1
|
Kabirova E, Ryzhkova A, Lukyanchikova V, Khabarova A, Korablev A, Shnaider T, Nuriddinov M, Belokopytova P, Smirnov A, Khotskin NV, Kontsevaya G, Serova I, Battulin N. TAD border deletion at the Kit locus causes tissue-specific ectopic activation of a neighboring gene. Nat Commun 2024; 15:4521. [PMID: 38806452 PMCID: PMC11133455 DOI: 10.1038/s41467-024-48523-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/30/2024] [Indexed: 05/30/2024] Open
Abstract
Topologically associated domains (TADs) restrict promoter-enhancer interactions, thereby maintaining the spatiotemporal pattern of gene activity. However, rearrangements of the TADs boundaries do not always lead to significant changes in the activity pattern. Here, we investigated the consequences of the TAD boundaries deletion on the expression of developmentally important genes encoding tyrosine kinase receptors: Kit, Kdr, Pdgfra. We used genome editing in mice to delete the TADs boundaries at the Kit locus and characterized chromatin folding and gene expression in pure cultures of fibroblasts, mast cells, and melanocytes. We found that although Kit is highly active in both mast cells and melanocytes, deletion of the TAD boundary between the Kit and Kdr genes results in ectopic activation only in melanocytes. Thus, the epigenetic landscape, namely the mutual arrangement of enhancers and actively transcribing genes, is important for predicting the consequences of the TAD boundaries removal. We also found that mice without a TAD border between the Kit and Kdr genes have a phenotypic manifestation of the mutation - a lighter coloration. Thus, the data obtained shed light on the principles of interaction between the 3D chromatin organization and epigenetic marks in the regulation of gene activity.
Collapse
Affiliation(s)
- Evelyn Kabirova
- Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
| | | | | | - Anna Khabarova
- Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
| | - Alexey Korablev
- Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
| | | | | | - Polina Belokopytova
- Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | | | | | | | - Irina Serova
- Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
| | - Nariman Battulin
- Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia.
- Novosibirsk State University, Novosibirsk, Russia.
| |
Collapse
|
2
|
Ballan M, Bovo S, Bertolini F, Schiavo G, Schiavitto M, Negrini R, Fontanesi L. Population genomic structures and signatures of selection define the genetic uniqueness of several fancy and meat rabbit breeds. J Anim Breed Genet 2023; 140:663-678. [PMID: 37435689 DOI: 10.1111/jbg.12818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 06/25/2023] [Accepted: 07/02/2023] [Indexed: 07/13/2023]
Abstract
Following the recent domestication process of the European rabbit (Oryctolagus cuniculus), many different breeds and lines, distinguished primarily by exterior traits such as coat colour, fur structure and body size and shape, have been constituted. In this study, we genotyped, with a high-density single-nucleotide polymorphism panel, a total of 645 rabbits from 10 fancy breeds (Belgian Hare, Champagne d'Argent, Checkered Giant, Coloured Dwarf, Dwarf Lop, Ermine, Giant Grey, Giant White, Rex and Rhinelander) and three meat breeds (Italian White, Italian Spotted and Italian Silver). ADMIXTURE analysis indicated that breeds with similar phenotypic traits (e.g. coat colour and body size) shared common ancestries. Signatures of selection using two haplotype-based approaches (iHS and XP-EHH), combined with the results obtained with other methods previously reported that we applied to the same breeds, we identified a total of 5079 independent genomic regions with some signatures of selection, covering about 1777 Mb of the rabbit genome. These regions consistently encompassed many genes involved in pigmentation processes (ASIP, EDNRA, EDNRB, KIT, KITLG, MITF, OCA2, TYR and TYRP1), coat structure (LIPH) and body size, including two major genes (LCORL and HMGA2) among many others. This study revealed novel genomic regions under signatures of selection and further demonstrated that population structures and signatures of selection, left into the genome of these rabbit breeds, may contribute to understanding the genetic events that led to their constitution and the complex genetic mechanisms determining the broad phenotypic variability present in these untapped rabbit genetic resources.
Collapse
Affiliation(s)
- Mohamad Ballan
- Division of Animal Sciences, Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Samuele Bovo
- Division of Animal Sciences, Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Francesca Bertolini
- Division of Animal Sciences, Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Giuseppina Schiavo
- Division of Animal Sciences, Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Michele Schiavitto
- Associazione Nazionale Coniglicoltori Italiani (ANCI), Volturara Appula, Italy
| | | | - Luca Fontanesi
- Division of Animal Sciences, Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
3
|
Ballan M, Schiavo G, Bovo S, Schiavitto M, Negrini R, Frabetti A, Fornasini D, Fontanesi L. Comparative analysis of genomic inbreeding parameters and runs of homozygosity islands in several fancy and meat rabbit breeds. Anim Genet 2022; 53:849-862. [PMID: 36073189 PMCID: PMC9826494 DOI: 10.1111/age.13264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 07/01/2022] [Accepted: 08/25/2022] [Indexed: 01/11/2023]
Abstract
Runs of homozygosity (ROH) are defined as long stretches of DNA homozygous at each polymorphic position. The proportion of genome covered by ROH and their length are indicators of the level and origin of inbreeding. In this study, we analysed SNP chip datasets (obtained using the Axiom OrcunSNP Array) of a total of 702 rabbits from 12 fancy breeds and four meat breeds to identify ROH with different approaches and calculate several genomic inbreeding parameters. The highest average number of ROH per animal was detected in Belgian Hare (~150) and the lowest in Italian Silver (~106). The average length of ROH ranged from 4.001 ± 0.556 Mb in Italian White to 6.268 ± 1.355 Mb in Ermine. The same two breeds had the lowest (427.9 ± 86.4 Mb, Italian White) and the highest (921.3 ± 179.8 Mb, Ermine) average values of the sum of all ROH segments. More fancy breeds had a higher level of genomic inbreeding (as defined by ROH) than meat breeds. Several ROH islands contain genes involved in body size, body length, pigmentation processes, carcass traits, growth, and reproduction traits (e.g.: AOX1, GPX5, IFRD1, ITGB8, NELL1, NR3C1, OCA2, TRIB1, TRIB2). Genomic inbreeding parameters can be useful to overcome the lack of information in the management of rabbit genetic resources. ROH provided information to understand, to some extent, the genetic history of rabbit breeds and to identify signatures of selection in the rabbit genome.
Collapse
Affiliation(s)
- Mohamad Ballan
- Division of Animal Sciences, Department of Agricultural and Food SciencesUniversity of BolognaBolognaItaly
| | - Giuseppina Schiavo
- Division of Animal Sciences, Department of Agricultural and Food SciencesUniversity of BolognaBolognaItaly
| | - Samuele Bovo
- Division of Animal Sciences, Department of Agricultural and Food SciencesUniversity of BolognaBolognaItaly
| | - Michele Schiavitto
- Associazione Nazionale Coniglicoltori Italiani (ANCI), Contrada Giancola SncVolturara AppulaItaly
| | | | | | | | - Luca Fontanesi
- Division of Animal Sciences, Department of Agricultural and Food SciencesUniversity of BolognaBolognaItaly
| |
Collapse
|
4
|
Demars J, Labrune Y, Iannuccelli N, Deshayes A, Leroux S, Gilbert H, Aymard P, Benitez F, Riquet J. A genome-wide epistatic network underlies the molecular architecture of continuous color variation of body extremities. Genomics 2022; 114:110361. [PMID: 35378242 DOI: 10.1016/j.ygeno.2022.110361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 03/22/2022] [Accepted: 03/29/2022] [Indexed: 01/14/2023]
Abstract
Deciphering the molecular architecture of coat coloration for a better understanding of the biological mechanisms underlying pigmentation still remains a challenge. We took advantage of a rabbit French experimental population in which both a pattern and a gradient of coloration from white to brown segregated within the himalayan phenotype. The whole experimental design was genotyped using the high density Affymetrix® AxiomOrcun™ SNP Array and phenotyped into 6 different groups ordered from the lighter to the darker. Genome-wide association analyses pinpointed an oligogenic determinism, under recessive and additive inheritance, involving genes already known in melanogenesis (ASIP, KIT, MC1R, TYR), and likely processed pseudogenes linked to ribosomal function, RPS20 and RPS14. We also identified (i) gene-gene interactions through ASIP:MC1R affecting light cream/beige phenotypes while KIT:RPS responsible of dark chocolate/brown colors and (ii) a genome-wide epistatic network involving several others coloration genes such as POT1 or HPS5. Finally, we determined the recessive inheritance of the English spotting phenotype likely involving a copy number variation affecting at least the end of the coding sequence of the KIT gene. Our analyses of coloration as a continuous trait allowed us to go beyond much of the established knowledge through the detection of additional genes and gene-gene interactions that may contribute to the molecular architecture of the coloration phenotype.
Collapse
Affiliation(s)
- Julie Demars
- GenPhySE, Université de Toulouse, INRAE, ENVT, Toulouse INP, F-31326 Castanet-Tolosan, France.
| | - Yann Labrune
- GenPhySE, Université de Toulouse, INRAE, ENVT, Toulouse INP, F-31326 Castanet-Tolosan, France.
| | - Nathalie Iannuccelli
- GenPhySE, Université de Toulouse, INRAE, ENVT, Toulouse INP, F-31326 Castanet-Tolosan, France.
| | - Alice Deshayes
- UMR967, CEA, INSERM, Institut de Radiobiologie Cellulaire et Moléculaire, Télomères et réparation du chromosome, F- 92265 Fontenay-aux-Roses, France.
| | - Sophie Leroux
- GenPhySE, Université de Toulouse, INRAE, ENVT, Toulouse INP, F-31326 Castanet-Tolosan, France.
| | - Hélène Gilbert
- GenPhySE, Université de Toulouse, INRAE, ENVT, Toulouse INP, F-31326 Castanet-Tolosan, France.
| | - Patrick Aymard
- GenPhySE, Université de Toulouse, INRAE, ENVT, Toulouse INP, F-31326 Castanet-Tolosan, France.
| | - Florence Benitez
- GenPhySE, Université de Toulouse, INRAE, ENVT, Toulouse INP, F-31326 Castanet-Tolosan, France.
| | - Juliette Riquet
- GenPhySE, Université de Toulouse, INRAE, ENVT, Toulouse INP, F-31326 Castanet-Tolosan, France.
| |
Collapse
|
5
|
Ballan M, Bovo S, Schiavo G, Schiavitto M, Negrini R, Fontanesi L. Genomic diversity and signatures of selection in meat and fancy rabbit breeds based on high-density marker data. Genet Sel Evol 2022; 54:3. [PMID: 35062866 PMCID: PMC8780294 DOI: 10.1186/s12711-022-00696-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 01/07/2022] [Indexed: 11/23/2022] Open
Abstract
Background Domestication of the rabbit (Oryctolagus cuniculus) has led to a multi-purpose species that includes many breeds and lines with a broad phenotypic diversity, mainly for external traits (e.g. coat colours and patterns, fur structure, and morphometric traits) that are valued by fancy rabbit breeders. As a consequence of this human-driven selection, distinct signatures are expected to be present in the rabbit genome, defined as signatures of selection or selective sweeps. Here, we investigated the genome of three Italian commercial meat rabbit breeds (Italian Silver, Italian Spotted and Italian White) and 12 fancy rabbit breeds (Belgian Hare, Burgundy Fawn, Champagne d’Argent, Checkered Giant, Coloured Dwarf, Dwarf Lop, Ermine, Giant Grey, Giant White, Rex, Rhinelander and Thuringian) by using high-density single nucleotide polymorphism data. Signatures of selection were identified based on the fixation index (FST) statistic with different approaches, including single-breed and group-based methods, the latter comparing breeds that are grouped based on external traits (different coat colours and body sizes) and types (i.e. meat vs. fancy breeds). Results We identified 309 genomic regions that contained signatures of selection and that included genes that are known to affect coat colour (ASIP, MC1R and TYR), coat structure (LIPH), and body size (LCORL/NCAPG, COL11A1 and HOXD) in rabbits and that characterize the investigated breeds. Their identification proves the suitability of the applied methodologies for capturing recent selection events. Other regions included novel candidate genes that might contribute to the phenotypic variation among the analyzed breeds, including genes for pigmentation-related traits (EDNRA, EDNRB, MITF and OCA2) and body size, with a strong candidate for dwarfism in rabbit (COL2A1). Conclusions We report a genome-wide view of genetic loci that underlie the main phenotypic differences in the analyzed rabbit breeds, which can be useful to understand the shift from the domestication process to the development of breeds in O. cuniculus. These results enhance our knowledge about the major genetic loci involved in rabbit external traits and add novel information to understand the complexity of the genetic architecture underlying body size in mammals. Supplementary Information The online version contains supplementary material available at 10.1186/s12711-022-00696-9.
Collapse
|
6
|
Derks MFL, Steensma M. Review: Balancing Selection for Deleterious Alleles in Livestock. Front Genet 2021; 12:761728. [PMID: 34925454 PMCID: PMC8678120 DOI: 10.3389/fgene.2021.761728] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 11/19/2021] [Indexed: 01/04/2023] Open
Abstract
Harmful alleles can be under balancing selection due to an interplay of artificial selection for the variant in heterozygotes and purifying selection against the variant in homozygotes. These pleiotropic variants can remain at moderate to high frequency expressing an advantage for favorable traits in heterozygotes, while harmful in homozygotes. The impact on the population and selection strength depends on the consequence of the variant both in heterozygotes and homozygotes. The deleterious phenotype expressed in homozygotes can range from early lethality to a slightly lower fitness in the population. In this review, we explore a range of causative variants under balancing selection including loss-of-function variation (i.e., frameshift, stop-gained variants) and regulatory variation (affecting gene expression). We report that harmful alleles often affect orthologous genes in different species, often influencing analogous traits. The recent discoveries are mainly driven by the increasing genomic and phenotypic resources in livestock populations. However, the low frequency and sometimes subtle effects in homozygotes prevent accurate mapping of such pleiotropic variants, which requires novel strategies to discover. After discovery, the selection strategy for deleterious variants under balancing selection is under debate, as variants can contribute to the heterosis effect in crossbred animals in various livestock species, compensating for the loss in purebred animals. Nevertheless, gene-assisted selection is a useful tool to decrease the frequency of the harmful allele in the population, if desired. Together, this review marks various deleterious variants under balancing selection and describing the functional consequences at the molecular, phenotypic, and population level, providing a resource for further study.
Collapse
Affiliation(s)
- Martijn F L Derks
- Animal Breeding and Genomics, Wageningen University and Research, Wageningen, Netherlands.,Topigs Norsvin Research Center, Beuningen, Netherlands
| | - Marije Steensma
- Animal Breeding and Genomics, Wageningen University and Research, Wageningen, Netherlands
| |
Collapse
|
7
|
Utzeri VJ, Ribani A, Schiavo G, Fontanesi L. Describing variability in the tyrosinase (TYR) gene, the albino coat colour locus, in domestic and wild European rabbits. ITALIAN JOURNAL OF ANIMAL SCIENCE 2021. [DOI: 10.1080/1828051x.2021.1877574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Valerio Joe Utzeri
- Dipartimento di Scienze e Tecnologie Agro-alimentari, University of Bologna, Bologna, Italy
| | - Anisa Ribani
- Dipartimento di Scienze e Tecnologie Agro-alimentari, University of Bologna, Bologna, Italy
| | - Giuseppina Schiavo
- Dipartimento di Scienze e Tecnologie Agro-alimentari, University of Bologna, Bologna, Italy
| | - Luca Fontanesi
- Dipartimento di Scienze e Tecnologie Agro-alimentari, University of Bologna, Bologna, Italy
| |
Collapse
|
8
|
Dorożyńska K, Maj D. Rabbits - their domestication and molecular genetics of hair coat development and quality. Anim Genet 2020; 52:10-20. [PMID: 33216407 DOI: 10.1111/age.13024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/29/2020] [Indexed: 12/18/2022]
Abstract
The European rabbit (Oryctolagus cuniculus) is the only representative of its genus living in present-day Europe and North Africa, and all domestic rabbits are descendants of this one species, which is native to the Iberian Peninsula. There are over 300 breeds of rabbits that differ in size, coat color, length of ears and type of fur. Rabbits are bred for various reasons, such as for laboratory animals and a source of meat, wool and fur, as well as for pets and exhibition animals. The hair coat is a important economic trait of rabbits. Its development and quality are influenced by various factors, both environmental and genetic. The genetic mechanisms underlying its development have not been thoroughly researched. The aim of this review is to discuss the domestication of rabbits and the different aspects of rabbit genetics. A brief review of the properties of rabbit hair coat, hair coat development and hair cycle will be provided, followed by discussion of the factors regulating hair coat development, molecular control of hair coat development and the role of non-coding RNAs in the regulation of gene expression in the hair follicles of rabbits. Information about genetic regulation of pathways could provide useful tools for improving hair coat quality and be of practical use in rabbit breeding.
Collapse
Affiliation(s)
- K Dorożyńska
- Department of Genetics, Animal Breeding and Ethology, University of Agriculture in Krakow, al. Mickiewicza 24/28, Krakow, 30-059, Poland
| | - D Maj
- Department of Genetics, Animal Breeding and Ethology, University of Agriculture in Krakow, al. Mickiewicza 24/28, Krakow, 30-059, Poland
| |
Collapse
|
9
|
Cesarani A, Gaspa G, Pauciullo A, Degano L, Vicario D, Macciotta NPP. Genome-wide analysis of homozygosity regions in european simmental bulls. J Anim Breed Genet 2020; 138:69-79. [PMID: 33263211 DOI: 10.1111/jbg.12502] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 07/08/2020] [Accepted: 07/18/2020] [Indexed: 01/15/2023]
Abstract
The study of Runs of Homozygosity (ROH) is a useful approach for the characterization of the genome of livestock populations. Due to their high relationship with autozygosity, ROH allow to make inference about population genetic history, to estimate the level of inbreeding, to assess within breed heterogeneity and to detect the footprints of selection on livestock genomes. Aim of this study was to investigate the distribution of runs of homozygosity in bulls belonging to five European Simmental populations and to assess the relationship between three production traits (milk yield, fat and protein contents) and autozygosity. ROH count, distribution and ROH-based coefficient of inbreeding (FROH ) were calculated for 3,845 Simmental bulls of five different European countries: Austria (AT), Switzerland (CH), Czech Republic (CZ), Germany (DE) and Italy (IT). Average values of ROH number per animal, and total genome length covered by ROH were 77.8 ± 20.7 and 205 ± 74.4 Mb, respectively. Bulls from AT, DE and IT exhibited similar ROH characteristics. Swiss animals showed the highest (12.6%), while CZ the lowest (4.6%) FROH coefficient. The relationship between ROH occurrence and milk production traits was investigated through a genome-wide ROH-traits association analysis (GWRA). A total of 34 regions previously associated with milk traits (yield and/or composition) were identified by GWRA. Results of the present research highlight a mixed genetic background in the 5 European Simmental populations, with the possible presence of three subgroups. Moreover, a strong relationship between autozygosity and production traits has been detected.
Collapse
Affiliation(s)
- Alberto Cesarani
- Department of Agricultural Sciences, University of Sassari, Sassari, Italy.,Associazione Nazionale Allevatori Pezzata Rossa Italiana (ANAPRI), Udine, Italy
| | - Giustino Gaspa
- Department of Agricultural, Forestry and Alimentary Sciences, University of Torino, Grugliasco, Italy
| | - Alfredo Pauciullo
- Department of Agricultural, Forestry and Alimentary Sciences, University of Torino, Grugliasco, Italy
| | - Lorenzo Degano
- Associazione Nazionale Allevatori Pezzata Rossa Italiana (ANAPRI), Udine, Italy
| | - Daniele Vicario
- Associazione Nazionale Allevatori Pezzata Rossa Italiana (ANAPRI), Udine, Italy
| | | |
Collapse
|
10
|
On-Target CRISPR/Cas9 Activity Can Cause Undesigned Large Deletion in Mouse Zygotes. Int J Mol Sci 2020; 21:ijms21103604. [PMID: 32443745 PMCID: PMC7279260 DOI: 10.3390/ijms21103604] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/15/2020] [Accepted: 05/19/2020] [Indexed: 02/07/2023] Open
Abstract
Genome engineering has been tremendously affected by the appearance of the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (CRISPR/Cas9)-based approach. Initially discovered as an adaptive immune system for prokaryotes, the method has rapidly evolved over the last decade, overtaking multiple technical challenges and scientific tasks and becoming one of the most effective, reliable, and easy-to-use technologies for precise genomic manipulations. Despite its undoubtable advantages, CRISPR/Cas9 technology cannot ensure absolute accuracy and predictability of genomic editing results. One of the major concerns, especially for clinical applications, is mutations resulting from error-prone repairs of CRISPR/Cas9-induced double-strand DNA breaks. In some cases, such error-prone repairs can cause unpredicted and unplanned large genomic modifications within the CRISPR/Cas9 on-target site. Here we describe the largest, to the best of our knowledge, undesigned on-target deletion with a size of ~293 kb that occurred after the cytoplasmic injection of CRISPR/Cas9 system components into mouse zygotes and speculate about its origin. We suppose that deletion occurred as a result of the truncation of one of the ends of a double-strand break during the repair.
Collapse
|
11
|
Ahmad HI, Ahmad MJ, Jabbir F, Ahmar S, Ahmad N, Elokil AA, Chen J. The Domestication Makeup: Evolution, Survival, and Challenges. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00103] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
12
|
Li D, Wang X, Fu Y, Zhang C, Cao Y, Wang J, Zhang Y, Li Y, Chen Y, Li Z, Li W, Jiang R, Sun G, Tian Y, Li G, Kang X. Transcriptome Analysis of the Breast Muscle of Xichuan Black-Bone Chickens Under Tyrosine Supplementation Revealed the Mechanism of Tyrosine-Induced Melanin Deposition. Front Genet 2019; 10:457. [PMID: 31156710 PMCID: PMC6529781 DOI: 10.3389/fgene.2019.00457] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 04/30/2019] [Indexed: 01/18/2023] Open
Abstract
The Xichuan black-bone chicken, which is a rare local chicken species in China, is an important genetic resource of black-bone chickens. Tyrosine can affect melanin production, but the molecular mechanism underlying tyrosine-induced melanin deposition in Xichuan black-bone chickens is poorly understood. Here, the blackness degree and melanin content of the breast muscle of Xichuan black-bone chickens fed a basic diet with five levels of added tyrosine (i.e., 0.2, 0.4, 0.6, 0.8, and 1.0%; these groups were denoted test groups I-V, respectively) were assessed, and the results showed that 0.8% tyrosine was the optimal level of added tyrosine. Moreover, the effects of tyrosine supplementation on the proliferation and tyrosinase content of melanocytes in Xichuan black-bone chickens were evaluated. The results revealed a dose-dependent relationship between tyrosine supplementation and melanocyte proliferation. In addition, 417 differentially expressed genes (DEGs), including 160 upregulated genes and 257 downregulated genes, were identified in a comparative analysis of the transcriptome profiles constructed using the pooled total RNA from breast muscle tissues of the control group and test group IV, respectively (fold change ≥2.0, P < 0.05). These DEGs were mainly involved in melanogenesis, the calcium signaling pathway, the Wnt signaling pathway, the mTOR signaling pathway, and vascular smooth muscle contraction. The pathway analysis of the DEGs identified some key genes associated with pigmentation, such as DCT and EDNRB2. In summary, the melanin content of breast muscle could be markedly enhanced by adding an appropriate amount of tyrosine to the diet of Xichuan black-bone chickens, and the EDNRB2-mediated molecular regulatory network could play a key role in the biological process of tyrosine-induced melanin deposition. These results have deepened the understanding of the molecular regulatory mechanism of melanin deposition in black-bone chickens and provide a basis for the regulation of nutrition and genetic breeding associated with melanin deposition in Xichuan black-bone chickens.
Collapse
Affiliation(s)
- Donghua Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Xinlei Wang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Yawei Fu
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Chenxi Zhang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Yanfang Cao
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Jie Wang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Yanhua Zhang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Yuanfang Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Yi Chen
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Zhuanjian Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Wenting Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Ruirui Jiang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China.,Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Henan Agricultural University, Zhengzhou, China
| | - Guirong Sun
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China.,Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Henan Agricultural University, Zhengzhou, China
| | - Yadong Tian
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China.,Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Henan Agricultural University, Zhengzhou, China
| | - Guoxi Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China.,Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Henan Agricultural University, Zhengzhou, China
| | - Xiangtao Kang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China.,Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
13
|
Alhaddad H, Alhajeri BH. Cdrom Archive: A Gateway to Study Camel Phenotypes. Front Genet 2019; 10:48. [PMID: 30804986 PMCID: PMC6370635 DOI: 10.3389/fgene.2019.00048] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 01/21/2019] [Indexed: 11/30/2022] Open
Abstract
Camels are livestock that exhibit unique morphological, biochemical, and behavioral traits, which arose by natural and artificial selection. Investigating the molecular basis of camel traits has been limited by: (1) the absence of a comprehensive record of morphological trait variation (e.g., diseases) and the associated mode of inheritance, (2) the lack of extended pedigrees of specific trait(s), and (3) the long reproductive cycle of the camel, which makes the cost of establishing and maintaining a breeding colony (i.e., monitoring crosses) prohibitively high. Overcoming these challenges requires (1) detailed documentation of phenotypes/genetic diseases and their likely mode of inheritance (and collection of related DNA samples), (2) conducting association studies to identify phenotypes/genetic diseases causing genetic variants (instead of classical linkage analysis, which requires extended pedigrees), and (3) validating likely causative variants by screening a large number of camel samples from different populations. We attempt to address these issues by establishing a systematic way of collecting camel DNA samples, and associated phenotypic information, which we call the "Cdrom Archive." Here, we outline the process of building this archive to introduce it to other camel researchers (as an example). Additionally, we discuss the use of this archive to study the phenotypic traits of Arabian Peninsula camel breeds (the "Mezayen" camels). Using the Cdrom Archive, we report variable phenotypic traits related to the coat (color, length, and texture), ear and tail lengths, along with other morphological measurements.
Collapse
Affiliation(s)
- Hasan Alhaddad
- Department of Biological Sciences, Kuwait University, Kuwait City, Kuwait
| | | |
Collapse
|
14
|
Zhao B, Chen Y, Mu L, Hu S, Wu X. Identification and profiling of microRNA between back and belly Skin in Rex rabbits (Oryctolagus cuniculus). WORLD RABBIT SCIENCE 2018. [DOI: 10.4995/wrs.2018.7058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Skin is an important trait for Rex rabbits and skin development is influenced by many processes, including hair follicle cycling, keratinocyte differentiation and formation of coat colour and skin morphogenesis. We identified differentially expressed microRNAs (miRNAs) between the back and belly skin in Rex rabbits. In total, 211 miRNAs (90 upregulated miRNAs and 121 downregulated miRNAs) were identified with a |log<sub>2</sub> (fold change)|>1 and <em>P</em>-value<0.05. Using target gene prediction for the miRNAs, differentially expressed predicted target genes were identified and the functional enrichment and signalling pathways of these target genes were processed to reveal their biological functions. A number of differentially expressed miRNAs were found to be involved in regulation of the cell cycle, skin epithelium differentiation, keratinocyte proliferation, hair follicle development and melanogenesis. In addition, target genes regulated by miRNAs play key roles in the activities of the Hedgehog signalling pathway, Wnt signalling pathway, Osteoclast differentiation and MAPK pathway, revealing mechanisms of skin development. Nine candidate miRNAs and 5 predicted target genes were selected for verification of their expression by quantitative reverse transcription polymerase chain reaction. A regulation network of miRNA and their target genes was constructed by analysing the GO enrichment and signalling pathways. Further studies should be carried out to validate the regulatory relationships between candidate miRNAs and their target genes.
Collapse
|
15
|
Nazari-Ghadikolaei A, Mehrabani-Yeganeh H, Miarei-Aashtiani SR, Staiger EA, Rashidi A, Huson HJ. Genome-Wide Association Studies Identify Candidate Genes for Coat Color and Mohair Traits in the Iranian Markhoz Goat. Front Genet 2018; 9:105. [PMID: 29670642 PMCID: PMC5893768 DOI: 10.3389/fgene.2018.00105] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 03/16/2018] [Indexed: 12/31/2022] Open
Abstract
The Markhoz goat provides an opportunity to study the genetics underlying coat color and mohair traits of an Angora type goat using genome-wide association studies (GWAS). This indigenous Iranian breed is valued for its quality mohair used in ceremonial garments and has the distinction of exhibiting an array of coat colors including black, brown, and white. Here, we performed 16 GWAS for different fleece (mohair) traits and coat color in 228 Markhoz goats sampled from the Markhoz Goat Research Station in Sanandaj, Kurdistan province, located in western Iran using the Illumina Caprine 50K beadchip. The Efficient Mixed Model Linear analysis was used to identify genomic regions with potential candidate genes contributing to coat color and mohair characteristics while correcting for population structure. Significant associations to coat color were found within or near the ASIP, ITCH, AHCY, and RALY genes on chromosome 13 for black and brown coat color and the KIT and PDGFRA genes on chromosome 6 for white coat color. Individual mohair traits were analyzed for genetic association along with principal components that allowed for a broader perspective of combined traits reflecting overall mohair quality and volume. A multitude of markers demonstrated significant association to mohair traits highlighting potential candidate genes of POU1F1 on chromosome 1 for mohair quality, MREG on chromosome 2 for mohair volume, DUOX1 on chromosome 10 for yearling fleece weight, and ADGRV1 on chromosome 7 for grease percentage. Variation in allele frequencies and haplotypes were identified for coat color and differentiated common markers associated with both brown and black coat color. This demonstrates the potential for genetic markers to be used in future breeding programs to improve selection for coat color and mohair traits. Putative candidate genes, both novel and previously identified in other species or breeds, require further investigation to confirm phenotypic causality and potential epistatic relationships.
Collapse
Affiliation(s)
- Anahit Nazari-Ghadikolaei
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Hassan Mehrabani-Yeganeh
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Seyed R. Miarei-Aashtiani
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | | | - Amir Rashidi
- Department of Animal Science, Faculty of Agriculture Engineering, University of Kurdistan, Sanandaj, Iran
| | - Heather J. Huson
- Department of Animal Science, Cornell University, Ithaca, NY, United States
| |
Collapse
|
16
|
A Frameshift Mutation in KIT is Associated with White Spotting in the Arabian Camel. Genes (Basel) 2017; 8:genes8030102. [PMID: 28282952 PMCID: PMC5368706 DOI: 10.3390/genes8030102] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 03/03/2017] [Indexed: 12/04/2022] Open
Abstract
While the typical Arabian camel is characterized by a single colored coat, there are rare populations with white spotting patterns. White spotting coat patterns are found in virtually all domesticated species, but are rare in wild species. Theories suggest that white spotting is linked to the domestication process, and is occasionally associated with health disorders. Though mutations have been found in a diverse array of species, fewer than 30 genes have been associated with spotting patterns, thus providing a key set of candidate genes for the Arabian camel. We obtained 26 spotted camels and 24 solid controls for candidate gene analysis. One spotted and eight solid camels were whole genome sequenced as part of a separate project. The spotted camel was heterozygous for a frameshift deletion in KIT (c.1842delG, named KITW1 for White spotting 1), whereas all other camels were wild-type (KIT+/KIT+). No additional mutations unique to the spotted camel were detected in the EDNRB, EDN3, SOX10, KITLG, PDGFRA, MITF, and PAX3 candidate white spotting genes. Sanger sequencing of the study population identified an additional five KITW1/KIT+ spotted camels. The frameshift results in a premature stop codon five amino acids downstream, thus terminating KIT at the tyrosine kinase domain. An additional 13 spotted camels tested KIT+/KIT+, but due to phenotypic differences when compared to the KITW1/KIT+ camels, they likely represent an independent mutation. Our study suggests that there are at least two causes of white spotting in the Arabian camel, the newly described KITW1 allele and an uncharacterized mutation.
Collapse
|
17
|
Wu N, Qin H, Wang M, Bian Y, Dong B, Sun G, Zhao W, Chang G, Xu Q, Chen G. Variations in endothelin receptor B subtype 2 (EDNRB2) coding sequences and mRNA expression levels in 4 Muscovy duck plumage colour phenotypes. Br Poult Sci 2017; 58:116-121. [DOI: 10.1080/00071668.2016.1259531] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- N. Wu
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou, People’s Republic of China
| | - H. Qin
- National Waterfowl Germplasm Resource Pool, Taizhou, People’s Republic of China
| | - M. Wang
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou, People’s Republic of China
| | - Y. Bian
- National Waterfowl Germplasm Resource Pool, Taizhou, People’s Republic of China
| | - B. Dong
- National Waterfowl Germplasm Resource Pool, Taizhou, People’s Republic of China
| | - G. Sun
- National Waterfowl Germplasm Resource Pool, Taizhou, People’s Republic of China
| | - W. Zhao
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou, People’s Republic of China
| | - G. Chang
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou, People’s Republic of China
| | - Q. Xu
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou, People’s Republic of China
| | - G. Chen
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou, People’s Republic of China
| |
Collapse
|
18
|
Abstract
Although deafness can be acquired throughout an animal's life from a variety of causes, hereditary deafness, especially congenital hereditary deafness, is a significant problem in several species. Extensive reviews exist of the genetics of deafness in humans and mice, but not for deafness in domestic animals. Hereditary deafness in many species and breeds is associated with loci for white pigmentation, where the cochlear pathology is cochleo-saccular. In other cases, there is no pigmentation association and the cochlear pathology is neuroepithelial. Late onset hereditary deafness has recently been identified in dogs and may be present but not yet recognized in other species. Few genes responsible for deafness have been identified in animals, but progress has been made for identifying genes responsible for the associated pigmentation phenotypes. Across species, the genes identified with deafness or white pigmentation patterns include MITF, PMEL, KIT, EDNRB, CDH23, TYR, and TRPM1 in dog, cat, horse, cow, pig, sheep, ferret, mink, camelid, and rabbit. Multiple causative genes are present in some species. Significant work remains in many cases to identify specific chromosomal deafness genes so that DNA testing can be used to identify carriers of the mutated genes and thereby reduce deafness prevalence.
Collapse
Affiliation(s)
- George M. Strain
- Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA
| |
Collapse
|
19
|
Li L, Li D, Liu L, Li S, Feng Y, Peng X, Gong Y. Endothelin Receptor B2 (EDNRB2) Gene Is Associated with Spot Plumage Pattern in Domestic Ducks (Anas platyrhynchos). PLoS One 2015; 10:e0125883. [PMID: 25955279 PMCID: PMC4425580 DOI: 10.1371/journal.pone.0125883] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 03/08/2015] [Indexed: 01/24/2023] Open
Abstract
Endothelin receptor B subtype 2 (EDNRB2) is a seven-transmembrane G-protein coupled receptor. In this study, we investigated EDNRB2 gene as a candidate gene for duck spot plumage pattern according to studies of chicken and Japanese quail. The entire coding region was cloned by the reverse transcription polymerase chain reaction (RT-PCR). Sequence analysis showed that duck EDNRB2 cDNA contained a 1311bp open reading frame and encoded a putative protein of 436 amino acids residues. The transcript shared 89%-90% identity with the counterparts in other avian species. A phylogenetic tree based on amino acid sequences showed that duck EDNRB2 was evolutionary conserved in avian clade. The entire coding region of EDNRB2 were sequenced in 20 spot and 20 non-spot ducks, and 13 SNPs were identified. Two of them (c.940G>A and c.995G>A) were non-synonymous substitutions, and were genotyped in 647 ducks representing non-spot and spot phenotypes. The c.995G>A mutation, which results in the amino acid substitution of Arg332His, was completely associated with the spot phenotype: all 152 spot ducks were carriers of the AA genotype and the other 495 individuals with non-spot phenotype were carriers of GA or GG genotype, respectively. Segregation in 17 GA×GG and 22 GA×GA testing combinations confirmed this association since the segregation ratios and genotypes of the offspring were in agreement with the hypothesis. In order to investigate the underlying mechanism of the spot phenotype, MITF gene was used as cell type marker of melanocyte progenitor cells while TYR and TYRP1 gene were used as cell type markers of mature melanocytes. Transcripts of MITF, TYR and TYRP1 gene with expected size were identified in all pigmented skin tissues while PCR products were not obtained from non-pigmented skin tissues. It was inferred that melanocytes are absent in non-pigmented skin tissues of spot ducks.
Collapse
Affiliation(s)
- Ling Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Dan Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Li Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Shijun Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yanping Feng
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xiuli Peng
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yanzhang Gong
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- * E-mail:
| |
Collapse
|