1
|
Lawal OU, Goodridge L. TSPDB: a curated resource of tailspike proteins with potential applications in phage research. Front Big Data 2024; 7:1437580. [PMID: 39664372 PMCID: PMC11631844 DOI: 10.3389/fdata.2024.1437580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 11/12/2024] [Indexed: 12/13/2024] Open
Affiliation(s)
- Opeyemi U. Lawal
- Canadian Research Institute for Food Safety (CRIFS), Department of Food Science, University of Guelph, Guelph, ON, Canada
| | - Lawrence Goodridge
- Canadian Research Institute for Food Safety (CRIFS), Department of Food Science, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
2
|
Desmecht S, Latka A, Ceyssens PJ, Garcia-Pino A, Gillis A, Lavigne R, Lima-Mendez G, Matthijnssens J, Vázquez R, Venneman J, Wagemans J, Briers Y, Thiry D. Meeting Report of the Second Symposium of the Belgian Society for Viruses of Microbes and Launch of the Phage Valley. Viruses 2024; 16:299. [PMID: 38400074 PMCID: PMC10891784 DOI: 10.3390/v16020299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
The second symposium of the Belgian Society for Viruses of Microbes (BSVoM) took place on 8 September 2023 at the University of Liège with 141 participants from 10 countries. The meeting program covered three thematic sessions opened by international keynote speakers: two sessions were devoted to "Fundamental research in phage ecology and biology" and the third one to the "Present and future applications of phages". During this one day symposium, four invited keynote lectures, nine selected talks and eight student pitches were given along with thirty presented posters. The president of the Belgian Society for Viruses of Microbes, Prof. Yves Briers, took advantage of this symposium to launch the Phage Valley concept that will put the spotlight on the exceptionally high density of researchers investigating viruses of microbes as well as the successful triple helix approach between academia, industry and government in Belgium.
Collapse
Affiliation(s)
- Salomé Desmecht
- Veterinary Bacteriology, Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals and Health, Faculty of Veterinary Medicine, University of Liège (ULiège), 4000 Liège, Belgium;
| | - Agnieszka Latka
- Laboratory of Applied Biotechnology, Department of Biotechnology, Faculty of Bioscience Engineering, University of Ghent (UGent), 9000 Gent, Belgium; (A.L.); (R.V.)
- Department of Pathogen Biology and Immunology, Faculty of Biological Sciences, University of Wroclaw, 51-148 Wroclaw, Poland
| | | | - Abel Garcia-Pino
- Cellular and Molecular Microbiology, Faculty of Sciences, Université Libre de Bruxelles (ULB), 1050 Brussels, Belgium;
| | - Annika Gillis
- Laboratory of Food and Environmental Microbiology, Earth and Life Institute, Catholic University of Louvain (UCLouvain), 1348 Louvain-la-Neuve, Belgium;
| | - Rob Lavigne
- Laboratory of Gene Technology, Department of Biosystems, Faculty of Bioscience Engineering, KU Leuven, 3001 Leuven, Belgium; (R.L.); (J.W.)
| | - Gipsi Lima-Mendez
- Biology of Microorganisms Research Unit (URBM), Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), 5000 Namur, Belgium;
| | - Jelle Matthijnssens
- Laboratory of Viral Metagenomics, Department of Microbiology, Immunology and Transplantation, Rega Institute, Division of Clinical and Epidemiological Virology, KU Leuven, 3000 Leuven, Belgium;
| | - Roberto Vázquez
- Laboratory of Applied Biotechnology, Department of Biotechnology, Faculty of Bioscience Engineering, University of Ghent (UGent), 9000 Gent, Belgium; (A.L.); (R.V.)
| | - Jolien Venneman
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), 9820 Merelbeke, Belgium;
| | - Jeroen Wagemans
- Laboratory of Gene Technology, Department of Biosystems, Faculty of Bioscience Engineering, KU Leuven, 3001 Leuven, Belgium; (R.L.); (J.W.)
| | - Yves Briers
- Laboratory of Applied Biotechnology, Department of Biotechnology, Faculty of Bioscience Engineering, University of Ghent (UGent), 9000 Gent, Belgium; (A.L.); (R.V.)
| | - Damien Thiry
- Veterinary Bacteriology, Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals and Health, Faculty of Veterinary Medicine, University of Liège (ULiège), 4000 Liège, Belgium;
| |
Collapse
|
3
|
Sonani RR, Palmer LK, Esteves NC, Horton AA, Sebastian AL, Kelly RJ, Wang F, Kreutzberger MAB, Russell WK, Leiman PG, Scharf BE, Egelman EH. An extensive disulfide bond network prevents tail contraction in Agrobacterium tumefaciens phage Milano. Nat Commun 2024; 15:756. [PMID: 38272938 PMCID: PMC10811340 DOI: 10.1038/s41467-024-44959-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 01/10/2024] [Indexed: 01/27/2024] Open
Abstract
A contractile sheath and rigid tube assembly is a widespread apparatus used by bacteriophages, tailocins, and the bacterial type VI secretion system to penetrate cell membranes. In this mechanism, contraction of an external sheath powers the motion of an inner tube through the membrane. The structure, energetics, and mechanism of the machinery imply rigidity and straightness. The contractile tail of Agrobacterium tumefaciens bacteriophage Milano is flexible and bent to varying degrees, which sets it apart from other contractile tail-like systems. Here, we report structures of the Milano tail including the sheath-tube complex, baseplate, and putative receptor-binding proteins. The flexible-to-rigid transformation of the Milano tail upon contraction can be explained by unique electrostatic properties of the tail tube and sheath. All components of the Milano tail, including sheath subunits, are crosslinked by disulfides, some of which must be reduced for contraction to occur. The putative receptor-binding complex of Milano contains a tailspike, a tail fiber, and at least two small proteins that form a garland around the distal ends of the tailspikes and tail fibers. Despite being flagellotropic, Milano lacks thread-like tail filaments that can wrap around the flagellum, and is thus likely to employ a different binding mechanism.
Collapse
Affiliation(s)
- Ravi R Sonani
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, 22903, USA
| | - Lee K Palmer
- Mass Spectrometry Facility, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Nathaniel C Esteves
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Abigail A Horton
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Amanda L Sebastian
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Rebecca J Kelly
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Fengbin Wang
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, 22903, USA
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Mark A B Kreutzberger
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, 22903, USA
| | - William K Russell
- Mass Spectrometry Facility, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Petr G Leiman
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, 77555, USA.
| | - Birgit E Scharf
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, 24061, USA.
| | - Edward H Egelman
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, 22903, USA.
| |
Collapse
|
4
|
Xu J, Li J, Yan Y, Han P, Tong Y, Li X. SW16-7, a Novel Ackermannviridae Bacteriophage with Highly Effective Lytic Activity Targets Salmonella enterica Serovar Weltevreden. Microorganisms 2023; 11:2090. [PMID: 37630650 PMCID: PMC10458263 DOI: 10.3390/microorganisms11082090] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/09/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
Salmonella enterica serovar Weltevreden is a foodborne pathogen commonly transmitted through fresh vegetables and seafood. In this study, a lytic phage, SW16-7, was isolated from medical sewage, demonstrating high infectivity against S. Weltevreden, S. London, S. Meleagridis, and S. Give of Group O:3. In vitro inhibition assays revealed its effective antibacterial effect for up to 12 h. Moreover, analysis using the Comprehensive Antibiotic Resistance Database (CARD) and the Virulence Factor Database (VFDB) showed that SW16-7's genome does not contain any virulence factors or antibiotic resistance genes, indicating its potential as a promising biocontrol agent against S. Weltevreden. Additionally, a TSP gene cluster was identified in SW16-7's genome, with TSP1 and TSP2 showing a high similarity to lysogenic phages ε15 and ε34, respectively, in the C-terminal region. The whole-genome phylogenetic analysis classified SW16-7 within the Ackermannviridae family and indicated a close relationship with Agtrevirus, which is consistent with the ANI results.
Collapse
Affiliation(s)
- Jialiang Xu
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China; (J.X.); (J.L.); (Y.Y.)
| | - Jia Li
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China; (J.X.); (J.L.); (Y.Y.)
| | - Yi Yan
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China; (J.X.); (J.L.); (Y.Y.)
| | - Pengjun Han
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China; (P.H.); (Y.T.)
| | - Yigang Tong
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China; (P.H.); (Y.T.)
| | - Xu Li
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China; (J.X.); (J.L.); (Y.Y.)
| |
Collapse
|
5
|
Pas C, Latka A, Fieseler L, Briers Y. Phage tailspike modularity and horizontal gene transfer reveals specificity towards E. coli O-antigen serogroups. Virol J 2023; 20:174. [PMID: 37550759 PMCID: PMC10408124 DOI: 10.1186/s12985-023-02138-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/23/2023] [Indexed: 08/09/2023] Open
Abstract
BACKGROUND The interaction between bacteriophages and their hosts is intricate and highly specific. Receptor-binding proteins (RBPs) of phages such as tail fibers and tailspikes initiate the infection process. These RBPs bind to diverse outer membrane structures, including the O-antigen, which is a serogroup-specific sugar-based component of the outer lipopolysaccharide layer of Gram-negative bacteria. Among the most virulent Escherichia coli strains is the Shiga toxin-producing E. coli (STEC) pathotype dominated by a subset of O-antigen serogroups. METHODS Extensive phylogenetic and structural analyses were used to identify and validate specificity correlations between phage RBP subtypes and STEC O-antigen serogroups, relying on the principle of horizontal gene transfer as main driver for RBP evolution. RESULTS We identified O-antigen specific RBP subtypes for seven out of nine most prevalent STEC serogroups (O26, O45, O103, O104, O111, O145 and O157) and seven additional E. coli serogroups (O2, O8, O16, O18, 4s/O22, O77 and O78). Eight phage genera (Gamaleya-, Justusliebig-, Kaguna-, Kayfuna-, Kutter-, Lederberg-, Nouzilly- and Uetakeviruses) emerged for their high proportion of serogroup-specific RBPs. Additionally, we reveal sequence motifs in the RBP region, potentially serving as recombination hotspots between lytic phages. CONCLUSION The results contribute to a better understanding of mosaicism of phage RBPs, but also demonstrate a method to identify and validate new RBP subtypes for current and future emerging serogroups.
Collapse
Affiliation(s)
- Célia Pas
- Department of Biotechnology, Ghent University, Valentin Vaerwyckweg 1, 9000, Ghent, Belgium
| | - Agnieszka Latka
- Department of Biotechnology, Ghent University, Valentin Vaerwyckweg 1, 9000, Ghent, Belgium
- Department of Pathogen Biology and Immunology, University of Wroclaw, Przybyszewskiego 63, 51-148, Wrocław, Poland
| | - Lars Fieseler
- Centre for Food Safety and Quality Management, ZHAW School of Life Sciences and Facility Management, Einsiedlerstrasse 31, 8820, Wädenswil, Switzerland
| | - Yves Briers
- Department of Biotechnology, Ghent University, Valentin Vaerwyckweg 1, 9000, Ghent, Belgium.
| |
Collapse
|
6
|
Noreika A, Rutkiene R, Dumalakienė I, Vilienė R, Laurynėnas A, Povilonienė S, Skapas M, Meškys R, Kaliniene L. Insights into the Alcyoneusvirus Adsorption Complex. Int J Mol Sci 2023; 24:ijms24119320. [PMID: 37298271 DOI: 10.3390/ijms24119320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
The structures of the Caudovirales phage tails are key factors in determining the host specificity of these viruses. However, because of the enormous structural diversity, the molecular anatomy of the host recognition apparatus has been elucidated in only a number of phages. Klebsiella viruses vB_KleM_RaK2 (RaK2) and phiK64-1, which form a new genus Alcyoneusvirus according to the ICTV, have perhaps one of the most structurally sophisticated adsorption complexes of all tailed viruses described to date. Here, to gain insight into the early steps of the alcyoneusvirus infection process, the adsorption apparatus of bacteriophage RaK2 is studied in silico and in vitro. We experimentally demonstrate that ten proteins, gp098 and gp526-gp534, previously designated as putative structural/tail fiber proteins (TFPs), are present in the adsorption complex of RaK2. We show that two of these proteins, gp098 and gp531, are essential for attaching to Klebsiella pneumoniae KV-3 cells: gp531 is an active depolymerase that recognizes and degrades the capsule of this particular host, while gp098 is a secondary receptor-binding protein that requires the coordinated action of gp531. Finally, we demonstrate that RaK2 long tail fibers consist of nine TFPs, seven of which are depolymerases, and propose a model for their assembly.
Collapse
Affiliation(s)
- Algirdas Noreika
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Saulėtekio Av. 7, LT-10257 Vilnius, Lithuania
| | - Rasa Rutkiene
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Saulėtekio Av. 7, LT-10257 Vilnius, Lithuania
| | - Irena Dumalakienė
- Department of Immunology, State Research Institute Center for Innovative Medicine, Santariškių St. 5, LT-08410 Vilnius, Lithuania
| | - Rita Vilienė
- Department of Immunology, State Research Institute Center for Innovative Medicine, Santariškių St. 5, LT-08410 Vilnius, Lithuania
| | - Audrius Laurynėnas
- Department of Bioanalysis, Institute of Biochemistry, Life Sciences Center, Vilnius University, Saulėtekio Av. 7, LT-10257 Vilnius, Lithuania
| | - Simona Povilonienė
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Saulėtekio Av. 7, LT-10257 Vilnius, Lithuania
| | - Martynas Skapas
- Department of Characterisation of Materials Structure, Center for Physical Sciences and Technology, Saulėtekio Av. 3, LT-10257 Vilnius, Lithuania
| | - Rolandas Meškys
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Saulėtekio Av. 7, LT-10257 Vilnius, Lithuania
| | - Laura Kaliniene
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Saulėtekio Av. 7, LT-10257 Vilnius, Lithuania
| |
Collapse
|
7
|
Tailoring the Host Range of Ackermannviridae Bacteriophages through Chimeric Tailspike Proteins. Viruses 2023; 15:v15020286. [PMID: 36851500 PMCID: PMC9965104 DOI: 10.3390/v15020286] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/10/2023] [Accepted: 01/18/2023] [Indexed: 01/21/2023] Open
Abstract
Host range is a major determinant in the industrial utility of a bacteriophage. A model host range permits broad recognition across serovars of a target bacterium while avoiding cross-reactivity with commensal microbiota. Searching for a naturally occurring bacteriophage with ideal host ranges is challenging, time-consuming, and restrictive. To address this, SPTD1.NL, a previously published luciferase reporter bacteriophage for Salmonella, was used to investigate manipulation of host range through receptor-binding protein engineering. Similar to related members of the Ackermannviridae bacteriophage family, SPTD1.NL possessed a receptor-binding protein gene cluster encoding four tailspike proteins, TSP1-4. Investigation of the native gene cluster through chimeric proteins identified TSP3 as the tailspike protein responsible for Salmonella detection. Further analysis of chimeric phages revealed that TSP2 contributed off-target Citrobacter recognition, whereas TSP1 and TSP4 were not essential for activity against any known host. To improve the host range of SPTD1.NL, TSP1 and TSP2 were sequentially replaced with chimeric receptor-binding proteins targeting Salmonella. This engineered construct, called RBP-SPTD1-3, was a superior diagnostic reporter, sensitively detecting additional Salmonella serovars while also demonstrating improved specificity. For industrial applications, bacteriophages of the Ackermannviridae family are thus uniquely versatile and may be engineered with multiple chimeric receptor-binding proteins to achieve a custom-tailored host range.
Collapse
|
8
|
Structure of Escherichia coli O157:H7 bacteriophage CBA120 tailspike protein 4 baseplate anchor and tailspike assembly domains (TSP4-N). Sci Rep 2022; 12:2061. [PMID: 35136138 PMCID: PMC8825819 DOI: 10.1038/s41598-022-06073-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 01/24/2022] [Indexed: 11/08/2022] Open
Abstract
Four tailspike proteins (TSP1-4) of Escherichia coli O157:H7 bacteriophage CBA120 enable infection of multiple hosts. They form a branched complex that attaches to the tail baseplate. Each TSP recognizes a different lipopolysaccharide on the membrane of a different bacterial host. The 335 N-terminal residues of TSP4 promote the assembly of the TSP complex and anchor it to the tail baseplate. The crystal structure of TSP4-N335 reveals a trimeric protein comprising four domains. The baseplate anchor domain (AD) contains an intertwined triple-stranded β-helix. The ensuing XD1, XD2 and XD3 β-sheet containing domains mediate the binding of TSP1-3 to TSP4. Each of the XD domains adopts the same fold as the respective XD domains of bacteriophage T4 gp10 baseplate protein, known to engage in protein–protein interactions via its XD2 and XD3 domains. The structural similarity suggests that XD2 and XD3 of TSP4 also function in protein–protein interactions. Analytical ultracentrifugation analyses of TSP4-N335 and of domain deletion proteins showed how TSP4-N335 promotes the formation of the TSP quaternary complex. TSP1 and TSP2 bind directly to TSP4 whereas TSP3 binding requires a pre-formed TSP4-N335:TSP2 complex. A 3-dimensional model of the bacteriophage CBA120 TSP complex has been developed based on the structural and ultracentrifuge information.
Collapse
|
9
|
Kryshtafovych A, Moult J, Albrecht R, Chang GA, Chao K, Fraser A, Greenfield J, Hartmann MD, Herzberg O, Josts I, Leiman PG, Linden SB, Lupas AN, Nelson DC, Rees SD, Shang X, Sokolova ML, Tidow H. Computational models in the service of X-ray and cryo-electron microscopy structure determination. Proteins 2021; 89:1633-1646. [PMID: 34449113 PMCID: PMC8616789 DOI: 10.1002/prot.26223] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/11/2021] [Accepted: 08/17/2021] [Indexed: 01/20/2023]
Abstract
Critical assessment of structure prediction (CASP) conducts community experiments to determine the state of the art in computing protein structure from amino acid sequence. The process relies on the experimental community providing information about not yet public or about to be solved structures, for use as targets. For some targets, the experimental structure is not solved in time for use in CASP. Calculated structure accuracy improved dramatically in this round, implying that models should now be much more useful for resolving many sorts of experimental difficulties. To test this, selected models for seven unsolved targets were provided to the experimental groups. These models were from the AlphaFold2 group, who overall submitted the most accurate predictions in CASP14. Four targets were solved with the aid of the models, and, additionally, the structure of an already solved target was improved. An a posteriori analysis showed that, in some cases, models from other groups would also be effective. This paper provides accounts of the successful application of models to structure determination, including molecular replacement for X-ray crystallography, backbone tracing and sequence positioning in a cryo-electron microscopy structure, and correction of local features. The results suggest that, in future, there will be greatly increased synergy between computational and experimental approaches to structure determination.
Collapse
Affiliation(s)
| | - John Moult
- Institute for Bioscience and Biotechnology Research, Department of Cell Biology and Molecular genetics, University of Maryland, 9600 Gudelsky Drive, Rockville, MD 20850, USA
| | - Reinhard Albrecht
- Department of Protein Evolution, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Geoffrey A. Chang
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California-San Diego, La Jolla, CA, 92093, USA
- Department of Pharmacology, University of California-San Diego, La Jolla, CA, 92093, USA
| | - Kinlin Chao
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850, USA
| | - Alec Fraser
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics (SCSB), The University of Texas Medical Branch at Galveston, TX 77555, USA
| | - Julia Greenfield
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850, USA
| | - Marcus D. Hartmann
- Department of Protein Evolution, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Osnat Herzberg
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850, USA
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| | - Inokentijs Josts
- The Hamburg Advanced Research Center for Bioorganic Chemistry (HARBOR) & Department of Chemistry, Institute for Biochemistry and Molecular Biology, University of Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Petr G. Leiman
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics (SCSB), The University of Texas Medical Branch at Galveston, TX 77555, USA
| | - Sara B. Linden
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850, USA
| | - Andrei N. Lupas
- Department of Protein Evolution, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Daniel C. Nelson
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850, USA
- Department of Veterinary Medicine, University of Maryland, College Park, MD 20742, USA
| | - Steven D. Rees
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California-San Diego, La Jolla, CA, 92093, USA
| | - Xiaoran Shang
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850, USA
| | - Maria L. Sokolova
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, 121205, Russia
| | - Henning Tidow
- The Hamburg Advanced Research Center for Bioorganic Chemistry (HARBOR) & Department of Chemistry, Institute for Biochemistry and Molecular Biology, University of Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | | |
Collapse
|
10
|
Sørensen AN, Woudstra C, Sørensen MCH, Brøndsted L. Subtypes of tail spike proteins predicts the host range of Ackermannviridae phages. Comput Struct Biotechnol J 2021; 19:4854-4867. [PMID: 34527194 PMCID: PMC8432352 DOI: 10.1016/j.csbj.2021.08.030] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/19/2021] [Accepted: 08/19/2021] [Indexed: 12/01/2022] Open
Abstract
Phages belonging to the Ackermannviridae family encode up to four tail spike proteins (TSPs), each recognizing a specific receptor of their bacterial hosts. Here, we determined the TSPs diversity of 99 Ackermannviridae phages by performing a comprehensive in silico analysis. Based on sequence diversity, we assigned all TSPs into distinctive subtypes of TSP1, TSP2, TSP3 and TSP4, and found each TSP subtype to be specifically associated with the genera (Kuttervirus, Agtrevirus, Limestonevirus, Taipeivirus) of the Ackermannviridae family. Further analysis showed that the N-terminal XD1 and XD2 domains in TSP2 and TSP4, hinging the four TSPs together, are preserved. In contrast, the C-terminal receptor binding modules were only conserved within TSP subtypes, except for some Kuttervirus TSP1s and TSP3s that were similar to specific TSP4s. A conserved motif in TSP1, TSP3 and TSP4 of Kuttervirus phages may allow recombination between receptor binding modules, thus altering host recognition. The receptors for numerous uncharacterized phages expressing TSPs in the same subtypes were predicted using previous host range data. To validate our predictions, we experimentally determined the host recognition of three of the four TSPs expressed by kuttervirus S117. We confirmed that S117 TSP1 and TSP2 bind to their predicted host receptors, and identified the receptor for TSP3, which is shared by 51 other Kuttervirus phages. Kuttervirus phages were thus shown encode a vast genetic diversity of potentially exchangeable TSPs influencing host recognition. Overall, our study demonstrates that comprehensive in silico and host range analysis of TSPs can predict host recognition of Ackermannviridae phages.
Collapse
Key Words
- ANI, Average nucleotide identity
- Ackermannviridae family
- Bacteriophage
- CPS, Capsular polysaccharide
- EOP, Efficiency of plating
- Escherichia coli O:157
- Host range
- LB, Luria-Bertani
- LPS, Lipopolysaccharide
- NCBI, National Center for Biotechnology Information
- O-antigen
- ORF, Open reading frame
- PFU, Plaque formation unit
- RBP, Receptor binding protein
- Receptor-binding proteins
- Salmonella
- TSP, Tail spike protein
- Tail spike proteins
- VriC, Virulence-associated protein
Collapse
Affiliation(s)
- Anders Nørgaard Sørensen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Stigbøjlen 4, 1870 Frederiksberg C, Denmark
| | - Cedric Woudstra
- Department of Veterinary and Animal Sciences, University of Copenhagen, Stigbøjlen 4, 1870 Frederiksberg C, Denmark
| | - Martine C Holst Sørensen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Stigbøjlen 4, 1870 Frederiksberg C, Denmark
| | - Lone Brøndsted
- Department of Veterinary and Animal Sciences, University of Copenhagen, Stigbøjlen 4, 1870 Frederiksberg C, Denmark
| |
Collapse
|
11
|
Identification of Receptor Binding Proteins in Flagellotropic Agrobacterium Phage 7-7-1. Viruses 2021; 13:v13071267. [PMID: 34209785 PMCID: PMC8310070 DOI: 10.3390/v13071267] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 12/14/2022] Open
Abstract
The rapid discovery of new and diverse bacteriophages has driven the innovation of approaches aimed at detailing interactions with their bacterial hosts. Previous studies on receptor binding proteins (RBPs) mainly relied on their identification in silico and are based on similarities to well-characterized systems. Thus, novel phage RBPs unlike those currently annotated in genomic and proteomic databases remain largely undiscovered. In this study, we employed a screen to identify RBPs in flagellotropic Agrobacterium phage 7-7-1. Flagellotropic phages utilize bacterial flagella as receptors. The screen identified three candidate RBPs, Gp4, Gp102, and Gp44. Homology modelling predicted that Gp4 is a trimeric, tail associated protein with a central β-barrel, while the structure and function of Gp102 and Gp44 are less obvious. Studies with purified Gp41-247 confirmed its ability to bind and interact with host cells, highlighting the robustness of the RBP screen. We also discovered that Gp41-247 inhibits the growth of host cells in a motility and lipopolysaccharide (LPS) dependent fashion. Hence, our results suggest interactions between Gp41-247, rotating flagellar filaments and host glycans to inhibit host cell growth, which presents an impactful and intriguing focus for future studies.
Collapse
|
12
|
Witte S, Zinsli LV, Gonzalez-Serrano R, Matter CI, Loessner MJ, van Mierlo JT, Dunne M. Structural and functional characterization of the receptor binding proteins of Escherichia coli O157 phages EP75 and EP335. Comput Struct Biotechnol J 2021; 19:3416-3426. [PMID: 34194667 PMCID: PMC8217332 DOI: 10.1016/j.csbj.2021.06.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 05/31/2021] [Accepted: 06/01/2021] [Indexed: 12/16/2022] Open
Abstract
Bacteriophages (phages) are widely used as biocontrol agents in food and as antibacterial agents for treatment of food production plant surfaces. An important feature of such phages is broad infectivity towards a given pathogenic species. Phages attach to the surfaces of bacterial cells using receptor binding proteins (RBPs), namely tail fibers or tailspikes (TSPs). The binding range of RBPs is the primary determinant of phage host range and infectivity, and therefore dictates a phage's suitability as an antibacterial agent. Phages EP75 and EP335 broadly infect strains of E. coli serotype O157. To better understand host recognition by both phages, here we focused on characterizing the structures and functions of their RBPs. We identified two distinct tail fibers in the genome of the podovirus EP335: gp12 and gp13. Using fluorescence microscopy, we reveal how gp13 recognizes strains of E. coli serotypes O157 and O26. Phage EP75 belongs to the Kuttervirus genus within the Ackermannviridae family and features a four TSP complex (TSPs 1-4) that is universal among such phages. We demonstrate enzymatic activity of TSP1 (gp167) and TSP2 (gp168) toward the O18A and O157 O-antigens of E. coli, respectively, as well as TSP3 activity (gp169.1) against O4, O7, and O9 Salmonella O-antigens. TSPs of EP75 present high similarity to TSPs from E. coli phages CBA120 (TSP2) and HK620 (TSP1) and Salmonella myovirus Det7 (TSP3), which helps explain the cross-genus infectivity observed for EP75.
Collapse
Affiliation(s)
- Sander Witte
- Micreos Food Safety B.V., Wageningen, Nieuwe Kanaal 7P, 6709PA, The Netherlands
| | - Léa V. Zinsli
- Institute of Food Nutrition and Health, ETH Zürich, Schmelzbergstrasse 7, 8092 Zürich, Switzerland
| | | | - Cassandra I. Matter
- Institute of Food Nutrition and Health, ETH Zürich, Schmelzbergstrasse 7, 8092 Zürich, Switzerland
| | - Martin J. Loessner
- Institute of Food Nutrition and Health, ETH Zürich, Schmelzbergstrasse 7, 8092 Zürich, Switzerland
| | - Joël T. van Mierlo
- Micreos Food Safety B.V., Wageningen, Nieuwe Kanaal 7P, 6709PA, The Netherlands
| | - Matthew Dunne
- Institute of Food Nutrition and Health, ETH Zürich, Schmelzbergstrasse 7, 8092 Zürich, Switzerland
| |
Collapse
|
13
|
Zhang L, Yan Y, Gan Q, She Z, Zhu K, Wang J, Gao Z, Dong Y, Gong Y. Structural and functional characterization of the deep-sea thermophilic bacteriophage GVE2 tailspike protein. Int J Biol Macromol 2020; 164:4415-4422. [PMID: 32926904 DOI: 10.1016/j.ijbiomac.2020.09.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/07/2020] [Accepted: 09/09/2020] [Indexed: 10/23/2022]
Abstract
The genome of the thermophilic bacteriophage GVE2 encodes a putative tailspike protein (GVE2 TSP). Here we report the crystal structure of the truncated GVE2 TSP at 2.0-Å resolution lacking 204 amino acid residues at its N-terminus (ΔnGVE2 TSP), possessing a "vase" outline similar to other TSP's structures. However, ΔnGVE2 TSP displays structural characteristics distinct from other TSPs. Despite lacking 204 amino acid residues, the head domain forms an asymmetric trimer compared to symmetric in other TSPs, suggesting that its long N-terminus may be unique to the long-tailed bacteriophages. Furthermore, the α-helix of the neck is 5-7 amino acids longer than that of other TSPs. The most striking feature is that its binding domain consists of a β-helix with 10 turns, whereas other TSPs have 13 turns, even including the phage Sf6 TSP, which is the closest homologue of GVE2 TSP. The C-terminal structure is also quite different with those of other TSPs. Furthermore, we observed that ΔnGVE2 TSP can slow down growth of its host, demonstrating that this TSP is essential for the phage GVE2 to infect its host. Overall, the structural characteristics suggest that GVE2 TSP may be more primitive than other phage TSPs.
Collapse
Affiliation(s)
- Likui Zhang
- Guangling College, Yangzhou University, China; Marine Science & Technology Institute, College of Environmental Science and Engineering, Yangzhou University, China
| | - Yuhua Yan
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, China; Institute of Physical Science and Information Technology, Anhui University, China
| | - Qi Gan
- Marine Science & Technology Institute, College of Environmental Science and Engineering, Yangzhou University, China
| | - Zhun She
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, China
| | - Keli Zhu
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, China; Institute of Physical Science and Information Technology, Anhui University, China
| | - Jinhui Wang
- College of Plant Protection, Agricultural University of Hebei, Baoding, China
| | - Zengqiang Gao
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, China
| | - Yuhui Dong
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, China
| | - Yong Gong
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, China.
| |
Collapse
|
14
|
Fan C, Tie D, Sun Y, Jiang J, Huang H, Gong Y, Zhao C. Characterization and Genomic Analysis of Escherichia coli O157:H7 Bacteriophage FEC14, a New Member of Genus Kuttervirus. Curr Microbiol 2020; 78:159-166. [PMID: 33185717 DOI: 10.1007/s00284-020-02283-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 11/02/2020] [Indexed: 12/20/2022]
Abstract
Escherichia coli O157:H7 is an important foodborne pathogen that has become a major worldwide factor affecting the public safety of food. Bacteriophage has gradually attracted attention because of its ability to kill specific pathogens. In this study, a lytic phage of E. coli O157:H7, named FEC14, was isolated from hospital sewage. Transmission electron microscopy analysis showed that phage FEC14 had an isometric head 80 ± 5 nm in diameter and a contractile tail whose terminal spikes present an umbrella-like structure. Phage FEC14 revealed 158,639 bp double-stranded DNA, with the G+C content of 44.6%, 209 ORFs and four tRNAs. Genome DNA of FEC14 could not be digested by some endonucleases. Many of the features of phage FEC14 are very similar to those of the newly classified genus "Kuttervirus", including morphology, genome size and organization, etc. Phage FEC14 is proposed to be a new isolate of genus "Kuttervirus" within the family Ackermannviridae, moreover, the endonuclease resistance of phage FEC14, has priority over other genera of bacteriophages for its use in biocontrol of foodborne pathogens.
Collapse
Affiliation(s)
- Congcong Fan
- Department of Pathogenobiology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, People's Republic of China
| | - Dandan Tie
- Department of Pathogenobiology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, People's Republic of China
| | - Yanbo Sun
- Department of Pathogenobiology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, People's Republic of China
| | - Jie Jiang
- Department of Pathogenobiology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, People's Republic of China
| | - Honglan Huang
- Department of Pathogenobiology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, People's Republic of China
| | - Yunwei Gong
- Changchun Center for Disease Control and Prevention Department of Microbiology, Changchun, Jilin, People's Republic of China
| | - Chunyan Zhao
- Department of Pathogenobiology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, People's Republic of China.
| |
Collapse
|
15
|
Structure and function of bacteriophage CBA120 ORF211 (TSP2), the determinant of phage specificity towards E. coli O157:H7. Sci Rep 2020; 10:15402. [PMID: 32958885 PMCID: PMC7506556 DOI: 10.1038/s41598-020-72373-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 08/27/2020] [Indexed: 11/17/2022] Open
Abstract
The genome of Escherichia coli O157:H7 bacteriophage vB_EcoM_CBA120 encodes four distinct tailspike proteins (TSPs). The four TSPs, TSP1-4, attach to the phage baseplate forming a branched structure. We report the 1.9 Å resolution crystal structure of TSP2 (ORF211), the TSP that confers phage specificity towards E. coli O157:H7. The structure shows that the N-terminal 168 residues involved in TSPs complex assembly are disordered in the absence of partner proteins. The ensuing head domain contains only the first of two fold modules seen in other phage vB_EcoM_CBA120 TSPs. The catalytic site resides in a cleft at the interface between adjacent trimer subunits, where Asp506, Glu568, and Asp571 are located in close proximity. Replacement of Asp506 and Asp571 for alanine residues abolishes enzyme activity, thus identifying the acid/base catalytic machinery. However, activity remains intact when Asp506 and Asp571 are mutated into asparagine residues. Analysis of additional site-directed mutants in the background of the D506N:D571N mutant suggests engagement of an alternative catalytic apparatus comprising Glu568 and Tyr623. Finally, we demonstrate the catalytic role of two interacting glutamate residues of TSP1, located in a cleft between two trimer subunits, Glu456 and Glu483, underscoring the diversity of the catalytic apparatus employed by phage vB_EcoM_CBA120 TSPs.
Collapse
|
16
|
Behloul N, Baha S, Shi R, Meng J. Role of the GTNGTKR motif in the N-terminal receptor-binding domain of the SARS-CoV-2 spike protein. Virus Res 2020; 286:198058. [PMID: 32531235 PMCID: PMC7282740 DOI: 10.1016/j.virusres.2020.198058] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 05/18/2020] [Accepted: 06/07/2020] [Indexed: 12/18/2022]
Abstract
SARS-CoV-2 S1-NTD presents different receptor binding motifs compared to the SARS-CoV. Functional motifs similar to the S1-NTD GTNGTKR loop were identified in other proteins. The GTNGTKR loop is very likely to allow the SARS-CoV-2 to bind other receptors. The GTNGTKR motif is very likely an evolutionary acquisition under functional constraints.
The 2019 novel coronavirus disease (COVID-19) that emerged in China has been declared as public health emergency of international concern by the World Health Organization and the causative pathogen was named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In this report, we analyzed the structural characteristics of the N-terminal domain of the S1 subunit (S1-NTD) of the SARS-CoV-2 spike protein in comparison to the SARS-CoV in particular, and to other viruses presenting similar characteristic in general. Given the severity and the wide and rapid spread of the SARS-CoV-2 infection, it is very likely that the virus recognizes other receptors/co-receptors besides the ACE2. The NTD of the SARS-CoV-2 contains a receptor-binding motif different from that of SARS-CoV, with some insertions that could confer to the new coronavirus new receptor binding abilities. In particular, motifs similar to the insertion 72GTNGTKR78 have been found in structural proteins of other viruses; and these motifs were located in putative regions involved in recognizing protein and sugar receptors, suggesting therefore that similar binding abilities could be displayed by the SARS-CoV-2 S1-NTD. Moreover, concerning the origin of these NTD insertions, our findings point towards an evolutionary acquisition rather than the hypothesis of an engineered virus.
Collapse
MESH Headings
- Amino Acid Sequence
- Angiotensin-Converting Enzyme 2
- Animals
- Betacoronavirus/chemistry
- Betacoronavirus/genetics
- Betacoronavirus/metabolism
- Binding Sites
- COVID-19
- Chiroptera
- Coronavirus Infections/pathology
- Coronavirus Infections/virology
- Evolution, Molecular
- Gene Expression
- Host-Pathogen Interactions/drug effects
- Host-Pathogen Interactions/genetics
- Humans
- Middle East Respiratory Syndrome Coronavirus/chemistry
- Middle East Respiratory Syndrome Coronavirus/genetics
- Middle East Respiratory Syndrome Coronavirus/metabolism
- Models, Molecular
- Pandemics
- Peptidyl-Dipeptidase A/chemistry
- Peptidyl-Dipeptidase A/genetics
- Peptidyl-Dipeptidase A/metabolism
- Pneumonia, Viral/pathology
- Pneumonia, Viral/virology
- Protein Binding
- Protein Conformation, alpha-Helical
- Protein Conformation, beta-Strand
- Protein Interaction Domains and Motifs
- Receptors, Virus/chemistry
- Receptors, Virus/genetics
- Receptors, Virus/metabolism
- Severe acute respiratory syndrome-related coronavirus/chemistry
- Severe acute respiratory syndrome-related coronavirus/genetics
- Severe acute respiratory syndrome-related coronavirus/metabolism
- SARS-CoV-2
- Sequence Alignment
- Spike Glycoprotein, Coronavirus/chemistry
- Spike Glycoprotein, Coronavirus/genetics
- Spike Glycoprotein, Coronavirus/metabolism
- Structural Homology, Protein
- Thermodynamics
- Virus Attachment
Collapse
Affiliation(s)
- Nouredine Behloul
- College of Basic Medicine, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Sarra Baha
- Department of Gastroenterology, Zhongda Hospital, Southeast University, Nanjing, 210009, Jiangsu Province, China
| | - Ruihua Shi
- Department of Gastroenterology, Zhongda Hospital, Southeast University, Nanjing, 210009, Jiangsu Province, China.
| | - Jihong Meng
- College of Basic Medicine, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China.
| |
Collapse
|
17
|
Structure and tailspike glycosidase machinery of ORF212 from E. coli O157:H7 phage CBA120 (TSP3). Sci Rep 2019; 9:7349. [PMID: 31089181 PMCID: PMC6517402 DOI: 10.1038/s41598-019-43748-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 04/30/2019] [Indexed: 12/19/2022] Open
Abstract
Bacteriophage tailspike proteins mediate virion absorption through reversible primary receptor binding, followed by lipopolysaccharide or exopolysaccharide degradation. The Escherichia coli O157:H7 bacteriophage CBA120 genome encodes four distinct tailspike proteins, annotated as ORFs 210 through 213. Previously, we reported the crystal structure of ORF210 (TSP1). Here we describe the crystal structure of ORF212 (TSP3) determined at 1.85 Å resolution. As observed with other tailspike proteins, TSP3 assembles into a trimer. Each subunit of TSP3 has an N-terminal head domain that is structurally similar to that of TSP1, consistent with their high amino acid sequence identity. In contrast, despite sharing a β-helix fold, the overall structure of the C-terminal catalytic domain of TSP3 is quite different when compared to TSP1. The TSP3 structure suggests that the glycosidase active site resides in a cleft at the interface between two adjacent subunits where three acidic residues, Glu362 and Asp383 on one subunit, and Asp426 on a second subunit, are located in close proximity. Comparing the glycosidase activity of wild-type TSP3 to various point mutants revealed that catalysis requires the carboxyl groups of Glu362 and Asp426, and not of Asp383, confirming the enzyme employs two carboxyl groups to degrade lippopolysaccharide using an acid/base mechanism.
Collapse
|
18
|
Prokhorov NS, Riccio C, Zdorovenko EL, Shneider MM, Browning C, Knirel YA, Leiman PG, Letarov AV. Function of bacteriophage G7C esterase tailspike in host cell adsorption. Mol Microbiol 2017; 105:385-398. [PMID: 28513100 DOI: 10.1111/mmi.13710] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2017] [Indexed: 12/29/2022]
Abstract
Bacteriophages recognize and bind to their hosts with the help of receptor-binding proteins (RBPs) that emanate from the phage particle in the form of fibers or tailspikes. RBPs show a great variability in their shapes, sizes, and location on the particle. Some RBPs are known to depolymerize surface polysaccharides of the host while others show no enzymatic activity. Here we report that both RBPs of podovirus G7C - tailspikes gp63.1 and gp66 - are essential for infection of its natural host bacterium E. coli 4s that populates the equine intestinal tract. We characterize the structure and function of gp63.1 and show that unlike any previously described RPB, gp63.1 deacetylates surface polysaccharides of E. coli 4s leaving the backbone of the polysaccharide intact. We demonstrate that gp63.1 and gp66 form a stable complex, in which the N-terminal part of gp66 serves as an attachment site for gp63.1 and anchors the gp63.1-gp66 complex to the G7C tail. The esterase domain of gp63.1 as well as domains mediating the gp63.1-gp66 interaction is widespread among all three families of tailed bacteriophages.
Collapse
Affiliation(s)
- Nikolai S Prokhorov
- Research Center of Biotechnology, Russian Academy of Sciences, Winogradsky Institute of Microbiology, 7b2 pr. 60-letiya Oktyabrya, Moscow, 117312, Russia
| | - Cristian Riccio
- École Polytechnique Fédérale de Lausanne (EPFL), BSP-415, Lausanne, 1015, Switzerland
| | - Evelina L Zdorovenko
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky pr, Moscow, 119991, Russia
| | - Mikhail M Shneider
- École Polytechnique Fédérale de Lausanne (EPFL), BSP-415, Lausanne, 1015, Switzerland.,Laboratory of Molecular Bioengineering, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 16/10 Miklukho-Maklaya St, Moscow, 117997, Russia
| | - Christopher Browning
- École Polytechnique Fédérale de Lausanne (EPFL), BSP-415, Lausanne, 1015, Switzerland
| | - Yuriy A Knirel
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky pr, Moscow, 119991, Russia
| | - Petr G Leiman
- École Polytechnique Fédérale de Lausanne (EPFL), BSP-415, Lausanne, 1015, Switzerland
| | - Andrey V Letarov
- Research Center of Biotechnology, Russian Academy of Sciences, Winogradsky Institute of Microbiology, 7b2 pr. 60-letiya Oktyabrya, Moscow, 117312, Russia.,Faculty of Biology, Lomonosov Moscow State University, 1-12 Leninskie Gory, Moscow, 119991, Russia
| |
Collapse
|