1
|
Zhu Y, Meng Y, Zhang J, Liu R, Shen S, Gu L, Wong YK, Ma A, Chai X, Zhang Y, Liu Y, Wang J. Recent Trends in anti-tumor mechanisms and molecular targets of celastrol. Int J Biol Sci 2024; 20:5510-5530. [PMID: 39494324 PMCID: PMC11528459 DOI: 10.7150/ijbs.99592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 09/24/2024] [Indexed: 11/05/2024] Open
Abstract
Celastrol, a compound derived from traditional Chinese medicine, has therapeutic effects and has been used to treat inflammation-related diseases, cancer, cardiovascular diseases, and neurodegenerative diseases. However, current reviews lack a comprehensive and systematic summary of the anti-tumor mechanisms and molecular targets of celastrol. For this reason, this paper reviews the anticancer properties of celastrol and the molecular mechanisms underlying its anticancer effects. This paper primarily focuses on the mechanism of action of celastrol in terms of inhibition of cell proliferation and regulation of the cell cycle, regulation of apoptosis and autophagy, inhibition of cell invasion and metastasis, anti-inflammation, regulation of immunotherapy, and angiogenesis. More importantly, the target proteins of celastrol identified by chemical proteomics or other methods are highlighted, providing detailed targets with novel therapeutic potential for anti-tumor treatment. In addition, we describe the side effects and strategies to improve the bioavailability of celastrol. In summary, this paper analyzes celastrol, a natural compound with therapeutic effects and clear targets, aiming to draw more attention from the scientific and pharmacological communities and accelerating its clinical application for the benefit of cancer patients.
Collapse
Affiliation(s)
- Yongping Zhu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yuqing Meng
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Junzhe Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Rui Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Shengnan Shen
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Liwei Gu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yin-kwan Wong
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Ang Ma
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xin Chai
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Ying Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yanqing Liu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jigang Wang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
- Department of Critical Care Medicine, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatric, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng, China
| |
Collapse
|
2
|
Qing TL, Jiang XY, Li JF, Shen Q, Zhao XY, Ren LJ, Dai XY, Zhang JQZ, Shi WJ, Zhang XF, Zhang B, Yan L, Chen JK, Zhu JB. Celastrol reduces lung inflammation induced by multiwalled carbon nanotubes in mice via NF-κb-signaling pathway. Inhal Toxicol 2024; 36:275-281. [PMID: 38836332 DOI: 10.1080/08958378.2024.2351098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 04/29/2024] [Indexed: 06/06/2024]
Abstract
Multiwalled carbon nanotubes (MWCNTs) have numerous applications in the field of carbon nanomaterials. However, the associated toxicity concerns have increased significantly because of their widespread use. The inhalation of MWCNTs can lead to nanoparticle deposition in the lung tissue, causing inflammation and health risks. In this study, celastrol, a natural plant medicine with potent anti-inflammatory properties, effectively reduced the number of inflammatory cells, including white blood cells, neutrophils, and lymphocytes, and levels of inflammatory cytokines, such as IL-1β, IL-6, and TNF-α, in mice lungs exposed to MWCNTs. Moreover, celastrol inhibited the activation of the NF-κB-signaling pathway. This study confirmed these findings by demonstrating comparable reductions in inflammation upon exposure to MWCNTs in mice with the deletion of NF-κB (P50-/-). These results indicate the utility of celastrol as a promising pharmacological agent for preventing MWCNT-induced lung tissue inflammation.
Collapse
Affiliation(s)
- Tao-Lin Qing
- Department of Health Toxicology, Faculty of Naval Medicine, Naval Medical University, Shanghai, China
| | - Xuan-Yao Jiang
- Department of Health Toxicology, Faculty of Naval Medicine, Naval Medical University, Shanghai, China
| | - Jin-Feng Li
- Department of Health Toxicology, Faculty of Naval Medicine, Naval Medical University, Shanghai, China
| | - Qi Shen
- Department of Health Toxicology, Faculty of Naval Medicine, Naval Medical University, Shanghai, China
| | - Xin-Yi Zhao
- Department of Health Toxicology, Faculty of Naval Medicine, Naval Medical University, Shanghai, China
| | - Li-Jun Ren
- Department of Health Toxicology, Faculty of Naval Medicine, Naval Medical University, Shanghai, China
| | - Xiao-Yu Dai
- Department of Health Toxicology, Faculty of Naval Medicine, Naval Medical University, Shanghai, China
| | - Ji-Qian-Zhu Zhang
- Department of Health Toxicology, Faculty of Naval Medicine, Naval Medical University, Shanghai, China
| | - Wen-Jing Shi
- Department of Health Toxicology, Faculty of Naval Medicine, Naval Medical University, Shanghai, China
| | - Xiao-Fang Zhang
- Department of Health Toxicology, Faculty of Naval Medicine, Naval Medical University, Shanghai, China
| | - Bin Zhang
- Department of Health Toxicology, Faculty of Naval Medicine, Naval Medical University, Shanghai, China
| | - Lang Yan
- Department of Health Toxicology, Faculty of Naval Medicine, Naval Medical University, Shanghai, China
| | - Ji-Kuai Chen
- Department of Health Toxicology, Faculty of Naval Medicine, Naval Medical University, Shanghai, China
| | - Jiang-Bo Zhu
- Department of Health Toxicology, Faculty of Naval Medicine, Naval Medical University, Shanghai, China
| |
Collapse
|
3
|
Vilaboa N, Voellmy R. Withaferin A and Celastrol Overwhelm Proteostasis. Int J Mol Sci 2023; 25:367. [PMID: 38203539 PMCID: PMC10779417 DOI: 10.3390/ijms25010367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
Withaferin A (WA) and celastrol (CEL) are major bioactive components of plants that have been widely employed in traditional medicine. The pleiotropic activities of plant preparations and the isolated compounds in vitro and in vivo have been documented in hundreds of studies. Both WA and CEL were shown to have anticancer activity. Although WA and CEL belong to different chemical classes, our synthesis of the available information suggests that the compounds share basic mechanisms of action. Both WA and CEL bind covalently to numerous proteins, causing the partial unfolding of some of these proteins and of many bystander proteins. The resulting proteotoxic stress, when excessive, leads to cell death. Both WA and CEL trigger the activation of the unfolded protein response (UPR) which, if the proteotoxic stress persists, results in apoptosis mediated by the PERK/eIF-2/ATF4/CHOP pathway or another UPR-dependent pathway. Other mechanisms of cell death may play contributory or even dominant roles depending on cell type. As shown in a proteomic study with WA, the compounds appear to function largely as electrophilic reactants, indiscriminately modifying reachable nucleophilic amino acid side chains of proteins. However, a remarkable degree of target specificity is imparted by the cellular context.
Collapse
Affiliation(s)
- Nuria Vilaboa
- Hospital Universitario La Paz-IdiPAZ, 28046 Madrid, Spain
- CIBER de Bioingenieria, Biomateriales y Nanomedicina, CIBER-BBN, 28046 Madrid, Spain
| | | |
Collapse
|
4
|
Hirahara N, Matsubara T, Kaji S, Hayashi H, Sasaki Y, Kawakami K, Hyakudomi R, Yamamoto T, Tajima Y. Novel inflammation-combined prognostic index to predict survival outcomes in patients with gastric cancer. Oncotarget 2023; 14:71-82. [PMID: 36719281 PMCID: PMC9888308 DOI: 10.18632/oncotarget.28353] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 01/16/2023] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND We focused on the lymphocyte-to-monocyte ratio (LMR), neutrophil-to-lymphocyte ratio (NLR), and platelet-to-lymphocyte ratio (PLR) and devised an inflammation-combined prognostic index (ICPI) as a prognostic marker of cancer-specific survival (CSS). METHODS We reviewed the clinicopathological data of 480 patients with gastric cancer undergoing curative laparoscopic gastrectomy between 2009 and 2019. This study examined the significance of LMR, NLR, PLR, and ICPI as cancer-specific prognostic markers. RESULTS In univariate analysis, tumor diameter, histological differentiation, pathological tumor-node-metastasis (pTNM) stage, LMR, NLR, PLR, C-reactive protein (CRP) level, carcinoembryonic antigen (CEA), and postoperative chemotherapy were significantly associated with CSS. In multivariate analysis, pTNM stage and CEA were the independent risk factors for CSS, although LMR, NLR, and PLR were not the independent risk factors for CSS. The ICPI formula was constructed using hazard ratios for three inflammation-based biomarkers with worse prognosis identified in the univariate analysis: LMR <4.315, NLR ≥2.344, and PLR ≥212.01, which were each scored as 1, with all remaining values pointed at 0. ICPI was calculated as follows: ICPI = 2.9 × LMR + 2.8 × NLR + 2.8 × PLR. The optimal cutoff value of ICPII was 2.9. On multivariate analysis, pTNM stage, CEA, and ICPI were independent prognostic factors for CSS. In the Kaplan-Meier survival analysis, CSS in the high ICPI group was significantly worse than that in the low ICPI group. CONCLUSION ICPI was devised as a novel predictive index for prognosis, and its usefulness was clarified.
Collapse
Affiliation(s)
- Noriyuki Hirahara
- Department of Digestive and General Surgery, Shimane University Faculty of Medicine, Izumo, Shimane 693-8501, Japan
| | - Takeshi Matsubara
- Department of Digestive and General Surgery, Shimane University Faculty of Medicine, Izumo, Shimane 693-8501, Japan
| | - Shunsuke Kaji
- Department of Surgery, Matsue Red Cross Hospital, Matsue, Shimane 690-0886, Japan
| | - Hikota Hayashi
- Department of Digestive and General Surgery, Shimane University Faculty of Medicine, Izumo, Shimane 693-8501, Japan
| | - Yohei Sasaki
- Department of Surgery, Masuda Red Cross Hospital, Masuda, Shimane 698-8501, Japan
| | - Koki Kawakami
- Department of Surgery, Matsue Red Cross Hospital, Matsue, Shimane 690-0886, Japan
| | - Ryoji Hyakudomi
- Department of Digestive and General Surgery, Shimane University Faculty of Medicine, Izumo, Shimane 693-8501, Japan
| | - Tetsu Yamamoto
- Department of Digestive and General Surgery, Shimane University Faculty of Medicine, Izumo, Shimane 693-8501, Japan
| | - Yoshitsugu Tajima
- Department of Digestive and General Surgery, Shimane University Faculty of Medicine, Izumo, Shimane 693-8501, Japan
| |
Collapse
|
5
|
Synthesis and Evaluation of Celastrol Derivatives as HIF-1α Inhibitors. Chem Nat Compd 2022. [DOI: 10.1007/s10600-022-03870-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
6
|
Fuzo CA, Martins RB, Fraga‐Silva TFC, Amstalden MK, Canassa De Leo T, Souza JP, Lima TM, Faccioli LH, Okamoto DN, Juliano MA, França SC, Juliano L, Bonato VLD, Arruda E, Dias‐Baruffi M. Celastrol: A lead compound that inhibits SARS-CoV-2 replication, the activity of viral and human cysteine proteases, and virus-induced IL-6 secretion. Drug Dev Res 2022; 83:1623-1640. [PMID: 35989498 PMCID: PMC9539158 DOI: 10.1002/ddr.21982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/30/2022] [Accepted: 07/11/2022] [Indexed: 11/21/2022]
Abstract
The global emergence of coronavirus disease 2019 (COVID-19) has caused substantial human casualties. Clinical manifestations of this disease vary from asymptomatic to lethal, and the symptomatic form can be associated with cytokine storm and hyperinflammation. In face of the urgent demand for effective drugs to treat COVID-19, we have searched for candidate compounds using in silico approach followed by experimental validation. Here we identified celastrol, a pentacyclic triterpene isolated from Tripterygium wilfordii Hook F, as one of the best compounds out of 39 drug candidates. Celastrol reverted the gene expression signature from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-infected cells and irreversibly inhibited the recombinant forms of the viral and human cysteine proteases involved in virus invasion, such as Mpro (main protease), PLpro (papain-like protease), and recombinant human cathepsin L. Celastrol suppressed SARS-CoV-2 replication in human and monkey cell lines and decreased interleukin-6 (IL-6) secretion in the SARS-CoV-2-infected human cell line. Celastrol acted in a concentration-dependent manner, with undetectable signs of cytotoxicity, and inhibited in vitro replication of the parental and SARS-CoV-2 variant. Therefore, celastrol is a promising lead compound to develop new drug candidates to face COVID-19 due to its ability to suppress SARS-CoV-2 replication and IL-6 production in infected cells.
Collapse
Affiliation(s)
- Carlos A. Fuzo
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão PretoUniversidade de São PauloRibeirão PretoSão PauloBrazil
| | - Ronaldo B. Martins
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão PretoUniversidade de São PauloRibeirão PretoSão PauloBrazil
| | - Thais F. C. Fraga‐Silva
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão PretoUniversidade de São PauloRibeirão PretoSão PauloBrazil
| | - Martin K. Amstalden
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão PretoUniversidade de São PauloRibeirão PretoSão PauloBrazil
| | - Thais Canassa De Leo
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão PretoUniversidade de São PauloRibeirão PretoSão PauloBrazil
| | - Juliano P. Souza
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão PretoUniversidade de São PauloRibeirão PretoSão PauloBrazil
| | - Thais M. Lima
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão PretoUniversidade de São PauloRibeirão PretoSão PauloBrazil
| | - Lucia H. Faccioli
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão PretoUniversidade de São PauloRibeirão PretoSão PauloBrazil
| | - Débora Noma Okamoto
- Departamento de Biofísica, Escola Paulista de MedicinaUniversidade Federal de São PauloSão PauloSão PauloBrazil
| | - Maria Aparecida Juliano
- Departamento de Biofísica, Escola Paulista de MedicinaUniversidade Federal de São PauloSão PauloSão PauloBrazil
| | - Suzelei C. França
- Unidade de BiotecnologiaUniversidade de Ribeirão PretoRibeirão PretoSão PauloBrazil
| | - Luiz Juliano
- Departamento de Biofísica, Escola Paulista de MedicinaUniversidade Federal de São PauloSão PauloSão PauloBrazil
| | - Vania L. D. Bonato
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão PretoUniversidade de São PauloRibeirão PretoSão PauloBrazil
| | - Eurico Arruda
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão PretoUniversidade de São PauloRibeirão PretoSão PauloBrazil
| | - Marcelo Dias‐Baruffi
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão PretoUniversidade de São PauloRibeirão PretoSão PauloBrazil
| |
Collapse
|
7
|
Li N, Li C, Zhang J, Jiang Q, Wang Z, Nie S, Gao Z, Li G, Fang H, Ren S, Li X. Discovery of semisynthetic celastrol derivatives exhibiting potent anti-ovarian cancer stem cell activity and STAT3 inhibition. Chem Biol Interact 2022; 366:110172. [PMID: 36096161 DOI: 10.1016/j.cbi.2022.110172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/30/2022] [Accepted: 09/05/2022] [Indexed: 11/03/2022]
Abstract
The hallmark of ovarian cancer is its high mortality rate attributed to the existence of cancer stem cells (CSCs) subpopulations which result in therapy recurrence and metastasis. A series of C-29-substituted and/or different A/B ring of celastrol derivatives were synthesized and displayed potential inhibition against ovarian cancer cells SKOV3, A2780 and OVCAR3. Among them, compound 6c exhibited the most potent anti-proliferative activity and selectivity, gave superior anti-CSC effects through inhibition of the sphere formation and downregulation of the percentage of CD44+CD24- and ALDH+ cells. Further mechanism research demonstrated that compound 6c could attenuate the expression of STAT3 and p-STAT3. The results suggested that the inhibition of celastrol derivative 6c on ovarian cancer cells may be related to resistance to cancer stem-like characters and regulation of STAT3 pathway.
Collapse
Affiliation(s)
- Na Li
- Laboratory of Drug Discovery and Design, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong, 252000, PR China
| | - Chaobo Li
- Laboratory of Drug Discovery and Design, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong, 252000, PR China
| | - Juan Zhang
- Laboratory of Drug Discovery and Design, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong, 252000, PR China
| | - Qian Jiang
- Laboratory of Drug Discovery and Design, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong, 252000, PR China
| | - Zhaoxue Wang
- Laboratory of Drug Discovery and Design, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong, 252000, PR China
| | - Shaozhen Nie
- Laboratory of Drug Discovery and Design, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong, 252000, PR China
| | - Zhenzhen Gao
- Laboratory of Drug Discovery and Design, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong, 252000, PR China
| | - Guangyao Li
- Central Laboratory, Liaocheng People's Hospital, Liaocheng, Shandong, 252000, PR China
| | - Hao Fang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China.
| | - Shaoda Ren
- Central Laboratory, Liaocheng People's Hospital, Liaocheng, Shandong, 252000, PR China.
| | - Xiaojing Li
- Laboratory of Drug Discovery and Design, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong, 252000, PR China; Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China.
| |
Collapse
|
8
|
Fakhri S, Moradi SZ, Yarmohammadi A, Narimani F, Wallace CE, Bishayee A. Modulation of TLR/NF-κB/NLRP Signaling by Bioactive Phytocompounds: A Promising Strategy to Augment Cancer Chemotherapy and Immunotherapy. Front Oncol 2022; 12:834072. [PMID: 35299751 PMCID: PMC8921560 DOI: 10.3389/fonc.2022.834072] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 01/26/2022] [Indexed: 12/12/2022] Open
Abstract
Background Tumors often progress to a more aggressive phenotype to resist drugs. Multiple dysregulated pathways are behind this tumor behavior which is known as cancer chemoresistance. Thus, there is an emerging need to discover pivotal signaling pathways involved in the resistance to chemotherapeutic agents and cancer immunotherapy. Reports indicate the critical role of the toll-like receptor (TLR)/nuclear factor-κB (NF-κB)/Nod-like receptor pyrin domain-containing (NLRP) pathway in cancer initiation, progression, and development. Therefore, targeting TLR/NF-κB/NLRP signaling is a promising strategy to augment cancer chemotherapy and immunotherapy and to combat chemoresistance. Considering the potential of phytochemicals in the regulation of multiple dysregulated pathways during cancer initiation, promotion, and progression, such compounds could be suitable candidates against cancer chemoresistance. Objectives This is the first comprehensive and systematic review regarding the role of phytochemicals in the mitigation of chemoresistance by regulating the TLR/NF-κB/NLRP signaling pathway in chemotherapy and immunotherapy. Methods A comprehensive and systematic review was designed based on Web of Science, PubMed, Scopus, and Cochrane electronic databases. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines were followed to include papers on TLR/NF-κB/NLRP and chemotherapy/immunotherapy/chemoresistance by phytochemicals. Results Phytochemicals are promising multi-targeting candidates against the TLR/NF-κB/NLRP signaling pathway and interconnected mediators. Employing phenolic compounds, alkaloids, terpenoids, and sulfur compounds could be a promising strategy for managing cancer chemoresistance through the modulation of the TLR/NF-κB/NLRP signaling pathway. Novel delivery systems of phytochemicals in cancer chemotherapy/immunotherapy are also highlighted. Conclusion Targeting TLR/NF-κB/NLRP signaling with bioactive phytocompounds reverses chemoresistance and improves the outcome for chemotherapy and immunotherapy in both preclinical and clinical stages.
Collapse
Affiliation(s)
- Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Seyed Zachariah Moradi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Akram Yarmohammadi
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Fatemeh Narimani
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Carly E. Wallace
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL, United States
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL, United States
| |
Collapse
|
9
|
Shi J, Li J, Xu Z, Chen L, Luo R, Zhang C, Gao F, Zhang J, Fu C. Celastrol: A Review of Useful Strategies Overcoming its Limitation in Anticancer Application. Front Pharmacol 2020; 11:558741. [PMID: 33364939 PMCID: PMC7751759 DOI: 10.3389/fphar.2020.558741] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 10/01/2020] [Indexed: 12/12/2022] Open
Abstract
Celastrol, a natural bioactive ingredient derived from Tripterygium wilfordii Hook F, exhibits significant broad-spectrum anticancer activities for the treatment of a variety of cancers including liver cancer, breast cancer, prostate tumor, multiple myeloma, glioma, etc. However, the poor water stability, low bioavailability, narrow therapeutic window, and undesired side effects greatly limit its clinical application. To address this issue, some strategies were employed to improve the anticancer efficacy and reduce the side-effects of celastrol. The present review comprehensively focuses on the various challenges associated with the anticancer efficiency and drug delivery of celastrol, and the useful approaches including combination therapy, structural derivatives and nano/micro-systems development. The specific advantages for the use of celastrol mediated by these strategies are presented. Moreover, the challenges and future research directions are also discussed. Based on this review, it would provide a reference to develop a natural anticancer compound for cancer treatment.
Collapse
Affiliation(s)
- Jinfeng Shi
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiaxin Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ziyi Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Liang Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ruifeng Luo
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chen Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fei Gao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinming Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chaomei Fu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
10
|
Kuratli J, Leonard CA, Nufer L, Marti H, Schoborg R, Borel N. Maraviroc, celastrol and azelastine alter Chlamydia trachomatis development in HeLa cells. J Med Microbiol 2020; 69:1351-1366. [PMID: 33180014 DOI: 10.1099/jmm.0.001267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Introduction . Chlamydia trachomatis (Ct) is an obligate intracellular bacterium, causing a range of diseases in humans. Interactions between chlamydiae and antibiotics have been extensively studied in the past.Hypothesis/Gap statement: Chlamydial interactions with non-antibiotic drugs have received less attention and warrant further investigations. We hypothesized that selected cytokine inhibitors would alter Ct growth characteristics in HeLa cells.Aim. To investigate potential interactions between selected cytokine inhibitors and Ct development in vitro.Methodology. The CCR5 receptor antagonist maraviroc (Mara; clinically used as HIV treatment), the triterpenoid celastrol (Cel; used in traditional Chinese medicine) and the histamine H1 receptor antagonist azelastine (Az; clinically used to treat allergic rhinitis and conjunctivitis) were used in a genital in vitro model of Ct serovar E infecting human adenocarcinoma cells (HeLa).Results. Initial analyses revealed no cytotoxicity of Mara up to 20 µM, Cel up to 1 µM and Az up to 20 µM. Mara exposure (1, 5, 10 and 20 µM) elicited a reduction of chlamydial inclusion numbers, while 10 µM reduced chlamydial infectivity. Cel 1 µM, as well as 10 and 20 µM Az, reduced chlamydial inclusion size, number and infectivity. Morphological immunofluorescence and ultrastructural analysis indicated that exposure to 20 µM Az disrupted chlamydial inclusion structure. Immunofluorescence evaluation of Cel-incubated inclusions showed reduced inclusion sizes whilst Mara incubation had no effect on inclusion morphology. Recovery assays demonstrated incomplete recovery of chlamydial infectivity and formation of structures resembling typical chlamydial inclusions upon Az removal.Conclusion. These observations indicate that distinct mechanisms might be involved in potential interactions of the drugs evaluated herein and highlight the need for continued investigation of the interaction of commonly used drugs with Chlamydia and its host.
Collapse
Affiliation(s)
- Jasmin Kuratli
- Institute of Veterinary Pathology (IVPZ) and Center for Applied Biotechnology and Molecular Medicine (CABMM), University of Zurich, Zurich, Switzerland
| | - Cory Ann Leonard
- Institute of Veterinary Pathology (IVPZ) and Center for Applied Biotechnology and Molecular Medicine (CABMM), University of Zurich, Zurich, Switzerland
| | - Lisbeth Nufer
- Institute of Veterinary Pathology (IVPZ) and Center for Applied Biotechnology and Molecular Medicine (CABMM), University of Zurich, Zurich, Switzerland
| | - Hanna Marti
- Institute of Veterinary Pathology (IVPZ) and Center for Applied Biotechnology and Molecular Medicine (CABMM), University of Zurich, Zurich, Switzerland
| | - Robert Schoborg
- Departement of Biomedical Sciences, Center for Infectious Disease, Inflammation and Immunity, Quillen College in Medicine, East Tennessee State University, Johnson City, TN, USA
| | - Nicole Borel
- Institute of Veterinary Pathology (IVPZ) and Center for Applied Biotechnology and Molecular Medicine (CABMM), University of Zurich, Zurich, Switzerland
| |
Collapse
|
11
|
Yan F, Wu Z, Li Z, Liu L. Celastrol Inhibits Migration and Invasion of Triple-Negative Breast Cancer Cells by Suppressing Interleukin-6 via Downregulating Nuclear Factor-κB (NF-κB). Med Sci Monit 2020; 26:e922814. [PMID: 32920591 PMCID: PMC7510174 DOI: 10.12659/msm.922814] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background Celastrol is extracted from the root of the Chinese traditional herb Tripterygium wilfordii, which has anti-cancer effects in multiple cancers. However, the effect of celastrol on the metastasis of triple-negative breast cancer and its mechanism remain largely unknown. Material/Methods MDA-MB-468 and MDA-MB-231 cells were treated with various doses of celastrol for 24 h. Cell viability was measured via MTT analysis. Cell migration and invasion were detected via transwell analysis. The expression of interleukin-6 (IL-6) was measured after transfection of short-hairpin RNA against IL-6 or celastrol treatment via quantitative real-time polymerase chain reaction, Western blot, or enzyme-linked immunosorbent analysis (ELISA). The protein levels in the nuclear factor-κB (NF-κB) pathway were measured by Western blot. The interaction between celastrol and NF-κB-mediated IL-6 was investigated by luciferase reporter assay. Results High concentrations of celastrol inhibited viability of MDA-MB-468 and MDA-MB-231 cells, but low doses of celastrol showed little effect on cell viability. Low doses of celastrol suppressed cell migration and invasion, and knockdown of IL-6 also repressed cell migration and invasion. Moreover, treatment with celastrol decreased IL-6 expression at mRNA and protein levels. IL-6 overexpression mitigated celastrol-mediated suppression of cell migration and invasion. Additionally, celastrol blocked the NF-κB pathway to inhibit IL-6 levels. Conclusions Celastrol repressed migration and invasion through decreasing IL-6 levels by inactivation of NF-κB signaling in triple-negative breast cancer cells, providing a novel basis for use of celastrol in treating triple-negative breast cancer.
Collapse
Affiliation(s)
- Fei Yan
- Department of Oncology, The Third People's Hospital of Hubei Province, Wuhan, Hubei, China (mainland)
| | - Zihong Wu
- Department of Oncology, The Third People's Hospital of Hubei Province, Wuhan, Hubei, China (mainland)
| | - Zihui Li
- Department of Oncology, The Third People's Hospital of Hubei Province, Wuhan, Hubei, China (mainland)
| | - Li Liu
- Department of Oncology, The Third People's Hospital of Hubei Province, Wuhan, Hubei, China (mainland)
| |
Collapse
|
12
|
Chiang KC, Chang KS, Hsu SY, Sung HC, Feng TH, Chao M, Juang HH. Human Heme Oxygenase-1 Induced by Interleukin-6 via JAK/STAT3 Pathways Is a Tumor Suppressor Gene in Hepatoma Cells. Antioxidants (Basel) 2020; 9:antiox9030251. [PMID: 32204510 PMCID: PMC7139670 DOI: 10.3390/antiox9030251] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/16/2020] [Accepted: 03/18/2020] [Indexed: 12/13/2022] Open
Abstract
Heme oxygenase-1 (HO-1) has several important roles in hepatocytes in terms of anti-inflammation, anti-apoptosis, and antioxidant properties. Interleukin-6 (IL-6) is a pleiotropic cytokine associated with liver regeneration and protection against injury. The aim of this study was to determine the potential crosstalk between HO-1 and IL-6, and to elucidate the signaling pathways involved in the induction of HO-1 by IL-6 in human hepatoma cells. Ectopic overexpression of HO-1 not only attenuated cell proliferation in vitro and in vivo, but also blocked the reactive oxygen species (ROS) induced by H2O2 and the pyocyanin in HepG2 or Hep3B cells. IL-6 expression was negatively regulated by HO-1, while IL-6 induced signal transducer and activator of transcription 3 (STAT3) phosphorylation and HO-1 gene expression in HepG2 cells. The co-transfected HO-1 reporter vector and a protein inhibitor of the activated STAT3 (PIAS3) expression vector blocked the IL-6-induced HO-1 reporter activity. Both interferon γ and interleukin-1β treatments induced STAT1 but not STAT3 phosphorylation, which had no effects on the HO-1 expression. Treatments of AG490 and luteolin blocked the JAK/STAT3 signaling pathways which attenuated IL-6 activation on the HO-1 expression. Our results indicated that HO-1 is the antitumor gene induced by IL-6 through the IL-6/JAK/STAT3 pathways; moreover, a feedback circuit may exist between IL-6 and HO-1 in hepatoma cells.
Collapse
Affiliation(s)
- Kun-Chun Chiang
- Department of General Surgery, Min-Sheng General Hospital, Tao-Yuan 33302, Taiwan;
| | - Kang-Shuo Chang
- Department of Anatomy, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan 33302, Taiwan; (K.-S.C.); (S.-Y.H.); (H.-C.S.)
- Institute of Medicine Science, College of Medicine, ChSang Gung University, Kwei-Shan, Tao-Yuan 33302, Taiwan
| | - Shu-Yuan Hsu
- Department of Anatomy, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan 33302, Taiwan; (K.-S.C.); (S.-Y.H.); (H.-C.S.)
| | - Hsin-Ching Sung
- Department of Anatomy, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan 33302, Taiwan; (K.-S.C.); (S.-Y.H.); (H.-C.S.)
| | - Tsui-Hsia Feng
- School of Nursing, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan 33302, Taiwan;
| | - Mei Chao
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan 33302, Taiwan
- Department of Hepato-Gastroenterology, Liver Research Center, Chang Gung Memorial Hospital-Linkou, Kwei-Shan, Tao-Yuan 33302, Taiwan
- Correspondence: (M.C.); (H.-H.J.); Tel.:+886-3-2118800 (M.C. & H.-H.J.); Fax: +886-3-2118112 (M.C. & H.-H.J.)
| | - Horng-Heng Juang
- Department of Anatomy, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan 33302, Taiwan; (K.-S.C.); (S.-Y.H.); (H.-C.S.)
- Institute of Medicine Science, College of Medicine, ChSang Gung University, Kwei-Shan, Tao-Yuan 33302, Taiwan
- Department of Urology, Chang Gung Memorial Hospital-Linkou, Kwei-Shan, Tao-Yuan 33302, Taiwan
- Correspondence: (M.C.); (H.-H.J.); Tel.:+886-3-2118800 (M.C. & H.-H.J.); Fax: +886-3-2118112 (M.C. & H.-H.J.)
| |
Collapse
|
13
|
Potential Anticancer Effect of Celastrol on Hepatocellular Carcinoma by Suppressing CXCR4-related Signal and Impeding Tumor Growth in Vivo. Arch Med Res 2020; 51:297-302. [PMID: 32169299 DOI: 10.1016/j.arcmed.2020.03.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 01/22/2020] [Accepted: 03/02/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND Potential agents that can effectively treat hepatocellular carcinoma (HCC) are being continuously explored. METHODS Celastrol extracted from roots of an ancient Chinese herb, Tripterygium wilfordii (Thunder god vine), has been identified as a potential anti-tumor agent. In this study, the molecular mechanisms underlying the action of celastrol on cell proliferation and chemokine CXCR4-related signal pathway associated with tumor growth were investigated. RESULTS The CXCR4 expression was diminished by celastrol treatment in a dose-dependent manner, and its downstream associated pathways, including PI3K and Akt were also downregulated. Celastrol also significantly attenuated proliferation and migration ability of HCC cells, and induced cell apoptosis in vitro. Additionally, significant inhibition of HCC growth was observed in the celastrol-treated group as compared with the control group in vivo as well. CONCLUSION Celastrol is capable of attenuating cell proliferation and inducing apoptosis, leading to inhibition of HCC growth through the suppression of CXCR4-related signal pathway.
Collapse
|
14
|
Hou W, Liu B, Xu H. Celastrol: Progresses in structure-modifications, structure-activity relationships, pharmacology and toxicology. Eur J Med Chem 2020; 189:112081. [DOI: 10.1016/j.ejmech.2020.112081] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 01/17/2020] [Accepted: 01/17/2020] [Indexed: 12/13/2022]
|
15
|
Celastrol Alleviates Gamma Irradiation-Induced Damage by Modulating Diverse Inflammatory Mediators. Int J Mol Sci 2020; 21:ijms21031084. [PMID: 32041250 PMCID: PMC7036880 DOI: 10.3390/ijms21031084] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/31/2020] [Accepted: 02/04/2020] [Indexed: 12/12/2022] Open
Abstract
The present study aimed to explore the possible radioprotective effects of celastrol and relevant molecular mechanisms in an in vitro cell and in vivo mouse models exposed to gamma radiation. Human keratinocytes (HaCaT) and foreskin fibroblast (BJ) cells were exposed to gamma radiation of 20 Gy, followed by treatment with celastrol for 24 h. Cell viability, reactive oxygen species (ROS), nitric oxide (NO) and glutathione (GSH) production, lipid peroxidation, DNA damage, inflammatory cytokine levels, and NF-κB pathway activation were examined. The survival rate, levels of interleukin-6 (IL-6) and tumor necrosis factor alpha (TNF-α) in blood, and p65 and phospho-p65 expression were also evaluated in mice after exposure to gamma radiation and celastrol treatment. The gamma irradiation of HaCaT cells induced decreased cell viability, but treatment with celastrol significantly blocked this cytotoxicity. Gamma irradiation also increased free radical production (e.g., ROS and NO), decreased the level of GSH, and enhanced oxidative DNA damage and lipid peroxidation in cells, which were effectively reversed by celastrol treatment. Moreover, inflammatory responses induced by gamma irradiation, as demonstrated by increased levels of IL-6, TNF-α, and IL-1β, were also blocked by celastrol. The increased activity of NF-κB DNA binding following gamma radiation was significantly attenuated after celastrol treatment. In the irradiated mice, treatment with celastrol significantly improved overall survival rate, reduced the excessive inflammatory responses, and decreased NF-κB activity. As a NF-κB pathway blocker and antioxidant, celastrol may represent a promising pharmacological agent with protective effects against gamma irradiation-induced injury.
Collapse
|
16
|
Migration and Invasion Enhancer 1 Is an NF-ĸB-Inducing Gene Enhancing the Cell Proliferation and Invasion Ability of Human Prostate Carcinoma Cells In Vitro and In Vivo. Cancers (Basel) 2019; 11:cancers11101486. [PMID: 31581708 PMCID: PMC6826896 DOI: 10.3390/cancers11101486] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 09/24/2019] [Accepted: 09/30/2019] [Indexed: 12/22/2022] Open
Abstract
Migration and invasion enhancer 1 (MIEN1) is a membrane-anchored protein and exists in various cancerous tissues. However, the roles of MIEN1 in prostate cancer have not yet been clearly addressed. We determined the expression, biological functions, and regulatory mechanisms of MIEN1 in the prostate. The results of immunohistochemical analysis indicated that MIEN1 was expressed specifically in epithelial cells and significantly higher in adenocarcinoma as compared to in normal tissues. MIEN1 enhanced in vitro cell proliferation, invasion, and in vivo tumorigenesis. Meanwhile, MIEN1 attenuated cisplatin-induced apoptosis in PC-3 cells. Overexpression of NF-ĸB-inducing kinase (NIK) enhanced MIEN1 expression, while overexpression of NF-ĸB inhibitor α (IĸBα) blocked MIEN1 expression in PC-3 cells. In prostate carcinoma cells, MIEN1 provoked Akt phosphorylation; moreover, MIEN1 downregulated N-myc downstream regulated 1 (NDRG1) but upregulated interleukin-6 (IL-6) gene expression. MK2206, an Akt inhibitor, impeded the modulation of MIEN1 on NDRG1 and IL-6 expressions. Our studies suggest that MIEN1 is an NF-ĸB downstream oncogene in the human prostate. Accordingly, the modulation of Akt signaling in the gene expressions of NDRG1 and IL-6 may account for the functions of MIEN1 in cell proliferation, invasion, and tumorigenesis in prostate carcinoma cells.
Collapse
|
17
|
Wang G, Xiao Q, Wu Y, Wei YJ, Jing Y, Cao XR, Gong ZN. Design and synthesis of novel celastrol derivative and its antitumor activity in hepatoma cells and antiangiogenic activity in zebrafish. J Cell Physiol 2019; 234:16431-16446. [PMID: 30770566 DOI: 10.1002/jcp.28312] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 01/20/2019] [Accepted: 01/24/2019] [Indexed: 01/24/2023]
Abstract
Two series of celastrol derivatives were designed and synthesized by modifying carboxylic acid at the 28th position with amino acid, and their intermediates with isobutyrate at the third position. All compounds were evaluated for their antiproliferation activity by four human cancer cell lines (SCG7901, HGC27, HepG2, and Bel7402) and one normal cell LO2. The most promising compound, compound 8, showed superior bioactivity and lower toxicity than others including celastrol. Further underlying tests illustrated that compound 8 induced apoptosis and cell arrest at G2/M and inhibited proliferation and mobility of human hepatoma cells by suppressing the signal transducer and activator of transcription-3 signaling pathway. Besides these, a highly accurate and reproducible high performance liquid chromatography protocol was established to determine celastrol and compound 8 absorption in zebrafish, and results demonstrated that their concentration increased rapidly within 4 hr in a time-dependent manner and the concentration of compound 8 was higher than that of celastrol. In addition, without detection at 12 hr, compound 8 was rapidly metabolized in vivo. These findings are very helpful for the structural modification of celastrol and other bioactive compounds to improve their bioactivity, toxicity, and absorption.
Collapse
Affiliation(s)
- Gang Wang
- Center for New Drug Research and Development, College of Life Science, Nanjing Normal University, Nanjing, People's Republic of China
| | - Qi Xiao
- Center for New Drug Research and Development, College of Life Science, Nanjing Normal University, Nanjing, People's Republic of China
| | - Yao Wu
- Center for New Drug Research and Development, College of Life Science, Nanjing Normal University, Nanjing, People's Republic of China
| | - Ying-Jie Wei
- Key Laboratory of Oral Drug Delivery System of Chinese Meteria Media of State Administration of Tradition Chinese Medicine, Jiangsu Branch of China Academy of Chinese Medical Science, Nanjing, People's Republic of China
| | - Yue Jing
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, People's Republic of China
| | - Xiang-Rong Cao
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, People's Republic of China
| | - Zhu-Nan Gong
- Center for New Drug Research and Development, College of Life Science, Nanjing Normal University, Nanjing, People's Republic of China.,Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, People's Republic of China
| |
Collapse
|
18
|
Zhang F, Zhang Y, Yang T, Ye ZQ, Tian J, Fang HR, Han JJ, Wang ZZ, Li X. Scopoletin Suppresses Activation of Dendritic Cells and Pathogenesis of Experimental Autoimmune Encephalomyelitis by Inhibiting NF-κB Signaling. Front Pharmacol 2019; 10:863. [PMID: 31427972 PMCID: PMC6688631 DOI: 10.3389/fphar.2019.00863] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 07/08/2019] [Indexed: 12/20/2022] Open
Abstract
Scopoletin, a phenolic coumarin derived from many medical or edible plants, is involved in various pharmacological functions. In the present study, we showed that Scopoletin effectively ameliorated experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS), through novel regulatory mechanisms involving inhibition of NF-κB activity in dendritic cells (DCs). Scopoletin treatment significantly improved the severity of the disease and prominently decreased inflammation and demyelination of central nervous system (CNS) in EAE mice. Disease alleviation correlated with the downregulation of major histocompatibility complex (MHC) class II, CD80 and CD86, expressed on DCs of CNS or spleens, and the infiltration and polarization of encephalitogenic Th1/Th17 cells. Consistent with the in vivo data, Scopoletin-treated, bone marrow-derived dendritic cells (BM-DCs) exhibited reduced expression of MHC class II and costimulatory molecules (e.g., CD80 and CD86) and reduced NF-κB phosphorylation. These findings, for the first time, demonstrated the ability of Scopoletin to impair DC activation, downregulating pathogenic Th1/Th17 inflammatory cell responses and, eventually, reducing EAE severity. Our study demonstrates new evidence that natural products derived from medical or edible plants, such as Scopoletin, will be valuable in developing a novel therapeutic agent for MS in the future.
Collapse
Affiliation(s)
- Fei Zhang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Yuan Zhang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Ting Yang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Ze-Qing Ye
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Jing Tian
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Hai-Rong Fang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Juan-Juan Han
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Zhe-Zhi Wang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Xing Li
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| |
Collapse
|
19
|
Pristimerin inhibits glioma progression by targeting AGO2 and PTPN1 expression via miR-542-5p. Biosci Rep 2019; 39:BSR20182389. [PMID: 31015365 PMCID: PMC6522714 DOI: 10.1042/bsr20182389] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 03/28/2019] [Accepted: 04/15/2019] [Indexed: 12/19/2022] Open
Abstract
Glioblastoma multiform is the most common and malignant primary tumor of the central nervous system in adults, the high recurrence rate and poor prognosis are critical priorities. Pristimerin is a naturally occurring quinone methide triterpenoid isolated from the Celastraceae and Hippocrateaceae families. Its anticancer effects have garnered considerable attention; nonetheless, the mechanisms of action remain unknown. To predict the hub genes of pristimerin, PharmMapper and the Coremine database were used to identify 13 potential protein targets; protein-protein interaction, for which functional enrichment analyses were performed. Compound-target, target-pathway, and compound-target-pathway networks were constructed using Cytoscape. Biological process analysis first revealed that enrichment of these target genes correlated with negative regulation of symbiont growth in the host, and regulation of chronic inflammatory response to antigenic stimulus. Survival analysis in cBioPortal showed that protein tyrosine phosphatase, non-receptor type 1 (PTPN1) and Argonaute 2 (AGO2) might be involved in the carcinogenesis, invasion, or recurrence of diffuse glioma. In addition, we observed that low-dose pristimerin inhibited the viability of glioma cells, while miR-542-5p in vitro; and reduced PTPN1 expression. Notably, high-dose pristimerin induced apoptosis. Furthermore, miR-542-5p silence with siRNA in glioma cells lead to the elevation in AGO2, and decreased PTPN1 level. The effect was obviously post pristimerin treatment and miR-542-5p suppression. In conclusion, pristimerin inhibited glioma progression through AGO2 and PTPN1 expression via a canonical miRNA-mediated mechanism.
Collapse
|
20
|
Kuratli J, Pesch T, Marti H, Leonard CA, Blenn C, Torgerson P, Borel N. Water Filtered Infrared A and Visible Light (wIRA/VIS) Irradiation Reduces Chlamydia trachomatis Infectivity Independent of Targeted Cytokine Inhibition. Front Microbiol 2018; 9:2757. [PMID: 30524392 PMCID: PMC6262300 DOI: 10.3389/fmicb.2018.02757] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 10/29/2018] [Indexed: 11/13/2022] Open
Abstract
Chlamydia trachomatis is the major cause of infectious blindness and represents the most common bacterial sexually transmitted infection worldwide. Considering the potential side effects of antibiotic therapy and increasing threat of antibiotic resistance, alternative therapeutic strategies are needed. Previous studies showed that water filtered infrared A alone (wIRA) or in combination with visible light (wIRA/VIS) reduced C. trachomatis infectivity. Furthermore, wIRA/VIS irradiation led to secretion of pro-inflammatory cytokines similar to that observed upon C. trachomatis infection. We confirmed the results of previous studies, namely that cytokine secretion (IL-6, IL-8, and RANTES/CCL5) upon wIRA/VIS treatment, and the subsequent reduction of chlamydial infectivity, are independent of the addition of cycloheximide, a host protein synthesis inhibitor. Reproducible cytokine release upon irradiation indicated that cytokines might be involved in the anti-chlamydial mechanism of wIRA/VIS. This hypothesis was tested by inhibiting IL-6, IL-8, and RANTES secretion in C. trachomatis or mock-infected cells by gene silencing or pharmaceutical inhibition. Celastrol, a substance derived from Trypterygium wilfordii, used in traditional Chinese medicine and known for anti-cancer and anti-inflammatory effects, was used for IL-6 and IL-8 inhibition, while Maraviroc, a competitive CCR5 antagonist and anti-HIV drug, served as a RANTES/CCL5 inhibitor. HeLa cell cytotoxicity and impact on chlamydial morphology, size and inclusion number was evaluated upon increasing inhibitor concentration, and concentrations of 0.1 and 1 μM Celastrol and 10 and 20 μM Maraviroc were subsequently selected for irradiation experiments. Celastrol at any concentration reduced chlamydial infectivity, an effect only observed for 20 μM Maraviroc. Triple dose irradiation (24, 36, 40 hpi) significantly reduced chlamydial infectivity regardless of IL-6, IL-8, or RANTES/CCL5 gene silencing, Celastrol or Maraviroc treatment. Neither gene silencing nor pharmaceutical cytokine inhibition provoked the chlamydial stress response. The anti-chlamydial effect of wIRA/VIS is independent of cytokine inhibition under all conditions evaluated. Thus, factors other than host cell cytokines must be involved in the working mechanism of wIRA/VIS. This study gives a first insight into the working mechanism of wIRA/VIS in relation to an integral component of the host immune system and supports the potential of wIRA/VIS as a promising new tool for treatment in trachoma.
Collapse
Affiliation(s)
- Jasmin Kuratli
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Theresa Pesch
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Hanna Marti
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Cory Ann Leonard
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Christian Blenn
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Paul Torgerson
- Section of Veterinary Epidemiology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Nicole Borel
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| |
Collapse
|
21
|
The Novel Nutraceutical KJS018A Prevents Hepatocarcinogenesis Promoted by Inflammation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:3909434. [PMID: 30154906 PMCID: PMC6093067 DOI: 10.1155/2018/3909434] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 07/04/2018] [Accepted: 07/24/2018] [Indexed: 01/17/2023]
Abstract
Inflammation is tightly associated with carcinogenesis at both the initiation and development of tumor. Many reports indicated that Cox-2 substantially contributes to inflammation and tumorigenesis. The novel nutraceutical KJS018A (BRM270 Function Enhanced Products) is the extract mixture from 8 herbal plants, which have been used to inhibit cancers and inflammation. The aim of the present study is to examine the inhibitory effects of KJS018A mixture to hepatocarcinogenesis and inflammation. The results showed that KJS018A significantly inhibited the proliferation of hepatic malignant cells and downregulated levels of IL-6 and Cox-2. Furthermore, KJS018A diminished the effect of PMA, an inflammatory inducer via IL-6/STAT3/Cox-2 pathway. Furthermore, KJS018A suppressed metastatic traits of hepatic malignant cells via downregulating Twist, N-cadherin, and MMP-9 while restoring E-cadherin expression. KJS018A also restrained tumor growth and levels of IL-6 and Cox-2 in immunohistochemistry staining. Taken together, these data suggest potential application of KJS018A in prevention of hepatocarcinogenesis promoted by inflammation.
Collapse
|
22
|
Pang C, Luo J, Liu C, Wu X, Wang D. Synthesis and Biological Evaluation of a Series of Novel Celastrol Derivatives with Amino Acid Chain. Chem Biodivers 2018; 15:e1800059. [DOI: 10.1002/cbdv.201800059] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 04/03/2018] [Indexed: 11/08/2022]
Affiliation(s)
- Chaohai Pang
- Analysis and Test Center of Chinese Academy of Tropical Agricultural Science; Haikou 571101 P. R. China
| | - Jinhui Luo
- Analysis and Test Center of Chinese Academy of Tropical Agricultural Science; Haikou 571101 P. R. China
| | - Chunhua Liu
- Analysis and Test Center of Chinese Academy of Tropical Agricultural Science; Haikou 571101 P. R. China
| | - Xuejin Wu
- Analysis and Test Center of Chinese Academy of Tropical Agricultural Science; Haikou 571101 P. R. China
| | - Dingyong Wang
- College of Pharmacy; Guangdong Pharmaceutical University; Guangzhou Guangdong 510006 P. R. China
| |
Collapse
|
23
|
Khalili N, Karimi A, Moradi MT, Shirzad H. In vitro immunomodulatory activity of celastrol against influenza A virus infection. Immunopharmacol Immunotoxicol 2018; 40:250-255. [DOI: 10.1080/08923973.2018.1440591] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Niloofar Khalili
- Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Ali Karimi
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mohammad-Taghi Moradi
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Hedayatollah Shirzad
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
24
|
Wang X, Fang G, Pang Y. Chinese Medicines in the Treatment of Prostate Cancer: From Formulas to Extracts and Compounds. Nutrients 2018; 10:E283. [PMID: 29495626 PMCID: PMC5872701 DOI: 10.3390/nu10030283] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 02/25/2018] [Accepted: 02/26/2018] [Indexed: 12/13/2022] Open
Abstract
In order to fully understand the progresses and achievements in Chinese medicines for the treatment of prostate cancer, we summarize all the available reports on formulas, extracts, and compounds of Chinese medicines against prostate cancer. A number of clinical trials verified that traditional Chinese formulas had some unique advantages in the treatment of prostate cancer. Many Chinese medicine extracts could protect against prostate cancer, and many compounds isolated from Chinese traditional medicines showed a clear anti-prostate cancer effect. However, Chinese medicines are facing many problems regarding their multicomponent nature, complicated mechanisms of action, and high doses required for therapy. Herein, we review the functions of Chinese medicines in prostate cancer and focus on their mechanisms. The review will deepen the understanding of Chinese medicines potential in the anti-prostate cancer field. In addition, we put forward a question concerning the current research on Chinese medicines: in order to better illustrate that Chinese medicines can be used in the clinical treatment of prostate cancer, should our research focus on formulas, extracts, or compounds?
Collapse
Affiliation(s)
- Xueni Wang
- Guangxi Zhuang Yao Medicine Center of Engineering and Technology, Guangxi University of Chinese Medicine, 13 Wuhe Road, Qingxiu District, Nanning 530200, China.
| | - Gang Fang
- Laboratory of Zhuang Medicine Prescriptions Basis and Application Research, Guangxi University of Chinese Medicine, 179 Mingxiudong Road, Xixiangtang District, Nanning 530001, China.
| | - Yuzhou Pang
- Guangxi Zhuang Yao Medicine Center of Engineering and Technology, Guangxi University of Chinese Medicine, 13 Wuhe Road, Qingxiu District, Nanning 530200, China.
- Laboratory of Zhuang Medicine Prescriptions Basis and Application Research, Guangxi University of Chinese Medicine, 179 Mingxiudong Road, Xixiangtang District, Nanning 530001, China.
| |
Collapse
|
25
|
Yousef BA, Hassan HM, Zhang LY, Jiang ZZ. Pristimerin exhibits in vitro and in vivo anticancer activities through inhibition of nuclear factor-кB signaling pathway in colorectal cancer cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2018; 40:140-147. [PMID: 29496166 DOI: 10.1016/j.phymed.2018.01.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Revised: 12/23/2017] [Accepted: 01/14/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Colorectal cancer (CRC) is one of the most common malignancies associated with high mortality rate worldwide. We previously reported that pristimerin inhibits cell growth and induces apoptosis in CRC cells. HYPOTHESIS/PURPOSE To further understand the molecular mechanism by which pristimerin elicits its anticancer activities on colon cancer cells, we investigated its effect on nuclear factor-κB (NF-κB) signaling pathway. STUDY DESIGN This study consisted of both in vitro and in vivo experiments involving HCT-116 cell line and xenograft mouse model. Molecular techniques such as qRT-PCR, western blotting and immunofluorescence were used to demonstrate pristimerin in vitro effect on NF-κB signaling pathway; whereas it's in vivo activity was analyzed by western blot and immunohistochemistry on tumor tissues. RESULTS Our in vitro results on HCT-116 cells showed that pristimerin inhibited IKK phosphorylation, IкB-α degradations and IкB-α phosphorylation in both dose- and time- dependent manners, which caused suppression of NF-кB p65 phosphorylation, nuclear translocation and accumulation of NF-кB. Moreover, pristimerin was found to inhibit both constitutive activated-NF-кB and tumor necrosis factor-α (TNF-α)- and lipopolysaccharide (LPS)-induced activation of NF-кB signaling pathway. Furthermore, our in vivo results on xenograft animal model revealed that pristimerin inhibited tumor growth mainly through suppressing NF-кB activity in tumor tissues. CONCLUSION Pristimerin antitumor activities were mainly mediated through inhibition of NF-кB signaling pathway in colon tumor cells. These findings further explain that pristimerin has the therapeutic potential for targeting colon cancer.
Collapse
Affiliation(s)
- Bashir A Yousef
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Jiangsu Province, Nanjing 210009, PR China; Department of Pharmacology, Faculty of Pharmacy, University of Khartoum, Khartoum, Sudan.
| | - Hozeifa M Hassan
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Jiangsu Province, Nanjing 210009, PR China; Department of Pharmacology, Faculty of Pharmacy, University of Gezira, Wad-Medani, Sudan
| | - Lu-Yong Zhang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Jiangsu Province, Nanjing 210009, PR China; Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Ministry of Education, Nanjing 210009, PR China; Center for Drug Screening and Pharmacodynamics Evaluation, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Zhen-Zhou Jiang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Jiangsu Province, Nanjing 210009, PR China; Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Ministry of Education, Nanjing 210009, PR China.
| |
Collapse
|
26
|
Yi M, Cai J, Li J, Chen S, Zeng Z, Peng Q, Ban Y, Zhou Y, Li X, Xiong W, Li G, Xiang B. Rediscovery of NF-κB signaling in nasopharyngeal carcinoma: How genetic defects of NF-κB pathway interplay with EBV in driving oncogenesis? J Cell Physiol 2018; 233:5537-5549. [PMID: 29266238 DOI: 10.1002/jcp.26410] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 12/18/2017] [Indexed: 12/13/2022]
Abstract
Nasopharyngeal carcinoma (NPC) is a unique EBV-associated subtype of head and neck cancer, which has the highest incidence in Southern China and eastern South Asia. The interaction between genetic risk factors and environmental challenge, have been considered to contribute to the development of nasopharyngeal carcinogenesis. Constitutive activation of NF-κB signaling has been seen in NPC tissues and is associated with unfavorable prognosis. Recently, several whole exome sequencing study consistently revealed that high frequency mutations of NF-κB pathway negative regulators is common in nasopharyngeal carcinoma, which reinforce the importance of NF-κB driving oncogenesis. This review focuses on the current state of research in role of NF-κB in NPC carcinogenesis. We summarized the newly identified loss of function (LOF) mutations on NF-κB negative regulators leading to it's activation bypass LMP-1 stimulation. We discussed the critical role of NF-κB activation in immortalization and transformation of nasopharygeal epithelium. We also depicted how NF-κB signaling mediated chronic inflammation contribute to persistent EBV infection, immune evasion of EBV infected cells, metabolic reprogramming, and cancer stem cells (CSCs) formation in NPC. Lastly, we discussed the clinical resonance of targeting NF-κB for NPC precise therapy.
Collapse
Affiliation(s)
- Mei Yi
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, The Central South University, Changsha, Hunan, China.,Department of Dermatology, Xiangya Hospital of Central South University, Changsha, China
| | - Jing Cai
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, The Central South University, Changsha, Hunan, China.,Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, China
| | - Junjun Li
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, The Central South University, Changsha, Hunan, China.,Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, China
| | - Shengnan Chen
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, The Central South University, Changsha, Hunan, China.,Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, China
| | - Zhaoyang Zeng
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, The Central South University, Changsha, Hunan, China.,Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, China
| | - Qian Peng
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, The Central South University, Changsha, Hunan, China.,Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, China
| | - Yuanyuan Ban
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, The Central South University, Changsha, Hunan, China.,Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, China
| | - Ying Zhou
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, The Central South University, Changsha, Hunan, China.,Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, China
| | - Xiaoling Li
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, The Central South University, Changsha, Hunan, China.,Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, China
| | - Wei Xiong
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, The Central South University, Changsha, Hunan, China.,Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, China
| | - Guiyuan Li
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, The Central South University, Changsha, Hunan, China.,Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, China
| | - Bo Xiang
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, The Central South University, Changsha, Hunan, China.,Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, China
| |
Collapse
|
27
|
Wang R, Gu X, Dai W, Ye J, Lu F, Chai Y, Fan G, Gonzalez FJ, Duan G, Qi Y. A lipidomics investigation into the intervention of celastrol in experimental colitis. MOLECULAR BIOSYSTEMS 2017; 12:1436-44. [PMID: 27021137 DOI: 10.1039/c5mb00864f] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Celastrol is well known for its anti-inflammatory and anti-cancer effects. In this study, the efficacy of celastrol against dextran sulfate sodium (DSS)-induced inflammatory bowel disease (IBD) in mice was established and the mechanism was investigated using lipidomics. Celastrol treatment significantly alleviated DSS-induced colitis in mice, as revealed by the body weight, colon length, scores of rectal bleeding and diarrhea, serum TNF-α level, and histological analysis results. Lipidomics analysis based on UPLC/MS revealed characteristic changes in the metabolic profiles of the colitis mice, with altered levels of lipid markers associated with IBD, including LPC18 : 0, LPC18 : 1, LPC18 : 2, sphingomyelin (SM), and increased LPC18 : 0/LPC18 : 1 and LPC18 : 0/LPC18 : 2 ratios. For the celastrol-treated colitis mice, however, levels of the above lipid markers were restored, together with recovered saturated LPC/unsaturated LPC ratios. Accordingly, using GC-MS analysis, increased stearic acid (C18 : 0)/oleic acid (C18 : 1) and stearic acid (C18 : 0)/linoleic acid (C18 : 2) ratios were observed in colitis mice, which were later recovered after celastrol treatment. Quantitative real-time PCR analysis revealed that the liver expression of stearoyl-coenzyme A desaturase 1 (SCD1), the key enzyme controlling the desaturation of saturated fatty acid, was dramatically inhibited in IBD mice, and was obviously recovered after celastrol treatment. These results suggest that the increased saturated LPC/unsaturated LPC (and saturated fatty acid/unsaturated fatty acid) ratios associated with SCD1 down-regulation could be regarded as biomarkers of colitis, and celastrol alleviates DSS-induced colitis partially via up-regulation of SCD1, restoring the altered balance between stearic acid- and oleic acid-derived lipid species, which plays an important role in alleviating colitis. In all, this study provided the scientific basis for further development of celastrol in treating IBD.
Collapse
Affiliation(s)
- Renping Wang
- Department of Pharmaceutical Analysis, School of Pharmacy, Second Military Medical University, Shanghai 200433, China.
| | - Xueqin Gu
- Department of Pharmaceutical Analysis, School of Pharmacy, Second Military Medical University, Shanghai 200433, China.
| | - Weiquan Dai
- Department of Pharmaceutical Analysis, School of Pharmacy, Second Military Medical University, Shanghai 200433, China.
| | - Jun Ye
- Shanghai Zhabei Institute for Food and Drug Control, Shanghai 200436, China
| | - Feng Lu
- Department of Pharmaceutical Analysis, School of Pharmacy, Second Military Medical University, Shanghai 200433, China.
| | - Yifeng Chai
- Department of Pharmaceutical Analysis, School of Pharmacy, Second Military Medical University, Shanghai 200433, China.
| | - Guorong Fan
- Department of Pharmaceutical Analysis, School of Pharmacy, Second Military Medical University, Shanghai 200433, China.
| | - Frank J Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Gengli Duan
- Department of Pharmaceutical Analysis, School of Pharmacy, Fudan University, Shanghai 201203, China.
| | - Yunpeng Qi
- Department of Pharmaceutical Analysis, School of Pharmacy, Second Military Medical University, Shanghai 200433, China. and Department of Pharmaceutical Analysis, School of Pharmacy, Fudan University, Shanghai 201203, China.
| |
Collapse
|
28
|
Cascão R, Fonseca JE, Moita LF. Celastrol: A Spectrum of Treatment Opportunities in Chronic Diseases. Front Med (Lausanne) 2017; 4:69. [PMID: 28664158 PMCID: PMC5471334 DOI: 10.3389/fmed.2017.00069] [Citation(s) in RCA: 155] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 05/19/2017] [Indexed: 01/02/2023] Open
Abstract
The identification of new bioactive compounds derived from medicinal plants with significant therapeutic properties has attracted considerable interest in recent years. Such is the case of the Tripterygium wilfordii (TW), an herb used in Chinese medicine. Clinical trials performed so far using its root extracts have shown impressive therapeutic properties but also revealed substantial gastrointestinal side effects. The most promising bioactive compound obtained from TW is celastrol. During the last decade, an increasing number of studies were published highlighting the medicinal usefulness of celastrol in diverse clinical areas. Here we systematically review the mechanism of action and the therapeutic properties of celastrol in inflammatory diseases, namely, rheumatoid arthritis, systemic lupus erythematosus, inflammatory bowel diseases, osteoarthritis and allergy, as well as in cancer, neurodegenerative disorders and other diseases, such as diabetes, obesity, atherosclerosis, and hearing loss. We will also focus in the toxicological profile and limitations of celastrol formulation, namely, solubility, bioavailability, and dosage issues that still limit its further clinical application and usefulness.
Collapse
Affiliation(s)
- Rita Cascão
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - João E Fonseca
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.,Rheumatology Department, Centro Hospitalar de Lisboa Norte, EPE, Hospital de Santa Maria, Lisbon Academic Medical Centre, Lisbon, Portugal
| | - Luis F Moita
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| |
Collapse
|
29
|
Wang Z, Zhai Z, Du X. Celastrol inhibits migration and invasion through blocking the NF-κB pathway in ovarian cancer cells. Exp Ther Med 2017; 14:819-824. [PMID: 28673005 DOI: 10.3892/etm.2017.4568] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 03/10/2017] [Indexed: 12/16/2022] Open
Abstract
Metastatic ovarian cancer is a major clinical challenge with poor prognosis and high mortality. Celastrol is a natural compound that has exhibits antiproliferative activity; however, its effects on metastasis-related phenotypes in ovarian cancer models are unclear. In the current study, the anti-invasive activities and associated signaling pathways of celastrol were determined in ovarian cancer cells. Cell proliferation was tested by MTT assay. Cell migration was detected by wound healing and Transwell assays, while cell invasion was detected by a Matrigel-coated Transwell method. In addition, nuclear factor (NF)-κB and matrix metalloproteinase (MMP) expression was examined by western blotting, and MMP-2/-9 activities were determined by gelatin zymography. At sub-toxic concentrations (<0.5 µM), celastrol inhibited migration and invasion in a concentration-dependent manner in SKOV-3 and OVCAR-3 cells. At the molecular level, celastrol blocked the canonical NF-κB pathway by inhibiting IκBα phosphorylation, and preventing IκBα degradation and p65 accumulation. Furthermore, the expression and activity of the NF-κB target protein MMP-9, but not MMP-2, were inhibited by celastrol. Furthermore, celastrol showed no synergistic effect with MG132, an NF-κB inhibitor. In conclusion, celastrol exhibited significant anti-invasive activities in ovarian cancer cells. Such functions may be mediated via NF-κB pathway blockade. The results of this in vitro study strengthen the value of applying celastrol as a potential clinical intervention modality for delaying ovarian cancer metastasis. This, celastrol warrants further preclinical investigation.
Collapse
Affiliation(s)
- Zhongye Wang
- Department of Obstetrics and Gynecology, Weihai Central Hospital, Weihai, Shandong 264400, P.R. China
| | - Zhenyuan Zhai
- Department of Obstetrics and Gynecology, Weihai Central Hospital, Weihai, Shandong 264400, P.R. China
| | - Xiulan Du
- Department of Obstetrics and Gynecology, Weihai Central Hospital, Weihai, Shandong 264400, P.R. China
| |
Collapse
|
30
|
Celastrol and Its Role in Controlling Chronic Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 928:267-289. [PMID: 27671821 DOI: 10.1007/978-3-319-41334-1_12] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Celastrol, a triterpenoid derived from traditional Chinese medicinal plants, has anti-inflammatory, antioxidant, and anticancer activities. Celastrol has shown preventive/therapeutic effects in experimental models of several chronic diseases. These include, chronic inflammatory and autoimmune diseases (e.g., rheumatoid arthritis, multiple sclerosis, systemic lupus erythematosus, inflammatory bowel disease, and psoriasis), neurodegenerative disorders (e.g., Alzheimer's disease, Parkinson's disease, and Amyotrophic lateral sclerosis), atherosclerosis, obesity, Type 2 diabetes, and cancer. Celastrol modulates intricate cellular pathways and networks associated with disease pathology, and it interrupts or redirects the aberrant cellular and molecular events so as to limit disease progression and facilitate recovery, where feasible. The major cell signaling pathways modulated by celastrol include the NF-kB pathway, MAPK pathway, JAK/STAT pathway, PI3K/Akt/mTOR pathway, and antioxidant defense mechanisms. Furthermore, celastrol modulates cell proliferation, apoptosis, proteasome activity, heat-shock protein response, innate and adaptive immune responses, angiogenesis, and bone remodeling. Current understanding of the mechanisms of action of celastrol and information about its disease-modulating activities in experimental models have set the stage for testing celastrol in clinical studies as a therapeutic agent for several chronic human diseases.
Collapse
|
31
|
Ailanthone targets p23 to overcome MDV3100 resistance in castration-resistant prostate cancer. Nat Commun 2016; 7:13122. [PMID: 27959342 PMCID: PMC5159881 DOI: 10.1038/ncomms13122] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 09/02/2016] [Indexed: 01/17/2023] Open
Abstract
Androgen receptor (AR) antagonist MDV3100 is the first therapeutic approach in treating castration-resistant prostate cancer (CRPC), but tumours frequently become drug resistant via multiple mechanisms including AR amplification and mutation. Here we identify the small molecule Ailanthone (AIL) as a potent inhibitor of both full-length AR (AR-FL) and constitutively active truncated AR splice variants (AR-Vs). AIL binds to the co-chaperone protein p23 and prevents AR's interaction with HSP90, thus resulting in the disruption of the AR-chaperone complex followed by ubiquitin/proteasome-mediated degradation of AR as well as other p23 clients including AKT and Cdk4, and downregulates AR and its target genes in PCa cell lines and orthotopic animal tumours. In addition, AIL blocks tumour growth and metastasis of CRPC. Finally, AIL possesses favourable drug-like properties such as good bioavailability, high solubility, lack of CYP inhibition and low hepatotoxicity. In general, AIL is a potential candidate for the treatment of CRPC. Prostate cancers often become castration resistant due to alternative expression of androgen receptor (AR) splice variants. Here, the authors screened a library of natural compounds and identified Ailanthone as a potent inhibitor of AR through its binding to the co-chaperone protein p23 that, by preventing AR interaction with HSP90, results in ubiquitin/proteasome-mediated degradation of the receptor.
Collapse
|
32
|
Venkatesha SH, Dudics S, Astry B, Moudgil KD. Control of autoimmune inflammation by celastrol, a natural triterpenoid. Pathog Dis 2016; 74:ftw059. [PMID: 27405485 DOI: 10.1093/femspd/ftw059] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/02/2016] [Indexed: 12/19/2022] Open
Abstract
Celastrol is a bioactive compound derived from traditional Chinese medicinal herbs of the Celastraceae family. Celastrol is known to possess anti-inflammatory and anti-oxidant activities. Our studies have highlighted the immunomodulatory attributes of celastrol in adjuvant-induced arthritis (AA), an experimental model of human rheumatoid arthritis (RA). RA is an autoimmune disease characterized by chronic inflammation of the synovial lining of the joints, leading eventually to tissue damage and deformities. Identification of the molecular targets of celastrol such as the NF-κB pathway, MAPK pathway, JAK/STAT pathway and RANKL/OPG pathway has unraveled its strategic checkpoints in controlling arthritic inflammation and tissue damage in AA. The pathological events that are targeted and rectified by celastrol include increased production of pro-inflammatory cytokines; an imbalance between pathogenic T helper 17 and regulatory T cells; enhanced production of chemokines coupled with increased migration of immune cells into the joints; and increased release of mediators of osteoclastic bone damage. Accordingly, celastrol is a promising candidate for further testing in the clinic for RA therapy. Furthermore, the results of other preclinical studies suggest that celastrol might also be beneficial for the treatment of a few other autoimmune diseases besides arthritis.
Collapse
Affiliation(s)
- Shivaprasad H Venkatesha
- Department of Microbiology and Immunology, Division of Rheumatology, University of Maryland School of Medicine, 685 W. Baltimore Street, HSF-1, Suite 380, Baltimore, MD 21201, USA
| | - Steven Dudics
- Department of Microbiology and Immunology, Division of Rheumatology, University of Maryland School of Medicine, 685 W. Baltimore Street, HSF-1, Suite 380, Baltimore, MD 21201, USA
| | - Brian Astry
- Department of Microbiology and Immunology, Division of Rheumatology, University of Maryland School of Medicine, 685 W. Baltimore Street, HSF-1, Suite 380, Baltimore, MD 21201, USA
| | - Kamal D Moudgil
- Department of Microbiology and Immunology, Division of Rheumatology, University of Maryland School of Medicine, 685 W. Baltimore Street, HSF-1, Suite 380, Baltimore, MD 21201, USA Department of Medicine, Division of Rheumatology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
33
|
Kapoor S. Tumor growth attenuating effect of celastrol in systemic malignancies. Int J Cancer 2016; 139:1431. [PMID: 27097353 DOI: 10.1002/ijc.30151] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 03/17/2016] [Indexed: 11/11/2022]
|
34
|
Inhibiting inducible miR-223 further reduces viable cells in human cancer cell lines MCF-7 and PC3 treated by celastrol. BMC Cancer 2015; 15:873. [PMID: 26552919 PMCID: PMC4640397 DOI: 10.1186/s12885-015-1909-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 11/04/2015] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Celastrol is a novel anti-tumor agent. Ways to further enhance this effect of celastrol has attracted much research attention. METHODS AND RESULTS Here, we report that celastrol treatment can elevate miR-223 in human breast cancer cell line MCF-7 and prostate cancer PC3. Down-regulating miR-223 could increase the number of viable cells, yet it further reduced viable cells in samples that were treated by celastrol; up-regulation of miR-223 displayed opposite effects. Celastrol's miR-223 induction might be due to NF-κB inhibition and transient mTOR activation: these two events occurred prior to miR-223 elevation in celastrol-treated cells. NF-κB inhibitor, like celastrol, could induce miR-223; the induction of miR-223 by NF-κB inhibitor or celastrol was reduced by the use of mTOR inhibitor. Finally and interestingly, miR-223 also could affect NF-κB and mTOR and the effects were different between cells treated or not treated with celastrol, thus providing an explanation for differing effects of miR-223 alteration on cellular viability in the presence of celastrol or not. CONCLUSIONS For the first time, we disclose that celastrol could induce miR-223 in breast and prostate cancer cells, and that inhibiting miR-223 could further reduce the living cells in celastrol-treated cancer cell lines. We thus provide a novel way to increase celastrol's anti-cancer effects.
Collapse
|
35
|
Celastrol Protects against Antimycin A-Induced Insulin Resistance in Human Skeletal Muscle Cells. Molecules 2015; 20:8242-69. [PMID: 25961164 PMCID: PMC6272652 DOI: 10.3390/molecules20058242] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 04/29/2015] [Accepted: 05/04/2015] [Indexed: 01/04/2023] Open
Abstract
Mitochondrial dysfunction and inflammation are widely accepted as key hallmarks of obesity-induced skeletal muscle insulin resistance. The aim of the present study was to evaluate the functional roles of an anti-inflammatory compound, celastrol, in mitochondrial dysfunction and insulin resistance induced by antimycin A (AMA) in human skeletal muscle cells. We found that celastrol treatment improved insulin-stimulated glucose uptake activity of AMA-treated cells, apparently via PI3K/Akt pathways, with significant enhancement of mitochondrial activities. Furthermore, celastrol prevented increased levels of cellular oxidative damage where the production of several pro-inflammatory cytokines in cultures cells was greatly reduced. Celastrol significantly increased protein phosphorylation of insulin signaling cascades with amplified expression of AMPK protein and attenuated NF-κB and PKC θ activation in human skeletal muscle treated with AMA. The improvement of insulin signaling pathways by celastrol was also accompanied by augmented GLUT4 protein expression. Taken together, these results suggest that celastrol may be advocated for use as a potential therapeutic molecule to protect against mitochondrial dysfunction-induced insulin resistance in human skeletal muscle cells.
Collapse
|
36
|
Design and synthesis of celastrol derivatives as anticancer agents. Eur J Med Chem 2015; 95:166-73. [PMID: 25812966 DOI: 10.1016/j.ejmech.2015.03.039] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 03/16/2015] [Accepted: 03/17/2015] [Indexed: 01/18/2023]
Abstract
A series of celastrol derivatives as potential telomerase inhibitors were designed and synthesized. The bioassays demonstrated that title compounds displayed potent anticancer activities against SGC-7901, SMMC-7721, MGC-803 and HepG-2 cell lines, among them, compounds 3c and 3d which containing hydrophilicity moieties exhibited high anti-proliferative activities (IC50 = 0.10-1.22 μM). The preliminary mechanism of antitumor action indicated that title compound 3c could induce significant SMMC-7721 cells apoptosis. A modified TRAP assay showed that compounds 3c and 3d displayed the most potent inhibitory activity with IC50 values at 0.11 and 0.34 μM, respectively. And there was a good correlation between telomerase inhibition and anti-proliferative inhibition of SMMC-7721 cells. Moreover, molecular docking indicated that the active compound 3c was nicely bound into the telomerase hTERT active site, hydrophobic, van der Waals and two hydrogen bond interactions with conserved residues ASP 628 and TYR 949 were found.
Collapse
|
37
|
Lu C, Zhang X, Zhang D, Pei E, Xu J, Tang T, Ye M, Uzan G, Zhi K, Li M, Zuo K. Short Time Tripterine Treatment Enhances Endothelial Progenitor Cell Function via Heat Shock Protein 32. J Cell Physiol 2015; 230:1139-47. [PMID: 25336054 DOI: 10.1002/jcp.24849] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 10/14/2014] [Indexed: 01/02/2023]
Affiliation(s)
- Chenhui Lu
- Department of Interventional Radiology; Shanghai Tenth People's Hospital; Tongji University; Shanghai China
- Shanghai Gong Li Hospital; Shanghai China
| | - Xiaoping Zhang
- Department of Interventional Radiology; Shanghai Tenth People's Hospital; Tongji University; Shanghai China
- Institute of Medical Intervention Engineering; Tongji University; Shanghai China
| | | | - Erli Pei
- Department of Interventional Radiology; Shanghai Tenth People's Hospital; Tongji University; Shanghai China
| | - Jichong Xu
- Department of Interventional Radiology; Shanghai Tenth People's Hospital; Tongji University; Shanghai China
| | - Tao Tang
- Department of Interventional Radiology; Shanghai Tenth People's Hospital; Tongji University; Shanghai China
| | - Meng Ye
- Department of Interventional Radiology; Shanghai Tenth People's Hospital; Tongji University; Shanghai China
| | - Georges Uzan
- Unite de Recherche INSERM 972; Villejuif Cedex France
| | - Kangkang Zhi
- Department of Vascular and Endovascular Surgery; Changzheng Hospital; Shanghai China
| | - Maoquan Li
- Department of Interventional Radiology; Shanghai Tenth People's Hospital; Tongji University; Shanghai China
- Institute of Medical Intervention Engineering; Tongji University; Shanghai China
| | - Keqiang Zuo
- Shanghai Tenth People's Hospital; Tongji University School of Medicine; Shanghai China
| |
Collapse
|
38
|
Wu JR, Hu CT, You RI, Ma PL, Pan SM, Lee MC, Wu WS. Preclinical trials for prevention of tumor progression of hepatocellular carcinoma by LZ-8 targeting c-Met dependent and independent pathways. PLoS One 2015; 10:e0114495. [PMID: 25607934 PMCID: PMC4301873 DOI: 10.1371/journal.pone.0114495] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 11/07/2014] [Indexed: 12/11/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is among the most lethal cancers. Mounting studies highlighted the essential role of the HGF/c-MET axis in driving HCC tumor progression. Therefore, c-Met is a potential therapeutic target for HCC. However, several concerns remain unresolved in c-Met targeting. First, the status of active c-Met in HCC must be screened to determine patients suitable for therapy. Second, resistance and side effects have been observed frequently when using conventional c-Met inhibitors. Thus, a preclinical system for screening the status of c-Met signaling and identifying efficient and safe anti-HCC agents is urgently required. In this study, immunohistochemical staining of phosphorylated c-Met (Tyr1234) on tissue sections indicated that HCCs with positive c-Met signaling accounted for approximately 46% in 26 cases. Second, many patient-derived HCC cell lines were established and characterized according to motility and c-Met signaling status. Moreover, LZ8, a medicinal peptide purified from the herb Lingzhi, featuring immunomodulatory and anticancer properties, was capable of suppressing cell migration and slightly reducing the survival rate of both c-Met positive and negative HCCs, HCC372, and HCC329, respectively. LZ8 also suppressed the intrahepatic metastasis of HCC329 in SCID mice. On the molecular level, LZ8 suppressed the expression of c-Met and phosphorylation of c-Met, ERK and AKT in HCC372, and suppressed the phosphorylation of JNK, ERK, and AKT in HCC329. According to receptor array screening, the major receptor tyrosine kinase activated in HCC329 was found to be the epidermal growth factor receptor (EGFR). Moreover, tyrosine-phosphorylated EGFR (the active EGFR) was greatly suppressed in HCC329 by LZ8 treatment. In addition, LZ8 blocked HGF-induced cell migration and c-Met-dependent signaling in HepG2. In summary, we designed a preclinical trial using LZ8 to prevent the tumor progression of patient-derived HCCs with c-Met-positive or -negative signaling.
Collapse
Affiliation(s)
- Jia-Ru Wu
- Institute of Medical Sciences, Tzu Chi University, Hualein, Taiwan
| | - Chi-Tan Hu
- Research Centre for Hepatology, Buddhist Tzu Chi General Hospital and Department of Internal Medicine Tzu Chi University, Hualien, Taiwan
| | - Ren-In You
- Department of Laboratory Medicine and Biotechnology, College of Medicine, Tzu Chi University, Hualein, Taiwan
| | - Pei-Ling Ma
- Department of Laboratory Medicine and Biotechnology, College of Medicine, Tzu Chi University, Hualein, Taiwan
| | - Siou-Mei Pan
- Research Centre for Hepatology, Buddhist Tzu Chi General Hospital and Department of Internal Medicine Tzu Chi University, Hualien, Taiwan
| | - Ming-Che Lee
- Department of Surgery, Buddhist Tzu Chi General Hospital, School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Wen-Sheng Wu
- Institute of Medical Sciences, Tzu Chi University, Hualein, Taiwan
- Department of Laboratory Medicine and Biotechnology, College of Medicine, Tzu Chi University, Hualein, Taiwan
- * E-mail:
| |
Collapse
|
39
|
Tang K, Huang J, Pan J, Zhang X, Lu W. Design, synthesis and biological evaluation of C(6)-indole celastrol derivatives as potential antitumor agents. RSC Adv 2015. [DOI: 10.1039/c4ra15414b] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A new class of C(6)-indole substituted celastrol derivatives were designed and synthesized. Among all these synthesized molecules, compound 4f and 4h displayed excellent in vitro antiproliferative activities against Bel7402 cancer cells.
Collapse
Affiliation(s)
- Kaiyong Tang
- Institute of Drug Discovery and Development
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development
- East China Normal University
- Shanghai 200062
- PR China
| | - Jinwen Huang
- Shanghai Hotmed Sciences Co., Ltd
- Shanghai 201201
- PR China
| | - Junfang Pan
- Shanghai Hotmed Sciences Co., Ltd
- Shanghai 201201
- PR China
| | - Xuan Zhang
- Institute of Drug Discovery and Development
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development
- East China Normal University
- Shanghai 200062
- PR China
| | - Wei Lu
- Institute of Drug Discovery and Development
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development
- East China Normal University
- Shanghai 200062
- PR China
| |
Collapse
|
40
|
Moses T, Papadopoulou KK, Osbourn A. Metabolic and functional diversity of saponins, biosynthetic intermediates and semi-synthetic derivatives. Crit Rev Biochem Mol Biol 2014; 49:439-62. [PMID: 25286183 PMCID: PMC4266039 DOI: 10.3109/10409238.2014.953628] [Citation(s) in RCA: 244] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 08/01/2014] [Accepted: 08/07/2014] [Indexed: 01/11/2023]
Abstract
Saponins are widely distributed plant natural products with vast structural and functional diversity. They are typically composed of a hydrophobic aglycone, which is extensively decorated with functional groups prior to the addition of hydrophilic sugar moieties, to result in surface-active amphipathic compounds. The saponins are broadly classified as triterpenoids, steroids or steroidal glycoalkaloids, based on the aglycone structure from which they are derived. The saponins and their biosynthetic intermediates display a variety of biological activities of interest to the pharmaceutical, cosmetic and food sectors. Although their relevance in industrial applications has long been recognized, their role in plants is underexplored. Recent research on modulating native pathway flux in saponin biosynthesis has demonstrated the roles of saponins and their biosynthetic intermediates in plant growth and development. Here, we review the literature on the effects of these molecules on plant physiology, which collectively implicate them in plant primary processes. The industrial uses and potential of saponins are discussed with respect to structure and activity, highlighting the undoubted value of these molecules as therapeutics.
Collapse
Affiliation(s)
- Tessa Moses
- Department of Metabolic Biology, John Innes CentreColney Lane, NorwichUK
| | | | - Anne Osbourn
- Department of Metabolic Biology, John Innes CentreColney Lane, NorwichUK
| |
Collapse
|