in the regulation of neuronal differentiation of neuronal cells. Moreover, PLD1-mediated signaling molecules dynamically regulate the neuronal differentiation of neural stem cells (NSCs). Rho family GTPases and Ca2+-dependent signaling, in particular, are closely involved in PLD1-mediated neuronal differentiation of NSCs. Moreover, PLD1 has a significant effect on the neurogenesis of NSCs via the regulation of SHP-1/STAT3 activation. Therefore, PLD1 has now attracted significant attention as an essential neuronal signaling molecule in the nervous system. In the current review, we summarize recent findings on the regulation of PLD1 in neuronal differentiation and discuss the potential role of PLD1 in the neurogenesis of NSCs.
Collapse
Affiliation(s)
- Shin-Young Park
- Biomedical Research Institute and Department of Biochemistry and Molecular Biology, College of Medicine, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Joong-Soo Han
- Biomedical Research Institute and Department of Biochemistry and Molecular Biology, College of Medicine, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea.
| |
Collapse
|
8
|
Novák D, Vadovič P, Ovečka M, Šamajová O, Komis G, Colcombet J, Šamaj J. Gene Expression Pattern and Protein Localization of Arabidopsis Phospholipase D Alpha 1 Revealed by Advanced Light-Sheet and Super-Resolution Microscopy. FRONTIERS IN PLANT SCIENCE 2018; 9:371. [PMID: 29628934 PMCID: PMC5877115 DOI: 10.3389/fpls.2018.00371] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 03/06/2018] [Indexed: 05/11/2023]
Abstract
Phospholipase D alpha 1 (PLDα1, At3g15730) and its product phosphatidic acid (PA) are involved in a variety of cellular and physiological processes, such as cytoskeletal remodeling, regulation of stomatal closure and opening, as well as biotic and abiotic stress signaling. Here we aimed to study developmental expression patterns and subcellular localization of PLDα1 in Arabidopsis using advanced microscopy methods such as light-sheet fluorescence microscopy (LSFM) and structured illumination microscopy (SIM). We complemented two knockout pldα1 mutants with a YFP-tagged PLDα1 expressed under the PLDα1 native promoter in order to study developmental expression pattern and subcellular localization of PLDα1 in Arabidopsis thaliana under natural conditions. Imaging of tissue-specific and developmentally-regulated localization of YFP-tagged PLDα1 by LSFM in roots of growing seedlings showed accumulation of PLDα1-YFP in the root cap and the rhizodermis. Expression of PLDα1-YFP in the rhizodermis was considerably higher in trichoblasts before and during root hair formation and growth. Thus, PLDα1-YFP accumulated in emerging root hairs and in the tips of growing root hairs. PLDα1-YFP showed cytoplasmic subcellular localization in root cap cells and in cells of the root transition zone. In aerial parts of plants PLDα1-YFP was also localized in the cytoplasm showing enhanced accumulation in the cortical cytoplasmic layer of epidermal non-dividing cells of hypocotyls, leaves, and leaf petioles. However, in dividing cells of root apical meristem and leaf petiole epidermis PLDα1-YFP was enriched in mitotic spindles and phragmoplasts, as revealed by co-visualization with microtubules. Finally, super-resolution SIM imaging revealed association of PLDα1-YFP with both microtubules and clathrin-coated vesicles (CCVs) and pits (CCPs). In conclusion, this study shows the developmentally-controlled expression and subcellular localization of PLDα1 in dividing and non-dividing Arabidopsis cells.
Collapse
Affiliation(s)
- Dominik Novák
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University Olomouc, Olomouc, Czechia
| | - Pavol Vadovič
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University Olomouc, Olomouc, Czechia
| | - Miroslav Ovečka
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University Olomouc, Olomouc, Czechia
| | - Olga Šamajová
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University Olomouc, Olomouc, Czechia
| | - George Komis
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University Olomouc, Olomouc, Czechia
| | - Jean Colcombet
- UMR9213 Institut des Sciences des Plantes de Paris Saclay, Orsay, France
| | - Jozef Šamaj
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University Olomouc, Olomouc, Czechia
- *Correspondence: Jozef Šamaj
| |
Collapse
|
9
|
Stoeckelhuber M, Loeffelbein DJ, Olzowy B, Schmitz C, Koerdt S, Kesting MR. Labial Salivary Glands in Infants: Histochemical Analysis of Cytoskeletal and Antimicrobial Proteins. J Histochem Cytochem 2017; 64:502-10. [PMID: 27439958 DOI: 10.1369/0022155416656940] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 06/06/2016] [Indexed: 12/19/2022] Open
Abstract
Human labial glands secrete mucous and serous substances for maintaining oral health. The normal microbial flora of the oral cavity is regulated by the acquired and innate immune systems. The localization and distribution of proteins of the innate immune system were investigated in serous acinar cells and the ductal system by the method of immunohistochemistry. Numerous antimicrobial proteins could be detected in the labial glands: β-defensin-1, -2, -3; lysozyme; lactoferrin; and cathelicidin. Cytoskeletal components such as actin, myosin II, cytokeratins 7 and 19, α- and β-tubulin were predominantly observed in apical cell regions and may be involved in secretory activities.
Collapse
Affiliation(s)
- Mechthild Stoeckelhuber
- Department of Oral and Maxillofacial Surgery, Technical University of Munich, Munich, Germany (MS, DJL, SK, MRK)
| | - Denys J Loeffelbein
- Department of Oral and Maxillofacial Surgery, Technical University of Munich, Munich, Germany (MS, DJL, SK, MRK)
| | - Bernhard Olzowy
- Department of Otorhinolaryngology, Ludwig Maximilians University of Munich, Munich, Germany (BO)
| | - Christoph Schmitz
- Department of Neuroanatomy, Ludwig Maximilians University of Munich, Munich, Germany (CS)
| | - Steffen Koerdt
- Department of Oral and Maxillofacial Surgery, Technical University of Munich, Munich, Germany (MS, DJL, SK, MRK)
| | - Marco R Kesting
- Department of Oral and Maxillofacial Surgery, Technical University of Munich, Munich, Germany (MS, DJL, SK, MRK)
| |
Collapse
|
10
|
Tavares LA, da Silva EML, da Silva-Januário ME, Januário YC, de Cavalho JV, Czernisz ÉS, Mardones GA, daSilva LLP. CD4 downregulation by the HIV-1 protein Nef reveals distinct roles for the γ1 and γ2 subunits of the AP-1 complex in protein trafficking. J Cell Sci 2016; 130:429-443. [PMID: 27909244 DOI: 10.1242/jcs.192104] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 11/16/2016] [Indexed: 12/20/2022] Open
Abstract
The HIV accessory protein Nef is a major determinant of viral pathogenesis that facilitates viral particle release, prevents viral antigen presentation and increases infectivity of new virus particles. These functions of Nef involve its ability to remove specific host proteins from the surface of infected cells, including the CD4 receptor. Nef binds to the adaptor protein 2 (AP-2) and CD4 in clathrin-coated pits, forcing CD4 internalization and its subsequent targeting to lysosomes. Herein, we report that this lysosomal targeting requires a variant of AP-1 containing isoform 2 of γ-adaptin (AP1G2, hereafter γ2). Depletion of the γ2 or μ1A (AP1M1) subunits of AP-1, but not of γ1 (AP1G1), precludes Nef-mediated lysosomal degradation of CD4. In γ2-depleted cells, CD4 internalized by Nef accumulates in early endosomes and this alleviates CD4 removal from the cell surface. Depletion of γ2 also hinders EGFR-EGF-complex targeting to lysosomes, an effect that is not observed upon γ1 depletion. Taken together, our data provide evidence that the presence of γ1 or γ2 subunits delineates two distinct variants of AP-1 complexes, with different functions in protein sorting.
Collapse
Affiliation(s)
- Lucas A Tavares
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo 14049-900, Brazil
| | - Eulália M L da Silva
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo 14049-900, Brazil
| | - Mara E da Silva-Januário
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo 14049-900, Brazil
| | - Yunan C Januário
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo 14049-900, Brazil
| | - Julianne V de Cavalho
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo 14049-900, Brazil
| | - Érika S Czernisz
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo 14049-900, Brazil
| | - Gonzalo A Mardones
- Department of Physiology, School of Medicine, and Center for Interdisciplinary Studies of the Nervous System (CISNe), Universidad Austral de Chile, Valdivia 5110566, Chile
| | - Luis L P daSilva
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo 14049-900, Brazil
| |
Collapse
|
11
|
Kumar A, Baycin-Hizal D, Zhang Y, Bowen MA, Betenbaugh MJ. Cellular traffic cops: the interplay between lipids and proteins regulates vesicular formation, trafficking, and signaling in mammalian cells. Curr Opin Biotechnol 2015; 36:215-21. [PMID: 26540512 DOI: 10.1016/j.copbio.2015.09.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 08/18/2015] [Accepted: 09/17/2015] [Indexed: 11/30/2022]
Abstract
Protein secretion and vesicular trafficking in mammalian cells rely on several key lipids including sphingolipids, phospholipids, and neutral lipids crucial to protein processing and other intracellular events. Proteins interact with these lipids to alter the shape of lipid bilayer, thereby playing a pivotal role in cellular sorting. Although some efforts have elucidated the role of these components, extensive studies are needed to further decipher the protein-lipid interactions along with the effect of membrane curvature and rafts in sorting of proteins. The regulatory role of proteins in subcellular localization and metabolism of lipids also needs to be described. Recent studies on the role of lipid-protein interactions in modulating membrane shape, signal transduction, and vesicular trafficking are presented in this review.
Collapse
Affiliation(s)
- Amit Kumar
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Deniz Baycin-Hizal
- Antibody Discovery and Protein Engineering, MedImmune, Gaithersburg, MD 20878, USA
| | - Yue Zhang
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Michael A Bowen
- Antibody Discovery and Protein Engineering, MedImmune, Gaithersburg, MD 20878, USA
| | - Michael J Betenbaugh
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA.
| |
Collapse
|
12
|
Marchini-Alves CMM, Barbosa Lorenzi VC, da Silva EZM, Mazucato VM, Jamur MC, Oliver C. Phospholipase D2 Modulates the Secretory Pathway in RBL-2H3 Mast Cells. PLoS One 2015; 10:e0139888. [PMID: 26492088 PMCID: PMC4619593 DOI: 10.1371/journal.pone.0139888] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 09/18/2015] [Indexed: 11/19/2022] Open
Abstract
Phospholipase D (PLD) hydrolyses phosphatidylcholine to produce phosphatidic acid (PA) and choline. It has two isoforms, PLD1 and PLD2, which are differentially expressed depending on the cell type. In mast cells it plays an important role in signal transduction. The aim of the present study was to clarify the role of PLD2 in the secretory pathway. RBL-2H3 cells, a mast cell line, transfected to overexpress catalytically active (PLD2CA) and inactive (PLD2CI) forms of PLD2 were used. Previous observations showed that the Golgi complex was well organized in CA cells, but was disorganized and dispersed in CI cells. Furthermore, in CI cells, the microtubule organizing center was difficult to identify and the microtubules were disorganized. These previous observations demonstrated that PLD2 is important for maintaining the morphology and organization of the Golgi complex. To further understand the role of PLD2 in secretory and vesicular trafficking, the role of PLD2 in the secretory process was investigated. Incorporation of sialic acid was used to follow the synthesis and transport of glycoconjugates in the cell lines. The modified sialic acid was subsequently detected by labeling with a fluorophore or biotin to visualize the localization of the molecule after a pulse-chase for various times. Glycoconjugate trafficking was slower in the CI cells and labeled glycans took longer to reach the plasma membrane. Furthermore, in CI cells sialic acid glycans remained at the plasma membrane for longer periods of time compared to RBL-2H3 cells. These results suggest that PLD2 activity plays an important role in regulating glycoconjugate trafficking in mast cells.
Collapse
Affiliation(s)
- Claudia Maria Meirelles Marchini-Alves
- Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Valeria Cintra Barbosa Lorenzi
- Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Elaine Zayas Marcelino da Silva
- Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Vivian Marino Mazucato
- Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Maria Celia Jamur
- Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Constance Oliver
- Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
- * E-mail:
| |
Collapse
|