1
|
Shen W, Liu C, Hu Y, Lei Y, Wong HS, Wu S, Zhou XM. Leveraging cross-source heterogeneity to improve the performance of bulk gene expression deconvolution. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.07.588458. [PMID: 38645128 PMCID: PMC11030304 DOI: 10.1101/2024.04.07.588458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
A main limitation of bulk transcriptomic technologies is that individual measurements normally contain contributions from multiple cell populations, impeding the identification of cellular heterogeneity within diseased tissues. To extract cellular insights from existing large cohorts of bulk transcriptomic data, we present CSsingle, a novel method designed to accurately deconvolve bulk data into a predefined set of cell types using a scRNA-seq reference. Through comprehensive benchmark evaluations and analyses using diverse real data sets, we reveal the systematic bias inherent in existing methods, stemming from differences in cell size or library size. Our extensive experiments demonstrate that CSsingle exhibits superior accuracy and robustness compared to leading methods, particularly when dealing with bulk mixtures originating from cell types of markedly different cell sizes, as well as when handling bulk and single-cell reference data obtained from diverse sources. Our work provides an efficient and robust methodology for the integrated analysis of bulk and scRNA-seq data, facilitating various biological and clinical studies.
Collapse
Affiliation(s)
- Wenjun Shen
- Department of Bioinformatics, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Cheng Liu
- Department of Computer Science, Shantou University, Shantou, Guangdong 515041, China
| | - Yunfei Hu
- Department of Computer Science, Vanderbilt University, Nashville, TN 37235, USA
| | - Yuanfang Lei
- Department of Bioinformatics, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Hau-San Wong
- Department of Computer Sciences, City University of Hong Kong, Kowloon, Hong Kong
| | - Si Wu
- Department of Computer Science, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Xin Maizie Zhou
- Department of Computer Science, Vanderbilt University, Nashville, TN 37235, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| |
Collapse
|
2
|
Chen L, Ballout F, Lu H, Hu T, Zhu S, Chen Z, Peng D. Differential Expression of NEK Kinase Family Members in Esophageal Adenocarcinoma and Barrett's Esophagus. Cancers (Basel) 2023; 15:4821. [PMID: 37835513 PMCID: PMC10571661 DOI: 10.3390/cancers15194821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/20/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
The incidence of esophageal adenocarcinoma (EAC) has risen rapidly during the past four decades, making it the most common type of esophageal cancer in the USA and Western countries. The NEK (Never in mitosis A (NIMA) related kinase) gene family is a group of serine/threonine kinases with 11 members. Aberrant expression of NEKs has been recently found in a variety of human cancers and plays important roles in tumorigenesis, progression, and drug-resistance. However, the expression of the NEKs in EAC and its precancerous condition (Barrett's esophagus, BE) has not been investigated. In the present study, we first analyzed the TCGA and 9 GEO databases (a total of 10 databases in which 8 contain EAC and 6 contain BE) using bioinformatic approaches for NEKs expression in EAC and BE. We identified that several NEK members, such as NEK2 (7/8), NEK3 (6/8), and NEK6 (6/8), were significantly upregulated in EAC as compared to normal esophagus samples. Alternatively, NEK1 was downregulated in EAC as compared to the normal esophagus. On the contrary, genomic alterations of these NEKs are not frequent in EAC. We validated the above findings using qRT-PCR and the protein expression of NEKs in EAC cell lines using Western blotting and in primary EAC tissues using immunohistochemistry and immunofluorescence. Our data suggest that frequent upregulation of NEK2, NEK3, and NEK7 may be important in EAC.
Collapse
Affiliation(s)
- Lei Chen
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (L.C.); (F.B.); (H.L.); (T.H.); (S.Z.); (Z.C.)
| | - Farah Ballout
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (L.C.); (F.B.); (H.L.); (T.H.); (S.Z.); (Z.C.)
| | - Heng Lu
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (L.C.); (F.B.); (H.L.); (T.H.); (S.Z.); (Z.C.)
- Sylvester Comprehensive Cancer Center, Miami, FL 33136, USA
| | - Tianling Hu
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (L.C.); (F.B.); (H.L.); (T.H.); (S.Z.); (Z.C.)
| | - Shoumin Zhu
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (L.C.); (F.B.); (H.L.); (T.H.); (S.Z.); (Z.C.)
| | - Zheng Chen
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (L.C.); (F.B.); (H.L.); (T.H.); (S.Z.); (Z.C.)
- Sylvester Comprehensive Cancer Center, Miami, FL 33136, USA
| | - Dunfa Peng
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (L.C.); (F.B.); (H.L.); (T.H.); (S.Z.); (Z.C.)
- Sylvester Comprehensive Cancer Center, Miami, FL 33136, USA
| |
Collapse
|
3
|
Dadgar N, Edlukudige Keshava V, Raj MS, Wagner PL. The Influence of the Microbiome on Immunotherapy for Gastroesophageal Cancer. Cancers (Basel) 2023; 15:4426. [PMID: 37760397 PMCID: PMC10526145 DOI: 10.3390/cancers15184426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/27/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
Immunotherapy has shown promise as a treatment option for gastroesophageal cancer, but its effectiveness is limited in many patients due to the immunosuppressive tumor microenvironment (TME) commonly found in gastrointestinal tumors. This paper explores the impact of the microbiome on the TME and immunotherapy outcomes in gastroesophageal cancer. The microbiome, comprising microorganisms within the gastrointestinal tract, as well as within malignant tissue, plays a crucial role in modulating immune responses and tumor development. Dysbiosis and reduced microbial diversity are associated with poor response rates and treatment resistance, while specific microbial profiles correlate with improved outcomes. Understanding the complex interactions between the microbiome, tumor biology, and immunotherapy is crucial for developing targeted interventions. Microbiome-based biomarkers may enable personalized treatment approaches and prediction of patient response. Interventions targeting the microbiome, such as microbiota-based therapeutics and dietary modifications, offer the potential for reshaping the gut microbiota and creating a favorable TME that enhances immunotherapy efficacy. Further research is needed to reveal the underlying mechanisms, and large-scale clinical trials will be required to validate the efficacy of microbiome-targeted interventions.
Collapse
Affiliation(s)
- Neda Dadgar
- Cole Eye Institute, Cleveland Clinic, Cleveland, OH 44106, USA;
| | | | - Moses S. Raj
- Allegheny Health Network Cancer Institute, Pittsburgh, PA 15224, USA; (V.E.K.); (M.S.R.)
| | - Patrick L. Wagner
- Allegheny Health Network Cancer Institute, Pittsburgh, PA 15224, USA; (V.E.K.); (M.S.R.)
| |
Collapse
|
4
|
Yi Q, Zhao Y, Xia R, Wei Q, Chao F, Zhang R, Bian P, Lv L. TRIM29 hypermethylation drives esophageal cancer progression via suppression of ZNF750. Cell Death Discov 2023; 9:191. [PMID: 37365152 DOI: 10.1038/s41420-023-01491-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 06/06/2023] [Accepted: 06/15/2023] [Indexed: 06/28/2023] Open
Abstract
Esophageal cancer (ESCA) is the seventh most frequent and deadly neoplasm. Due to the lack of early diagnosis and high invasion/metastasis, the prognosis of ESCA remains very poor. Herein, we identify skin-related signatures as the most deficient signatures in invasive ESCA, which are regulated by the transcription factor ZNF750. Of note, we find that TRIM29 level strongly correlated with the expression of many genes in the skin-related signatures, including ZNF750. TRIM29 is significantly down-regulated due to hypermethylation of its promoter in both ESCA and precancerous lesions compared to normal tissues. Low TRIM29 expression and high methylation levels of its promoter are associated with malignant progression and poor clinical outcomes in ESCA patients. Functionally, TRIM29 overexpression markedly hinders proliferation, migration, invasion, and epithelial-mesenchymal transition of esophageal cancer cells, whereas opposing results are observed when TRIM29 is silenced in vitro. In addition, TRIM29 inhibits metastasis in vivo. Mechanistically, TRIM29 downregulation suppresses the expression of the tumor suppressor ZNF750 by activating the STAT3 signaling pathway. Overall, our study demonstrates that TRIM29 expression and its promoter methylation status could be potential early diagnostic and prognostic markers. It highlights the role of the TRIM29-ZNF750 signaling axis in modulating tumorigenesis and metastasis of esophageal cancer.
Collapse
Affiliation(s)
- Qiyi Yi
- School of Basic Medical Sciences, Anhui Medical University, 230032, Hefei, Anhui, China
| | - Yujia Zhao
- School of Basic Medical Sciences, Anhui Medical University, 230032, Hefei, Anhui, China
- Department of education training, The First People's Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Ran Xia
- Department of Cancer Epigenetics Program, Anhui Cancer Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, 230031, Hefei, Anhui, China
| | - Qinqin Wei
- School of Basic Medical Sciences, Anhui Medical University, 230032, Hefei, Anhui, China
| | - Fengmei Chao
- Department of Cancer Epigenetics Program, Anhui Cancer Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, 230031, Hefei, Anhui, China
| | - Rui Zhang
- Department of Oncology, The First Affiliated Hospital of Anhui University of Chinese Medicine, 230031, Hefei, Anhui, China
| | - Po Bian
- School of Basic Medical Sciences, Anhui Medical University, 230032, Hefei, Anhui, China.
| | - Lei Lv
- Department of Cancer Epigenetics Program, Anhui Cancer Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, 230031, Hefei, Anhui, China.
| |
Collapse
|
5
|
Pilot Study Showing Feasibility of Phosphoproteomic Profiling of Pathway-Level Molecular Alterations in Barrett’s Esophagus. Genes (Basel) 2022; 13:genes13071215. [PMID: 35885999 PMCID: PMC9325186 DOI: 10.3390/genes13071215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/25/2022] [Accepted: 07/05/2022] [Indexed: 11/17/2022] Open
Abstract
(1) Background: Barrett’s esophagus is a major risk factor for esophageal adenocarcinoma. In this pilot study, we employed precision mass spectrometry to map global (phospho)protein perturbations in Barrett’s esophagus lesions and adjacent normal tissue to glean insights into disease progression. (2) Methods: Biopsies were collected from two small but independent cohorts. Comparative analyses were performed between Barrett’s esophagus samples and adjacent matched (normal) tissues from patients with known pathology, while specimens from healthy patients served as additional controls. (3) Results: We identified and quantified 6810 proteins and 6395 phosphosites in the discovery cohort, revealing hundreds of statistically significant differences in protein abundances and phosphorylation states. We identified a robust proteomic signature that accurately classified the disease status of samples from the independent patient cohorts. Pathway-level analysis of the phosphoproteomic profiles revealed the dysregulation of specific cellular processes, including DNA repair, in Barrett’s esophagus relative to paired controls. Comparative analysis with previously published transcriptomic profiles provided independent evidence in support of these preliminary findings. (4) Conclusions: This pilot study establishes the feasibility of using unbiased quantitative phosphoproteomics to identify molecular perturbations associated with disease progression in Barrett’s esophagus to define potentially clinically actionable targets warranting further assessment.
Collapse
|
6
|
Shi L, Guo R, Chen Z, Jiao R, Zhang S, Xiong X. Analysis of immune related gene expression profiles and immune cell components in patients with Barrett esophagus. Sci Rep 2022; 12:9209. [PMID: 35654816 PMCID: PMC9163054 DOI: 10.1038/s41598-022-13200-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 05/23/2022] [Indexed: 12/02/2022] Open
Abstract
Barrett's esophagus (BE) is a well-known precancerous condition of esophageal adenocarcinoma. However, the immune cells and immune related genes involved in BE development and progression are not fully understood. Therefore, our study attempted to investigate the roles of immune cells and immune related genes in BE patients. The raw gene expression data were downloaded from the GEO database. The limma package in R was used to screen differentially expressed genes (DEGs). Then we performed the least absolute shrinkage and selection operator (LASSO) and random forest (RF) analyses to screen key genes. The proportion of infiltrated immune cells was evaluated using the CIBERSORT algorithm between BE and normal esophagus (NE) samples. The spearman index was used to show the correlations of immune genes and immune cells. Receiver operating characteristic (ROC) curves were used to assess the diagnostic value of key genes in BE. A total of 103 differentially expressed immune-related genes were identified between BE samples and normal samples. Then, 7 genes (CD1A, LTF, FABP4, PGC, TCF7L2, INSR,SEMA3C) were obtained after Lasso analysis and RF modeling. CIBERSORT analysis revealed that resting CD4 T memory cells and gamma delta T cells were present at significantly lower levels in BE samples. Moreover, plasma cell and regulatory T cells were present at significantly higher levels in BE samples than in NE samples. INSR had the highest AUC values in ROC analysis. We identified 7 immune related genes and 4 different immune cells in our study, that may play vital roles in the occurrence and development of BE. Our findings improve the understanding of the molecular mechanisms of BE.
Collapse
Affiliation(s)
- Lin Shi
- Department of Gastroenterology, Xuzhou Central Hospital, Xuzhou, Jiangsu, China
| | - Renwei Guo
- Department of Gastroenterology, Xuzhou Central Hospital, Xuzhou, Jiangsu, China
| | - Zhuo Chen
- Department of Gastroenterology, Xuzhou Central Hospital, Xuzhou, Jiangsu, China
| | - Ruonan Jiao
- Department of Gastroenterology, Xuzhou Central Hospital, Xuzhou, Jiangsu, China
| | - Shuangshuang Zhang
- Department of Gastroenterology, Xuzhou Central Hospital, Xuzhou, Jiangsu, China
| | - Xuanxuan Xiong
- Department of Gastroenterology, Xuzhou Central Hospital, Xuzhou, Jiangsu, China.
| |
Collapse
|
7
|
Role of Obesity, Physical Exercise, Adipose Tissue-Skeletal Muscle Crosstalk and Molecular Advances in Barrett's Esophagus and Esophageal Adenocarcinoma. Int J Mol Sci 2022; 23:ijms23073942. [PMID: 35409299 PMCID: PMC8999972 DOI: 10.3390/ijms23073942] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/28/2022] [Accepted: 03/30/2022] [Indexed: 02/07/2023] Open
Abstract
Both obesity and esophageal adenocarcinoma (EAC) rates have increased sharply in the United States and Western Europe in recent years. EAC is a classic example of obesity-related cancer where the risk of EAC increases with increasing body mass index. Pathologically altered visceral fat in obesity appears to play a key role in this process. Visceral obesity may promote EAC by directly affecting gastroesophageal reflux disease and Barrett’s esophagus (BE), as well as a less reflux-dependent effect, including the release of pro-inflammatory adipokines and insulin resistance. Deregulation of adipokine production, such as the shift to an increased amount of leptin relative to “protective” adiponectin, has been implicated in the pathogenesis of BE and EAC. This review discusses not only the epidemiology and pathophysiology of obesity in BE and EAC, but also molecular alterations at the level of mRNA and proteins associated with these esophageal pathologies and the potential role of adipokines and myokines in these disorders. Particular attention is given to discussing the possible crosstalk of adipokines and myokines during exercise. It is concluded that lifestyle interventions to increase regular physical activity could be helpful as a promising strategy for preventing the development of BE and EAC.
Collapse
|
8
|
Masqué-Soler N, Gehrung M, Kosmidou C, Li X, Diwan I, Rafferty C, Atabakhsh E, Markowetz F, Fitzgerald RC. Computational pathology aids derivation of microRNA biomarker signals from Cytosponge samples. EBioMedicine 2022; 76:103814. [PMID: 35051729 PMCID: PMC8883000 DOI: 10.1016/j.ebiom.2022.103814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 12/22/2021] [Accepted: 01/04/2022] [Indexed: 10/27/2022] Open
Abstract
BACKGROUND Non-endoscopic cell collection devices combined with biomarkers can detect Barrett's intestinal metaplasia and early oesophageal cancer. However, assays performed on multi-cellular samples lose information about the cell source of the biomarker signal. This cross-sectional study examines whether a bespoke artificial intelligence-based computational pathology tool could ascertain the cellular origin of microRNA biomarkers, to inform interpretation of the disease pathology, and confirm biomarker validity. METHODS The microRNA expression profiles of 110 targets were assessed with a custom multiplexed panel in a cohort of 117 individuals with reflux that took a Cytosponge test. A computational pathology tool quantified the amount of columnar epithelium present in pathology slides, and results were correlated with microRNA signals. An independent cohort of 139 Cytosponges, each from an individual patient, was used to validate the findings via qPCR. FINDINGS Seventeen microRNAs are upregulated in BE compared to healthy squamous epithelia, of which 13 remain upregulated in dysplasia. A pathway enrichment analysis confirmed association to neoplastic and cell cycle regulation processes. Ten microRNAs positively correlated with columnar epithelium content, with miRNA-192-5p and -194-5p accurately detecting the presence of gastric cells (AUC 0.97 and 0.95). In contrast, miR-196a-5p is confirmed as a specific BE marker. INTERPRETATION Computational pathology tools aid accurate cellular attribution of molecular signals. This innovative design with multiplex microRNA coupled with artificial intelligence has led to discovery of a quality control metric suitable for large scale application of the Cytosponge. Similar approaches could aid optimal interpretation of biomarkers for clinical use. FUNDING Funded by the NIHR Cambridge Biomedical Research Centre, the Medical Research Council, the Rosetrees and Stoneygate Trusts, and CRUK core grants.
Collapse
Affiliation(s)
- Neus Masqué-Soler
- MRC Cancer Unit, Box 197, Cambridge Biomedical Campus, Cambridge, CB2 0XZ, UK.
| | - Marcel Gehrung
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK
| | - Cassandra Kosmidou
- MRC Cancer Unit, Box 197, Cambridge Biomedical Campus, Cambridge, CB2 0XZ, UK
| | - Xiaodun Li
- MRC Cancer Unit, Box 197, Cambridge Biomedical Campus, Cambridge, CB2 0XZ, UK
| | - Izzuddin Diwan
- Abcam Inc., 1 Kendall Sq B2304, Cambridge, MA, 02139, United States
| | - Conor Rafferty
- Abcam Inc., 1 Kendall Sq B2304, Cambridge, MA, 02139, United States
| | - Elnaz Atabakhsh
- Abcam Inc., 1 Kendall Sq B2304, Cambridge, MA, 02139, United States
| | - Florian Markowetz
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK
| | | |
Collapse
|
9
|
Cutliffe AL, McKenna SL, Chandrashekar DS, Ng A, Devonshire G, Fitzgerald RC, O’Donovan TR, Mackrill JJ. Alterations in the Ca2+ toolkit in oesophageal adenocarcinoma. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2021; 2:543-575. [PMID: 36046118 PMCID: PMC9400700 DOI: 10.37349/etat.2021.00063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 10/08/2021] [Indexed: 11/24/2022] Open
Abstract
Aim: To investigate alterations in transcription of genes, encoding Ca2+ toolkit proteins, in oesophageal adenocarcinoma (OAC) and to assess associations between gene expression, tumor grade, nodal-metastatic stage, and patient survival. Methods: The expression of 275 transcripts, encoding components of the Ca2+ toolkit, was analyzed in two OAC datasets: the Cancer Genome Atlas [via the University of Alabama Cancer (UALCAN) portal] and the oesophageal-cancer, clinical, and molecular stratification [Oesophageal Cancer Clinical and Molecular Stratification (OCCAMS)] dataset. Effects of differential expression of these genes on patient survival were determined using Kaplan-Meier log-rank tests. OAC grade- and metastatic-stage status was investigated for a subset of genes. Adjustment for the multiplicity of testing was made throughout. Results: Of the 275 Ca2+-toolkit genes analyzed, 75 displayed consistent changes in expression between OAC and normal tissue in both datasets. The channel-encoding genes, N-methyl-D-aspartate receptor 2D (GRIN2D), transient receptor potential (TRP) ion channel classical or canonical 4 (TRPC4), and TRP ion channel melastatin 2 (TRPM2) demonstrated the greatest increase in expression in OAC in both datasets. Nine genes were consistently upregulated in both datasets and were also associated with improved survival outcomes. The 6 top-ranking genes for the weighted significance of altered expression and survival outcomes were selected for further analysis: voltage-gated Ca2+ channel subunit α 1D (CACNA1D), voltage-gated Ca2+ channel auxiliary subunit α2 δ4 (CACNA2D4), junctophilin 1 (JPH1), acid-sensing ion channel 4 (ACCN4), TRPM5, and secretory pathway Ca2+ ATPase 2 (ATP2C2). CACNA1D, JPH1, and ATP2C2 were also upregulated in advanced OAC tumor grades and nodal-metastatic stages in both datasets. Conclusions: This study has unveiled alterations of the Ca2+ toolkit in OAC, compared to normal tissue. Such Ca2+ signalling findings are consistent with those from studies on other cancers. Genes that were consistently upregulated in both datasets might represent useful markers for patient diagnosis. Genes that were consistently upregulated, and which were associated with improved survival, might be useful markers for patient outcome. These survival-associated genes may also represent targets for the development of novel chemotherapeutic agents.
Collapse
Affiliation(s)
- Alana L. Cutliffe
- Department of Physiology, University College Cork, BioSciences Institute, T12 YT20 Cork, Ireland
| | - Sharon L. McKenna
- Cancer Research, UCC, Western Gateway Building, University College Cork, T12 XF62 Cork, Ireland
| | - Darshan S. Chandrashekar
- Department of Pathology, Molecular & Cellular, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Alvin Ng
- Cancer Research UK Cambridge Institute, University of Cambridge Li Ka Shing Centre, Robinson Way, CB2 0RE Cambridge, UK
| | - Ginny Devonshire
- Cancer Research UK Cambridge Institute, University of Cambridge Li Ka Shing Centre, Robinson Way, CB2 0RE Cambridge, UK
| | - Rebecca C. Fitzgerald
- Cancer Research UK Cambridge Institute, University of Cambridge Li Ka Shing Centre, Robinson Way, CB2 0RE Cambridge, UK
| | - Tracey R. O’Donovan
- Cancer Research, UCC, Western Gateway Building, University College Cork, T12 XF62 Cork, Ireland
| | - John J. Mackrill
- Department of Physiology, University College Cork, BioSciences Institute, T12 YT20 Cork, Ireland
| |
Collapse
|
10
|
DeLaForest A, Kohlnhofer BM, Franklin OD, Stavniichuk R, Thompson CA, Pulakanti K, Rao S, Battle MA. GATA4 Controls Epithelial Morphogenesis in the Developing Stomach to Promote Establishment of Glandular Columnar Epithelium. Cell Mol Gastroenterol Hepatol 2021; 12:1391-1413. [PMID: 34111600 PMCID: PMC8479485 DOI: 10.1016/j.jcmgh.2021.05.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 05/12/2021] [Accepted: 05/19/2021] [Indexed: 02/04/2023]
Abstract
BACKGROUND & AIMS The transcription factor GATA4 is broadly expressed in nascent foregut endoderm. As development progresses, GATA4 is lost in the domain giving rise to the stratified squamous epithelium of the esophagus and forestomach (FS), while it is maintained in the domain giving rise to the simple columnar epithelium of the hindstomach (HS). Differential GATA4 expression within these domains coincides with the onset of distinct tissue morphogenetic events, suggesting a role for GATA4 in diversifying foregut endoderm into discrete esophageal/FS and HS epithelial tissues. The goal of this study was to determine how GATA4 regulates differential morphogenesis of the mouse gastric epithelium. METHODS We used a Gata4 conditional knockout mouse line to eliminate GATA4 in the developing HS and a Gata4 conditional knock-in mouse line to express GATA4 in the developing FS. RESULTS We found that GATA4-deficient HS epithelium adopted a FS-like fate, and conversely, that GATA4-expressing FS epithelium adopted a HS-like fate. Underlying structural changes in these epithelia were broad changes in gene expression networks attributable to GATA4 directly activating or repressing expression of HS or FS defining transcripts. Our study implicates GATA4 as having a primary role in suppressing an esophageal/FS transcription factor network during HS development to promote columnar epithelium. Moreover, GATA4-dependent phenotypes in developmental mutants reflected changes in gene expression associated with Barrett's esophagus. CONCLUSIONS This study demonstrates that GATA4 is necessary and sufficient to activate the development of simple columnar epithelium, rather than stratified squamous epithelium, in the embryonic stomach. Moreover, similarities between mutants and Barrett's esophagus suggest that developmental biology can provide insight into human disease mechanisms.
Collapse
Affiliation(s)
- Ann DeLaForest
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Bridget M Kohlnhofer
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Olivia D Franklin
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Roman Stavniichuk
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Cayla A Thompson
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Kirthi Pulakanti
- Blood Research Institute, Versiti Wisconsin, Milwaukee, Wisconsin
| | - Sridhar Rao
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin; Blood Research Institute, Versiti Wisconsin, Milwaukee, Wisconsin; Division of Hematology/Oncology/Blood and Marrow Transplantation, Department of Pediatrics, Medical College of Wisconsin and Children's Wisconsin, Milwaukee, Wisconsin
| | - Michele A Battle
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin.
| |
Collapse
|
11
|
Vercauteren Drubbel A, Pirard S, Kin S, Dassy B, Lefort A, Libert F, Nomura S, Beck B. Reactivation of the Hedgehog pathway in esophageal progenitors turns on an embryonic-like program to initiate columnar metaplasia. Cell Stem Cell 2021; 28:1411-1427.e7. [PMID: 33882290 DOI: 10.1016/j.stem.2021.03.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 12/18/2020] [Accepted: 03/24/2021] [Indexed: 01/17/2023]
Abstract
Columnar metaplasia of the esophagus is the main risk factor for esophageal adenocarcinoma. There is a lack of evidence to demonstrate that esophageal progenitors can be the source of columnar metaplasia. In this study, using transgenic mouse models, lineage tracing, single-cell RNA sequencing, and transcriptomic and epigenetic profiling, we found that the activation of the Hedgehog pathway in esophageal cells modifies their differentiation status in vivo. This process involves an initial step of dedifferentiation into embryonic-like esophageal progenitors. Moreover, a subset of these cells undergoes full squamous-to-columnar conversion and expresses selected intestinal markers. These modifications of cell fate are associated with remodeling of the chromatin and the appearance of Sox9. Using a conditional knockout mouse, we show that Sox9 is required for columnar conversion but not for the step of dedifferentiation. These results provide insight into the mechanisms by which esophageal cells might initiate columnar metaplasia.
Collapse
Affiliation(s)
| | - Sheleya Pirard
- IRIBHM, ULB/Faculty of Medicine, 808 route de Lennik, 1070 Brussels, Belgium
| | - Simon Kin
- IRIBHM, ULB/Faculty of Medicine, 808 route de Lennik, 1070 Brussels, Belgium
| | - Benjamin Dassy
- IRIBHM, ULB/Faculty of Medicine, 808 route de Lennik, 1070 Brussels, Belgium
| | - Anne Lefort
- IRIBHM, ULB/Faculty of Medicine, 808 route de Lennik, 1070 Brussels, Belgium
| | - Frédérick Libert
- IRIBHM, ULB/Faculty of Medicine, 808 route de Lennik, 1070 Brussels, Belgium
| | - Sachiyo Nomura
- Department of Gastrointestinal Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Benjamin Beck
- IRIBHM, ULB/Faculty of Medicine, 808 route de Lennik, 1070 Brussels, Belgium; WELBIO/FNRS Principal Investigator at IRIBHM, ULB/Faculty of Medicine, 808 route de Lennik, 1070 Brussels, Belgium.
| |
Collapse
|
12
|
Pediatric Patient With Concurrent Eosinophilic Esophagitis, Erosive Reflux Esophagitis, and Barrett's Esophagus. ACG Case Rep J 2020; 7:e00399. [PMID: 33062776 PMCID: PMC7535652 DOI: 10.14309/crj.0000000000000399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 04/02/2020] [Indexed: 12/13/2022] Open
Abstract
Eosinophilic esophagitis and Barrett's esophagus are believed to be separate disease processes, with erosive esophagitis leading to Barrett's esophagus. We report a rare case of concurrent diagnoses in a pediatric patient and examine the relevant genetic profiles in the esophagus.
Collapse
|
13
|
Owen RP, White MJ, Severson DT, Braden B, Bailey A, Goldin R, Wang LM, Ruiz-Puig C, Maynard ND, Green A, Piazza P, Buck D, Middleton MR, Ponting CP, Schuster-Böckler B, Lu X. Single cell RNA-seq reveals profound transcriptional similarity between Barrett's oesophagus and oesophageal submucosal glands. Nat Commun 2018; 9:4261. [PMID: 30323168 PMCID: PMC6189174 DOI: 10.1038/s41467-018-06796-9] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 09/19/2018] [Indexed: 02/07/2023] Open
Abstract
Barrett's oesophagus is a precursor of oesophageal adenocarcinoma. In this common condition, squamous epithelium in the oesophagus is replaced by columnar epithelium in response to acid reflux. Barrett's oesophagus is highly heterogeneous and its relationships to normal tissues are unclear. Here we investigate the cellular complexity of Barrett's oesophagus and the upper gastrointestinal tract using RNA-sequencing of single cells from multiple biopsies from six patients with Barrett's oesophagus and two patients without oesophageal pathology. We find that cell populations in Barrett's oesophagus, marked by LEFTY1 and OLFM4, exhibit a profound transcriptional overlap with oesophageal submucosal gland cells, but not with gastric or duodenal cells. Additionally, SPINK4 and ITLN1 mark cells that precede morphologically identifiable goblet cells in colon and Barrett's oesophagus, potentially aiding the identification of metaplasia. Our findings reveal striking transcriptional relationships between normal tissue populations and cells in a premalignant condition, with implications for clinical practice.
Collapse
Affiliation(s)
- Richard Peter Owen
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7DQ, UK
| | - Michael Joseph White
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7DQ, UK
| | - David Tyler Severson
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7DQ, UK
| | - Barbara Braden
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 9DU, UK
| | - Adam Bailey
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 9DU, UK
| | - Robert Goldin
- Centre for Pathology, St Mary's Hospital, Imperial College, London, W2 1NY, UK
| | - Lai Mun Wang
- Department of Pathology, Oxford University Hospitals NHS Foundation Trust, Oxford, OX3 9DU, UK
| | - Carlos Ruiz-Puig
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7DQ, UK
| | | | - Angie Green
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| | - Paolo Piazza
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
- Department of Medicine, Faculty of Medicine, Imperial College London, London, W12 0NN, UK
| | - David Buck
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| | - Mark Ross Middleton
- Department of Oncology, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Chris Paul Ponting
- MRC Human Genetics Unit, MRC IGMM, University of Edinburgh, Crewe Road, Edinburgh, EH4 2XU, UK
| | - Benjamin Schuster-Böckler
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7DQ, UK.
| | - Xin Lu
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7DQ, UK.
| |
Collapse
|
14
|
Li X, Kleeman S, Coburn SB, Fumagalli C, Perner J, Jammula S, Pfeiffer RM, Orzolek L, Hao H, Taylor PR, Miremadi A, Galeano-Dalmau N, Lao-Sirieix P, Tennyson M, MacRae S, Cook MB, Fitzgerald RC. Selection and Application of Tissue microRNAs for Nonendoscopic Diagnosis of Barrett's Esophagus. Gastroenterology 2018; 155:771-783.e3. [PMID: 29906417 PMCID: PMC6120784 DOI: 10.1053/j.gastro.2018.05.050] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 05/27/2018] [Accepted: 05/31/2018] [Indexed: 12/22/2022]
Abstract
BACKGROUND & AIMS MicroRNA (miRNA) is highly stable in biospecimens and provides tissue-specific profiles, making it a useful biomarker of carcinogenesis. We aimed to discover a set of miRNAs that could accurately discriminate Barrett's esophagus (BE) from normal esophageal tissue and to test its diagnostic accuracy when applied to samples collected by a noninvasive esophageal cell sampling device. METHODS We analyzed miRNA expression profiles of 2 independent sets of esophageal biopsy tissues collected during endoscopy from 38 patients with BE and 26 patients with normal esophagus (controls) using Agilent microarray and Nanostring nCounter assays. Consistently up-regulated miRNAs were quantified by real-time polymerase chain reaction in esophageal tissues collected by Cytosponge from patients with BE vs without BE. miRNAs were expressed from plasmids and antisense oligonucleotides were expressed in normal esophageal squamous cells; effects on proliferation and gene expression patterns were analyzed. RESULTS We identified 15 miRNAs that were significantly up-regulated in BE vs control tissues. Of these, 11 (MIR215, MIR194, MIR 192, MIR196a, MIR199b, MIR10a, MIR145, MIR181a, MIR30a, MIR7, and MIR199a) were validated in Cytosponge samples. The miRNAs with the greatest increases in BE tissues (7.9-fold increase in expression or more, P < .0001: MIR196a, MIR192, MIR194, and MIR215) each identified BE vs control tissues with area under the curve (AUC) values of 0.82 or more. We developed an optimized multivariable logistic regression model, based on expression levels of 6 miRNAs (MIR7, MIR30a, MIR181a, MIR192, MIR196a, and MIR199a), that identified patients with BE with an AUC value of 0.89, 86.2% sensitivity, and 91.6% specificity. Expression level of MIR192, MIR196a, MIR199a, combined that of trefoil factor 3, identified patients with BE with an AUC of 0.93, 93.1% sensitivity, and 93.7% specificity. Hypomethylation was observed in the promoter region of the highly up-regulated cluster MIR192-MIR194. Overexpression of these miRNAs in normal esophageal squamous cells increased their proliferation, via GRHL3 and PTEN signaling. CONCLUSIONS In analyses of miRNA expression patterns of BE vs non-BE tissues, we identified a profile that can identify Cytosponge samples from patients with BE with an AUC of 0.93. Expression of MIR194 is increased in BE samples via epigenetic mechanisms that might be involved in BE pathogenesis.
Collapse
Affiliation(s)
- Xiaodun Li
- MRC Cancer Unit, Hutchison-MRC Research Centre, University of Cambridge, Cambridge, UK
| | - Sam Kleeman
- MRC Cancer Unit, Hutchison-MRC Research Centre, University of Cambridge, Cambridge, UK
| | - Sally B. Coburn
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Rockville, Maryland
| | - Carlo Fumagalli
- MRC Cancer Unit, Hutchison-MRC Research Centre, University of Cambridge, Cambridge, UK
| | - Juliane Perner
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Sriganesh Jammula
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Ruth M. Pfeiffer
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Rockville, Maryland
| | - Linda Orzolek
- Johns Hopkins Medical Institutions Deep Sequencing and Microarray Core, Baltimore, Maryland
| | - Haiping Hao
- Johns Hopkins Medical Institutions Deep Sequencing and Microarray Core, Baltimore, Maryland
| | - Philip R. Taylor
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Rockville, Maryland
| | | | - Núria Galeano-Dalmau
- MRC Cancer Unit, Hutchison-MRC Research Centre, University of Cambridge, Cambridge, UK
| | - Pierre Lao-Sirieix
- MRC Cancer Unit, Hutchison-MRC Research Centre, University of Cambridge, Cambridge, UK
| | - Maria Tennyson
- MRC Cancer Unit, Hutchison-MRC Research Centre, University of Cambridge, Cambridge, UK
| | - Shona MacRae
- MRC Cancer Unit, Hutchison-MRC Research Centre, University of Cambridge, Cambridge, UK
| | - Michael B. Cook
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Rockville, Maryland,Reprint requests Address requests for reprints to: Michael B. Cook, PhD, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD
| | - Rebecca C. Fitzgerald
- MRC Cancer Unit, Hutchison-MRC Research Centre, University of Cambridge, Cambridge, UK,Rebecca C. Fitzgerald, MD, MRC Cancer Unit, Hutchison-MRC Research Centre, University of Cambridge, Box 197, Cambridge Biomedical Campus, Cambridge, UK CB2 0XZ.
| |
Collapse
|
15
|
Golightly NP, Bell A, Bischoff AI, Hollingsworth PD, Piccolo SR. Curated compendium of human transcriptional biomarker data. Sci Data 2018; 5:180066. [PMID: 29664470 PMCID: PMC5903354 DOI: 10.1038/sdata.2018.66] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 02/22/2018] [Indexed: 12/25/2022] Open
Abstract
One important use of genome-wide transcriptional profiles is to identify relationships between transcription levels and patient outcomes. These translational insights can guide the development of biomarkers for clinical application. Data from thousands of translational-biomarker studies have been deposited in public repositories, enabling reuse. However, data-reuse efforts require considerable time and expertise because transcriptional data are generated using heterogeneous profiling technologies, preprocessed using diverse normalization procedures, and annotated in non-standard ways. To address this problem, we curated 45 publicly available, translational-biomarker datasets from a variety of human diseases. To increase the data's utility, we reprocessed the raw expression data using a uniform computational pipeline, addressed quality-control problems, mapped the clinical annotations to a controlled vocabulary, and prepared consistently structured, analysis-ready data files. These data, along with scripts we used to prepare the data, are available in a public repository. We believe these data will be particularly useful to researchers seeking to perform benchmarking studies—for example, to compare and optimize machine-learning algorithms' ability to predict biomedical outcomes.
Collapse
Affiliation(s)
| | - Avery Bell
- Department of Biology, Brigham Young University, Provo, Utah 84602, USA
| | - Anna I Bischoff
- Department of Biology, Brigham Young University, Provo, Utah 84602, USA
| | - Parker D Hollingsworth
- Department of Biology, Brigham Young University, Provo, Utah 84602, USA.,Northeast Ohio Medical University, Rootstown, Ohio 44272, USA
| | - Stephen R Piccolo
- Department of Biology, Brigham Young University, Provo, Utah 84602, USA.,Department of Biomedical Informatics, University of Utah, Salt Lake City, Utah 84602, USA
| |
Collapse
|
16
|
Notch Signaling Pathway Is Inhibited in the Development of Barrett's Esophagus: An In Vivo and In Vitro Study. Can J Gastroenterol Hepatol 2018; 2018:4149317. [PMID: 29785394 PMCID: PMC5892280 DOI: 10.1155/2018/4149317] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 01/28/2018] [Accepted: 02/19/2018] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVE To explore the role of Notch signaling in the development of Barrett's esophagus. METHODS Patients with esophagectomy and gastric interposition were recruited as a human model of gastroesophageal reflux disease. The expressions of Notch signaling genes in normal esophagus from surgical specimen and columnar metaplasia in the esophageal remnant after esophagectomy were evaluated by real time quantitative Polymerase Chain Reaction (RT-qPCR) and immunohistochemistry (IHC). For in vitro experiments, Het-1A cells were treated with hydrochloric acid, deoxycholic acid, mixture of hydrochloric acid and deoxycholic acid, or Notch1-siRNA, and expressions of Notch1, Hes1, MUC2, and K13 were evaluated via RT-qPCR and western blot. RESULTS Samples were obtained from 36 patients with columnar metaplasia in the esophageal remnant. Both IHC and RT-qPCR indicated that Notch1 and Hes1 expressions were significantly higher in normal esophagus than that in metaplasia. Hydrochloric acid and deoxycholic acid suppressed Notch1, Hes1, and K13 expressions, in concert with increasing MUC2 expressions. Notch inhibition by Notch1-siRNA contributed to the downregulation of Notch1, Hes1, and K13 expressions, whereas MUC2 expression was enhanced. CONCLUSIONS Both hydrochloric acid and deoxycholic acid could suppress Notch signaling pathway in esophageal epithelial cells, and inhibited Notch signaling has important functions in the development of Barrett's esophagus.
Collapse
|
17
|
Dai Y, Wang Q, Gonzalez Lopez A, Anders M, Malfertheiner P, Vieth M, Kemmner W. Genome-Wide Analysis of Barrett's Adenocarcinoma. A First Step Towards Identifying Patients at Risk and Developing Therapeutic Paths. Transl Oncol 2017; 11:116-124. [PMID: 29223109 PMCID: PMC6002392 DOI: 10.1016/j.tranon.2017.10.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 10/12/2017] [Accepted: 10/23/2017] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND: Barrett's esophagus metaplasia is the key precursor lesion of esophageal adenocarcinoma. The aim of this study was to find a subset of markers that may allow the identification of patients at risk for esophageal adenocarcinoma, and to determine genes differentially expressed in esophageal squamous cell carcinoma. METHODS: Laser capture microdissection technique was applied to procure cells from defined regions. Genome-wide RNA profiling was performed on esophageal adenocarcinoma (n = 21), Barrett's esophagus (n = 20), esophageal squamous carcinoma (n = 9) and healthy esophageal biopsies (n = 18) using the Affymetrix Human Genome U133plus 2.0 array. Microarray results were validated by quantitative real-time polymerase chain reaction in a second and independent cohort and by immunohistochemistry of two putative markers in a third independent cohort. RESULTS: Through unsupervised hierarchical clustering and principal component analysis, samples were separated into four distinct groups that match perfectly with histology. Many genes down-regulated in esophageal cancers belong to the epidermal differentiation complex or the related GO-group “cornified envelope” of terminally differentiated keratinocytes. Similarly, retinol metabolism was strongly down-regulated. Genes showing strong overexpression in esophageal carcinomas belong to the GO groups extracellular region /matrix such as MMP1, CTHRC1, and INHBA. According to an analysis of genes strongly up-regulated in both esophageal adenocarcinoma and Barrett's esophagus, REG4 might be of particular interest as an early marker for esophageal adenocarcinoma. CONCLUSIONS: Our study provides high quality data, which could serve for identification of potential biomarkers of Barrett's esophagus at risk of esophageal adenocarcinoma progression.
Collapse
Affiliation(s)
- Yiyang Dai
- Translational Oncology, Experimental Clinical Research Center (ECRC), Charité Campus Buch, 13125 Berlin, Germany
| | - Qing Wang
- Translational Oncology, Experimental Clinical Research Center (ECRC), Charité Campus Buch, 13125 Berlin, Germany
| | - Adrian Gonzalez Lopez
- Department of Anesthesiology and Operative Intensive Care Medicine, Charité Campus Virchow-Klinikum, 13353 Berlin, Germany
| | - Mario Anders
- Gastroenterologie und Interdisziplinäre Endoskopie, Vivantes Wenckebach-Klinikum, 12099 Berlin, Germany
| | - Peter Malfertheiner
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany
| | - Michael Vieth
- Institute of Pathology, Klinikum Bayreuth, 95445 Bayreuth, Germany
| | - Wolfgang Kemmner
- Translational Oncology, Experimental Clinical Research Center (ECRC), Charité Campus Buch, 13125 Berlin, Germany.
| |
Collapse
|
18
|
Cummings LC, Thota PN, Willis JE, Chen Y, Cooper GS, Furey N, Bednarchik B, Alashkar BM, Dumot J, Faulx AL, Fink SP, Kresak AM, Abusneineh B, Barnholtz-Sloan J, Leahy P, Veigl ML, Chak A, Markowitz SD. A nonrandomized trial of vitamin D supplementation for Barrett's esophagus. PLoS One 2017; 12:e0184928. [PMID: 28922414 PMCID: PMC5602627 DOI: 10.1371/journal.pone.0184928] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 08/30/2017] [Indexed: 02/07/2023] Open
Abstract
Background Vitamin D deficiency may increase esophageal cancer risk. Vitamin D affects genes regulating proliferation, apoptosis, and differentiation and induces the tumor suppressor 15-hydroxyprostaglandin dehydrogenase (PGDH) in other cancers. This nonrandomized interventional study assessed effects of vitamin D supplementation in Barrett’s esophagus (BE). We hypothesized that vitamin D supplementation may have beneficial effects on gene expression including 15-PGDH in BE. Methods BE subjects with low grade or no dysplasia received vitamin D3 (cholecalciferol) 50,000 international units weekly plus a proton pump inhibitor for 12 weeks. Esophageal biopsies from normal plus metaplastic BE epithelium and blood samples were obtained before and after vitamin D supplementation. Serum 25-hydroxyvitamin D was measured to characterize vitamin D status. Esophageal gene expression was assessed using microarrays. Results 18 study subjects were evaluated. The baseline mean serum 25-hydroxyvitamin D level was 27 ng/mL (normal ≥30 ng/mL). After vitamin D supplementation, 25-hydroxyvitamin D levels rose significantly (median increase of 31.6 ng/mL, p<0.001). There were no significant changes in gene expression from esophageal squamous or Barrett’s epithelium including 15-PGDH after supplementation. Conclusion BE subjects were vitamin D insufficient. Despite improved vitamin D status with supplementation, no significant alterations in gene expression profiles were noted. If vitamin D supplementation benefits BE, a longer duration or higher dose of supplementation may be needed.
Collapse
Affiliation(s)
- Linda C. Cummings
- Department of Medicine, University Hospitals Cleveland Medical Center, Cleveland, Ohio, United States of America
- Department of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
- Case Comprehensive Cancer Center, Cleveland, Ohio, United States of America
- Medical Service, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, Ohio, United States of America
- * E-mail:
| | - Prashanthi N. Thota
- Digestive Diseases Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Joseph E. Willis
- Case Comprehensive Cancer Center, Cleveland, Ohio, United States of America
- Department of Pathology, University Hospitals Cleveland Medical Center, Cleveland, Ohio, United States of America
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Yanwen Chen
- Case Comprehensive Cancer Center, Cleveland, Ohio, United States of America
| | - Gregory S. Cooper
- Department of Medicine, University Hospitals Cleveland Medical Center, Cleveland, Ohio, United States of America
- Department of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
- Case Comprehensive Cancer Center, Cleveland, Ohio, United States of America
| | - Nancy Furey
- Department of Medicine, University Hospitals Cleveland Medical Center, Cleveland, Ohio, United States of America
| | - Beth Bednarchik
- William T. Dahms Clinical Research Unit, University Hospitals Cleveland Medical Center, Cleveland, Ohio, United States of America
| | - Bronia M. Alashkar
- Department of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - John Dumot
- Department of Medicine, University Hospitals Cleveland Medical Center, Cleveland, Ohio, United States of America
- Department of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Ashley L. Faulx
- Department of Medicine, University Hospitals Cleveland Medical Center, Cleveland, Ohio, United States of America
- Department of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
- Medical Service, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, Ohio, United States of America
| | - Stephen P. Fink
- Department of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
- Case Comprehensive Cancer Center, Cleveland, Ohio, United States of America
| | - Adam M. Kresak
- Case Comprehensive Cancer Center, Cleveland, Ohio, United States of America
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Basel Abusneineh
- Medical Service, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, Ohio, United States of America
| | | | - Patrick Leahy
- Case Comprehensive Cancer Center, Cleveland, Ohio, United States of America
- Division of General Medical Sciences, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Martina L. Veigl
- Case Comprehensive Cancer Center, Cleveland, Ohio, United States of America
- Division of General Medical Sciences, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Amitabh Chak
- Department of Medicine, University Hospitals Cleveland Medical Center, Cleveland, Ohio, United States of America
- Department of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
- Case Comprehensive Cancer Center, Cleveland, Ohio, United States of America
| | - Sanford D. Markowitz
- Department of Medicine, University Hospitals Cleveland Medical Center, Cleveland, Ohio, United States of America
- Department of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
- Case Comprehensive Cancer Center, Cleveland, Ohio, United States of America
| |
Collapse
|
19
|
Xu Z, Yan Y, He J, Shan X, Wu W. Pathway Cross-Talk Analysis in Detecting Significant Pathways in Barrett's Esophagus Patients. Med Sci Monit 2017; 23:1165-1172. [PMID: 28263955 PMCID: PMC5352007 DOI: 10.12659/msm.899623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Background The pathological mechanism of Barrett’s esophagus (BE) is still unclear. In the present study, pathway cross-talks were analyzed to identify hub pathways for BE, with the purpose of finding an efficient and cost-effective detection method to discover BE at its early stage and take steps to prevent its progression. Material/Methods We collected and preprocessed gene expression profile data, original pathway data, and protein-protein interaction (PPI) data. Then, we constructed a background pathway cross-talk network (BPCN) based on the original pathway data and PPI data, and a disease pathway cross-talk network (DPCN) based on the differential pathways between the PPI data and the BE and normal control. Finally, a comprehensive analysis was conducted on these 2 networks to identify hub pathway cross-talks for BE, so as to better understand the pathological mechanism of BE from the pathway level. Results A total of 12 411 genes, 300 pathways (6919 genes), and 787 896 PPI interactions (16 730 genes) were separately obtained from their own databases. Then, we constructed a BPCN with 300 nodes (42 293 interactions) and a DPCN with 296 nodes (15 073 interactions). We identified 4 hub pathways: AMP signaling pathway, cGMP-PKG signaling pathway, natural killer cell-mediated cytotoxicity, and osteoclast differentiation. We found that these pathways might play important roles during the occurrence and development of BE. Conclusions We predicted that these pathways (such as AMP signaling pathway and cAMP signaling pathway) could be used as potential biomarkers for early diagnosis and therapy of BE.
Collapse
Affiliation(s)
- Zhengyuan Xu
- Department of Digestive Medicine, Shuyang People's Hospital, Shuyang, Jiangsu, China (mainland)
| | - Yan Yan
- Supply Room, 1st People's Hospital of Jinan, Jinan, Shandong, China (mainland)
| | - Jian He
- Department of Digestive Medicine, 1st People's Hospital of Jinan, Jinan, Shandong, China (mainland)
| | - Xinfang Shan
- Department of Thyroid and Breast Surgery, Binzhou City Center Hospital, Binzhou, Shandong, China (mainland)
| | - Weiguo Wu
- Department of Medicine, Affiliated Wuxi 2nd Hospital, Nanjing Medical University, Wuxi, Jiangsu, China (mainland)
| |
Collapse
|
20
|
Activin a signaling regulates cell invasion and proliferation in esophageal adenocarcinoma. Oncotarget 2016; 6:34228-44. [PMID: 26447543 PMCID: PMC4741448 DOI: 10.18632/oncotarget.5349] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 09/24/2015] [Indexed: 12/29/2022] Open
Abstract
TGFβ signaling has been implicated in the metaplasia from squamous epithelia to Barrett's esophagus and, ultimately, esophageal adenocarcinoma. The role of the family member Activin A in Barrett's tumorigenesis is less well established. As tumorigenesis is influenced by factors in the tumor microenvironment, such as fibroblasts and the extracellular matrix, we aimed to determine if epithelial cell-derived Activin affects initiation and progression differently than Activin signaling stimulation from a mimicked stromal source. Using Barrett's esophagus cells, CPB, and the esophageal adenocarcinoma cell lines OE33 and FLO-1, we showed that Activin reduces colony formation only in CPB cells. Epithelial cell overexpression of Activin increased cell migration and invasion in Boyden chamber assays in CPB and FLO-1 cells, which exhibited mesenchymal features such as the expression of the CD44 standard form, vimentin, and MT1-MMP. When grown in organotypic reconstructs, OE33 cells expressed E-cadherin and Keratin 8. As mesenchymal characteristics have been associated with the acquisition of stem cell-like features, we analyzed the expression and localization of SOX9, showing nuclear localization of SOX9 in esophageal CPB and FLO-1 cells.In conclusion, we show a role for autocrine Activin signaling in the regulation of colony formation, cell migration and invasion in Barrett's tumorigenesis.
Collapse
|
21
|
Sulahian R, Chen J, Arany Z, Jadhav U, Peng S, Rustgi AK, Bass AJ, Srivastava A, Hornick JL, Shivdasani RA. SOX15 governs transcription in human stratified epithelia and a subset of esophageal adenocarcinomas. Cell Mol Gastroenterol Hepatol 2015; 1:598-609.e6. [PMID: 26516633 PMCID: PMC4620585 DOI: 10.1016/j.jcmgh.2015.07.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND & AIMS Intestinal metaplasia (Barrett's esophagus, BE) is the principal risk factor for esophageal adenocarcinoma (EAC). Study of the basis for BE has centered on intestinal factors, but loss of esophageal identity likely also reflects absence of key squamous-cell factors. As few determinants of stratified epithelial cell-specific gene expression are characterized, it is important to identify the necessary transcription factors. METHODS We tested regional expression of mRNAs for all putative DNA-binding proteins in the mouse digestive tract and verified esophagus-specific factors in human tissues and cell lines. Integration of diverse data defined a human squamous esophagus-specific transcriptome. We used chromatin immunoprecipitation (ChIP-seq) to locate transcription factor binding sites, computational approaches to profile transcripts in cancer datasets, and immunohistochemistry to reveal protein expression. RESULTS The transcription factor SOX15 is restricted to esophageal and other murine and human stratified epithelia. SOX15 mRNA levels are attenuated in BE and its depletion in human esophageal cells reduced esophageal transcripts significantly and specifically. SOX15 binding is highly enriched near esophagus-expressed genes, indicating direct transcriptional control. SOX15 and hundreds of genes co-expressed in squamous cells are reactivated in up to 30% of EAC specimens. Genes normally confined to the esophagus or intestine appear in different cells within the same malignant glands. CONCLUSIONS These data identify a novel transcriptional regulator of stratified epithelial cells and a subtype of EAC with bi-lineage gene expression. Broad activation of squamous-cell genes may shed light on whether EACs arise in the native stratified epithelium or in ectopic columnar cells.
Collapse
Affiliation(s)
- Rita Sulahian
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts,Department of Medicine, Harvard Medical School, Harvard University, Boston, Massachusetts
| | - Justina Chen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Zoltan Arany
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Unmesh Jadhav
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts,Department of Medicine, Harvard Medical School, Harvard University, Boston, Massachusetts
| | - Shouyong Peng
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Anil K. Rustgi
- Division of Gastroenterology, Departments of Medicine and Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Adam J. Bass
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts,Department of Medicine, Harvard Medical School, Harvard University, Boston, Massachusetts
| | - Amitabh Srivastava
- Department of Pathology, Brigham & Women’s Hospital, and Department of Pathology, Harvard Medical School, Harvard University, Boston, Massachusetts
| | - Jason L. Hornick
- Department of Pathology, Brigham & Women’s Hospital, and Department of Pathology, Harvard Medical School, Harvard University, Boston, Massachusetts
| | - Ramesh A. Shivdasani
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts,Department of Medicine, Harvard Medical School, Harvard University, Boston, Massachusetts,Correspondence Address correspondence to: Ramesh A. Shivdasani, MD, PhD, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, Massachusetts 02215. fax: (617) 582-7198.Dana-Farber Cancer Institute450 Brookline AvenueBostonMassachusetts 02215
| |
Collapse
|
22
|
Kaakoush NO, Castaño-Rodríguez N, Man SM, Mitchell HM. Is Campylobacter to esophageal adenocarcinoma as Helicobacter is to gastric adenocarcinoma? Trends Microbiol 2015; 23:455-62. [PMID: 25937501 DOI: 10.1016/j.tim.2015.03.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 03/19/2015] [Accepted: 03/26/2015] [Indexed: 02/08/2023]
Abstract
Esophageal adenocarcinoma develops through a cascade of cellular changes that shares similarities to the etiology of Helicobacter pylori-associated intestinal-type gastric adenocarcinoma. While host genetics and immune response have been implicated in the progression to esophageal adenocarcinoma, studies investigating esophageal microbial communities suggest that bacteria may also play an important role in driving the inflammation that leads to disease. Of these, emerging Campylobacter species have been found to be more prevalent and abundant in patients progressing through the esophageal adenocarcinoma cascade compared to controls. Given that these bacteria possess several virulence mechanisms such as toxin production, cellular invasion, and intracellular survival, emerging Campylobacter species should be investigated as etiological agents of the chronic esophageal inflammation that leads to cancer.
Collapse
Affiliation(s)
- Nadeem O Kaakoush
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney 2052, NSW, Australia.
| | - Natalia Castaño-Rodríguez
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney 2052, NSW, Australia
| | - Si Ming Man
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney 2052, NSW, Australia; Department of Immunology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Hazel M Mitchell
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney 2052, NSW, Australia
| |
Collapse
|
23
|
Janmaat VT, Van De Winkel A, Peppelenbosch MP, Spaander MCW, Uitterlinden AG, Pourfarzad F, Tilanus HW, Rygiel AM, Moons LMG, Arp PP, Krishnadath KK, Kuipers EJ, Van Der Laan LJW. Vitamin D Receptor Polymorphisms Are Associated with Reduced Esophageal Vitamin D Receptor Expression and Reduced Esophageal Adenocarcinoma Risk. Mol Med 2015; 21:346-54. [PMID: 25910066 DOI: 10.2119/molmed.2012.00336] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 04/21/2015] [Indexed: 12/22/2022] Open
Abstract
Epidemiological studies indicate that vitamin D exerts a protective effect on the development of various solid cancers. However, concerns have been raised regarding the potential deleterious role of high vitamin D levels in the development of esophageal adenocarcinoma (EAC). This study investigated genetic variation in the vitamin D receptor (VDR) in relation to its expression and risk of Barrett esophagus (BE) and EAC. VDR gene regulation was investigated by immunohistochemistry, reverse transcriptase-polymerase chain reaction (RT-PCR) and gel shift assays. Fifteen haplotype tagging single-nucleotide polymorphisms (SNPs) of the VDR gene were analyzed in 858 patients with reflux esophagitis (RE), BE or EAC and 202 healthy controls. VDR mRNA expression was higher in BE compared with squamous epithelium. VDR protein was located in the nucleus in BE. An rs1989969T/rs2238135G haplotype was identified in the 5' regulatory region of the VDR gene. It was associated with an approximately two-fold reduced risk of RE, BE and EAC. Analysis of a replication cohort was done for BE that confirmed this. The rs1989969T allele causes a GATA-1 transcription factor binding site to appear. The signaling of GATA-1, which is regarded as a negative transcriptional regulator, could explain the findings for rs1989969. The rs2238135G allele was associated with a significantly reduced VDR expression in BE; for the rs1989969T allele, a trend in reduced VDR expression was observed. We identified a VDR haplotype associated with reduced esophageal VDR expression and a reduced incidence of RE, BE and EAC. This VDR haplotype could be useful in identifying individuals who benefit most from vitamin D chemoprevention.
Collapse
Affiliation(s)
- Vincent T Janmaat
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
| | - Anouk Van De Winkel
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
| | - Maikel P Peppelenbosch
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
| | - Manon C W Spaander
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
| | - André G Uitterlinden
- Department of Internal Medicine, Epidemiology and Clinical Chemistry, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
| | - Farzin Pourfarzad
- Department of Cell Biology, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
| | - Hugo W Tilanus
- Department of Surgery, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
| | - Agnieszka M Rygiel
- Center for Experimental Molecular Medicine, Academic Medical Center, Amsterdam, the Netherlands
| | - Leon M G Moons
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
| | - Pascal P Arp
- Department of Internal Medicine, Epidemiology and Clinical Chemistry, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
| | - Kausilia K Krishnadath
- Center for Experimental Molecular Medicine, Academic Medical Center, Amsterdam, the Netherlands
| | - Ernst J Kuipers
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, the Netherlands.,Department of Internal Medicine, Epidemiology and Clinical Chemistry, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
| | - Luc J W Van Der Laan
- Department of Surgery, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
| |
Collapse
|