1
|
Rebman AW, Yang T, Zenilman JM, Soloski MJ, Aucott JN. A sex-based analysis of complete blood count features during acute, untreated Lyme disease. Front Med (Lausanne) 2024; 11:1454858. [PMID: 39529800 PMCID: PMC11551033 DOI: 10.3389/fmed.2024.1454858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 10/04/2024] [Indexed: 11/16/2024] Open
Abstract
Introduction Although lymphopenia has been described in acute Lyme disease (LD), the complete blood count (CBC) has not been comprehensively examined, nor have sex-based analyses been conducted. We analyzed CBC values and identified sex-based trends among patients with early LD by comparing both to controls without a history of LD and to patients' pre-morbid values. Methods We enrolled participants from the Mid-Atlantic US with diagnostic erythema migrans and controls with no history of LD. CBC results were obtained, and patient information was recorded using standardized instruments. We also calculated a neutrophil-to-lymphocyte ratio (NLR). We used linear regression to test that CBC results would differ (a) between antibiotic-naive patients with early LD and controls and (b) by measures of acute disease severity. We also performed stratified analyses to assess sex-based differences. Results In total, 236 antibiotic-naive patients with early LD had significantly lower lymphocytes (β = -0.34, p < 0.001) and significantly higher monocytes (β = 0.09, p = 0.002) and NLRs (β = 0.99, p < 0.001) than 61 controls in adjusted analyses. Lymphocytes, monocytes, and NLRs also changed significantly from pre-morbid to acute LD (p < 0.001 for all). Only the NLR was consistently significantly associated with disease severity. A higher proportion of male patients with early LD had acute lymphopenia than female patients with early LD (31.93% vs. 19.66%, p = 0.03); this difference was not present among controls. Conclusion The presence of lymphopenia and the absence of an elevated total white blood cell count make LD an important diagnostic consideration in patients presenting with undiagnosed infectious syndromes in endemic regions. This may be especially true for male patients.
Collapse
Affiliation(s)
- Alison W. Rebman
- Lyme Disease Research Center, Division of Rheumatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Ting Yang
- Lyme Disease Research Center, Division of Rheumatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Jonathan M. Zenilman
- Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Mark J. Soloski
- Lyme Disease Research Center, Division of Rheumatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - John N. Aucott
- Lyme Disease Research Center, Division of Rheumatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
2
|
Thippani S, Patel NJ, Jathan J, Filush K, Socarras KM, DiLorenzo J, Balasubramanian K, Gupta K, Ortiz Aleman G, Pandya JM, Kavitapu VV, Zeng D, Miller JC, Sapi E. Evidence for the Presence of Borrelia burgdorferi Biofilm in Infected Mouse Heart Tissues. Microorganisms 2024; 12:1766. [PMID: 39338441 PMCID: PMC11434270 DOI: 10.3390/microorganisms12091766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/13/2024] [Accepted: 08/19/2024] [Indexed: 09/30/2024] Open
Abstract
Borrelia burgdorferi, the bacterium responsible for Lyme disease, has been shown to form antimicrobial-tolerant biofilms, which protect it from unfavorable conditions. Bacterial biofilms are known to significantly contribute to severe inflammation, such as carditis, a common manifestation of Lyme disease. However, the role of B. burgdorferi biofilms in the development of Lyme carditis has not been thoroughly investigated due to the absence of an appropriate model system. In this study, we examined heart tissues from mice infected with B. burgdorferi for the presence of biofilms and inflammatory markers using immunohistochemistry (IHC), combined fluorescence in situ hybridization FISH/IHC, 3D microscopy, and atomic force microscopy techniques. Our results reveal that B. burgdorferi spirochetes form aggregates with a known biofilm marker (alginate) in mouse heart tissues. Furthermore, these biofilms induce inflammation, as indicated by elevated levels of murine C-reactive protein near the biofilms. This research provides evidence that B. burgdorferi can form biofilms in mouse heart tissue and trigger inflammatory processes, suggesting that the mouse model is a valuable tool for future studies on B. burgdorferi biofilms.
Collapse
Affiliation(s)
- Sahaja Thippani
- Lyme Disease Research Group, Department of Biology and Environmental Science, University of New Haven, 300 Boston Post Road, West Haven, CT 06516, USA; (S.T.); (N.J.P.); (J.J.); (K.F.); (K.M.S.); (J.D.); (K.B.); (K.G.); (G.O.A.); (J.M.P.); (V.V.K.)
| | - Niraj Jatin Patel
- Lyme Disease Research Group, Department of Biology and Environmental Science, University of New Haven, 300 Boston Post Road, West Haven, CT 06516, USA; (S.T.); (N.J.P.); (J.J.); (K.F.); (K.M.S.); (J.D.); (K.B.); (K.G.); (G.O.A.); (J.M.P.); (V.V.K.)
| | - Jasmine Jathan
- Lyme Disease Research Group, Department of Biology and Environmental Science, University of New Haven, 300 Boston Post Road, West Haven, CT 06516, USA; (S.T.); (N.J.P.); (J.J.); (K.F.); (K.M.S.); (J.D.); (K.B.); (K.G.); (G.O.A.); (J.M.P.); (V.V.K.)
| | - Kate Filush
- Lyme Disease Research Group, Department of Biology and Environmental Science, University of New Haven, 300 Boston Post Road, West Haven, CT 06516, USA; (S.T.); (N.J.P.); (J.J.); (K.F.); (K.M.S.); (J.D.); (K.B.); (K.G.); (G.O.A.); (J.M.P.); (V.V.K.)
| | - Kayla M. Socarras
- Lyme Disease Research Group, Department of Biology and Environmental Science, University of New Haven, 300 Boston Post Road, West Haven, CT 06516, USA; (S.T.); (N.J.P.); (J.J.); (K.F.); (K.M.S.); (J.D.); (K.B.); (K.G.); (G.O.A.); (J.M.P.); (V.V.K.)
| | - Jessica DiLorenzo
- Lyme Disease Research Group, Department of Biology and Environmental Science, University of New Haven, 300 Boston Post Road, West Haven, CT 06516, USA; (S.T.); (N.J.P.); (J.J.); (K.F.); (K.M.S.); (J.D.); (K.B.); (K.G.); (G.O.A.); (J.M.P.); (V.V.K.)
| | - Kunthavai Balasubramanian
- Lyme Disease Research Group, Department of Biology and Environmental Science, University of New Haven, 300 Boston Post Road, West Haven, CT 06516, USA; (S.T.); (N.J.P.); (J.J.); (K.F.); (K.M.S.); (J.D.); (K.B.); (K.G.); (G.O.A.); (J.M.P.); (V.V.K.)
| | - Khusali Gupta
- Lyme Disease Research Group, Department of Biology and Environmental Science, University of New Haven, 300 Boston Post Road, West Haven, CT 06516, USA; (S.T.); (N.J.P.); (J.J.); (K.F.); (K.M.S.); (J.D.); (K.B.); (K.G.); (G.O.A.); (J.M.P.); (V.V.K.)
| | - Geneve Ortiz Aleman
- Lyme Disease Research Group, Department of Biology and Environmental Science, University of New Haven, 300 Boston Post Road, West Haven, CT 06516, USA; (S.T.); (N.J.P.); (J.J.); (K.F.); (K.M.S.); (J.D.); (K.B.); (K.G.); (G.O.A.); (J.M.P.); (V.V.K.)
| | - Jay M. Pandya
- Lyme Disease Research Group, Department of Biology and Environmental Science, University of New Haven, 300 Boston Post Road, West Haven, CT 06516, USA; (S.T.); (N.J.P.); (J.J.); (K.F.); (K.M.S.); (J.D.); (K.B.); (K.G.); (G.O.A.); (J.M.P.); (V.V.K.)
| | - Venkata V. Kavitapu
- Lyme Disease Research Group, Department of Biology and Environmental Science, University of New Haven, 300 Boston Post Road, West Haven, CT 06516, USA; (S.T.); (N.J.P.); (J.J.); (K.F.); (K.M.S.); (J.D.); (K.B.); (K.G.); (G.O.A.); (J.M.P.); (V.V.K.)
| | - Daina Zeng
- Department of Biological Sciences, North Carolina State University, 3510 Thomas Hall, 112 Derieux Pl, Raleigh, NC 27607, USA; (D.Z.); (J.C.M.)
| | - Jennifer C. Miller
- Department of Biological Sciences, North Carolina State University, 3510 Thomas Hall, 112 Derieux Pl, Raleigh, NC 27607, USA; (D.Z.); (J.C.M.)
| | - Eva Sapi
- Lyme Disease Research Group, Department of Biology and Environmental Science, University of New Haven, 300 Boston Post Road, West Haven, CT 06516, USA; (S.T.); (N.J.P.); (J.J.); (K.F.); (K.M.S.); (J.D.); (K.B.); (K.G.); (G.O.A.); (J.M.P.); (V.V.K.)
| |
Collapse
|
3
|
Xi D, Garg K, Lambert JS, Rajput-Ray M, Madigan A, Avramovic G, Gilbert L. Scrutinizing Clinical Biomarkers in a Large Cohort of Patients with Lyme Disease and Other Tick-Borne Infections. Microorganisms 2024; 12:380. [PMID: 38399784 PMCID: PMC10893018 DOI: 10.3390/microorganisms12020380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
Standard clinical markers can improve tick-borne infection (TBI) diagnoses. We investigated immune and other clinical biomarkers in 110 patients clinically diagnosed with TBIs before (T0) and after antibiotic treatment (T2). At T0, both the initial observation group and patients without seroconversion for tick-borne pathogens exhibited notably low percentages and counts of CD3 percentage (CD3%), CD3+ cells, CD8+ suppressors, CD4 percentage (CD4%), and CD4+ helper cells, with the latter group showing reductions in CD3%, CD3+, and CD8+ counts in approximately 15-22% of cases. Following treatment at the T2 follow-up, patients typically experienced enhancements in their previously low CD3%, CD3+ counts, CD4%, and CD4+ counts; however, there was no notable progress in their low CD8+ counts, and a higher number of patients presented with insufficient transferrin levels. Moreover, among those with negative serology for tick-borne infections, there was an improvement in low CD3% and CD3+ counts, which was more pronounced in patients with deficient transferrin amounts. Among those with CD57+ (n = 37) and CD19+ (n = 101) lymphocyte analysis, 59.46% of patients had a low CD57+ count, 14.85% had a low CD19 count, and 36.63% had a low CD19 percentage (CD19%). Similar findings were observed concerning low CD57+, CD19+, and CD19% markers for negative TBI serology patients. Overall, this study demonstrates that routine standard clinical markers could assist in a TBI diagnosis.
Collapse
Affiliation(s)
- David Xi
- School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland; (D.X.); (J.S.L.); (G.A.)
| | | | - John S. Lambert
- School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland; (D.X.); (J.S.L.); (G.A.)
- Infectious Diseases Department, Mater Misericordiae University Hospital, D07 R2WY Dublin, Ireland
- Infectious Diseases Department, The Rotunda Hospital, D01 P5W9 Dublin, Ireland
| | - Minha Rajput-Ray
- Curaidh Clinic: Innovative Solutions for Pain, Chronic Disease and Work Health, Perth PH2 8EH, UK;
| | - Anne Madigan
- School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland; (D.X.); (J.S.L.); (G.A.)
| | - Gordana Avramovic
- School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland; (D.X.); (J.S.L.); (G.A.)
| | | |
Collapse
|
4
|
Loeb M, Brison R, Bramson J, Hatchette T, Sander B, Stringer E. Protocol for a longitudinal cohort study of Lyme disease with physical, mental and immunological assessment. BMJ Open 2023; 13:e076833. [PMID: 37918926 PMCID: PMC10626810 DOI: 10.1136/bmjopen-2023-076833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 10/09/2023] [Indexed: 11/04/2023] Open
Abstract
INTRODUCTION There are limited data on the longitudinal impact of Lyme disease. Predictors of recovery have not been fully established using validated data collection instruments. There are sparse data on the immunological response to infection over time. METHODS AND ANALYSIS This study is a longitudinal cohort study that will recruit 120 participants with Lyme disease in Ontario and Nova Scotia, Canada, with follow-up for up to 24 months. Data will be collected using the Short-Form 36 physical and mental component summaries, Depression and Anxiety Severity Scale Questionnaire, Fatigue Severity Scale and a battery of neuropsychological tests. Mononuclear cells, gene expression and cytokine profiling from blood samples will be used to assess immunological response. Analyses will include the use of non-linear mixed-effects modelling and proportional hazards models. ETHICS AND DISSEMINATION Ethics approval has been obtained from ethics boards at McMaster University (Hamilton Integrated Research Ethics Board) (7564), Queens University (EMD 315-20) and Nova Scotia Health Research Ethics Board (1027173), and the study is enrolling participants. Written informed consent is obtained from all participants. The results will be disseminated by publication in a peer-reviewed journal and presented at a relevant conference. A brief report will be provided to decision-makers and patient groups.
Collapse
Affiliation(s)
- Mark Loeb
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Robert Brison
- Department of Emergency Medicine, Queen's University, Kingston, Ontario, Canada
| | - Jonathan Bramson
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Todd Hatchette
- Department of Pathology, Dalhousie University and the Department of Pathology and Laboratory medicine, Nova Scotia Health, Halifax, Nova Scotia, Canada
| | - Beate Sander
- Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, Ontario, Canada
| | - Elizabeth Stringer
- Department of Pediatrics, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
5
|
Worku DA. Tick-Borne Encephalitis (TBE): From Tick to Pathology. J Clin Med 2023; 12:6859. [PMID: 37959323 PMCID: PMC10650904 DOI: 10.3390/jcm12216859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/19/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
Tick-borne encephalitis (TBE) is a viral arthropod infection, endemic to large parts of Europe and Asia, and is characterised by neurological involvement, which can range from mild to severe, and in 33-60% of cases, it leads to a post-encephalitis syndrome and long-term morbidity. While TBE virus, now identified as Orthoflavivirus encephalitidis, was originally isolated in 1937, the pathogenesis of TBE is not fully appreciated with the mode of transmission (blood, tick, alimentary), viral strain, host immune response, and age, likely helping to shape the disease phenotype that we explore in this review. Importantly, the incidence of TBE is increasing, and due to global warming, its epidemiology is evolving, with new foci of transmission reported across Europe and in the UK. As such, a better understanding of the symptomatology, diagnostics, treatment, and prevention of TBE is required to inform healthcare professionals going forward, which this review addresses in detail. To this end, the need for robust national surveillance data and randomised control trial data regarding the use of various antivirals (e.g., Galidesivir and 7-deaza-2'-CMA), monoclonal antibodies, and glucocorticoids is required to improve the management and outcomes of TBE.
Collapse
Affiliation(s)
- Dominic Adam Worku
- Infectious Diseases, Morriston Hospital, Heol Maes Eglwys, Morriston, Swansea SA6 6NL, UK;
- Public Health Wales, 2 Capital Quarter, Cardiff CF10 4BZ, UK
| |
Collapse
|
6
|
Biniaz-Harris N, Kuvaldina M, Fallon BA. Neuropsychiatric Lyme Disease and Vagus Nerve Stimulation. Antibiotics (Basel) 2023; 12:1347. [PMID: 37760644 PMCID: PMC10525519 DOI: 10.3390/antibiotics12091347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 09/29/2023] Open
Abstract
Lyme disease, the most common tick-borne disease in the United States, is caused by infection with the spirochete Borrelia burgdorferi. While most patients with acute Lyme disease recover completely if treated with antibiotics shortly after the onset of infection, approximately 10-30% experience post-treatment symptoms and 5-10% have residual symptoms with functional impairment (post-treatment Lyme disease syndrome or PTLDS). These patients typically experience pain, cognitive problems, and/or fatigue. This narrative review provides a broad overview of Lyme disease, focusing on neuropsychiatric manifestations and persistent symptoms. While the etiology of persistent symptoms remains incompletely understood, potential explanations include persistent infection, altered neural activation, and immune dysregulation. Widely recognized is that new treatment options are needed for people who have symptoms that persist despite prior antibiotic therapy. After a brief discussion of treatment approaches, the article focuses on vagus nerve stimulation (VNS), a neuromodulation approach that is FDA-approved for depression, epilepsy, and headache syndromes and has been reported to be helpful for other diseases characterized by inflammation and neural dysregulation. Transcutaneous VNS stimulates the external branch of the vagus nerve, is minimally invasive, and is well-tolerated in other conditions with few side effects. If well-controlled double-blinded studies demonstrate that transcutaneous auricular VNS helps patients with chronic syndromes such as persistent symptoms after Lyme disease, taVNS will be a welcome addition to the treatment options for these patients.
Collapse
Affiliation(s)
- Nicholas Biniaz-Harris
- Lyme & Tick-Borne Diseases Research Center at Columbia University Irving Medical Center, 1051 Riverside Drive, New York, NY 10032, USA; (N.B.-H.); (M.K.)
| | - Mara Kuvaldina
- Lyme & Tick-Borne Diseases Research Center at Columbia University Irving Medical Center, 1051 Riverside Drive, New York, NY 10032, USA; (N.B.-H.); (M.K.)
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Brian A. Fallon
- Lyme & Tick-Borne Diseases Research Center at Columbia University Irving Medical Center, 1051 Riverside Drive, New York, NY 10032, USA; (N.B.-H.); (M.K.)
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY 10032, USA
- New York State Psychiatric Institute, 1051 Riverside Drive, New York, NY 10032, USA
| |
Collapse
|
7
|
Guérin M, Shawky M, Zedan A, Octave S, Avalle B, Maffucci I, Padiolleau-Lefèvre S. Lyme borreliosis diagnosis: state of the art of improvements and innovations. BMC Microbiol 2023; 23:204. [PMID: 37528399 PMCID: PMC10392007 DOI: 10.1186/s12866-023-02935-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 07/04/2023] [Indexed: 08/03/2023] Open
Abstract
With almost 700 000 estimated cases each year in the United States and Europe, Lyme borreliosis (LB), also called Lyme disease, is the most common tick-borne illness in the world. Transmitted by ticks of the genus Ixodes and caused by bacteria Borrelia burgdorferi sensu lato, LB occurs with various symptoms, such as erythema migrans, which is characteristic, whereas others involve blurred clinical features such as fatigue, headaches, arthralgia, and myalgia. The diagnosis of Lyme borreliosis, based on a standard two-tiered serology, is the subject of many debates and controversies, since it relies on an indirect approach which suffers from a low sensitivity depending on the stage of the disease. Above all, early detection of the disease raises some issues. Inappropriate diagnosis of Lyme borreliosis leads to therapeutic wandering, inducing potential chronic infection with a strong antibody response that fails to clear the infection. Early and proper detection of Lyme disease is essential to propose an adequate treatment to patients and avoid the persistence of the pathogen. This review presents the available tests, with an emphasis on the improvements of the current diagnosis, the innovative methods and ideas which, ultimately, will allow more precise detection of LB.
Collapse
Affiliation(s)
- Mickaël Guérin
- Unité de Génie Enzymatique Et Cellulaire (GEC), CNRS UMR 7025, Université de Technologie de Compiègne, 60203, Compiègne, France
| | - Marc Shawky
- Connaissance Organisation Et Systèmes TECHniques (COSTECH), EA 2223, Université de Technologie de Compiègne, 60203, Compiègne, France
| | - Ahed Zedan
- Polyclinique Saint Côme, 7 Rue Jean Jacques Bernard, 60204, Compiègne, France
| | - Stéphane Octave
- Unité de Génie Enzymatique Et Cellulaire (GEC), CNRS UMR 7025, Université de Technologie de Compiègne, 60203, Compiègne, France
| | - Bérangère Avalle
- Unité de Génie Enzymatique Et Cellulaire (GEC), CNRS UMR 7025, Université de Technologie de Compiègne, 60203, Compiègne, France
| | - Irene Maffucci
- Unité de Génie Enzymatique Et Cellulaire (GEC), CNRS UMR 7025, Université de Technologie de Compiègne, 60203, Compiègne, France
| | - Séverine Padiolleau-Lefèvre
- Unité de Génie Enzymatique Et Cellulaire (GEC), CNRS UMR 7025, Université de Technologie de Compiègne, 60203, Compiègne, France.
| |
Collapse
|
8
|
Delaney SL, Murray LA, Fallon BA. Neuropsychiatric Symptoms and Tick-Borne Diseases. Curr Top Behav Neurosci 2023; 61:279-302. [PMID: 36512289 DOI: 10.1007/7854_2022_406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
In North America, Lyme disease (LD) is primarily caused by the spirochetal bacterium Borrelia burgdorferi, transmitted to humans by Ixodes species tick bites, at an estimated rate of 476,000 patients diagnosed per year. Acute LD often manifests with flu-like symptoms and an expanding rash known as erythema migrans (EM) and less often with neurologic, neuropsychiatric, arthritic, or cardiac features. Most acute cases of Lyme disease are effectively treated with antibiotics, but 10-20% of individuals may experience recurrent or persistent symptoms. This chapter focuses on the neuropsychiatric aspects of Lyme disease, as these are less widely recognized by physicians and often overlooked. Broader education about the potential complexity, severity, and diverse manifestations of tick-borne diseases is needed.
Collapse
Affiliation(s)
- Shannon L Delaney
- Lyme and Tick-Borne Diseases Research Center at Columbia University Irving Medical Center, New York, NY, USA.
| | - Lilly A Murray
- Lyme and Tick-Borne Diseases Research Center at Columbia University Irving Medical Center, New York, NY, USA
| | - Brian A Fallon
- Lyme and Tick-Borne Diseases Research Center at Columbia University Irving Medical Center, New York, NY, USA
| |
Collapse
|
9
|
A systems biology approach to better understand human tick-borne diseases. Trends Parasitol 2023; 39:53-69. [PMID: 36400674 DOI: 10.1016/j.pt.2022.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/28/2022] [Accepted: 10/28/2022] [Indexed: 11/17/2022]
Abstract
Tick-borne diseases (TBDs) are a growing global health concern. Despite extensive studies, ill-defined tick-associated pathologies remain with unknown aetiologies. Human immunological responses after tick bite, and inter-individual variations of immune-response phenotypes, are not well characterised. Current reductive experimental methodologies limit our understanding of more complex tick-associated illness, which results from the interactions between the host, tick, and microbes. An unbiased, systems-level integration of clinical metadata and biological host data - obtained via transcriptomics, proteomics, and metabolomics - offers to drive the data-informed generation of testable hypotheses in TBDs. Advanced computational tools have rendered meaningful analysis of such large data sets feasible. This review highlights the advantages of integrative system biology approaches as essential for understanding the complex pathobiology of TBDs.
Collapse
|
10
|
Nilsson K, Skoog E, Edvinsson M, Mårtensson A, Olsen B. Protein biomarker profiles in serum and CSF in 158 patients with PTLDS or persistent symptoms after presumed tick-bite exposure compared to those in patients with confirmed acute neuroborreliosis. PLoS One 2022; 17:e0276407. [PMID: 36327322 PMCID: PMC9632922 DOI: 10.1371/journal.pone.0276407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 10/05/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Current diagnostics for patients with lingering symptoms categorized as post-treatment Lyme disease syndrome (PTLDS) have their limitations and may be difficult to interpret. The aim of this exploratory study was to evaluate the feasibility of protein biomarker profiling as a diagnostic platform for this category of patients and to compare these results with similarly obtained results from a group of patients with acute neuroborreliosis. METHODS AND FINDINGS Two groups of patient cohorts (Cohort 1 and 2) were analyzed for biomarkers in serum and cerebrospinal fluid (CSF); the results were used for group-level comparison. Cohort 1 comprised 158 adult patients selected from 224 previously diagnosed patients, who between October 2015 and December 2018, after referral, were enrolled and structurally investigated based on defined inclusion criteria. They displayed similar lingering symptoms, with a duration of at least 6 months, after presumed previous tick-borne infection (TBI) and are fully described in a previously published study originating from the Center for Vector-borne Infections (CVI), Uppsala University Hospital, Sweden. Cohort 2, comprised 30 patients diagnosed at Uppsala University Hospital between 2016 and 2019 with laboratory-confirmed acute neuroborreliosis. Their proteomic results, based on serum and CSF analyses, were compared with the 158 patients in Cohort 1. The expression and the concentration of potential biomarkers in each patient's serum and CSF samples were measured based on two multiplex protein panels enabling simultaneous analysis of 92 inflammatory and neurology biomarkers. The PTLDS patient subgroup showed no nominally significant proteins compared to the other CVI patients in Cohort 1. However, CVI patients with signs of inflammation, which were evenly distributed in Cohort 1, showed 16 significantly (p <0.05) different proteins in both CSF and serum, but no association was seen with laboratory-confirmed exposure to Borrelia spp or other TBIs. When comparing the two cohorts, different protein profiles were observed, with 125/148 significantly different proteins in CSF and 93/174 in serum, in patients with laboratory confirmed acute neuroborreliosis, of which 6 in CSF and 6 in serum were significant at the p <0.001 level. CONCLUSIONS In this first comprehensive inflammatory and neurological biomarker profile study no differences in biomarker profiles were detected between patients with PTLDS and patients with similar persisting symptoms but who did not meet the PTLDS criteria, regardless of whether laboratory verified previous exposure to Borrelia or other TBI's were present. However, the expressed markers differed from those found in patients with confirmed acute neuroborreliosis, which does not support the view that PTLDS reflects an ongoing Borrelia infection. Further studies are needed to understand and assess the usefulness of biosignatures of patients with PTLDS before they can be applied in a clinical setting.
Collapse
Affiliation(s)
- Kenneth Nilsson
- Department of Medical Sciences, Section of Infectious Diseases, Uppsala University, Uppsala, Sweden
- Department of Medical Sciences, Section of Clinical Microbiology, Uppsala University, Uppsala, Sweden
| | - Elisabet Skoog
- Department of Medical Sciences, Section of Infectious Diseases, Uppsala University, Uppsala, Sweden
| | - Marie Edvinsson
- Department of Medical Sciences, Section of Infectious Diseases, Uppsala University, Uppsala, Sweden
| | - Andreas Mårtensson
- Department of Women’s and Children’s Health, International Maternal and Child Health, Uppsala University, Uppsala, Sweden
| | - Björn Olsen
- Department of Medical Sciences, Section of Infectious Diseases, Uppsala University, Uppsala, Sweden
- Department of Medical Sciences, Zoonosis Science Centre, Uppsala University, Uppsala, Sweden
| |
Collapse
|
11
|
Abstract
Standard 2-tier testing (STTT), incorporating a screening enzyme immunoassay (EIA) or an immunofluorescence assay (IFA) that reflexes to IgM and IgG immunoblots, has been the primary diagnostic test for Lyme disease since 1995. In 2019, the Food and Drug Administration approved a modified 2-tier test strategy using 2 EIAs: offering a faster, less expensive, and more sensitive assay compared with STTT. New technologies examine early immune responses to Borrelia burgdorferi have the potential to diagnose Lyme disease in the first weeks of infection when existing serologic testing is not recommended due to low sensitivity.
Collapse
Affiliation(s)
- Takaaki Kobayashi
- Division of Infectious Diseases, Department of Internal Medicine, University of Iowa Hospitals & Clinics, 200 Hawkins Drive, Iowa City, IA 52242, USA.
| | - Paul G Auwaerter
- Sherrilyn and Ken Fisher Center for Environmental Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
12
|
Role of NK-Like CD8 + T Cells during Asymptomatic Borrelia burgdorferi Infection. Infect Immun 2022; 90:e0055521. [PMID: 35416707 DOI: 10.1128/iai.00555-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lyme disease (LD) due to Borrelia burgdorferi is the most prevalent vector-borne disease in the United States. There is a poor understanding of how immunity contributes to bacterial control, pathology, or both during LD. Dogs in an area of endemicity were screened for B. burgdorferi and Anaplasma exposure and stratified according to seropositivity, presence of LD symptoms, and doxycycline treatment. Significantly elevated serum interleukin-21 (IL-21) and increased circulating CD3+ CD94+ lymphocytes with an NK-like CD8+ T cell phenotype were predominant in asymptomatic dogs exposed to B. burgdorferi. Both CD94+ T cells and CD3- CD94+ lymphocytes, corresponding to NK cells, from symptomatic dogs expressed gamma interferon (IFN-γ) at a 3-fold-higher frequency upon stimulation with B. burgdorferi than the same subset among endemic controls. Surface expression of activating receptor NKp46 was reduced on CD94+ T cells from LD, compared to cells after doxycycline treatment. A higher frequency of NKp46-expressing CD94+ T cells correlated with significantly increased peripheral blood mononuclear cell (PBMC) cytotoxic activity via calcein release assay. PBMCs from dogs with symptomatic LD showed significantly reduced killing ability compared with endemic control PBMCs. An elevated NK-like CD8+ T cell response was associated with protection against development of clinical LD, while excess IFN-γ was associated with clinical disease.
Collapse
|
13
|
Senger RS, Sayed Issa A, Agnor B, Talty J, Hollis A, Robertson JL. Disease-Associated Multimolecular Signature in the Urine of Patients with Lyme Disease Detected Using Raman Spectroscopy and Chemometrics. APPLIED SPECTROSCOPY 2022; 76:284-299. [PMID: 35102746 DOI: 10.1177/00037028211061769] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A urine-based screening technique for Lyme disease (LD) was developed in this research. The screen is based on Raman spectroscopy, iterative smoothing-splines with root error adjustment (ISREA) spectral baselining, and chemometric analysis using Rametrix software. Raman spectra of urine from 30 patients with positive serologic tests (including the US Centers for Disease Control [CDC] two-tier standard) for LD were compared against subsets of our database of urine spectra from 235 healthy human volunteers, 362 end-stage kidney disease (ESKD) patients, and 17 patients with active or remissive bladder cancer (BCA). We found statistical differences (p < 0.001) between urine scans of healthy volunteers and LD-positive patients. We also found a unique LD molecular signature in urine involving 112 Raman shifts (31 major Raman shifts) with significant differences from urine of healthy individuals. We were able to distinguish the LD molecular signature as statistically different (p < 0.001) from the molecular signatures of ESKD and BCA. When comparing LD-positive patients against healthy volunteers, the Rametrix-based urine screen performed with 86.7% for overall accuracy, sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV), respectively. When considering patients with ESKD and BCA in the LD-negative group, these values were 88.7% (accuracy), 83.3% (sensitivity), 91.0% (specificity), 80.7% (PPV), and 92.4% (NPV). Additional advantages to the Raman-based urine screen include that it is rapid (minutes per analysis), is minimally invasive, requires no chemical labeling, uses a low-profile, off-the-shelf spectrometer, and is inexpensive relative to other available LD tests.
Collapse
Affiliation(s)
- Ryan S Senger
- Department of Biological Systems Engineering, 1757Virginia Tech, Blacksburg, Virginia, USA
- DialySensors Inc., Blacksburg, Virginia, USA
| | | | - Ben Agnor
- Department of Biological Systems Engineering, 1757Virginia Tech, Blacksburg, Virginia, USA
| | - Janine Talty
- Neuromusculoskeletal Medicine & OMM, Roanoke, Virginia, USA
| | | | - John L Robertson
- DialySensors Inc., Blacksburg, Virginia, USA
- Department of Biomedical Engineering and Mechanics, 1757Virginia Tech, Blacksburg, Virginia, USA
| |
Collapse
|
14
|
Bobe JR, Jutras BL, Horn EJ, Embers ME, Bailey A, Moritz RL, Zhang Y, Soloski MJ, Ostfeld RS, Marconi RT, Aucott J, Ma'ayan A, Keesing F, Lewis K, Ben Mamoun C, Rebman AW, McClune ME, Breitschwerdt EB, Reddy PJ, Maggi R, Yang F, Nemser B, Ozcan A, Garner O, Di Carlo D, Ballard Z, Joung HA, Garcia-Romeu A, Griffiths RR, Baumgarth N, Fallon BA. Recent Progress in Lyme Disease and Remaining Challenges. Front Med (Lausanne) 2021; 8:666554. [PMID: 34485323 PMCID: PMC8416313 DOI: 10.3389/fmed.2021.666554] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 07/12/2021] [Indexed: 12/14/2022] Open
Abstract
Lyme disease (also known as Lyme borreliosis) is the most common vector-borne disease in the United States with an estimated 476,000 cases per year. While historically, the long-term impact of Lyme disease on patients has been controversial, mounting evidence supports the idea that a substantial number of patients experience persistent symptoms following treatment. The research community has largely lacked the necessary funding to properly advance the scientific and clinical understanding of the disease, or to develop and evaluate innovative approaches for prevention, diagnosis, and treatment. Given the many outstanding questions raised into the diagnosis, clinical presentation and treatment of Lyme disease, and the underlying molecular mechanisms that trigger persistent disease, there is an urgent need for more support. This review article summarizes progress over the past 5 years in our understanding of Lyme and tick-borne diseases in the United States and highlights remaining challenges.
Collapse
Affiliation(s)
- Jason R. Bobe
- Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Brandon L. Jutras
- Department of Biochemistry, Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, United States
| | | | - Monica E. Embers
- Tulane University Health Sciences, New Orleans, LA, United States
| | - Allison Bailey
- Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | | | - Ying Zhang
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Mark J. Soloski
- Division of Rheumatology, Department of Medicine, Lyme Disease Research Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | | | - Richard T. Marconi
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, Richmond, VA, United States
| | - John Aucott
- Division of Rheumatology, Department of Medicine, Lyme Disease Research Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Avi Ma'ayan
- Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | | | - Kim Lewis
- Department of Biology, Northeastern University, Boston, MA, United States
| | | | - Alison W. Rebman
- Division of Rheumatology, Department of Medicine, Lyme Disease Research Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Mecaila E. McClune
- Department of Biochemistry, Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, United States
| | - Edward B. Breitschwerdt
- Department of Clinical Sciences, Comparative Medicine Institute, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | | | - Ricardo Maggi
- Department of Clinical Sciences, Comparative Medicine Institute, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - Frank Yang
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Bennett Nemser
- Steven & Alexandra Cohen Foundation, Stamford, CT, United States
| | - Aydogan Ozcan
- University of California, Los Angeles, Los Angeles, CA, United States
| | - Omai Garner
- University of California, Los Angeles, Los Angeles, CA, United States
| | - Dino Di Carlo
- University of California, Los Angeles, Los Angeles, CA, United States
| | - Zachary Ballard
- University of California, Los Angeles, Los Angeles, CA, United States
| | - Hyou-Arm Joung
- University of California, Los Angeles, Los Angeles, CA, United States
| | - Albert Garcia-Romeu
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Roland R. Griffiths
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Nicole Baumgarth
- Center for Immunology and Infectious Diseases and the Department of Pathology, Microbiology & Immunology, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Brian A. Fallon
- Columbia University Irving Medical Center, New York, NY, United States
| |
Collapse
|
15
|
Innate and Th1/Th17 adaptive immunity in acute and convalescent Brazilian borreliosis disease. Braz J Infect Dis 2021; 25:101575. [PMID: 33848504 PMCID: PMC9392183 DOI: 10.1016/j.bjid.2021.101575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 03/05/2021] [Accepted: 03/27/2021] [Indexed: 11/28/2022] Open
Abstract
Introduction Brazilian borreliosis (BB) disease is an infectious disease transmitted by ticks that mimics Lyme disease (LD) from the Northern Hemisphere. The BB clinical picture is characterized by a pathognomonic skin lesion (migratory erythema) and joint, neurological, cardiac and psychiatric symptoms. Innate and Th1/Th17 adaptive immunity seem to play an important role in the pathogenesis of Lyme disease. Objective The aim of this study was to characterize the role of innate and Th1/Th17 adaptive immunity in BB patients with acute (<3 months) and convalescent (>3 months) disease. Methods Fifty BB patients (28 with acute and 22 with convalescent disease) without treatment and 30 healthy subjects were evaluated. Levels of 20 cytokines or chemokines associated with innate and Th1/Th17 adaptive immunity were analyzed using Luminex (Millipore Corp., Billerica, MA). Results Overall, BB patients had increased levels of IL-8 (6.29 vs 2.12 p = 0.002) and MIP-1α/CCL3 (5.20 vs 2.06, p = 0.030), associated with innate immunity, and MIP3B/CCL19 (Th1; 297.86 vs 212.41, p = 0.031) and IL-17A (Th17; 3.11 vs 2.20, p = 0.037), associated with adaptive immunity, compared with the levels of healthy controls. When comparing acute BB vs. convalescent BB subjects vs. healthy controls, IL-1β, IL-8 and MIP-1α/CCL3 (innate mediators) levels were highest in patients in the acute phase of disease (p < 0.05). TNF-α was associated with disseminated symptoms and with humoral reactivity against Borrelia burgdorferi. IL-10 was significantly correlated with IL-6 (r = 0.59, p = 0.003), IL-8 (r = 0.51, p < 0.001), MIP-1α/CCL3 (r = 0.42, p < 0.001) and MIP-3β/CCL19 (r = 0.40, p = 0.002) in all BB patients. Conclusions This is the first study describing that innate and Th1/Th17 adaptive immunity play a crucial role in BB disease. Furthermore, innate mediators are particularly important in acute BB disease, and TNF-α is associated with evolution of BB symptoms.
Collapse
|
16
|
Measurement of multiple cytokines for discrimination and risk stratification in patients with Chagas' disease and idiopathic dilated cardiomyopathy. PLoS Negl Trop Dis 2021; 15:e0008906. [PMID: 33755669 PMCID: PMC7987183 DOI: 10.1371/journal.pntd.0008906] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Accepted: 10/19/2020] [Indexed: 11/19/2022] Open
Abstract
Chagas' disease (CD), caused by the hemoflagellate protozoan, Trypanosoma cruzi, is endemic in most countries of Latin America. Heart failure (HF) is often a late manifestation of chronic CD, and is associated with high morbidity and mortality. Inflammatory processes mediated by cytokines play a key role in the pathogenesis and progression of CD. Keeping in view the inflammatory nature of CD, this study investigated the possible role of 21 different inflammatory cytokines as biomarkers for prediction and prognosis of CD. The plasma concentration of these cytokines was measured in a group of patients with CD (n = 94), and then compared with those measured in patients with dilated cardiomyopathy (DCM) from idiopathic causes (n = 48), and with control subjects (n = 25). Monovariately, plasma levels of cytokines such as stem cell growth factor beta (SCGF beta), hepatocyte growth factor (HGF), monokine induced by interferon gamma (CXCL9), and macrophage inhibitory factor (MIF) were significantly increased in CD patients with advanced HF compared to control group. None of the cytokines could demonstrate any prognostic potency in CD patients, and only MIF and stromal derived factor-1 alpha (CXCL12) showed significance in predicting mortality and necessity for heart transplant in DCM patients. However, multivariate analysis prognosticated a large proportion of CD and DCM patients. In CD patients, HGF and Interleukin-12p40 (IL-12p40) together separated 81.9% of 3-year survivors from the deceased, while in DCM patients, CXCL12, stem cell factor (SCF), and CXCL9 together discriminated 77.1% of survivors from the deceased. The significant increase in plasma concentrations of cytokines such as HGF and CXCL9 in CD patients, and the ability of these cytokines to prognosticate a large proportion of CD and DCM patients multivariately, encourages further studies to clarify the diagnostic and prognostic potential of cytokines in such patients.
Collapse
|
17
|
Clarke DJB, Rebman AW, Bailey A, Wojciechowicz ML, Jenkins SL, Evangelista JE, Danieletto M, Fan J, Eshoo MW, Mosel MR, Robinson W, Ramadoss N, Bobe J, Soloski MJ, Aucott JN, Ma'ayan A. Predicting Lyme Disease From Patients' Peripheral Blood Mononuclear Cells Profiled With RNA-Sequencing. Front Immunol 2021; 12:636289. [PMID: 33763080 PMCID: PMC7982722 DOI: 10.3389/fimmu.2021.636289] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/04/2021] [Indexed: 01/17/2023] Open
Abstract
Although widely prevalent, Lyme disease is still under-diagnosed and misunderstood. Here we followed 73 acute Lyme disease patients and uninfected controls over a period of a year. At each visit, RNA-sequencing was applied to profile patients' peripheral blood mononuclear cells in addition to extensive clinical phenotyping. Based on the projection of the RNA-seq data into lower dimensions, we observe that the cases are separated from controls, and almost all cases never return to cluster with the controls over time. Enrichment analysis of the differentially expressed genes between clusters identifies up-regulation of immune response genes. This observation is also supported by deconvolution analysis to identify the changes in cell type composition due to Lyme disease infection. Importantly, we developed several machine learning classifiers that attempt to perform various Lyme disease classifications. We show that Lyme patients can be distinguished from the controls as well as from COVID-19 patients, but classification was not successful in distinguishing those patients with early Lyme disease cases that would advance to develop post-treatment persistent symptoms.
Collapse
Affiliation(s)
- Daniel J B Clarke
- Department of Pharmacological Sciences, Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Alison W Rebman
- Lyme Disease Research Center, Division of Rheumatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Allison Bailey
- Department of Pharmacological Sciences, Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Megan L Wojciechowicz
- Department of Pharmacological Sciences, Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Sherry L Jenkins
- Department of Pharmacological Sciences, Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - John E Evangelista
- Department of Pharmacological Sciences, Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Matteo Danieletto
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Jinshui Fan
- Lyme Disease Research Center, Division of Rheumatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Mark W Eshoo
- Ibis Biosciences (an Abbott Laboratories company), Carlsbad, CA, United States
| | - Michael R Mosel
- Ibis Biosciences (an Abbott Laboratories company), Carlsbad, CA, United States
| | - William Robinson
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Nitya Ramadoss
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Jason Bobe
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Mark J Soloski
- Lyme Disease Research Center, Division of Rheumatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - John N Aucott
- Lyme Disease Research Center, Division of Rheumatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Avi Ma'ayan
- Department of Pharmacological Sciences, Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
18
|
Abstract
Lyme borreliosis is caused by a growing list of related, yet distinct, spirochetes with complex biology and sophisticated immune evasion mechanisms. It may result in a range of clinical manifestations involving different organ systems, and can lead to persistent sequelae in a subset of cases. The pathogenesis of Lyme borreliosis is incompletely understood, and laboratory diagnosis, the focus of this review, requires considerable understanding to interpret the results correctly. Direct detection of the infectious agent is usually not possible or practical, necessitating a continued reliance on serologic testing. Still, some important advances have been made in the area of diagnostics, and there are many promising ideas for future assay development. This review summarizes the state of the art in laboratory diagnostics for Lyme borreliosis, provides guidance in test selection and interpretation, and highlights future directions.
Collapse
|
19
|
Molecular Microbiological and Immune Characterization of a Cohort of Patients Diagnosed with Early Lyme Disease. J Clin Microbiol 2020; 59:JCM.00615-20. [PMID: 33087434 DOI: 10.1128/jcm.00615-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 10/15/2020] [Indexed: 12/14/2022] Open
Abstract
Lyme disease is a tick-borne infection caused by the bacteria Borrelia burgdorferi Current diagnosis of early Lyme disease relies heavily on clinical criteria, including the presence of an erythema migrans rash. The sensitivity of current gold-standard diagnostic tests relies upon antibody formation, which is typically delayed and thus of limited utility in early infection. We conducted a study of blood and skin biopsy specimens from 57 patients with a clinical diagnosis of erythema migrans. Samples collected at the time of diagnosis were analyzed using an ultrasensitive, PCR-based assay employing an isothermal amplification step and multiple primers. In 75.4% of patients, we directly detected one or more B. burgdorferi genotypes in the skin. Two-tier testing showed that 20 (46.5%) of those found to be PCR positive remained serologically negative at both acute and convalescent time points. Multiple genotypes were found in three (8%) of those where a specific genotype could be identified. The 13 participants who lacked PCR and serologic evidence for exposure to B. burgdorferi could be differentiated as a group from PCR-positive participants by their levels of several immune markers as well as by clinical descriptors such as the number of acute symptoms and the pattern of their erythema migrans rash. These results suggest that within a Mid-Atlantic cohort, patient subgroups can be identified using PCR-based direct detection approaches. This may be particularly useful in future research such as vaccine trials and public health surveillance of tick-borne disease patterns.
Collapse
|
20
|
Gutierrez-Hoffmann MG, O'Meally RN, Cole RN, Tiniakou E, Darrah E, Soloski MJ. Borrelia burgdorferi-Induced Changes in the Class II Self-Immunopeptidome Displayed on HLA-DR Molecules Expressed by Dendritic Cells. Front Med (Lausanne) 2020; 7:568. [PMID: 33043033 PMCID: PMC7524959 DOI: 10.3389/fmed.2020.00568] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 08/11/2020] [Indexed: 01/19/2023] Open
Abstract
The MHC class II antigen processing and presentation pathway has evolved to derive short amino acid peptides from proteins that enter the endocytic pathway, load them onto MHC class II molecules and display them on the surface of antigen presenting cells for recognition by CD4+ T cells. Under normal circumstances, peptides bound to MHC class II molecules are derived from host (self) proteins and not recognized by T cells due to tolerance mechanisms. Pathogens induce significant changes in the biology of antigen presenting cells, including upregulation of MHC processing and presentation. We therefore hypothesized that exposure to pathogens may alter the repertoire of self-peptides bound to MHC class II molecules. To test this hypothesis, we isolated monocyte-derived dendritic cells from healthy subjects, exposed them to the TLR-2 agonist lipoteichoic acid or live Borrelia burgdorferi, the causative agent of Lyme disease, and isolated and characterized HLA-DR associated peptides using mass spectrometry. Our results show that lipoteichoic acid-stimulated, B. burgdorferi-stimulated and unstimulated monocyte-derived dendritic cells largely derive their self-peptides from similar overlapping sets of host proteins. However, lipoteichoic acid and B. burgdorferi stimulation promote the processing and presentation of new sets of HLA-DR associated self-peptides derived from unique protein sources. Examination of processes and compartments these proteins reside in, indicate that activation of monocyte-derived dendritic cells changes the range of host self-proteins available for processing and presentation on MHC class II molecules. These findings reveal that the HLA-DR-bound self-immunopeptidome presented by mo-DCs is dynamic in nature and changes with activation state reflective of cellular function. In addition, among the repertoire of self-peptides bound to HLA-DR are several epitopes known to be recognized by autoreactive T cells. These studies are relevant to our basic understanding of pathogen-induced changes in monocyte-derived dendritic cell function, and the mechanisms involved in infection-induced autoimmune illnesses such as Lyme arthritis.
Collapse
Affiliation(s)
- Maria G. Gutierrez-Hoffmann
- Lyme Disease Research Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Division of Rheumatology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Robert N. O'Meally
- Mass Spectrometry and Proteomics Facility, Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Robert N. Cole
- Mass Spectrometry and Proteomics Facility, Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Eleni Tiniakou
- Division of Rheumatology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Erika Darrah
- Division of Rheumatology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Mark J. Soloski
- Lyme Disease Research Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Division of Rheumatology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
21
|
Rebman AW, Aucott JN. Post-treatment Lyme Disease as a Model for Persistent Symptoms in Lyme Disease. Front Med (Lausanne) 2020; 7:57. [PMID: 32161761 PMCID: PMC7052487 DOI: 10.3389/fmed.2020.00057] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 02/06/2020] [Indexed: 12/14/2022] Open
Abstract
It has long been observed in clinical practice that a subset of patients with Lyme disease report a constellation of symptoms such as fatigue, cognitive difficulties, and musculoskeletal pain, which may last for a significant period of time. These symptoms, which can range from mild to severe, have been reported throughout the literature in both prospective and population-based studies in Lyme disease endemic regions. The etiology of these symptoms is unknown, however several illness-causing mechanisms have been hypothesized, including microbial persistence, host immune dysregulation through inflammatory or secondary autoimmune pathways, or altered neural networks, as in central sensitization. Evaluation and characterization of persistent symptoms in Lyme disease is complicated by potential independent, repeat exposures to B. burgdorferi, as well as the potential for co-morbid diseases with overlapping symptom profiles. Antibody testing for B. burgdorferi is an insensitive measure after treatment, and no other FDA-approved tests currently exist. As such, diagnosis presents a complex challenge for physicians, while the lived experience for patients is one marked by uncertainty and often illness invalidation. Currently, there are no FDA-approved pharmaceutical therapies, and the safety and efficacy of off-label and/or complementary therapies have not been well studied and are not agreed-upon within the medical community. Post-treatment Lyme disease represents a narrow, defined, mechanistically-neutral subset of this larger, more heterogeneous group of patients, and is a useful definition in research settings as an initial subgroup of study. The aim of this paper is to review the current literature on the diagnosis, etiology, risk factors, and treatment of patients with persistent symptoms in the context of Lyme disease. The meaning and relevance of existing patient subgroups will be discussed, as will future research priorities, including the need to develop illness biomarkers, elucidate the biologic mechanisms of disease, and drive improvements in therapeutic options.
Collapse
Affiliation(s)
- Alison W Rebman
- Lyme Disease Research Center, Division of Rheumatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - John N Aucott
- Lyme Disease Research Center, Division of Rheumatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
22
|
Fitzgerald BL, Molins CR, Islam MN, Graham B, Hove PR, Wormser GP, Hu L, Ashton LV, Belisle JT. Host Metabolic Response in Early Lyme Disease. J Proteome Res 2020; 19:610-623. [PMID: 31821002 PMCID: PMC7262776 DOI: 10.1021/acs.jproteome.9b00470] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Lyme disease is a tick-borne bacterial illness that occurs in areas of North America, Europe, and Asia. Early infection typically presents as generalized symptoms with an erythema migrans (EM) skin lesion. Dissemination of the pathogen Borrelia burgdorferi can result in multiple EM skin lesions or in extracutaneous manifestations such as Lyme neuroborreliosis. Metabolic biosignatures of patients with early Lyme disease can potentially provide diagnostic targets as well as highlight metabolic pathways that contribute to pathogenesis. Sera from well-characterized patients diagnosed with either early localized Lyme disease (ELL) or early disseminated Lyme disease (EDL), plus healthy controls (HC), from the United States were analyzed by liquid chromatography-mass spectrometry (LC-MS). Comparative analyses were performed between ELL, or EDL, or ELL combined with EDL, and the HC to develop biosignatures present in early Lyme disease. A direct comparison between ELL and EDL was also performed to develop a biosignature for stages of early Lyme disease. Metabolic pathway analysis and chemical identification of metabolites with LC-tandem mass spectrometry (LC-MS/MS) demonstrated alterations of eicosanoid, bile acid, sphingolipid, glycerophospholipid, and acylcarnitine metabolic pathways during early Lyme disease. These metabolic alterations were confirmed using a separate set of serum samples for validation. The findings demonstrated that infection of humans with B. burgdorferi alters defined metabolic pathways that are associated with inflammatory responses, liver function, lipid metabolism, and mitochondrial function. Additionally, the data provide evidence that metabolic pathways can be used to mark the progression of early Lyme disease.
Collapse
Affiliation(s)
| | - Claudia R. Molins
- Centers for Disease Control and Prevention, Fort Collins, CO 80521, USA
| | - M. Nurul Islam
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80521, USA
| | - Barbara Graham
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80521, USA
| | - Petronella R. Hove
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80521, USA
| | - Gary P. Wormser
- Division of Infectious Diseases, Department of Medicine, New York Medical College, Valhalla, NY 10595, USA
| | - Linden Hu
- Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Laura V. Ashton
- Centers for Disease Control and Prevention, Fort Collins, CO 80521, USA
| | - John T. Belisle
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80521, USA
| |
Collapse
|
23
|
Zhou Y, Qin S, Sun M, Tang L, Yan X, Kim TK, Caballero J, Glusman G, Brunkow ME, Soloski MJ, Rebman AW, Scavarda C, Cooper D, Omenn GS, Moritz RL, Wormser GP, Price ND, Aucott JN, Hood L. Measurement of Organ-Specific and Acute-Phase Blood Protein Levels in Early Lyme Disease. J Proteome Res 2020; 19:346-359. [PMID: 31618575 PMCID: PMC7981273 DOI: 10.1021/acs.jproteome.9b00569] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Lyme disease results from infection of humans with the spirochete Borrelia burgdorferi. The first and most common clinical manifestation is the circular, inflamed skin lesion referred to as erythema migrans; later manifestations result from infections of other body sites. Laboratory diagnosis of Lyme disease can be challenging in patients with erythema migrans because of the time delay in the development of specific diagnostic antibodies against Borrelia. Reliable blood biomarkers for the early diagnosis of Lyme disease in patients with erythema migrans are needed. Here, we performed selected reaction monitoring, a targeted mass spectrometry-based approach, to measure selected proteins that (1) are known to be predominantly expressed in one organ (i.e., organ-specific blood proteins) and whose blood concentrations may change as a result of Lyme disease, or (2) are involved in acute immune responses. In a longitudinal cohort of 40 Lyme disease patients and 20 healthy controls, we identified 10 proteins with significantly altered serum levels in patients at the time of diagnosis, and we also developed a 10-protein panel identified through multivariate analysis. In an independent cohort of patients with erythema migrans, six of these proteins, APOA4, C9, CRP, CST6, PGLYRP2, and S100A9, were confirmed to show significantly altered serum levels in patients at time of presentation. Nine of the 10 proteins from the multivariate panel were also verified in the second cohort. These proteins, primarily innate immune response proteins or proteins specific to liver, skin, or white blood cells, may serve as candidate blood biomarkers requiring further validation to aid in the laboratory diagnosis of early Lyme disease.
Collapse
Affiliation(s)
- Yong Zhou
- Institute for Systems Biology, Seattle, Washington, USA
| | - Shizhen Qin
- Institute for Systems Biology, Seattle, Washington, USA
| | - Mingjuan Sun
- Institute for Systems Biology, Seattle, Washington, USA
- Second Military Medical University, Shanghai, China
| | - Li Tang
- Institute for Systems Biology, Seattle, Washington, USA
| | - Xiaowei Yan
- Institute for Systems Biology, Seattle, Washington, USA
| | - Taek-Kyun Kim
- Institute for Systems Biology, Seattle, Washington, USA
| | - Juan Caballero
- Molecular and Developmental Complexity Lab, Langebio-Cinvestav, Irapuato, Guanajuato, Mexico
| | | | | | - Mark J. Soloski
- Lyme Disease Research Center, Division of Rheumatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Alison W. Rebman
- Lyme Disease Research Center, Division of Rheumatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Carol Scavarda
- Division of Infectious Diseases, Department of Medicine, New York Medical College, Valhalla, NY
| | - Denise Cooper
- Division of Infectious Diseases, Department of Medicine, New York Medical College, Valhalla, NY
| | - Gilbert S. Omenn
- Institute for Systems Biology, Seattle, Washington, USA
- Center for Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | | | - Gary P. Wormser
- Division of Infectious Diseases, Department of Medicine, New York Medical College, Valhalla, NY
| | | | - John N. Aucott
- Lyme Disease Research Center, Division of Rheumatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Leroy Hood
- Institute for Systems Biology, Seattle, Washington, USA
- Providence St. Joseph Health, Seattle, Washington, USA
| |
Collapse
|
24
|
Shemenski J. Cimetidine as a novel adjunctive treatment for early stage Lyme disease. Med Hypotheses 2019; 128:94-100. [DOI: 10.1016/j.mehy.2016.03.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 03/28/2016] [Indexed: 12/24/2022]
|
25
|
Kirpach J, Colone A, Bürckert JP, Faison WJ, Dubois ARSX, Sinner R, Reye AL, Muller CP. Detection of a Low Level and Heterogeneous B Cell Immune Response in Peripheral Blood of Acute Borreliosis Patients With High Throughput Sequencing. Front Immunol 2019; 10:1105. [PMID: 31156648 PMCID: PMC6532064 DOI: 10.3389/fimmu.2019.01105] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 04/30/2019] [Indexed: 01/08/2023] Open
Abstract
The molecular diagnosis of acute Borreliosis is complicated and better strategies to improve the diagnostic processes are warranted. High Throughput Sequencing (HTS) of human B cell repertoires after e.g., Dengue virus infection or influenza vaccination revealed antigen-associated “CDR3 signatures” which may have the potential to support diagnosis in infectious diseases. The human B cell immune response to Borrelia burgdorferi sensu lato—the causative agent of Borreliosis—has mainly been studied at the antibody level, while less attention has been given to the cellular part of the humoral immune response. There are indications that Borrelia actively influence the B cell immune response and that it is therefore not directly comparable to responses induced by other infections. The main goal of this study was to identify B cell features that could be used to support diagnosis of Borreliosis. Therefore, we characterized the B cell immune response in these patients by combining multicolor flow cytometry, single Borrelia-reactive B cell receptor (BCR) sequencing, and B cell repertoire deep sequencing. Our phenotyping experiments showed, that there is no significant difference between B cell subpopulations of acute Borreliosis patients and controls. BCR sequences from individual epitope-reactive B cells had little in common between each other. HTS showed, however, a higher complementarity determining region 3 (CDR3) amino acid (aa) sequence overlap between samples from different timepoints in patients as compared to controls. This indicates, that HTS is sensitive enough to detect ongoing B cell immune responses in these patients. Although each individual's repertoire was dominated by rather unique clones, clustering of bulk BCR repertoire sequences revealed a higher overlap of IgG BCR repertoire sequences between acute patients than controls. Even if we have identified a few Borrelia-associated CDR3aa sequences, they seem to be rather unique for each patient and therefore not suitable as biomarkers.
Collapse
Affiliation(s)
- Josiane Kirpach
- Vaccinology and B Cell Immunology, Infectious Diseases Research Unit, Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Alessia Colone
- Vaccinology and B Cell Immunology, Infectious Diseases Research Unit, Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Jean-Philippe Bürckert
- Vaccinology and B Cell Immunology, Infectious Diseases Research Unit, Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - William J Faison
- Vaccinology and B Cell Immunology, Infectious Diseases Research Unit, Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Axel R S X Dubois
- Vaccinology and B Cell Immunology, Infectious Diseases Research Unit, Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Regina Sinner
- Vaccinology and B Cell Immunology, Infectious Diseases Research Unit, Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Anna L Reye
- Vaccinology and B Cell Immunology, Infectious Diseases Research Unit, Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Claude P Muller
- Vaccinology and B Cell Immunology, Infectious Diseases Research Unit, Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| |
Collapse
|
26
|
Tufts DM, Hart TM, Chen GF, Kolokotronis SO, Diuk-Wasser MA, Lin YP. Outer surface protein polymorphisms linked to host-spirochete association in Lyme borreliae. Mol Microbiol 2019; 111:868-882. [PMID: 30666741 DOI: 10.1111/mmi.14209] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/16/2019] [Indexed: 12/15/2022]
Abstract
Lyme borreliosis is caused by multiple species of the spirochete bacteria Borrelia burgdorferi sensu lato. The spirochetes are transmitted by ticks to vertebrate hosts, including small- and medium-sized mammals, birds, reptiles, and humans. Strain-to-strain variation in host-specific infectivity has been documented, but the molecular basis that drives this differentiation is still unclear. Spirochetes possess the ability to evade host immune responses and colonize host tissues to establish infection in vertebrate hosts. In turn, hosts have developed distinct levels of immune responses when invaded by different species/strains of Lyme borreliae. Similarly, the ability of Lyme borreliae to colonize host tissues varies among different spirochete species/strains. One potential mechanism that drives this strain-to-strain variation of immune evasion and colonization is the polymorphic outer surface proteins produced by Lyme borreliae. In this review, we summarize research on strain-to-strain variation in host competence and discuss the evidence that supports the role of spirochete-produced protein polymorphisms in driving this variation in host specialization. Such information will provide greater insights into the adaptive mechanisms driving host and Lyme borreliae association, which will lead to the development of interventions to block pathogen spread and eventually reduce Lyme borreliosis health burden.
Collapse
Affiliation(s)
- Danielle M Tufts
- Department of Ecology, Evolution, and Environmental Biology, Columbia University, New York, NY, USA
| | - Thomas M Hart
- Department of Biological Sciences, University at Albany, Albany, NY, USA.,Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Grace F Chen
- Department of Biology, Misericordia University, Dallas, PA, USA
| | - Sergios-Orestis Kolokotronis
- Department of Epidemiology and Biostatistics, School of Public Health, SUNY Downstate Medical Center, Brooklyn, NY, USA
| | - Maria A Diuk-Wasser
- Department of Ecology, Evolution, and Environmental Biology, Columbia University, New York, NY, USA
| | - Yi-Pin Lin
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, NY, USA.,Department of Biomedical Sciences, University at Albany, Albany, NY, USA
| |
Collapse
|
27
|
Precision Medicine: The Role of the MSIDS Model in Defining, Diagnosing, and Treating Chronic Lyme Disease/Post Treatment Lyme Disease Syndrome and Other Chronic Illness: Part 2. Healthcare (Basel) 2018; 6:healthcare6040129. [PMID: 30400667 PMCID: PMC6316761 DOI: 10.3390/healthcare6040129] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 10/31/2018] [Accepted: 10/31/2018] [Indexed: 12/12/2022] Open
Abstract
We present a precision medical perspective to assist in the definition, diagnosis, and management of Post Treatment Lyme Disease Syndrome (PTLDS)/chronic Lyme disease. PTLDS represents a small subset of patients treated for an erythema migrans (EM) rash with persistent or recurrent symptoms and functional decline. The larger population with chronic Lyme disease is less understood and well defined. Multiple Systemic Infectious Disease Syndrome (MSIDS) is a multifactorial model for treating chronic disease(s), which identifies up to 16 overlapping sources of inflammation and their downstream effects. A patient symptom survey and a retrospective chart review of 200 patients was therefore performed on those patients with chronic Lyme disease/PTLDS to identify those variables on the MSIDS model with the greatest potential effect on regaining health. Results indicate that dapsone combination therapy decreased the severity of eight major Lyme symptoms, and multiple sources of inflammation (other infections, immune dysfunction, autoimmunity, food allergies/sensitivities, leaky gut, mineral deficiencies, environmental toxins with detoxification problems, and sleep disorders) along with downstream effects of inflammation may all affect chronic symptomatology. In part two of our observational study and review paper, we postulate that the use of this model can represent an important and needed paradigm shift in the diagnosis and treatment of chronic disease.
Collapse
|
28
|
Abstract
Lyme disease (LD) is the most common tick-borne disease in the Northern Hemisphere. As the most prevalent vector-borne disease in the USA, LD affects 300,000 human cases each year. LD is caused by inoculation of the bacterial spirochete, Borrelia burgdorferi sensu lato, from an infected tick. If not treated quickly and completely, the bacteria disseminate from the tick's biting site into multiple organs including the joints, heart, and brain. Thus, the best outcome from medical intervention can be expected with early detection and treatment with antibiotics, prior to multi-organ dissemination. In the absence of a characteristic rash, LD is diagnosed using serological testing involving enzyme-linked immunosorbent assay (ELISA) followed by western blotting, which is collectively known as the two-tier algorithm. These assays detect host antibodies against the bacteria, but are hampered by low sensitivity, which can miss early LD cases. This review discusses the application of some current assays for diagnosing LD clinically, thus providing a foundation for exploring newer techniques being developed in the laboratory for more sensitive detection of early LD.
Collapse
Affiliation(s)
- Eunice Chou
- Vassar College in Poughkeepsie, NY SUNY Downstate Medical School and SUNY Polytechnic Institute
| | - Yi-Pin Lin
- University in Ithaca, NY and postdoctoral training from Tufts University in Boston, MA
| | | |
Collapse
|
29
|
Lydon EC, Ko ER, Tsalik EL. The host response as a tool for infectious disease diagnosis and management. Expert Rev Mol Diagn 2018; 18:723-738. [PMID: 29939801 DOI: 10.1080/14737159.2018.1493378] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION A century of advances in infectious disease diagnosis and treatment changed the face of medicine. However, challenges continue to develop including multi-drug resistance, globalization that increases pandemic risks, and high mortality from severe infections. These challenges can be mitigated through improved diagnostics, and over the past decade, there has been a particular focus on the host response. Since this article was originally published in 2015, there have been significant developments in the field of host response diagnostics, warranting this updated review. Areas Covered: This review begins by discussing developments in single biomarkers and pauci-analyte biomarker panels. It then delves into 'omics, an area where there has been truly exciting progress. Specifically, progress has been made in sepsis diagnosis and prognosis; differentiating viral, bacterial, and fungal pathogen classes; pre-symptomatic diagnosis; and understanding disease-specific diagnostic challenges in tuberculosis, Lyme disease, and Ebola. Expert Commentary: As 'omics have become faster, more precise, and less expensive, the door has been opened for academic, industry, and government efforts to develop host-based infectious disease classifiers. While there are still obstacles to overcome, the chasm separating these scientific advances from the patient's bedside is shrinking.
Collapse
Affiliation(s)
- Emily C Lydon
- a Duke University School of Medicine , Duke University , Durham , NC , USA
| | - Emily R Ko
- b Duke Center for Applied Genomics & Precision Medicine, Department of Medicine , Duke University , Durham , NC , USA.,c Duke Regional Hospital, Department of Medicine , Duke University , Durham , NC , USA
| | - Ephraim L Tsalik
- b Duke Center for Applied Genomics & Precision Medicine, Department of Medicine , Duke University , Durham , NC , USA.,d Division of Infectious Diseases & International Health, Department of Medicine , Duke University , Durham , NC , USA.,e Emergency Medicine Service , Durham Veterans Affairs Health Care System , Durham , NC , USA
| |
Collapse
|
30
|
Horowitz R, Freeman PR. Improvement of common variable immunodeficiency using embryonic stem cell therapy in a patient with lyme disease: a clinical case report. Clin Case Rep 2018; 6:1166-1171. [PMID: 29881587 PMCID: PMC5986024 DOI: 10.1002/ccr3.1556] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 03/21/2018] [Accepted: 04/04/2018] [Indexed: 12/30/2022] Open
Abstract
Bone marrow transplantation and stem cell therapies have been used for the treatment of common variable immunodeficiency (CVID) and other life-threatening medical disorders. This is the first known case report in the medical literature describing improvement of both Lyme disease and CVID with human embryonic stem cell therapy.
Collapse
Affiliation(s)
- Richard Horowitz
- HHS Tickborne Disease Working GroupWashingtonD.C.USA
- Hudson Valley Healing Arts Center4232 Albany Post RoadHyde ParkNew York12538
| | - Phyllis R. Freeman
- Hudson Valley Healing Arts Center4232 Albany Post RoadHyde ParkNew York12538
| |
Collapse
|
31
|
A multi-omic analysis reveals the regulatory role of CD180 during the response of macrophages to Borrelia burgdorferi. Emerg Microbes Infect 2018; 7:19. [PMID: 29511161 PMCID: PMC5841238 DOI: 10.1038/s41426-017-0018-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 12/08/2017] [Accepted: 12/14/2017] [Indexed: 12/21/2022]
Abstract
Macrophages are cells of the innate immune system with the ability to phagocytose and induce a global pattern of responses that depend on several signaling pathways. We have determined the biosignature of murine bone marrow-derived macrophages and human blood monocytes using transcriptomic and proteomic approaches. We identified a common pattern of genes that are transcriptionally regulated and overall indicate that the response to B. burgdorferi involves the interaction of spirochetal antigens with several inflammatory pathways corresponding to primary (triggered by pattern-recognition receptors) and secondary (induced by proinflammatory cytokines) responses. We also show that the Toll-like receptor family member CD180 is downregulated by the stimulation of macrophages, but not monocytes, with the spirochete. Silencing Cd180 results in increased phagocytosis while tempering the production of the proinflammatory cytokine TNF. Cd180-silenced cells produce increased levels of Itgam and surface CD11b, suggesting that the regulation of CD180 by the spirochete initiates a cascade that increases CR3-mediated phagocytosis of the bacterium while repressing the consequent inflammatory response.
Collapse
|
32
|
Whiteside SK, Snook JP, Ma Y, Sonderegger FL, Fisher C, Petersen C, Zachary JF, Round JL, Williams MA, Weis JJ. IL-10 Deficiency Reveals a Role for TLR2-Dependent Bystander Activation of T Cells in Lyme Arthritis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2018; 200:1457-1470. [PMID: 29330323 PMCID: PMC5809275 DOI: 10.4049/jimmunol.1701248] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 12/13/2017] [Indexed: 11/19/2022]
Abstract
T cells predominate the immune responses in the synovial fluid of patients with persistent Lyme arthritis; however, their role in Lyme disease remains poorly defined. Using a murine model of persistent Lyme arthritis, we observed that bystander activation of CD4+ and CD8+ T cells leads to arthritis-promoting IFN-γ, similar to the inflammatory environment seen in the synovial tissue of patients with posttreatment Lyme disease. TCR transgenic mice containing monoclonal specificity toward non-Borrelia epitopes confirmed that bystander T cell activation was responsible for disease development. The microbial pattern recognition receptor TLR2 was upregulated on T cells following infection, implicating it as marker of bystander T cell activation. In fact, T cell-intrinsic expression of TLR2 contributed to IFN-γ production and arthritis, providing a mechanism for microbial-induced bystander T cell activation during infection. The IL-10-deficient mouse reveals a novel TLR2-intrinsic role for T cells in Lyme arthritis, with potentially broad application to immune pathogenesis.
Collapse
Affiliation(s)
- Sarah K Whiteside
- Department of Pathology, University of Utah, Salt Lake City, UT 84112; and
| | - Jeremy P Snook
- Department of Pathology, University of Utah, Salt Lake City, UT 84112; and
| | - Ying Ma
- Department of Pathology, University of Utah, Salt Lake City, UT 84112; and
| | - F Lynn Sonderegger
- Department of Pathology, University of Utah, Salt Lake City, UT 84112; and
| | - Colleen Fisher
- Department of Pathology, University of Utah, Salt Lake City, UT 84112; and
| | - Charisse Petersen
- Department of Pathology, University of Utah, Salt Lake City, UT 84112; and
| | - James F Zachary
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL 61802
| | - June L Round
- Department of Pathology, University of Utah, Salt Lake City, UT 84112; and
| | - Matthew A Williams
- Department of Pathology, University of Utah, Salt Lake City, UT 84112; and
| | - Janis J Weis
- Department of Pathology, University of Utah, Salt Lake City, UT 84112; and
| |
Collapse
|
33
|
Marques A, Schwartz I, Wormser GP, Wang Y, Hornung RL, Demirkale CY, Munson PJ, Turk SP, Williams C, Lee CCR, Yang J, Petzke MM. Transcriptome Assessment of Erythema Migrans Skin Lesions in Patients With Early Lyme Disease Reveals Predominant Interferon Signaling. J Infect Dis 2017; 217:158-167. [PMID: 29099929 PMCID: PMC5853807 DOI: 10.1093/infdis/jix563] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 10/24/2017] [Indexed: 02/07/2023] Open
Abstract
Background The most common clinical manifestation of early Lyme disease is the erythema migrans (EM) skin lesion that develops at the tick bite site typically between 7 and 14 days after infection with Borreliella burgdorferi. The host-pathogen interactions that occur in the skin may have a critical role in determining outcome of infection. Methods Gene arrays were used to characterize the global transcriptional alterations in skin biopsy samples of EM lesions from untreated adult patients with Lyme disease in comparison to controls. Results The transcriptional pattern in EM biopsies consisted of 254 differentially regulated genes (180 induced and 74 repressed) characterized by the induction of chemokines, cytokines, Toll-like receptors, antimicrobial peptides, monocytoid cell activation markers, and numerous genes annotated as interferon (IFN)-inducible. The IFN-inducible genes included 3 transcripts involved in tryptophan catabolism (IDO1, KMO, KYNU) that play a pivotal role in immune evasion by certain other microbial pathogens by driving the differentiation of regulatory T cells. Conclusions This is the first study to globally assess the human skin transcriptional response during early Lyme disease. Borreliella burgdorferi elicits a predominant IFN signature in the EM lesion, suggesting a potential mechanism for spirochetal dissemination via IDO1-mediated localized immunosuppression.
Collapse
Affiliation(s)
- Adriana Marques
- Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Ira Schwartz
- Department of Microbiology and Immunology, Valhalla
| | - Gary P Wormser
- Division of Infectious Diseases, Department of Medicine, New York Medical College, Valhalla
| | - Yanmei Wang
- Clinical Services Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Maryland
| | - Ronald L Hornung
- Clinical Services Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Maryland
| | - Cumhur Y Demirkale
- Mathematical and Statistical Computing Laboratory, Center for Information Technology, National Institutes of Health, Bethesda, Maryland
| | - Peter J Munson
- Mathematical and Statistical Computing Laboratory, Center for Information Technology, National Institutes of Health, Bethesda, Maryland
| | - Siu-Ping Turk
- Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Carla Williams
- Clinical Services Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Maryland
| | - Chyi-Chia Richard Lee
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Jun Yang
- Laboratory of Human Retrovirology and Immunoinformatics, Leidos Biomedical Research, Inc. Frederick National Laboratory for Cancer Research, Maryland
| | | |
Collapse
|
34
|
Embers ME, Hasenkampf NR, Jacobs MB, Tardo AC, Doyle-Meyers LA, Philipp MT, Hodzic E. Variable manifestations, diverse seroreactivity and post-treatment persistence in non-human primates exposed to Borrelia burgdorferi by tick feeding. PLoS One 2017; 12:e0189071. [PMID: 29236732 PMCID: PMC5728523 DOI: 10.1371/journal.pone.0189071] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 11/17/2017] [Indexed: 01/21/2023] Open
Abstract
The efficacy and accepted regimen of antibiotic treatment for Lyme disease has been a point of significant contention among physicians and patients. While experimental studies in animals have offered evidence of post-treatment persistence of Borrelia burgdorferi, variations in methodology, detection methods and limitations of the models have led to some uncertainty with respect to translation of these results to human infection. With all stages of clinical Lyme disease having previously been described in nonhuman primates, this animal model was selected in order to most closely mimic human infection and response to treatment. Rhesus macaques were inoculated with B. burgdorferi by tick bite and a portion were treated with recommended doses of doxycycline for 28 days at four months post-inoculation. Signs of infection, clinical pathology, and antibody responses to a set of five antigens were monitored throughout the ~1.2 year study. Persistence of B. burgdorferi was evaluated using xenodiagnosis, bioassays in mice, multiple methods of molecular detection, immunostaining with polyclonal and monoclonal antibodies and an in vivo culture system. Our results demonstrate host-dependent signs of infection and variation in antibody responses. In addition, we observed evidence of persistent, intact, metabolically-active B. burgdorferi after antibiotic treatment of disseminated infection and showed that persistence may not be reflected by maintenance of specific antibody production by the host.
Collapse
Affiliation(s)
- Monica E. Embers
- Division of Bacteriology and Parasitology, Tulane National Primate Research Center, Tulane University Health Sciences Center, Covington, LA, United States of America
- * E-mail:
| | - Nicole R. Hasenkampf
- Division of Bacteriology and Parasitology, Tulane National Primate Research Center, Tulane University Health Sciences Center, Covington, LA, United States of America
| | - Mary B. Jacobs
- Division of Bacteriology and Parasitology, Tulane National Primate Research Center, Tulane University Health Sciences Center, Covington, LA, United States of America
| | - Amanda C. Tardo
- Division of Bacteriology and Parasitology, Tulane National Primate Research Center, Tulane University Health Sciences Center, Covington, LA, United States of America
| | - Lara A. Doyle-Meyers
- Division of Veterinary Medicine, Tulane National Primate Research Center, Tulane University Health Sciences Center, Covington, LA, United States of America
| | - Mario T. Philipp
- Division of Bacteriology and Parasitology, Tulane National Primate Research Center, Tulane University Health Sciences Center, Covington, LA, United States of America
| | - Emir Hodzic
- Center for Comparative Medicine, Schools of Medicine and Veterinary Medicine, University of California Davis, Davis, CA, United States of America
| |
Collapse
|
35
|
Citera M, Freeman PR, Horowitz RI. Empirical validation of the Horowitz Multiple Systemic Infectious Disease Syndrome Questionnaire for suspected Lyme disease. Int J Gen Med 2017; 10:249-273. [PMID: 28919803 PMCID: PMC5590688 DOI: 10.2147/ijgm.s140224] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
PURPOSE Lyme disease is spreading worldwide, with multiple Borrelia species causing a broad range of clinical symptoms that mimic other illnesses. A validated Lyme disease screening questionnaire would be clinically useful for both providers and patients. Three studies evaluated such a screening tool, namely the Horowitz Multiple Systemic Infectious Disease Syndrome (MSIDS) Questionnaire. The purpose was to see if the questionnaire could accurately distinguish between Lyme patients and healthy individuals. METHODS Study 1 examined the construct validity of the scale examining its factor structure and reliability of the questionnaire among 537 individuals being treated for Lyme disease. Study 2 involved an online sample of 999 participants, who self-identified as either healthy (N=217) or suffering from Lyme now (N=782) who completed the Horowitz MSIDS Questionnaire (HMQ) along with an outdoor activity survey. We examined convergent validity among components of the scale and evaluated discriminant validity with the Big Five personality characteristics. The third study compared a sample of 236 patients with confirmed Lyme disease with an online sample of 568 healthy individuals. RESULTS Factor analysis results identified six underlying latent dimensions; four of these overlapped with critical symptoms identified by Horowitz - neuropathy, cognitive dysfunction, musculoskeletal pain, and fatigue. The HMQ showed acceptable levels of internal reliability using Cronbach's coefficient alpha and exhibited evidence of convergent and divergent validity. Components of the HMQ correlated more highly with each other than with unrelated traits. DISCUSSION The results consistently demonstrated that the HMQ accurately differentiated those with Lyme disease from healthy individuals. Three migratory pain survey items (persistent muscular pain, arthritic pain, and nerve pain/paresthesias) robustly identified individuals with verified Lyme disease. The results support the use of the HMQ as a valid, efficient, and low-cost screening tool for medical practitioners to decide if additional testing is warranted to distinguish between Lyme disease and other illnesses.
Collapse
Affiliation(s)
- Maryalice Citera
- Department of Psychology, State University of New York at New Paltz, New Paltz, NY
| | | | | |
Collapse
|
36
|
Lyme Disease. Infect Dis (Lond) 2017. [DOI: 10.1016/b978-0-7020-6285-8.00046-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
37
|
Badawi A. The Potential of Omics Technologies in Lyme Disease Biomarker Discovery and Early Detection. Infect Dis Ther 2016; 6:85-102. [PMID: 27900646 PMCID: PMC5336413 DOI: 10.1007/s40121-016-0138-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Indexed: 12/31/2022] Open
Abstract
Lyme borreliosis (LB) is the most prevalent arthropod-borne infectious disease in North America and many countries of the temperate Northern Hemisphere. It is associated with local and systemic manifestations and has persistent post-treatment health complications in some individuals. Innate and acquired immunity-related inflammation is likely to play a critical role in both host defense against Borrelia burgdorferi and disease severity. Large-scale analytical approaches to quantify gene expression (transcriptomics), proteins (proteomics) and metabolites (metabolomics) in LB have recently emerged with a potential to advance the development of disease biomarkers in early, disseminated and posttreatment disease stages. These technologies may permit defining the disease stage and facilitate its early detection to improve diagnosis. They will also likely allow elucidating the underlying molecular pathways to aid in identifying molecular targets for therapy. This article reviews the findings within the field of omics relevant to LB and its prospective utility in developing an array of biomarkers that can be employed in LB diagnosis and detection particularly at the early disease stages.
Collapse
Affiliation(s)
- Alaa Badawi
- Public Health Risk Sciences Division, Public Health Agency of Canada, 180 Queen Street West, Toronto, ON, Canada. .,Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, FitzGerald Building, 150 College Street, Toronto, ON, Canada.
| |
Collapse
|
38
|
CCL19 as a Chemokine Risk Factor for Posttreatment Lyme Disease Syndrome: a Prospective Clinical Cohort Study. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2016; 23:757-66. [PMID: 27358211 DOI: 10.1128/cvi.00071-16] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 06/22/2016] [Indexed: 12/31/2022]
Abstract
Approximately 10% to 20% of patients optimally treated for early Lyme disease develop persistent symptoms of unknown pathophysiology termed posttreatment Lyme disease syndrome (PTLDS). The objective of this study was to investigate associations between PTLDS and immune mediator levels during acute illness and at several time points following treatment. Seventy-six participants with physician-documented erythema migrans and 26 healthy controls with no history of Lyme disease were enrolled. Sixty-four cytokines, chemokines, and inflammatory markers were measured at each visit for a total of 6 visits over 1 year. An operationalized definition of PTLDS incorporating symptoms and functional impact was applied at 6 months and 1 year following treatment completion, and clinical outcome groups were defined as the return-to-health, symptoms-only, and PTLDS groups. Significance analysis of microarrays identified 7 of the 64 immune mediators to be differentially regulated by group. Generalized logit regressions controlling for potential confounders identified posttreatment levels of the T-cell chemokine CCL19 to be independently associated with clinical outcome group. Receiver operating characteristic analysis identified a CCL19 cutoff of >111.67 pg/ml at 1 month following treatment completion to be 82% sensitive and 83% specific for later PTLDS. We speculate that persistently elevated CCL19 levels among participants with PTLDS may reflect ongoing, immune-driven reactions at sites distal to secondary lymphoid tissue. Our findings suggest the relevance of CCL19 both during acute infection and as an immunologic risk factor for PTLDS during the posttreatment phase. Identification of a potential biomarker predictor for PTLDS provides the opportunity to better understand its pathophysiology and to develop early interventions in the context of appropriate and specific clinical information.
Collapse
|
39
|
Uhde M, Ajamian M, Li X, Wormser GP, Marques A, Alaedini A. Expression of C-Reactive Protein and Serum Amyloid A in Early to Late Manifestations of Lyme Disease. Clin Infect Dis 2016; 63:1399-1404. [PMID: 27585799 DOI: 10.1093/cid/ciw599] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 08/23/2016] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Infection with Borrelia burgdorferi, the causative agent of Lyme disease, triggers host immune responses that affect the clinical outcome and are a source of biomarkers with diagnostic utility. Although adaptive immunity to B. burgdorferi has been extensively characterized, considerably less information is available about the development of innate acute-phase responses in Lyme disease. Our aim in this study was to evaluate the expression of C-reactive protein (CRP) and serum amyloid A (SAA), the prototype acute-phase response proteins, in the context of the varying manifestations associated with Lyme borreliosis. METHODS Circulating concentrations of CRP and SAA in patients with a range of early to late objective manifestations of Lyme disease and in individuals with post-treatment Lyme disease syndrome were compared with those in healthy control groups. RESULTS CRP and SAA levels were significantly elevated in early localized and early disseminated Lyme disease but not in the later stages of active infection. Levels of CRP, but not SAA, were also found to be significantly increased in patients with antibiotic-refractory Lyme arthritis and in those with post-treatment Lyme disease syndrome. CONCLUSIONS These findings indicate that circulating CRP and SAA levels are highest when the concentration of spirochetes is greatest in skin and/or blood and that levels decline after the dissemination of the organism to extracutaneous sites in subsequent stages of infection. The data also suggest that antibiotic-refractory Lyme arthritis and post-treatment Lyme disease syndrome are associated with elevated CRP responses that are driven by inflammatory mechanisms distinct from those in active infection.
Collapse
Affiliation(s)
- Melanie Uhde
- Department of Medicine, Columbia University Medical Center, New York
| | - Mary Ajamian
- Department of Medicine, Columbia University Medical Center, New York
| | - Xueting Li
- Department of Medicine, Columbia University Medical Center, New York
| | - Gary P Wormser
- Division of Infectious Diseases, Department of Medicine, New York Medical College, Valhalla, New York
| | - Adriana Marques
- Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Armin Alaedini
- Department of Medicine, Columbia University Medical Center, New York
| |
Collapse
|
40
|
Five-Antigen Fluorescent Bead-Based Assay for Diagnosis of Lyme Disease. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2016; 23:294-303. [PMID: 26843487 DOI: 10.1128/cvi.00685-15] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 02/01/2016] [Indexed: 12/18/2022]
Abstract
The systematically difficult task of diagnosing Lyme disease can be simplified by sensitive and specific laboratory tests. The currently recommended two-tier test for serology is highly specific but falls short in sensitivity, especially in the early acute phase. We previously examined serially collected serum samples from Borrelia burgdorferi-infected rhesus macaques and defined a combination of antigens that could be utilized for detection of infection at all phases of disease in humans. The five B. burgdorferi antigens, consisting of OspC, OspA, DbpA, OppA2, and the C6 peptide, were combined into a fluorescent cytometric bead-based assay for the detection of B. burgdorferi antigen-specific IgG antibodies. Samples from Lyme disease patients and controls were used to determine the diagnostic value of this assay. Using this sample set, we found that our five-antigen multiplex IgG assay exhibited higher sensitivity (79.5%) than the enzyme immunoassay (EIA) (76.1%), the two-tier test (61.4%), and the C6 peptide enzyme-linked immunosorbent assay (ELISA) (77.2%) while maintaining specificity over 90%. When detection of IgM was added to the bead-based assay, the sensitivity improved to 91%, but at a cost of reduced specificity (78%). These results indicate that the rational combination of antigens in our multiplex assay may offer an improved serodiagnostic test for Lyme disease.
Collapse
|
41
|
Longitudinal Transcriptome Analysis Reveals a Sustained Differential Gene Expression Signature in Patients Treated for Acute Lyme Disease. mBio 2016; 7:e00100-16. [PMID: 26873097 PMCID: PMC4791844 DOI: 10.1128/mbio.00100-16] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Lyme disease is a tick-borne illness caused by the bacterium Borrelia burgdorferi, and approximately 10 to 20% of patients report persistent symptoms lasting months to years despite appropriate treatment with antibiotics. To gain insights into the molecular basis of acute Lyme disease and the ensuing development of post-treatment symptoms, we conducted a longitudinal transcriptome study of 29 Lyme disease patients (and 13 matched controls) enrolled at the time of diagnosis and followed for up to 6 months. The differential gene expression signature of Lyme disease following the acute phase of infection persisted for at least 3 weeks and had fewer than 44% differentially expressed genes (DEGs) in common with other infectious or noninfectious syndromes. Early Lyme disease prior to antibiotic therapy was characterized by marked upregulation of Toll-like receptor signaling but lack of activation of the inflammatory T-cell apoptotic and B-cell developmental pathways seen in other acute infectious syndromes. Six months after completion of therapy, Lyme disease patients were found to have 31 to 60% of their pathways in common with three different immune-mediated chronic diseases. No differential gene expression signature was observed between Lyme disease patients with resolved illness to those with persistent symptoms at 6 months post-treatment. The identification of a sustained differential gene expression signature in Lyme disease suggests that a panel of selected human host-based biomarkers may address the need for sensitive clinical diagnostics during the “window period” of infection prior to the appearance of a detectable antibody response and may also inform the development of new therapeutic targets. Lyme disease is the most common tick-borne infection in the United States, and some patients report lingering symptoms lasting months to years despite antibiotic treatment. To better understand the role of the human host response in acute Lyme disease and the development of post-treatment symptoms, we conducted the first longitudinal gene expression (transcriptome) study of patients enrolled at the time of diagnosis and followed up for up to 6 months after treatment. Importantly, we found that the gene expression signature of early Lyme disease is distinct from that of other acute infectious diseases and persists for at least 3 weeks following infection. This study also uncovered multiple previously undescribed pathways and genes that may be useful in the future as human host biomarkers for diagnosis and that constitute potential targets for the development of new therapies.
Collapse
|
42
|
Development of a Multiantigen Panel for Improved Detection of Borrelia burgdorferi Infection in Early Lyme Disease. J Clin Microbiol 2015; 53:3834-41. [PMID: 26447113 DOI: 10.1128/jcm.02111-15] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 09/29/2015] [Indexed: 01/08/2023] Open
Abstract
The current standard for laboratory diagnosis of Lyme disease in the United States is serologic detection of antibodies against Borrelia burgdorferi. The Centers for Disease Control and Prevention recommends a two-tiered testing algorithm; however, this scheme has limited sensitivity for detecting early Lyme disease. Thus, there is a need to improve diagnostics for Lyme disease at the early stage, when antibiotic treatment is highly efficacious. We examined novel and established antigen markers to develop a multiplex panel that identifies early infection using the combined sensitivity of multiple markers while simultaneously maintaining high specificity by requiring positive results for two markers to designate a positive test. Ten markers were selected from our initial analysis of 62 B. burgdorferi surface proteins and synthetic peptides by assessing binding of IgG and IgM to each in a training set of Lyme disease patient samples and controls. In a validation set, this 10-antigen panel identified a higher proportion of early-Lyme-disease patients as positive at the baseline or posttreatment visit than two-tiered testing (87.5% and 67.5%, respectively; P < 0.05). Equivalent specificities of 100% were observed in 26 healthy controls. Upon further analysis, positivity on the novel 10-antigen panel was associated with longer illness duration and multiple erythema migrans. The improved sensitivity and comparable specificity of our 10-antigen panel compared to two-tiered testing in detecting early B. burgdorferi infection indicates that multiplex analysis, featuring the next generation of markers, could advance diagnostic technology to better aid clinicians in diagnosing and treating early Lyme disease.
Collapse
|
43
|
Abstract
Nervous system involvement occurs in 10% to 15% of patients infected with the tick-borne spirochetes Borrelia burgdorferi, B afzelii, and B garinii. Peripheral nervous system involvement is common. Central nervous system (CNS) involvement, most commonly presenting with lymphocytic meningitis, causes modest cerebrospinal fluid (CSF) pleocytosis. Parenchymal CNS infection is rare. If the CNS is invaded, however, measuring local production of anti-B burgdorferi antibodies in the CSF provides a useful marker of infection. Most cases of neuroborreliosis can be cured with oral doxycycline; parenteral regimens should be reserved for patients with particularly severe disease.
Collapse
Affiliation(s)
- John J Halperin
- Department of Neurosciences, Overlook Medical Center, 99 Beauvoir Avenue, Summit, NJ 07902, USA; Sidney Kimmel Medical College of Thomas Jefferson University, 132 South, 10th street, Philadelphia, PA 19107, USA.
| |
Collapse
|
44
|
McManus M, Cincotta A. Effects of Borrelia on host immune system: Possible consequences for diagnostics. ADVANCES IN INTEGRATIVE MEDICINE 2015. [DOI: 10.1016/j.aimed.2014.11.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
45
|
Molins CR, Ashton LV, Wormser GP, Hess AM, Delorey MJ, Mahapatra S, Schriefer ME, Belisle JT. Development of a metabolic biosignature for detection of early Lyme disease. Clin Infect Dis 2015; 60:1767-75. [PMID: 25761869 PMCID: PMC4810808 DOI: 10.1093/cid/civ185] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 02/25/2015] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Early Lyme disease patients often present to the clinic prior to developing a detectable antibody response to Borrelia burgdorferi, the etiologic agent. Thus, existing 2-tier serology-based assays yield low sensitivities (29%-40%) for early infection. The lack of an accurate laboratory test for early Lyme disease contributes to misconceptions about diagnosis and treatment, and underscores the need for new diagnostic approaches. METHODS Retrospective serum samples from patients with early Lyme disease, other diseases, and healthy controls were analyzed for small molecule metabolites by liquid chromatography-mass spectrometry (LC-MS). A metabolomics data workflow was applied to select a biosignature for classifying early Lyme disease and non-Lyme disease patients. A statistical model of the biosignature was trained using the patients' LC-MS data, and subsequently applied as an experimental diagnostic tool with LC-MS data from additional patient sera. The accuracy of this method was compared with standard 2-tier serology. RESULTS Metabolic biosignature development selected 95 molecular features that distinguished early Lyme disease patients from healthy controls. Statistical modeling reduced the biosignature to 44 molecular features, and correctly classified early Lyme disease patients and healthy controls with a sensitivity of 88% (84%-95%), and a specificity of 95% (90%-100%). Importantly, the metabolic biosignature correctly classified 77%-95% of the of serology negative Lyme disease patients. CONCLUSIONS The data provide proof-of-concept that metabolic profiling for early Lyme disease can achieve significantly greater (P < .0001) diagnostic sensitivity than current 2-tier serology, while retaining high specificity.
Collapse
Affiliation(s)
- Claudia R. Molins
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention
| | - Laura V. Ashton
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins
| | - Gary P. Wormser
- Department of Medicine, Division of Infectious Diseases, New York Medical College, Valhalla, New York
| | - Ann M. Hess
- Department of Statistics, Colorado State University, Fort Collins
| | - Mark J. Delorey
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention
| | - Sebabrata Mahapatra
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins
| | - Martin E. Schriefer
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention
| | - John T. Belisle
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins
| |
Collapse
|
46
|
Silva-Filho JL, Souza MC, Henriques MG, Morrot A, Savino W, Caruso-Neves C, Pinheiro AAS. Renin-angiotensin system contributes to naive T-cell migration in vivo. Arch Biochem Biophys 2015; 573:1-13. [PMID: 25752953 DOI: 10.1016/j.abb.2015.02.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 02/04/2015] [Accepted: 02/28/2015] [Indexed: 01/11/2023]
Abstract
Angiotensin II (Ang II) plays an important role in the regulation of the T-cell response during inflammation. However, the cellular mechanisms underlying the regulation of lymphocytes under physiologic conditions have not yet been studied. Here, we tested the influence of Ang II on T-cell migration using T cells from BALB/c mice. The results obtained in vivo showed that when Ang II production or the AT1 receptor were blocked, T-cell counts were enhanced in blood but decreased in the spleen. The significance of these effects was confirmed by observing that these cells migrate, through fibronectin to Ang II via the AT1 receptor. We also observed a gradient of Ang II from peripheral blood to the spleen, which explains its chemotactic effect on this organ. The following cellular mechanisms were identified to mediate the Ang II effect: upregulation of the chemokine receptor CCR9; upregulation of the adhesion molecule CD62L; increased production of the chemokines CCL19 and CCL25 in the spleen. These results indicate that the higher levels of Ang II in the spleen and AT1 receptor activation contribute to migration of naive T cells to the spleen, which expands our understanding on how the Ang II/AT1 receptor axis contributes to adaptive immunity.
Collapse
Affiliation(s)
- J L Silva-Filho
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - M C Souza
- Instituto de Tecnologia em Fármacos, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | - M G Henriques
- Instituto de Tecnologia em Fármacos, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | - A Morrot
- Instituto de Microbiologia Professor Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - W Savino
- Departamento de Imunologia, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | - C Caruso-Neves
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil; Instituto Nacional de Ciência e Tecnologia em Biologia e Bioimagem, Conselho Nacional de Desenvolvimento Científico e Tecnológico/MCT, Brazil
| | - A A S Pinheiro
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil; Instituto Nacional para Pesquisa Translacional em Saúde e Ambiente na Região Amazônica, Conselho Nacional de Desenvolvimento Científico e Tecnológico/MCT, Brazil.
| |
Collapse
|
47
|
Mayne PJ. Clinical determinants of Lyme borreliosis, babesiosis, bartonellosis, anaplasmosis, and ehrlichiosis in an Australian cohort. Int J Gen Med 2014; 8:15-26. [PMID: 25565883 PMCID: PMC4278782 DOI: 10.2147/ijgm.s75825] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Background Borrelia burgdorferi is the causative agent of Lyme borreliosis. This spirochete, along with Babesia, Bartonella, Anaplasma, Ehrlichia, and the Rickettsia spp. are recognized tick-borne pathogens. In this study, the clinical manifestation of these zoonoses in Australia is described. Methods The clinical presentation of 500 patients over the course of 5 years was examined. Evidence of multisystem disease and cranial nerve neuropathy was sought. Supportive laboratory evidence of infection was examined. Results Patients from every state of Australia presented with a wide range of symptoms of disease covering multiple systems and a large range of time intervals from onset. Among these patients, 296 (59%) were considered to have a clinical diagnosis of Lyme borreliosis and 273 (54% of the 500) tested positive for the disease, the latter not being a subset of the former. In total, 450 (90%) had either clinical evidence for or laboratory proof of borrelial infection, and the great majority of cases featured neurological symptoms involving the cranial nerves, thus mimicking features of the disease found in Europe and Asia, as distinct from North America (where extracutaneous disease is principally an oligoarticular arthritis). Only 83 patients (17%; number [n]=492) reported never leaving Australia. Of the 500 patients, 317 (63%) had clinical or laboratory-supported evidence of coinfection with Babesia or Bartonella spp. Infection with A. phagocytophilum was detected in three individuals, and Ehrlichia chaffeensis was detected in one individual who had never traveled outside Australia. In the cohort, 30 (11%; n=279) had positive rickettsial serology. Conclusion The study suggests that there is a considerable presence of borreliosis in Australia, and a highly significant burden of coinfections accompanying borreliosis transmission. The concept sometimes advanced of a “Lyme-like illness” on the continent needs to be re-examined as the clinical interplay between all these infections. Evidence is presented for the first report of endemic anaplasmosis and ehrlichiosis on the continent.
Collapse
|