1
|
Hao Z, Han Y, Zhao Q, Zhu M, Liu X, Yang Y, An N, He D, Lefai E, Storey KB, Chang H, Xie M. Involvement of Melatonin, Oxidative Stress, and Inflammation in the Protective Mechanism of the Carotid Artery over the Torpor-Arousal Cycle of Ground Squirrels. Int J Mol Sci 2024; 25:12888. [PMID: 39684599 DOI: 10.3390/ijms252312888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
Hibernating mammals experience severe hemodynamic changes over the torpor-arousal cycle, with oxygen consumption reaching peaks during the early stage of torpor to re-enter arousal. Melatonin (MT) can improve mitochondrial function and reduce oxidative stress and inflammation. However, the regulatory mechanisms of MT action on the vascular protective function of hibernators are still unclear. Morphology, hemodynamic, mitochondrial oxidative stress, and inflammatory factors of the carotid artery were assessed in ground squirrels who were sampled during summer active (SA), late torpor (LT), and interbout arousal (IBA) conditions. Changes were assessed by methods including hematoxylin and eosin staining, color Doppler ultrasound, ELISA, Western blots, and qPCR. Changes in arterial blood and serum melatonin were also measured by blood gas analyzer and ELISA, whereas mitochondrial oxidative stress and inflammation factors of primary vascular smooth muscle cells (VSMCs) were assessed by qPCR. (1) Intima-media carotid thickness, peak systolic velocity (PSV), end diastolic blood flow velocity (EDV), maximal blood flow rate (Vmax) and pulsatility index (PI) were significantly decreased in the LT group as compared with the SA group, whereas there were no difference between the SA and IBA groups. (2) PO2, oxygen saturation, hematocrit and PCO2 in the arterial blood were significantly increased, and pH was significantly decreased in the LT group as compared with the SA and IBA groups. (3) The serum melatonin concentration was significantly increased in the LT group as compared with the SA and IBA groups. (4) MT treatment significantly reduced the elevated levels of LONP1, NF-κB, NLRP3 and IL-6 mRNA expression of VSMCs under hypoxic conditions. (5) Protein expression of HSP60 and LONP1 in the carotid artery were significantly reduced in the LT and IBA groups as compared with the SA group. (6) The proinflammatory factors IL-1β, IL-6, and TNF-α were reduced in the carotid artery of the LT group as compared with the SA and IBA groups. The carotid artery experiences no oxidative stress or inflammatory response during the torpor-arousal cycle. In addition, melatonin accumulates during torpor and alleviates oxidative stress and inflammatory responses caused by hypoxia in vitro in VSMCs from ground squirrels.
Collapse
Affiliation(s)
- Ziwei Hao
- Department of Aerospace Physiology, Air Force Medical University, Xi'an 710032, China
- Shaanxi Key Laboratory for Animal Conservation, Northwest University, Xi'an 710069, China
| | - Yuting Han
- Shaanxi Key Laboratory for Animal Conservation, Northwest University, Xi'an 710069, China
| | - Qi Zhao
- Shaanxi Key Laboratory for Animal Conservation, Northwest University, Xi'an 710069, China
| | - Minghui Zhu
- Shaanxi Key Laboratory for Animal Conservation, Northwest University, Xi'an 710069, China
| | - Xiaoxuan Liu
- Shaanxi Key Laboratory for Animal Conservation, Northwest University, Xi'an 710069, China
| | - Yingyu Yang
- Shaanxi Key Laboratory for Animal Conservation, Northwest University, Xi'an 710069, China
| | - Ning An
- Shaanxi Key Laboratory for Animal Conservation, Northwest University, Xi'an 710069, China
| | - Dinglin He
- Shaanxi Key Laboratory for Animal Conservation, Northwest University, Xi'an 710069, China
| | - Etienne Lefai
- INRAE, Unité de Nutrition Humaine, Université Clermont Auvergne, UMR 1019, F-63000 Clermont-Ferrand, France
| | - Kenneth B Storey
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Hui Chang
- Shaanxi Key Laboratory for Animal Conservation, Northwest University, Xi'an 710069, China
| | - Manjiang Xie
- Department of Aerospace Physiology, Air Force Medical University, Xi'an 710032, China
| |
Collapse
|
2
|
Sone M, Mitsuhashi N, Sugiura Y, Matsuoka Y, Maeda R, Yamauchi A, Okahashi R, Yamashita J, Sone K, Enju S, Anegawa D, Yamaguchi Y. Identification of genes supporting cold resistance of mammalian cells: lessons from a hibernator. Cell Death Dis 2024; 15:685. [PMID: 39300059 DOI: 10.1038/s41419-024-07059-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 09/03/2024] [Accepted: 09/05/2024] [Indexed: 09/22/2024]
Abstract
Susceptibility of human cells to cold stress restricts the use of therapeutic hypothermia and long-term preservation of organs at low temperatures. In contrast, cells of mammalian hibernators possess remarkable cold resistance, but little is known about the molecular mechanisms underlying this phenomenon. In this study, we conducted a gain-of-function screening of genes that confer cold resistance to cold-vulnerable human cells using a cDNA library constructed from the Syrian hamster, a mammalian hibernator, and identified Gpx4 as a potent suppressor of cold-induced cell death. Additionally, genetic deletion of or pharmacological inhibition of Gpx4 revealed that Gpx4 is necessary for suppressing lipid peroxidation specifically under cold in hamster cell lines. Genetic disruption of other ferroptosis-suppressing pathways, namely biopterin synthesis and mitochondrial or plasma membrane CoQ reduction pathways, also accelerated cold-induced cell death under Gpx4 dysfunction. Collectively, ferroptosis-suppressing pathways protect the cells of a mammalian hibernator from cold-induced cell death and the augmentation of these pathways renders cold resistance to cells of non-hibernators, including humans.
Collapse
Grants
- 20H05766 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 20H05765 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 20B303 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 18K19321 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 23H04940 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 22K19320 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 23gm6310019 Japan Agency for Medical Research and Development (AMED)
Collapse
Affiliation(s)
- Masamitsu Sone
- Graduate School of Environmental Sciences, Hokkaido University, Sapporo, Japan.
- Institute of Low Temperature Science, Hokkaido University, Sapporo, Japan.
| | - Nonoka Mitsuhashi
- Graduate School of Environmental Sciences, Hokkaido University, Sapporo, Japan
- Institute of Low Temperature Science, Hokkaido University, Sapporo, Japan
| | - Yuki Sugiura
- Multiomics Platform, Center for Cancer Immunotherapy and Immunobiology, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Human Biology Microbiome Quantum Research Center (WPI-Bio2Q), Keio University School of Medicine, Tokyo, Japan
| | - Yuta Matsuoka
- Multiomics Platform, Center for Cancer Immunotherapy and Immunobiology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Rae Maeda
- Multiomics Platform, Center for Cancer Immunotherapy and Immunobiology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Akari Yamauchi
- Graduate School of Environmental Sciences, Hokkaido University, Sapporo, Japan
- Institute of Low Temperature Science, Hokkaido University, Sapporo, Japan
| | - Ryoto Okahashi
- Graduate School of Environmental Sciences, Hokkaido University, Sapporo, Japan
- Institute of Low Temperature Science, Hokkaido University, Sapporo, Japan
| | - Junpei Yamashita
- Institute of Low Temperature Science, Hokkaido University, Sapporo, Japan
| | - Kanako Sone
- Institute of Low Temperature Science, Hokkaido University, Sapporo, Japan
| | - Sachiyo Enju
- Institute of Low Temperature Science, Hokkaido University, Sapporo, Japan
| | - Daisuke Anegawa
- Institute of Low Temperature Science, Hokkaido University, Sapporo, Japan
| | - Yoshifumi Yamaguchi
- Graduate School of Environmental Sciences, Hokkaido University, Sapporo, Japan.
- Institute of Low Temperature Science, Hokkaido University, Sapporo, Japan.
- Inamori Research Institute for Science, Kyoto, Japan.
| |
Collapse
|
3
|
Cogut V, Goris M, Jansma A, van der Staaij M, Henning RH. Hippocampal neuroimmune response in mice undergoing serial daily torpor induced by calorie restriction. Front Neuroanat 2024; 18:1334206. [PMID: 38686173 PMCID: PMC11056553 DOI: 10.3389/fnana.2024.1334206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 03/11/2024] [Indexed: 05/02/2024] Open
Abstract
Hibernating animals demonstrate a remarkable ability to withstand extreme physiological brain changes without triggering adverse neuroinflammatory responses. While hibernators may offer valuable insights into the neuroprotective mechanisms inherent to hibernation, studies using such species are constrained by the limited availability of molecular tools. Laboratory mice may serve as an alternative, entering states of hypometabolism and hypothermia similar to the torpor observed in hibernation when faced with energy shortage. Notably, prolonged calorie restriction (CR) induces serial daily torpor patterns in mice, comparable to species that utilize daily hibernation. Here, we examined the neuroinflammatory response in the hippocampus of male C57BL/6 mice undergoing serial daily torpor induced by a 30% CR for 4 weeks. During daily torpor episodes, CR mice exhibited transient increases in TNF-α mRNA expression, which normalized upon arousal. Concurrently, the CA1 region of the hippocampus showed persistent morphological changes in microglia, characterized by reduced cell branching, decreased cell complexity and altered shape. Importantly, these morphological changes were not accompanied by evident signs of astrogliosis or oxidative stress, typically associated with detrimental neuroinflammation. Collectively, the adaptive nature of the brain's inflammatory response to CR-induced torpor in mice parallels observations in hibernators, highlighting its value for studying the mechanisms of brain resilience during torpor. Such insights could pave the way for novel therapeutic interventions in stroke and neurodegenerative disorders in humans.
Collapse
Affiliation(s)
- Valeria Cogut
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, Groningen, Netherlands
| | | | | | | | | |
Collapse
|
4
|
Yang Y, Hao Z, An N, Han Y, Miao W, Storey KB, Lefai E, Liu X, Wang J, Liu S, Xie M, Chang H. Integrated transcriptomics and metabolomics reveal protective effects on heart of hibernating Daurian ground squirrels. J Cell Physiol 2023; 238:2724-2748. [PMID: 37733616 DOI: 10.1002/jcp.31123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/02/2023] [Accepted: 09/08/2023] [Indexed: 09/23/2023]
Abstract
Hibernating mammals are natural models of resistance to ischemia, hypoxia-reperfusion injury, and hypothermia. Daurian ground squirrels (spermophilus dauricus) can adapt to endure multiple torpor-arousal cycles without sustaining cardiac damage. However, the molecular regulatory mechanisms that underlie this adaptive response are not yet fully understood. This study investigates morphological, functional, genetic, and metabolic changes that occur in the heart of ground squirrels in three groups: summer active (SA), late torpor (LT), and interbout arousal (IBA). Morphological and functional changes in the heart were measured using hematoxylin-eosin (HE) staining, Masson staining, echocardiography, and enzyme-linked immunosorbent assay (ELISA). Results showed significant changes in cardiac function in the LT group as compared with SA or IBA groups, but no irreversible damage occurred. To understand the molecular mechanisms underlying these phenotypic changes, transcriptomic and metabolomic analyses were conducted to assess differential changes in gene expression and metabolite levels in the three groups of ground squirrels, with a focus on GO and KEGG pathway analysis. Transcriptomic analysis showed that differentially expressed genes were involved in the remodeling of cytoskeletal proteins, reduction in protein synthesis, and downregulation of the ubiquitin-proteasome pathway during hibernation (including LT and IBA groups), as compared with the SA group. Metabolomic analysis revealed increased free amino acids, activation of the glutathione antioxidant system, altered cardiac fatty acid metabolic preferences, and enhanced pentose phosphate pathway activity during hibernation as compared with the SA group. Combining the transcriptomic and metabolomic data, active mitochondrial oxidative phosphorylation and creatine-phosphocreatine energy shuttle systems were observed, as well as inhibition of ferroptosis signaling pathways during hibernation as compared with the SA group. In conclusion, these results provide new insights into cardio-protection in hibernators from the perspective of gene and metabolite changes and deepen our understanding of adaptive cardio-protection mechanisms in mammalian hibernators.
Collapse
Affiliation(s)
- Yingyu Yang
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi'an, China
| | - Ziwei Hao
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi'an, China
| | - Ning An
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi'an, China
| | - Yuting Han
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi'an, China
| | - Weilan Miao
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi'an, China
| | - Kenneth B Storey
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
| | - Etienne Lefai
- INRAE, Unité de Nutrition Humaine, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Xiaoxuan Liu
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi'an, China
| | - Junshu Wang
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi'an, China
| | - Shuo Liu
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi'an, China
| | - Manjiang Xie
- Department of Aerospace Physiology, Air Force Medical University, Xi'an, Shaanxi, China
| | - Hui Chang
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi'an, China
| |
Collapse
|
5
|
Drew KL, Bhowmick S, Laughlin BW, Goropashnaya AV, Tøien Ø, Sugiura MH, Wong A, Pourrezaei K, Barati Z, Chen CY. Opportunities and barriers to translating the hibernation phenotype for neurocritical care. Front Neurol 2023; 14:1009718. [PMID: 36779060 PMCID: PMC9911456 DOI: 10.3389/fneur.2023.1009718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 01/11/2023] [Indexed: 01/28/2023] Open
Abstract
Targeted temperature management (TTM) is standard of care for neonatal hypoxic ischemic encephalopathy (HIE). Prevention of fever, not excluding cooling core body temperature to 33°C, is standard of care for brain injury post cardiac arrest. Although TTM is beneficial, HIE and cardiac arrest still carry significant risk of death and severe disability. Mammalian hibernation is a gold standard of neuroprotective metabolic suppression, that if better understood might make TTM more accessible, improve efficacy of TTM and identify adjunctive therapies to protect and regenerate neurons after hypoxic ischemia brain injury. Hibernating species tolerate cerebral ischemia/reperfusion better than humans and better than other models of cerebral ischemia tolerance. Such tolerance limits risk of transitions into and out of hibernation torpor and suggests that a barrier to translate hibernation torpor may be human vulnerability to these transitions. At the same time, understanding how hibernating mammals protect their brains is an opportunity to identify adjunctive therapies for TTM. Here we summarize what is known about the hemodynamics of hibernation and how the hibernating brain resists injury to identify opportunities to translate these mechanisms for neurocritical care.
Collapse
Affiliation(s)
- Kelly L. Drew
- Center for Transformative Research in Metabolism, Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK, United States
| | - Saurav Bhowmick
- Center for Transformative Research in Metabolism, Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK, United States
| | - Bernard W. Laughlin
- Center for Transformative Research in Metabolism, Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK, United States
| | - Anna V. Goropashnaya
- Center for Transformative Research in Metabolism, Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK, United States
| | - Øivind Tøien
- Center for Transformative Research in Metabolism, Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK, United States
| | - M. Hoshi Sugiura
- Center for Transformative Research in Metabolism, Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK, United States
| | - Ardy Wong
- Drexel University School of Biomedical Engineering, Science and Health Systems, Philadelphia, PA, United States
| | - Kambiz Pourrezaei
- Drexel University School of Biomedical Engineering, Science and Health Systems, Philadelphia, PA, United States
| | - Zeinab Barati
- Center for Transformative Research in Metabolism, Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK, United States
- Barati Medical LLC, Fairbanks, AK, United States
| | - Chao-Yin Chen
- Department of Pharmacology, University of California, Davis, Davis, CA, United States
| |
Collapse
|
6
|
Lv S, Jiang Y, Li Y, Huang R, Peng L, Ma Z, Lu N, Lin X, Yan J. Comparative and evolutionary analysis of RIP kinases in immune responses. Front Genet 2022; 13:796291. [PMID: 36263437 PMCID: PMC9573974 DOI: 10.3389/fgene.2022.796291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 08/01/2022] [Indexed: 11/29/2022] Open
Abstract
The group of receptor-interacting protein (RIP) kinases has seven members (RIPK1–7), with one homologous kinase domain but distinct non-kinase regions. Although RIPK1–3 have emerged as key modulators of inflammation and cell death, few studies have connected RIPK4–7 to immune responses. The divergence in domain structures and paralogue information in the Ensembl database have raised question about the phylogeny of RIPK1–7. In this study, phylogenetic trees of RIPK1–7 and paralogues constructed using full-length amino acid sequences or Kinase domain demonstrate that RIPK6 and RIPK7 are distinct from RIPK1–5 and paralogues shown in the Ensembl database are inaccurate. Comparative and evolutionary analyses were subsequently performed to gain new clues about the potential functions of RIPK3–7. RIPK3 gene loss in birds and animals that undergo torpor, a common physiological phenomenon in cold environments, implies that RIPK3 may be involved in ischemia-reperfusion injury and/or high metabolic rate. The negligible expression of RIPK4 and RIPK5 in immune cells is likely responsible for the lack of studies on the direct role of these members in immunity; RIPK6 and RIPK7 are conserved among plants, invertebrates and vertebrates, and dominantly expressed in innate immune cells, indicating their roles in innate immunity. Overall, our results provide insights into the multifaceted and conserved biochemical functions of RIP kinases.
Collapse
Affiliation(s)
- Shangge Lv
- Department of Diagnostics, Medical Integration and Practice Center, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yu Jiang
- Division of Epidemiology, Biostatistics, and Environmental Health, School of Public Health. University of Memphis, Memphis, TN, United States
| | - Yuzheng Li
- College of Land Science and Technology, China Agricultural University, Beijing, China
| | - Ruilin Huang
- Department of Diagnostics, Medical Integration and Practice Center, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Lingyu Peng
- Department of Diagnostics, Medical Integration and Practice Center, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zhaoyin Ma
- Department of Diagnostics, Medical Integration and Practice Center, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Nan Lu
- Department of Diagnostics, Medical Integration and Practice Center, Cheeloo College of Medicine, Shandong University, Jinan, China
- *Correspondence: Nan Lu, ; Xiaoying Lin, ; Jie Yan,
| | - Xiaoying Lin
- Department of Diagnostics, Medical Integration and Practice Center, Cheeloo College of Medicine, Shandong University, Jinan, China
- *Correspondence: Nan Lu, ; Xiaoying Lin, ; Jie Yan,
| | - Jie Yan
- Department of Diagnostics, Medical Integration and Practice Center, Cheeloo College of Medicine, Shandong University, Jinan, China
- *Correspondence: Nan Lu, ; Xiaoying Lin, ; Jie Yan,
| |
Collapse
|
7
|
Han Y, Miao W, Hao Z, An N, Yang Y, Zhang Z, Chen J, Storey KB, Lefai E, Chang H. The Protective Effects on Ischemia–Reperfusion Injury Mechanisms of the Thoracic Aorta in Daurian Ground Squirrels (Spermophilus dauricus) over the Torpor–Arousal Cycle of Hibernation. Int J Mol Sci 2022; 23:ijms231810248. [PMID: 36142152 PMCID: PMC9499360 DOI: 10.3390/ijms231810248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/28/2022] [Accepted: 09/04/2022] [Indexed: 11/25/2022] Open
Abstract
Hibernators are a natural model of vascular ischemia–reperfusion injury; however, the protective mechanisms involved in dealing with such an injury over the torpor–arousal cycle are unclear. The present study aimed to clarify the changes in the thoracic aorta and serum in summer-active (SA), late-torpor (LT) and interbout-arousal (IBA) Daurian ground squirrels (Spermophilus dauricus). The results show that total antioxidant capacity (TAC) was unchanged, but malondialdehyde (MDA), hydrogen peroxide (H2O2), interleukin-1β (IL-1β) and tumor necrosis factor α (TNFα) were significantly increased for the LT group, whereas the levels of superoxide dismutase (SOD) and interleukin-10 (IL-10) were significantly reduced in the LT group as compared with the SA group. Moreover, the levels of MDA and IL-1β were significantly reduced, whereas SOD and IL-10 were significantly increased in the IBA group as compared with the SA group. In addition, the lumen area of the thoracic aorta and the expression of the smooth muscle cells (SMCs) contractile marker protein 22α (SM22α) were significantly reduced, whereas the protein expression of the synthetic marker proteins osteopontin (OPN), vimentin (VIM) and proliferating cell nuclear antigen (PCNA) were significantly increased in the LT group as compared with the SA group. Furthermore, the smooth muscle layer of the thoracic aorta was significantly thickened, and PCNA protein expression was significantly reduced in the IBA group as compared with the SA group. The contractile marker proteins SM22α and synthetic marker protein VIM underwent significant localization changes in both LT and IBA groups, with localization of the contractile marker protein α-smooth muscle actin (αSMA) changing only in the IBA group as compared with the SA group. In tunica intima, the serum levels of heparin sulfate (HS) and syndecan-1 (Sy-1) in the LT group were significantly reduced, but the serum level of HS in the IBA group increased significantly as compared with the SA group. Protein expression and localization of endothelial nitric oxide synthase (eNOS) was unchanged in the three groups. In summary, the decrease in reactive oxygen species (ROS) and pro-inflammatory factors and increase in SOD and anti-inflammatory factors during the IBA period induced controlled phenotypic switching of thoracic aortic SMCs and restoration of endothelial permeability to resist ischemic and hypoxic injury during torpor of Daurian ground squirrels.
Collapse
Affiliation(s)
- Yuting Han
- Shaanxi Key Laboratory for Animal Conservation, Northwest University, Xi’an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Sciences, Northwest University, Ministry of Education, 229# North Taibai Road, Xi’an 710069, China
| | - Weilan Miao
- Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Sciences, Northwest University, Ministry of Education, 229# North Taibai Road, Xi’an 710069, China
| | - Ziwei Hao
- Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Sciences, Northwest University, Ministry of Education, 229# North Taibai Road, Xi’an 710069, China
| | - Ning An
- Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Sciences, Northwest University, Ministry of Education, 229# North Taibai Road, Xi’an 710069, China
| | - Yingyu Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Sciences, Northwest University, Ministry of Education, 229# North Taibai Road, Xi’an 710069, China
| | - Ziwen Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Sciences, Northwest University, Ministry of Education, 229# North Taibai Road, Xi’an 710069, China
| | - Jiayu Chen
- Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Sciences, Northwest University, Ministry of Education, 229# North Taibai Road, Xi’an 710069, China
| | - Kenneth B. Storey
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Etienne Lefai
- INRAE, Unité de Nutrition Humaine, Université Clermont Auvergne, UMR 1019, F-63000 Clermont-Ferrand, France
| | - Hui Chang
- Shaanxi Key Laboratory for Animal Conservation, Northwest University, Xi’an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Sciences, Northwest University, Ministry of Education, 229# North Taibai Road, Xi’an 710069, China
- Correspondence:
| |
Collapse
|
8
|
Mikes M, Rice SA, Bibus D, Kitaysky A, Drew KL. Translating PUFA omega 6:3 ratios from wild to captive hibernators (Urocitellus parryii) enhances sex-dependent mass-gain without increasing physiological stress indicators. J Comp Physiol B 2022; 192:529-540. [PMID: 35503574 PMCID: PMC9197884 DOI: 10.1007/s00360-022-01437-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/20/2022] [Accepted: 03/30/2022] [Indexed: 11/28/2022]
Abstract
Omega 3 polyunsaturated fatty acids (PUFAs) are well-documented for their influence on health and weight loss. Recent studies indicate omega 3 PUFAs may exert a negative impact on cellular stress and physiology in some hibernators. We asked if physiological stress indicators, lipid peroxidation and mass gain in Arctic Ground Squirrels (AGS) were negatively influenced by naturally occurring dietary omega 3 PUFA levels compared to omega 3 PUFA levels found in common laboratory diets. We found plasma fatty acid profiles of free-ranging AGS to be high in omega 3 PUFAs with balanced omega 6:3 ratios, while standard laboratory diets and plasma of captive AGS are high in omega 6 and low in omega 3 PUFAs with higher omega 6:3 ratios. Subsequently, we designed a diet to mimick free-range AGS omega 6:3 ratios in captive AGS. Groups of wild-caught juvenile AGS were either fed: (1) Mazuri Rodent Chow (Standard Rodent chow, 4.95 omega 6:3 ratio), or (2) balanced omega 6:3 chow (Balanced Diet, 1.38 omega 6:3). AGS fed the Balanced Diet had plasma omega 6:3 ratios that mimicked plasma profiles of wild AGS. Balanced Diet increased female body mass before hibernation, but did not influence levels of cortisol in plasma or levels of the lipid peroxidation product 4-HNE in brown adipose tissue. Overall, as the mass gain is critical during pre-hibernation for obligate hibernators, the results show that mimicking a fatty acid profile of wild AGS facilitates sex-dependent mass accumulation without increasing stress indicators.
Collapse
Affiliation(s)
- Monica Mikes
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK, USA.,Department of Biology and Wildlife, University of Alaska Fairbanks, Fairbanks, AK, USA
| | - Sarah A Rice
- Department of Chemistry and Biochemistry, University of Alaska Fairbanks, Fairbanks, AK, USA. .,Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK, USA.
| | - Doug Bibus
- Lipid Technologies, LLC, Austin, MN, USA
| | - Alexander Kitaysky
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK, USA.,Department of Biology and Wildlife, University of Alaska Fairbanks, Fairbanks, AK, USA
| | - Kelly L Drew
- Department of Chemistry and Biochemistry, University of Alaska Fairbanks, Fairbanks, AK, USA.,Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK, USA
| |
Collapse
|
9
|
Abstract
Hibernation is a powerful response of a number of mammalian species to reduce energy during the cold winter season, when food is scarce. Mammalian hibernators survive winter by spending most of the time in a state of torpor, where basal metabolic rate is strongly suppressed and body temperature comes closer to ambient temperature. These torpor bouts are regularly interrupted by short arousals, where metabolic rate and body temperature spontaneously return to normal levels. The mechanisms underlying these changes, and in particular the strong metabolic suppression of torpor, have long remained elusive. As summarized in this Commentary, increasing evidence points to a potential key role for hydrogen sulfide (H2S) in the suppression of mitochondrial respiration during torpor. The idea that H2S could be involved in hibernation originated in some early studies, where exogenous H2S gas was found to induce a torpor-like state in mice, and despite some controversy, the idea persisted. H2S is a widespread signaling molecule capable of inhibiting mitochondrial respiration in vitro and studies found significant in vivo changes in endogenous H2S metabolites associated with hibernation or torpor. Along with increased expression of H2S-synthesizing enzymes during torpor, H2S degradation catalyzed by the mitochondrial sulfide:quinone oxidoreductase (SQR) appears to have a key role in controlling H2S availability for inhibiting respiration. Specifically, in thirteen-lined squirrels, SQR is highly expressed and inhibited in torpor, possibly by acetylation, thereby limiting H2S oxidation and causing inhibition of respiration. H2S may also control other aspects associated with hibernation, such as synthesis of antioxidant enzymes and of SQR itself.
Collapse
Affiliation(s)
| | - Angela Fago
- Department of Biology, Aarhus University, Aarhus C 8000, Denmark
| |
Collapse
|
10
|
Hepatic resistance to cold ferroptosis in a mammalian hibernator Syrian hamster depends on effective storage of diet-derived α-tocopherol. Commun Biol 2021; 4:796. [PMID: 34172811 PMCID: PMC8233303 DOI: 10.1038/s42003-021-02297-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 06/03/2021] [Indexed: 02/07/2023] Open
Abstract
Mammalian hibernators endure severe and prolonged hypothermia that is lethal to non-hibernators, including humans and mice. The mechanisms responsible for the cold resistance remain poorly understood. Here, we found that hepatocytes from a mammalian hibernator, the Syrian hamster, exhibited remarkable resistance to prolonged cold culture, whereas murine hepatocytes underwent cold-induced cell death that fulfills the hallmarks of ferroptosis such as necrotic morphology, lipid peroxidation and prevention by an iron chelator. Unexpectedly, hepatocytes from Syrian hamsters exerted resistance to cold- and drug-induced ferroptosis in a diet-dependent manner, with the aid of their superior ability to retain dietary α-tocopherol (αT), a vitamin E analog, in the liver and blood compared with those of mice. The liver phospholipid composition is less susceptible to peroxidation in Syrian hamsters than in mice. Altogether, the cold resistance of the hibernator’s liver is established by the ability to utilize αT effectively to prevent lipid peroxidation and ferroptosis. Daisuke Anegawa et al. investigated the mechanisms responsible for cold resistance in the Syrian hamster’s hepatocytes, which exhibited remarkable resistance to prolonged cold culture. Their results suggest that hepatocytes exhibit diet-dependent resistance to cold, which is linked to the retention of α-tocopherol in the liver.
Collapse
|
11
|
HEMATOLOGIC AND BIOCHEMICAL VALUES OF THE JUVENILE EASTERN GRAY SQUIRREL ( SCIURUS CAROLINENSIS). J Zoo Wildl Med 2021; 50:644-649. [PMID: 33517634 DOI: 10.1638/2018-0106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/29/2019] [Indexed: 11/21/2022] Open
Abstract
Venous blood samples were collected from 64 apparently healthy juvenile Eastern gray squirrels (Sciurus carolinensis) after sedation with midazolam at the Wildlife Center of Texas located in Houston, Texas, during 2012. Blood gas (pH, PCO2, PO2, base excess, bicarbonate, oxygen saturation), electrolyte (sodium, potassium), biochemical (total CO2, ionized calcium, glucose), and hematologic parameters (hematocrit, hemoglobin, complete blood count) were determined using the i-STAT point-of-care analyzer. Sex did not affect any analyte. All squirrels recovered uneventfully and were successfully rehabilitated and released. Most values were as expected based on comparison to other young rodent species. These analyte data for healthy juvenile Eastern gray squirrels may be useful in assessment of Eastern gray squirrel population health and management and treatment of individual squirrels presented in need of medical care.
Collapse
|
12
|
Singhal NS, Bai M, Lee EM, Luo S, Cook KR, Ma DK. Cytoprotection by a naturally occurring variant of ATP5G1 in Arctic ground squirrel neural progenitor cells. eLife 2020; 9:55578. [PMID: 33050999 PMCID: PMC7671683 DOI: 10.7554/elife.55578] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 10/08/2020] [Indexed: 02/06/2023] Open
Abstract
Many organisms in nature have evolved mechanisms to tolerate severe hypoxia or ischemia, including the hibernation-capable Arctic ground squirrel (AGS). Although hypoxic or ischemia tolerance in AGS involves physiological adaptations, little is known about the critical cellular mechanisms underlying intrinsic AGS cell resilience to metabolic stress. Through cell survival-based cDNA expression screens in neural progenitor cells, we identify a genetic variant of AGS Atp5g1 that confers cell resilience to metabolic stress. Atp5g1 encodes a subunit of the mitochondrial ATP synthase. Ectopic expression in mouse cells and CRISPR/Cas9 base editing of endogenous AGS loci revealed causal roles of one AGS-specific amino acid substitution in mediating cytoprotection by AGS ATP5G1. AGS ATP5G1 promotes metabolic stress resilience by modulating mitochondrial morphological change and metabolic functions. Our results identify a naturally occurring variant of ATP5G1 from a mammalian hibernator that critically contributes to intrinsic cytoprotection against metabolic stress. When animals hibernate, they lower their body temperature and metabolism to conserve the energy they need to withstand cold harsh winters. One such animal is the Arctic ground squirrel, an extreme hibernator that can drop its body temperatures to below 0°C. This hibernation ability means the cells of Arctic ground squirrels can survive severe shortages of blood and oxygen. But, it is unclear how their cells are able to endure this metabolic stress. To answer this question, Singhal, Bai et al. studied the cells of Arctic ground squirrels for unique features that might make them more durable to stress. Examining the genetic code of these resilient cells revealed that Arctic ground squirrels may have a variant form of a protein called ATP5G1. This protein is found in a cellular compartment called the mitochondria, which is responsible for supplying energy to the rest of the cell and therefore plays an important role in metabolic processes. Singhal, Bai et al. found that when this variant form of ATP5G1 was introduced into the cells of mice, their mitochondria was better at coping with stress conditions, such as low oxygen, low temperature and poisoning. Using a gene editing tool to selectively substitute some of the building blocks, also known as amino acids, that make up the ATP5G1 protein revealed that improvements to the mitochondria were caused by switching specific amino acids. However, swapping these amino acids, which presumably affects the role of ATP5G1, did not completely remove the cells’ resilience to stress. This suggests that variants of other genes and proteins may also be involved in providing protection. These findings provide the first evidence of a protein variant that is responsible for protecting cells during the metabolic stress conditions caused by hibernation. The approach taken by Singhal, Bai et al. could be used to identify and study other proteins that increase resilience to metabolic stress. These findings could help develop new treatments for diseases caused by a limited blood supply to human organs, such as a stroke or heart attack.
Collapse
Affiliation(s)
- Neel S Singhal
- Department of Neurology, University of California-San Francisco, San Francisco, United States
| | - Meirong Bai
- Cardiovascular Research Institute, University of California-San Francisco, San Francisco, United States.,Department of Physiology, University of California-San Francisco, San Francisco, United States
| | - Evan M Lee
- Cardiovascular Research Institute, University of California-San Francisco, San Francisco, United States.,Department of Physiology, University of California-San Francisco, San Francisco, United States
| | - Shuo Luo
- Cardiovascular Research Institute, University of California-San Francisco, San Francisco, United States.,Department of Physiology, University of California-San Francisco, San Francisco, United States
| | - Kayleigh R Cook
- Cardiovascular Research Institute, University of California-San Francisco, San Francisco, United States.,Department of Physiology, University of California-San Francisco, San Francisco, United States
| | - Dengke K Ma
- Cardiovascular Research Institute, University of California-San Francisco, San Francisco, United States.,Department of Physiology, University of California-San Francisco, San Francisco, United States.,Innovative Genomics Institute, Berkeley, United States
| |
Collapse
|
13
|
Hibernator-Derived Cells Show Superior Protection and Survival in Hypothermia Compared to Non-Hibernator Cells. Int J Mol Sci 2020; 21:ijms21051864. [PMID: 32182837 PMCID: PMC7084219 DOI: 10.3390/ijms21051864] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/03/2020] [Accepted: 03/04/2020] [Indexed: 02/07/2023] Open
Abstract
Mitochondrial failure is recognized to play an important role in a variety of diseases. We previously showed hibernating species to have cell-autonomous protective mechanisms to resist cellular stress and sustain mitochondrial function. Here, we set out to detail these mitochondrial features of hibernators. We compared two hibernator-derived cell lines (HaK and DDT1MF2) with two non-hibernating cell lines (HEK293 and NRK) during hypothermia (4 °C) and rewarming (37 °C). Although all cell lines showed a strong decrease in oxygen consumption upon cooling, hibernator cells maintained functional mitochondria during hypothermia, without mitochondrial permeability transition pore (mPTP) opening, mitochondrial membrane potential decline or decreased adenosine triphosphate (ATP) levels, which were all observed in both non-hibernator cell lines. In addition, hibernator cells survived hypothermia in the absence of extracellular energy sources, suggesting their use of an endogenous substrate to maintain ATP levels. Moreover, hibernator-derived cells did not accumulate reactive oxygen species (ROS) damage and showed normal cell viability even after 48 h of cold-exposure. In contrast, non-hibernator cells accumulated ROS and showed extensive cell death through ferroptosis. Understanding the mechanisms that hibernators use to sustain mitochondrial activity and counteract damage in hypothermic circumstances may help to define novel preservation techniques with relevance to a variety of fields, such as organ transplantation and cardiac arrest.
Collapse
|
14
|
Soo E, Welch A, Marsh C, McKay DB. Molecular strategies used by hibernators: Potential therapeutic directions for ischemia reperfusion injury and preservation of human donor organs. Transplant Rev (Orlando) 2019; 34:100512. [PMID: 31648853 DOI: 10.1016/j.trre.2019.100512] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 10/02/2019] [Accepted: 10/03/2019] [Indexed: 12/12/2022]
Affiliation(s)
- E Soo
- Scripps Research, Department of Immunology and Molecular Biology, 10550 North Torrey Pines Rd, La Jolla, CA, United States of America; Scripps Clinic and Green Hospital, Department of Medicine and Surgery, 10660 North Torrey Pines Rd, La Jolla, CA, United States of America
| | - A Welch
- Scripps Research, Department of Immunology and Molecular Biology, 10550 North Torrey Pines Rd, La Jolla, CA, United States of America
| | - C Marsh
- Scripps Clinic and Green Hospital, Department of Medicine and Surgery, 10660 North Torrey Pines Rd, La Jolla, CA, United States of America
| | - D B McKay
- Scripps Research, Department of Immunology and Molecular Biology, 10550 North Torrey Pines Rd, La Jolla, CA, United States of America; Scripps Clinic and Green Hospital, Department of Medicine and Surgery, 10660 North Torrey Pines Rd, La Jolla, CA, United States of America.
| |
Collapse
|
15
|
Yan S, Fang C, Cao L, Wang L, Du J, Sun Y, Tong X, Lu Y, Wu X. Protective effect of glycyrrhizic acid on cerebral ischemia/reperfusion injury via inhibiting HMGB1-mediated TLR4/NF-κB pathway. Biotechnol Appl Biochem 2019; 66:1024-1030. [PMID: 31545873 DOI: 10.1002/bab.1825] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 08/10/2019] [Indexed: 12/20/2022]
Abstract
Cerebral ischemia is caused by various disorders, such as stroke, myocardial infarction, or peripheral vascular disease. The purpose of this paper was to investigate the effects of glycyrrhizic acid (GA) on cerebral ischemia/reperfusion (I/R) injury. Middle cerebral artery occlusion was established to evaluate the effects of GA on cerebral ischemia. In this study, our results showed that GA could dramatically decrease cerebral edema, reduce the neurological deficits, and smaller brain infarct volume was found in the GA treatment group. In serum and brain tissue, GA also increased superoxide dismutase activity. In addition, in serum and brain tissue, GA also dramatically inhibited the secretion of inflammatory cytokines, including interleukin-1β (IL-1β), IL-6, and tumor necrosis factor-α. Moreover, GA inhibited the expressions of high-mobility group protein box-1 (HMGB1)-mediated TLR4/NF-κB pathway. Our data determined that GA may provide protective effect on the I/R-induced cerebral ischemia disease.
Collapse
Affiliation(s)
- Sunhong Yan
- Department of Neurology, The Second Hospital of Anhui Medical University, Hefei, People's Republic of China
| | - Chuanqin Fang
- Department of Neurology, The Second Hospital of Anhui Medical University, Hefei, People's Republic of China
| | - Lei Cao
- Department of Neurology, The Second Hospital of Anhui Medical University, Hefei, People's Republic of China
| | - Long Wang
- Department of Neurology, The Second Hospital of Anhui Medical University, Hefei, People's Republic of China
| | - Jing Du
- Department of Neurology, The Second Hospital of Anhui Medical University, Hefei, People's Republic of China
| | - Yue Sun
- Department of Neurology, The Second Hospital of Anhui Medical University, Hefei, People's Republic of China
| | - Xuanxia Tong
- Department of Neurology, The Second Hospital of Anhui Medical University, Hefei, People's Republic of China
| | - Ying Lu
- Department of Laboratory Medicine, The First Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Xiaosan Wu
- Department of Neurology, The Second Hospital of Anhui Medical University, Hefei, People's Republic of China
| |
Collapse
|
16
|
Eleftheriadis T, Pissas G, Nikolaou E, Liakopoulos V, Stefanidis I. The H2S-Nrf2-Antioxidant Proteins Axis Protects Renal Tubular Epithelial Cells of the Native Hibernator Syrian Hamster from Reoxygenation-Induced Cell Death. BIOLOGY 2019; 8:biology8040074. [PMID: 31574983 PMCID: PMC6955957 DOI: 10.3390/biology8040074] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 09/25/2019] [Accepted: 09/26/2019] [Indexed: 12/31/2022]
Abstract
During hibernation, repeated cycles of ischemia-reperfusion (I-R) leave vital organs without injury. Studying this phenomenon may reveal pathways applicable to improving outcomes in I-R injury-induced human diseases. We evaluated whether the H2S–nuclear factor erythroid 2-like 2 (Nrf2)–antioxidant proteins axis protects renal proximal tubular epithelial cells (RPTECs) of the native hibernator, the Syrian hamster, from reperfusion-induced cell death. To imitate I-R, the hamsters’, and control mice’s RPTECs were subjected to warm anoxia, washed, and then subjected to reoxygenation in fresh culture medium. Whenever required, the H2S-producing enzymes inhibitor aminooxyacetate or the lipid peroxidation inhibitor α-tocopherol were used. A handmade H2S detection methylene blue assay, a reactive oxygen species (ROS) detection kit, a LDH release cytotoxicity assay kit, and western blotting were used. Reoxygenation upregulated the H2S-producing enzymes cystathionine beta-synthase, cystathionine γ-lyase, and 3-mercaptopyruvate sulfurtransferase in the hamster, but not in mouse RPTECs. As a result, H2S production increased only in the hamster RPTECs under reoxygenation conditions. Nrf2 expression followed the alterations of H2S production leading to an enhanced level of the antioxidant enzymes superoxide dismutase 3 and glutathione reductase, and anti-ferroptotic proteins ferritin H and cystine-glutamate antiporter. The upregulated antioxidant enzymes and anti-ferroptotic proteins controlled ROS production and rescued hamster RPTECs from reoxygenation-induced, lipid peroxidation-mediated cell death. In conclusion, in RPTECs of the native hibernator Syrian hamster, reoxygenation activates the H2S–Nrf2–antioxidant proteins axis, which rescues cells from reoxygenation-induced cell death. Further studies may reveal that the therapeutic activation of this axis in non-hibernating species, including humans, may be beneficial in I-R injury-induced diseases.
Collapse
Affiliation(s)
- Theodoros Eleftheriadis
- Department of Nephrology, Faculty of Medicine, University of Thessaly, Biopolis, Mezourlo Hill, 41110 Larissa, Greece.
| | - Georgios Pissas
- Department of Nephrology, Faculty of Medicine, University of Thessaly, Biopolis, Mezourlo Hill, 41110 Larissa, Greece.
| | - Evdokia Nikolaou
- Department of Nephrology, Faculty of Medicine, University of Thessaly, Biopolis, Mezourlo Hill, 41110 Larissa, Greece.
| | - Vassilios Liakopoulos
- Department of Nephrology, Faculty of Medicine, University of Thessaly, Biopolis, Mezourlo Hill, 41110 Larissa, Greece.
| | - Ioannis Stefanidis
- Department of Nephrology, Faculty of Medicine, University of Thessaly, Biopolis, Mezourlo Hill, 41110 Larissa, Greece.
| |
Collapse
|
17
|
Abstract
Hemorrhagic shock is the leading cause of preventable death after trauma. Hibernation-based treatment approaches have been of increasing interest for various biomedical applications. Owing to apparent similarities in tissue perfusion and metabolic activity between severe blood loss and the hibernating state, hibernation-based approaches have also emerged for the treatment of hemorrhagic shock. Research has shown that hibernators are protected from shock-induced injury and inflammation. Utilizing the adaptive mechanisms that prevent injury in these animals may help alleviate the detrimental effects of hemorrhagic shock in non-hibernating species. This review describes hibernation-based preclinical and clinical approaches for the treatment of severe blood loss. Treatments include the delta opioid receptor agonist D-Ala-Leu-enkephalin (DADLE), the gasotransmitter hydrogen sulfide, combinations of adenosine, lidocaine, and magnesium (ALM) or D-beta-hydroxybutyrate and melatonin (BHB/M), and therapeutic hypothermia. While we focus on hemorrhagic shock, many of the described treatments may be used in other situations of hypoxia or ischemia/reperfusion injury.
Collapse
|
18
|
Bhowmick S, Drew KL. Mechanisms of innate preconditioning towards ischemia/anoxia tolerance: Lessons from mammalian hibernators. CONDITIONING MEDICINE 2019; 2:134-141. [PMID: 32542230 PMCID: PMC7295161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Hibernating mammals exhibit an innate physiological ability to withstand dramatic fluctuations in blood flow that occurs during hibernation and arousal or experimental models of ischemia reperfusion without significant damage. These innate adaptations are of significance particularly to organs that are highly susceptible to energy deprivation, such as the brain and the heart. Among vertebrates, the arctic ground squirrel (AGS) is a species that tolerates ischemic/anoxic insult. During the process of entering hibernation, a state of prolonged torpor, the AGS undergoes a profound decrease in respiratory rate, heart rate, blood flow, cerebral perfusion, and body temperature (Tb). The reduced level of blood flow during torpor resembles an ischemic state, albeit without energy deficit. During the process of arousal or emergence from torpor, however, when Tb, respiratory rate, heart rate, and blood flow rapidly returns to pre-torpid levels, the rapid return of cerebral blood flow mimics aspects of reperfusion such as is seen after stroke or cardiac arrest. This sublethal ischemic/reperfusion insult experienced by AGS during the process of arousal may precondition AGS to tolerate otherwise lethal ischemic/reperfusion injury induced in the laboratory. In this review, we will summarize some of the mechanisms implemented by mammalian hibernators to combat ischemia/anoxia tolerance.
Collapse
Affiliation(s)
- Saurav Bhowmick
- Laboratory of CNS Injury and Repair, JFK Neuroscience Institute, Hackensack Meridian Health JFK Medical Center, 65 James St., Edison, NJ 08820, USA
| | - Kelly L Drew
- Department of Chemistry and Biochemistry, University of Alaska Fairbanks, Fairbanks, AK, USA; Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK, USA
| |
Collapse
|
19
|
Nordeen CA, Martin SL. Engineering Human Stasis for Long-Duration Spaceflight. Physiology (Bethesda) 2019; 34:101-111. [PMID: 30724130 DOI: 10.1152/physiol.00046.2018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Suspended animation for deep-space travelers is moving out of the realm of science fiction. Two approaches are considered: the first elaborates the current medical practice of therapeutic hypothermia; the second invokes the cascade of metabolic processes naturally employed by hibernators. We explore the basis and evidence behind each approach and argue that mimicry of natural hibernation will be critical to overcome the innate limitations of human physiology for long-duration space travel.
Collapse
Affiliation(s)
- Claire A Nordeen
- Department of Emergency Medicine, Harborview Medical Center, University of Washington , Seattle, Washington
| | - Sandra L Martin
- Department of Cell and Developmental Biology, University of Colorado School of Medicine , Aurora, Colorado
| |
Collapse
|
20
|
Factors that May Protect the Native Hibernator Syrian Hamster Renal Tubular Epithelial Cells from Ferroptosis Due to Warm Anoxia-Reoxygenation. BIOLOGY 2019; 8:biology8020022. [PMID: 30935115 PMCID: PMC6627611 DOI: 10.3390/biology8020022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 03/26/2019] [Accepted: 03/27/2019] [Indexed: 01/02/2023]
Abstract
Warm anoxia-reoxygenation induces ferroptotic cell death in mouse proximal renal tubular epithelial cells (RPTECs), whereas RPTECs of the native hibernator Syrian hamster resist cell death. Clarifying how hamster cells escape ferroptosis may reveal new molecular targets for preventing or ameliorating ischemia-reperfusion-induced human diseases or expanding the survival of organ transplants. Mouse or hamster RPTECs were subjected to anoxia and subsequent reoxygenation. Cell death was assessed with the lactated dehydrogenase (LDH) release assay and lipid peroxidation by measuring cellular malondialdehyde (MDA) fluorometrically. The effect of the ferroptosis inhibitor α-tocopherol on cell survival was assessed by the 2,3-bis (2-methoxy-4-nitro-5-sulfophenyl)-5-[(phenylamino) carbonyl]-2H-tetrazolium hydroxide (XTT) assay. The expression of the critical ferroptotic elements cystine-glutamate antiporter (xCT), ferritin, and glutathione peroxidase 4 (GPX4) was assessed by Western blot. Contrary to mouse RPTECs, hamster RPTECs resisted anoxia-reoxygenation-induced cell death and lipid peroxidation. In mouse RPTECs, α-tocopherol increased cell survival. Anoxia increased the levels of xCT, ferritin, and GPX4 in both cell types. During reoxygenation, at which reactive oxygen species overproduction occurs, xCT and ferritin decreased, whereas GPX4 increased in mouse RPTECs. In hamster RPTECs, reoxygenation raised xCT and ferritin, but lowered GPX4. Hamster RPTECs resist lipid peroxidation-induced cell death. From the three main evaluated components of the ferroptotic pathway, the increased expression of xCT and ferritin may contribute to the resistance of the hamster RPTECs to warm anoxia-reoxygenation.
Collapse
|
21
|
Gehrke S, Rice S, Stefanoni D, Wilkerson RB, Nemkov T, Reisz JA, Hansen KC, Lucas A, Cabrales P, Drew K, D'Alessandro A. Red Blood Cell Metabolic Responses to Torpor and Arousal in the Hibernator Arctic Ground Squirrel. J Proteome Res 2019; 18:1827-1841. [PMID: 30793910 DOI: 10.1021/acs.jproteome.9b00018] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Arctic ground squirrels provide a unique model to investigate metabolic responses to hibernation in mammals. During winter months these rodents are exposed to severe hypothermia, prolonged fasting, and hypoxemia. In the light of their role in oxygen transport/off-loading and owing to the absence of nuclei and organelles (and thus de novo protein synthesis capacity), mature red blood cells have evolved metabolic programs to counteract physiological or pathological hypoxemia. However, red blood cell metabolism in hibernation has not yet been investigated. Here we employed targeted and untargeted metabolomics approaches to investigate erythrocyte metabolism during entrance to torpor to arousal, with a high resolution of the intermediate time points. We report that torpor and arousal promote metabolism through glycolysis and pentose phosphate pathway, respectively, consistent with previous models of oxygen-dependent metabolic modulation in mature erythrocytes. Erythrocytes from hibernating squirrels showed up to 100-fold lower levels of biomarkers of reperfusion injury, such as the pro-inflammatory dicarboxylate succinate. Altered tryptophan metabolism during torpor was here correlated to the accumulation of potentially neurotoxic catabolites kynurenine, quinolinate, and picolinate. Arousal was accompanied by alterations of sulfur metabolism, including sudden spikes in a metabolite putatively identified as thiorphan (level 1 confidence)-a potent inhibitor of several metalloproteases that play a crucial role in nociception and inflammatory complication to reperfusion secondary to ischemia or hemorrhage. Preliminary studies in rats showed that intravenous injection of thiorphan prior to resuscitation mitigates metabolic and cytokine markers of reperfusion injury, etiological contributors to inflammatory complications after shock.
Collapse
Affiliation(s)
- Sarah Gehrke
- Department of Biochemistry and Molecular Genetics , University of Colorado Denver - Anschutz Medical Campus , Aurora , Colorado 80045 , United States
| | - Sarah Rice
- Department of Chemistry and Biochemistry , University of Alaska Fairbanks , Fairbanks , Alaska 99775 , United States
| | - Davide Stefanoni
- Department of Biochemistry and Molecular Genetics , University of Colorado Denver - Anschutz Medical Campus , Aurora , Colorado 80045 , United States
| | - Rebecca B Wilkerson
- Department of Biochemistry and Molecular Genetics , University of Colorado Denver - Anschutz Medical Campus , Aurora , Colorado 80045 , United States
| | - Travis Nemkov
- Department of Biochemistry and Molecular Genetics , University of Colorado Denver - Anschutz Medical Campus , Aurora , Colorado 80045 , United States
| | - Julie A Reisz
- Department of Biochemistry and Molecular Genetics , University of Colorado Denver - Anschutz Medical Campus , Aurora , Colorado 80045 , United States
| | - Kirk C Hansen
- Department of Biochemistry and Molecular Genetics , University of Colorado Denver - Anschutz Medical Campus , Aurora , Colorado 80045 , United States
| | - Alfredo Lucas
- Department of Bioengineering , University of California San Diego , La Jolla , California 92093 , United States
| | - Pedro Cabrales
- Department of Bioengineering , University of California San Diego , La Jolla , California 92093 , United States
| | - Kelly Drew
- Department of Chemistry and Biochemistry , University of Alaska Fairbanks , Fairbanks , Alaska 99775 , United States
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics , University of Colorado Denver - Anschutz Medical Campus , Aurora , Colorado 80045 , United States
| |
Collapse
|
22
|
Cell Death Patterns Due to Warm Ischemia or Reperfusion in Renal Tubular Epithelial Cells Originating from Human, Mouse, or the Native Hibernator Hamster. BIOLOGY 2018; 7:biology7040048. [PMID: 30445750 PMCID: PMC6316155 DOI: 10.3390/biology7040048] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 11/13/2018] [Accepted: 11/14/2018] [Indexed: 12/11/2022]
Abstract
Ischemia–reperfusion injury contributes to the pathogenesis of many diseases, with acute kidney injury included. Hibernating mammals survive prolonged bouts of deep torpor with a dramatic drop in blood pressure, heart, and breathing rates, interspersed with short periods of arousal and, consequently, ischemia–reperfusion injury. Clarifying the differences under warm anoxia or reoxygenation between human cells and cells from a native hibernator may reveal interventions for rendering human cells resistant to ischemia–reperfusion injury. Human and hamster renal proximal tubular epithelial cells (RPTECs) were cultured under warm anoxia or reoxygenation. Mouse RPTECs were used as a phylogenetic control for hamster cells. Cell death was assessed by both cell imaging and lactate dehydrogenase (LDH) release assay, apoptosis by cleaved caspase-3, autophagy by microtubule-associated protein 1-light chain 3 B II (LC3B-II) to LC3B-I ratio, necroptosis by phosphorylated mixed-lineage kinase domain-like pseudokinase, reactive oxygen species (ROS) fluorometrically, and lipid peroxidation, the end-point of ferroptosis, by malondialdehyde. Human cells died after short periods of warm anoxia or reoxygenation, whereas hamster cells were extremely resistant. In human cells, apoptosis contributed to cell death under both anoxia and reoxygenation. Although under reoxygenation, ROS increased in both human and hamster RPTECs, lipid peroxidation-induced cell death was detected only in human cells. Autophagy was observed only in human cells under both conditions. Necroptosis was not detected in any of the evaluated cells. Clarifying the ways that are responsible for hamster RPTECs escaping from apoptosis and lipid peroxidation-induced cell death may reveal interventions for preventing ischemia–reperfusion-induced acute kidney injury in humans.
Collapse
|
23
|
Bonis A, Anderson L, Talhouarne G, Schueller E, Unke J, Krus C, Stokka J, Koepke A, Lehrer B, Schuh A, Andersen JJ, Cooper S. Cardiovascular resistance to thrombosis in 13-lined ground squirrels. J Comp Physiol B 2018; 189:167-177. [PMID: 30317383 DOI: 10.1007/s00360-018-1186-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 08/08/2018] [Accepted: 10/06/2018] [Indexed: 12/24/2022]
Abstract
13-lined ground squirrels (Ictidomys tridecemlineatus) enter hibernation as a survival strategy during extreme environmental conditions. Typical ground squirrel hibernation is characterized by prolonged periods of torpor with significantly reduced heart rate, blood pressure, and blood flow, interrupted every few weeks by brief interbout arousals (IBA) during which blood flow fluctuates dramatically. These physiological conditions should increase the risk of stasis-induced blood clots and myocardial ischemia. However, ground squirrels have adapted to survive repeated bouts of torpor and IBA without forming lethal blood clots or sustaining lethal ischemic myocardial damage. The purpose of this study was to determine if ground squirrels are resistant to thrombosis and myocardial ischemia during hibernation. Blood markers of coagulation, fibrinolysis, thrombosis, and ischemia, as well as histological markers of myocardial ischemia were measured throughout the annual hibernation cycle. Hibernating ground squirrels were also treated with isoprenaline to induce myocardial ischemia. Thrombin-antithrombin complex levels were significantly reduced (p < 0.05) during hibernation, while D-dimer level remained unchanged throughout the annual cycle, both consistent with an antithrombotic state. During torpor, the ground squirrels were in a hyperfibrinolytic state with an elevated ratio of tissue plasminogen activator complexed with plasminogen activator inhibitor to total plasminogen activator inhibitor (p < 0.05). Histological markers of myocardial ischemia were reversibly elevated during hibernation with no increase in markers of myocardial cell death in the blood. These data suggest that ground squirrels do not form major blood clots during hibernation through suppression of coagulation and a hyperfibrinolytic state. These animals also demonstrate myocardial resistance to ischemia.
Collapse
Affiliation(s)
- Alison Bonis
- Biology Department, University of Wisconsin-La Crosse, 1725 State St. La Crosse, La Crosse, WI, 54601, USA
| | - Leah Anderson
- Biology Department, University of Wisconsin-La Crosse, 1725 State St. La Crosse, La Crosse, WI, 54601, USA
| | - Gaëlle Talhouarne
- Biology Department, University of Wisconsin-La Crosse, 1725 State St. La Crosse, La Crosse, WI, 54601, USA
| | - Emily Schueller
- Biology Department, University of Wisconsin-La Crosse, 1725 State St. La Crosse, La Crosse, WI, 54601, USA
| | - Jenna Unke
- Biology Department, University of Wisconsin-La Crosse, 1725 State St. La Crosse, La Crosse, WI, 54601, USA
| | - Catherine Krus
- Biology Department, University of Wisconsin-La Crosse, 1725 State St. La Crosse, La Crosse, WI, 54601, USA
| | - Jordan Stokka
- Biology Department, University of Wisconsin-La Crosse, 1725 State St. La Crosse, La Crosse, WI, 54601, USA
| | - Anna Koepke
- Biology Department, University of Wisconsin-La Crosse, 1725 State St. La Crosse, La Crosse, WI, 54601, USA
| | - Brittany Lehrer
- Biology Department, University of Wisconsin-La Crosse, 1725 State St. La Crosse, La Crosse, WI, 54601, USA
| | - Anthony Schuh
- Biology Department, University of Wisconsin-La Crosse, 1725 State St. La Crosse, La Crosse, WI, 54601, USA
| | | | - Scott Cooper
- Biology Department, University of Wisconsin-La Crosse, 1725 State St. La Crosse, La Crosse, WI, 54601, USA.
| |
Collapse
|
24
|
The hypoxia-tolerant vertebrate brain: Arresting synaptic activity. Comp Biochem Physiol B Biochem Mol Biol 2018; 224:61-70. [DOI: 10.1016/j.cbpb.2017.11.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 11/23/2017] [Accepted: 11/30/2017] [Indexed: 01/16/2023]
|
25
|
Logan SM, Storey KB. Pro-inflammatory AGE-RAGE signaling is activated during arousal from hibernation in ground squirrel adipose. PeerJ 2018; 6:e4911. [PMID: 29888131 PMCID: PMC5991297 DOI: 10.7717/peerj.4911] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 05/15/2018] [Indexed: 12/26/2022] Open
Abstract
Background Inflammation is generally suppressed during hibernation, but select tissues (e.g. lung) have been shown to activate both antioxidant and pro-inflammatory pathways, particularly during arousal from torpor when breathing rates increase and oxidative metabolism fueling the rewarming process produces more reactive oxygen species. Brown and white adipose tissues are now understood to be major hubs for the regulation of immune and inflammatory responses, yet how these potentially damaging processes are regulated by fat tissues during hibernation has hardly been studied. The advanced glycation end-product receptor (RAGE) can induce pro-inflammatory responses when bound by AGEs (which are glycated and oxidized proteins, lipids, or nucleic acids) or damage associated molecular pattern molecules (DAMPs, which are released from dying cells). Methods Since gene expression and protein synthesis are largely suppressed during torpor, increases in AGE-RAGE pathway proteins relative to a euthermic control could suggest some role for these pro-inflammatory mediators during hibernation. This study determined how the pro-inflammatory AGE-RAGE signaling pathway is regulated at six major time points of the torpor-arousal cycle in brown and white adipose from a model hibernator, Ictidomys tridecemlineatus. Immunoblotting, RT-qPCR, and a competitive ELISA were used to assess the relative gene expression and protein levels of key regulators of the AGE-RAGE pathway during a hibernation bout. Results The results of this study revealed that RAGE is upregulated as animals arouse from torpor in both types of fat, but AGE and DAMP levels either remain unchanged or decrease. Downstream of the AGE-RAGE cascade, nfat5 was more highly expressed during arousal in brown adipose. Discussion An increase in RAGE protein levels and elevated mRNA levels of the downstream transcription factor nfat5 during arousal suggest the pro-inflammatory response is upregulated in adipose tissue of the hibernating ground squirrel. It is unlikely that this cascade is activated by AGEs or DAMPs. This research sheds light on how a fat-but-fit organism with highly regulated metabolism may control the pro-inflammatory AGE-RAGE pathway, a signaling cascade that is often dysregulated in other obese organisms.
Collapse
Affiliation(s)
- Samantha M Logan
- Institute of Biochemistry, Departments of Biology and Chemistry, Carleton University, Ottawa, Ontario, Canada
| | - Kenneth B Storey
- Institute of Biochemistry, Departments of Biology and Chemistry, Carleton University, Ottawa, Ontario, Canada
| |
Collapse
|
26
|
Wei Y, Gong L, Fu W, Xu S, Wang Z, Zhang J, Ning E, Chang H, Wang H, Gao Y. Unexpected regulation pattern of the IKKβ/NF‐κB/MuRF1 pathway with remarkable muscle plasticity in the Daurian ground squirrel (
Spermophilus dauricus
). J Cell Physiol 2018; 233:8711-8722. [DOI: 10.1002/jcp.26751] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Accepted: 04/16/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Yanhong Wei
- Key Laboratory of Resource Biology and Biotechnology in Western ChinaCollege of Life SciencesNorthwest University, Ministry of EducationXi'anChina
- School of Basic Medical SciencesNingxia Medical UniversityYinchuanChina
| | - Lingchen Gong
- Key Laboratory of Resource Biology and Biotechnology in Western ChinaCollege of Life SciencesNorthwest University, Ministry of EducationXi'anChina
| | - Weiwei Fu
- Key Laboratory of Resource Biology and Biotechnology in Western ChinaCollege of Life SciencesNorthwest University, Ministry of EducationXi'anChina
| | - Shenhui Xu
- Key Laboratory of Resource Biology and Biotechnology in Western ChinaCollege of Life SciencesNorthwest University, Ministry of EducationXi'anChina
| | - Zhe Wang
- Key Laboratory of Resource Biology and Biotechnology in Western ChinaCollege of Life SciencesNorthwest University, Ministry of EducationXi'anChina
| | - Jie Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western ChinaCollege of Life SciencesNorthwest University, Ministry of EducationXi'anChina
| | - Er Ning
- Key Laboratory of Resource Biology and Biotechnology in Western ChinaCollege of Life SciencesNorthwest University, Ministry of EducationXi'anChina
| | - Hui Chang
- Key Laboratory of Resource Biology and Biotechnology in Western ChinaCollege of Life SciencesNorthwest University, Ministry of EducationXi'anChina
| | - Huiping Wang
- Key Laboratory of Resource Biology and Biotechnology in Western ChinaCollege of Life SciencesNorthwest University, Ministry of EducationXi'anChina
| | - Yunfang Gao
- Key Laboratory of Resource Biology and Biotechnology in Western ChinaCollege of Life SciencesNorthwest University, Ministry of EducationXi'anChina
| |
Collapse
|
27
|
Bhowmick S, Drew KL. Arctic ground squirrel resist peroxynitrite-mediated cell death in response to oxygen glucose deprivation. Free Radic Biol Med 2017; 113:203-211. [PMID: 28962873 PMCID: PMC5699938 DOI: 10.1016/j.freeradbiomed.2017.09.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 09/01/2017] [Accepted: 09/25/2017] [Indexed: 12/13/2022]
Abstract
Cerebral ischemia-reperfusion (I/R) injury initiates a cascade of events, generating nitric oxide (NO) and superoxide(O2•-) to form peroxynitrite (ONOO-), a potent oxidant. Arctic ground squirrels (AGS; Urocitellus parryii) show high tolerance to I/R injury. However, the underlying mechanism remains elusive. We hypothesize that tolerance to I/R modeled in an acute hippocampal slice preparation in AGS is modulated by reduced oxidative and nitrative stress. Hippocampal slices (400µm) from rat and AGS were subjected to oxygen glucose deprivation (OGD) using a novel microperfusion technique. Slices were exposed to NO, O2.- donors with and without OGD; pretreatment with inhibitors of NO, O2.- and ONOO- followed by OGD. Perfusates collected every 15min were analyzed for LDH release, a marker of cell death. 3-nitrotyrosine (3NT) and 4-hydroxynonenal (4HNE) were measured to assess oxidative and nitrative stress. Results show that NO/O2.- alone is not sufficient to cause ischemic-like cell death, but with OGD enhances cell death more in rat than in AGS. A NOS inhibitor, SOD mimetic and ONOO- inhibitor attenuates OGD injury in rat but has no effect in AGS. Rats also show a higher level of 3NT and 4HNE with OGD than AGS suggesting the greater level of injury in rat is via formation of ONOO-.
Collapse
Affiliation(s)
- Saurav Bhowmick
- Department of Chemistry and Biochemistry, University of Alaska Fairbanks, Fairbanks, AK, USA; Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK, USA
| | - Kelly L Drew
- Department of Chemistry and Biochemistry, University of Alaska Fairbanks, Fairbanks, AK, USA; Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK, USA.
| |
Collapse
|
28
|
Differences in mitochondrial function and morphology during cooling and rewarming between hibernator and non-hibernator derived kidney epithelial cells. Sci Rep 2017; 7:15482. [PMID: 29138454 PMCID: PMC5686174 DOI: 10.1038/s41598-017-15606-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 10/30/2017] [Indexed: 01/06/2023] Open
Abstract
Hibernators show superior resistance to ischemia and hypothermia, also outside the hibernation season. Therefore, hibernation is a promising strategy to decrease cellular damage in a variety of fields, such as organ transplantation. Here, we explored the role of mitochondria herein, by comparing epithelial cell lines from a hibernator (hamster kidney cells, HaK) and a non-hibernator (human embryonic kidney cells, HEK293) during cold preservation at 4 °C and rewarming. Cell survival (Neutral Red), ATP and MDA levels, mitochondrial membrane potential (MMP), mitochondrial morphology (using fluorescent probes) and metabolism (seahorse XF) were assessed. Hypothermia induced dispersion of the tubular mitochondrial network, a loss of MMP, increased oxygen radical (MDA) and decreased ATP production in HEK293. In contrast, HaK maintained MMP and ATP production without an increase in oxygen radicals during cooling and rewarming, resulting in superior cell survival compared to HEK293. Further, normothermic HaK showed a dispersed mitochondrial network and higher respiratory and glycolysis capacity compared to HEK293. Disclosing the mechanisms that hibernators use to counteract cell death in hypothermic and ischemic circumstances may help to eventually improve organ preservation in a variety of fields, including organ transplantation.
Collapse
|
29
|
Salzman MM, Cheng Q, Deklotz RJ, Dulai GK, Douglas HF, Dikalova AE, Weihrauch D, Barnes BM, Riess ML. Lipid emulsion enhances cardiac performance after ischemia-reperfusion in isolated hearts from summer-active arctic ground squirrels. J Comp Physiol B 2017; 187:715-724. [PMID: 28364393 PMCID: PMC6145465 DOI: 10.1007/s00360-017-1071-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 11/24/2016] [Accepted: 02/26/2017] [Indexed: 10/19/2022]
Abstract
Hibernating mammals, like the arctic ground squirrel (AGS), exhibit robust resistance to myocardial ischemia/reperfusion (IR) injury. Regulated preference for lipid over glucose to fuel metabolism may play an important role. We tested whether providing lipid in an emulsion protects hearts from summer-active AGS better than hearts from Brown Norway (BN) rats against normothermic IR injury. Langendorff-prepared AGS and BN rat hearts were perfused with Krebs solution containing 7.5 mM glucose with or without 1% Intralipid™. After stabilization and cardioplegia, hearts underwent 45-min global ischemia and 60-min reperfusion. Coronary flow, isovolumetric left ventricular pressure, and mitochondrial redox state were measured continuously; infarct size was measured at the end of the experiment. Glucose-only AGS hearts functioned significantly better on reperfusion than BN rat hearts. Intralipid™ administration resulted in additional functional improvement in AGS compared to glucose-only and BN rat hearts. Infarct size was not different among groups. Even under non-hibernating conditions, AGS hearts performed better after IR than the best-protected rat strain. This, however, appears to strongly depend on metabolic fuel: Intralipid™ led to a significant improvement in return of function in AGS, but not in BN rat hearts, suggesting that year-round endogenous mechanisms are involved in myocardial lipid utilization that contributes to improved cardiac performance, independent of the metabolic rate decrease during hibernation. Comparative lipid analysis revealed four candidates as possible cardioprotective lipid groups. The improved function in Intralipid™-perfused AGS hearts also challenges the current paradigm that increased glucose and decreased lipid metabolism are favorable during myocardial IR.
Collapse
Affiliation(s)
- Michele M Salzman
- Department of Anesthesiology, Vanderbilt University Medical Center, 1161 21st Avenue South, T4202 MCN, Nashville, TN, 37232, USA
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Qunli Cheng
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Richard J Deklotz
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Gurpreet K Dulai
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Hunter F Douglas
- Department of Anesthesiology, Vanderbilt University Medical Center, 1161 21st Avenue South, T4202 MCN, Nashville, TN, 37232, USA
| | - Anna E Dikalova
- Department of Anesthesiology, Vanderbilt University Medical Center, 1161 21st Avenue South, T4202 MCN, Nashville, TN, 37232, USA
| | - Dorothee Weihrauch
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Brian M Barnes
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK, USA
| | - Matthias L Riess
- Department of Anesthesiology, Vanderbilt University Medical Center, 1161 21st Avenue South, T4202 MCN, Nashville, TN, 37232, USA.
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA.
- TVHS VA Medical Center, Nashville, TN, USA.
| |
Collapse
|
30
|
Bhowmick S, Moore JT, Kirschner DL, Drew KL. Arctic ground squirrel hippocampus tolerates oxygen glucose deprivation independent of hibernation season even when not hibernating and after ATP depletion, acidosis, and glutamate efflux. J Neurochem 2017; 142:160-170. [PMID: 28222226 DOI: 10.1111/jnc.13996] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 01/16/2017] [Accepted: 02/08/2017] [Indexed: 12/20/2022]
Abstract
Cerebral ischemia/reperfusion (I/R) triggers a cascade of uncontrolled cellular processes that perturb cell homeostasis. The arctic ground squirrel (AGS), a seasonal hibernator resists brain damage following cerebral I/R caused by cardiac arrest and resuscitation. However, it remains unclear if tolerance to I/R injury in AGS depends on the hibernation season. Moreover, it is also not clear if events such as depletion of ATP, acidosis, and glutamate efflux that are associated with anoxic depolarization are attenuated in AGS. Here, we employ a novel microperfusion technique to test the hypothesis that tolerance to I/R injury modeled in an acute hippocampal slice preparation in AGS is independent of the hibernation season and persists even after glutamate efflux. Acute hippocampal slices were harvested from summer euthermic AGS, hibernating AGS, and interbout euthermic AGS. Slices were subjected to oxygen glucose deprivation (OGD), an in vitro model of I/R injury to determine cell death marked by lactate dehydrogenase (LDH) release. ATP was assayed using ENLITEN ATP assay. Glutamate and aspartate efflux was measured using capillary electrophoresis. For acidosis, slices were subjected to pH 6.4 or ischemic shift solution (ISS). Acute hippocampal slices from rats were used as a positive control, susceptible to I/R injury. Our results indicate that when tissue temperature is maintained at 36°C, hibernation season has no influence on OGD-induced cell death in AGS hippocampal slices. Our data also show that tolerance to OGD in AGS hippocampal slices occurs despite loss of ATP and glutamate release, and persists during conditions that mimic acidosis and ionic shifts, characteristic of cerebral I/R. Read the Editorial Comment for this article on page 10.
Collapse
Affiliation(s)
- Saurav Bhowmick
- Department of Chemistry and Biochemistry, University of Alaska Fairbanks, Fairbanks, Alaska, USA.,Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, Alaska, USA
| | - Jeanette T Moore
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, Alaska, USA
| | - Daniel L Kirschner
- Department of Chemistry and Biochemistry, University of Alaska Fairbanks, Fairbanks, Alaska, USA
| | - Kelly L Drew
- Department of Chemistry and Biochemistry, University of Alaska Fairbanks, Fairbanks, Alaska, USA.,Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, Alaska, USA
| |
Collapse
|
31
|
Glossmann HH, Lutz OMD. Torpor: The Rise and Fall of 3-Monoiodothyronamine from Brain to Gut-From Gut to Brain? Front Endocrinol (Lausanne) 2017; 8:118. [PMID: 28620354 PMCID: PMC5450037 DOI: 10.3389/fendo.2017.00118] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Accepted: 05/16/2017] [Indexed: 12/12/2022] Open
Abstract
3-Monoiodothyronamine (T1AM), first isolated from rat brain, is reported to be an endogenous, rapidly acting metabolite of thyroxine. One of its numerous effects is the induction of a "torpor-like" state in experimental animals. A critical analysis of T1AM, to serve as an endogenous cryogen, is given. The proposed biosynthetic pathway for formation of T1AM, which includes deiodinases and ornithine decarboxylase in the upper intestinum, is an unusual one. To reach the brain via systemic circulation, enterohepatic recycling and passage through the liver may occur. The possible role of gut microbiota is discussed. T1AM concentrations in human serum, measured by a specific monoclonal assay are up to three orders of magnitude higher compared to values obtained by MS/MS technology. The difference is explained by the presence of a high-affinity binder for T1AM (Apolipoprotein B-100) in serum, which permits the immunoassay to measure the total concentration of the analyte but limits MS/MS technology to detect only the unbound (free) analyte, a view, which is contested here.
Collapse
Affiliation(s)
- Hartmut H. Glossmann
- Institut für Biochemische Pharmakologie, Innsbruck, Austria
- *Correspondence: Hartmut H. Glossmann,
| | | |
Collapse
|
32
|
D'Alessandro A, Nemkov T, Bogren LK, Martin SL, Hansen KC. Comfortably Numb and Back: Plasma Metabolomics Reveals Biochemical Adaptations in the Hibernating 13-Lined Ground Squirrel. J Proteome Res 2016; 16:958-969. [PMID: 27991798 DOI: 10.1021/acs.jproteome.6b00884] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Hibernation is an evolutionary adaptation that affords some mammals the ability to exploit the cold to achieve extreme metabolic depression (torpor) while avoiding ischemia/reperfusion or hemorrhagic shock injuries. Hibernators cycle periodically out of torpor, restoring high metabolic activity. If understood at the molecular level, the adaptations underlying torpor-arousal cycles may be leveraged for translational applications in critical fields such as intensive care medicine. Here, we monitored 266 metabolites to investigate the metabolic adaptations to hibernation in plasma from 13-lined ground squirrels (57 animals, 9 time points). Results indicate that the periodic arousals foster the removal of potentially toxic oxidative stress-related metabolites, which accumulate in plasma during torpor while replenishing reservoirs of circulating catabolic substrates (free fatty acids and amino acids). Specifically, we identified metabolic fluctuations of basic amino acids lysine and arginine, one-carbon metabolism intermediates, and sulfur-containing metabolites methionine, cysteine, and cystathionine. Conversely, reperfusion injury markers such as succinate/fumarate remained relatively stable across cycles. Considering the cycles of these metabolites with the hibernator's cycling metabolic activity together with their well-established role as substrates for the production of hydrogen sulfide (H2S), we hypothesize that these metabolic fluctuations function as a biological clock regulating torpor to arousal transitions and resistance to reperfusion during arousal.
Collapse
Affiliation(s)
- Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics and ‡Department of Cell and Developmental Biology, University of Colorado Denver - Anschutz Medical Campus , Aurora, Colorado 80045, United States
| | - Travis Nemkov
- Department of Biochemistry and Molecular Genetics and ‡Department of Cell and Developmental Biology, University of Colorado Denver - Anschutz Medical Campus , Aurora, Colorado 80045, United States
| | - Lori K Bogren
- Department of Biochemistry and Molecular Genetics and ‡Department of Cell and Developmental Biology, University of Colorado Denver - Anschutz Medical Campus , Aurora, Colorado 80045, United States
| | - Sandra L Martin
- Department of Biochemistry and Molecular Genetics and ‡Department of Cell and Developmental Biology, University of Colorado Denver - Anschutz Medical Campus , Aurora, Colorado 80045, United States
| | - Kirk C Hansen
- Department of Biochemistry and Molecular Genetics and ‡Department of Cell and Developmental Biology, University of Colorado Denver - Anschutz Medical Campus , Aurora, Colorado 80045, United States
| |
Collapse
|
33
|
Bogren LK, Johnston EL, Barati Z, Martin PA, Wojda SJ, Van Tets IG, LeBlanc AD, Donahue SW, Drew KL. The effects of hibernation and forced disuse (neurectomy) on bone properties in arctic ground squirrels. Physiol Rep 2016; 4:4/10/e12771. [PMID: 27225624 PMCID: PMC4886160 DOI: 10.14814/phy2.12771] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 03/22/2016] [Indexed: 12/11/2022] Open
Abstract
Bone loss is a well‐known medical consequence of disuse such as in long‐term space flight. Immobilization in many animals mimics the effects of space flight on bone mineral density. Decreases in metabolism are also thought to contribute to a loss of skeletal mass. Hibernating mammals provide a natural model of disuse and metabolic suppression. Hibernating ground squirrels have been shown to maintain bone strength despite long periods of disuse and decreased metabolism during torpor. This study examined if the lack of bone loss during torpor was a result of the decrease in metabolic rate during torpor or an evolutionary change in these animals affording protection against disuse. We delineated changes in bone density during natural disuse (torpor) and forced disuse (sciatic neurectomy) in the hind limbs of the arctic ground squirrel (AGS) over an entire year. We hypothesized that the animals would be resistant to bone loss due to immobilization and disuse during the winter hibernation season when metabolism is depressed but not the summer active season. This hypothesis was not supported. The animals maintained bone density (dual‐energy X‐ray absorptiometry) and most bone structural and mechanical properties in both seasons. This was observed in both natural and forced disuse, regardless of the known metabolic rate increase during the summer. However, trabecular bone volume fraction (microcomputed tomography) in the distal femur was lower in neurectomized AGS at the study endpoint. These results demonstrate a need to better understand the relationship between skeletal load (use) and bone density that may lead to therapeutics or strategies to maintain bone density in disuse conditions.
Collapse
Affiliation(s)
- Lori K Bogren
- Chemistry and Biochemistry Department, Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, Alaska
| | - Erin L Johnston
- Chemistry and Biochemistry Department, Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, Alaska
| | - Zeinab Barati
- Chemistry and Biochemistry Department, Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, Alaska
| | - Paula A Martin
- Chemistry and Biochemistry Department, Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, Alaska
| | - Samantha J Wojda
- Mechanical Engineering Department, Colorado State University, Fort Collins, Colorado
| | - Ian G Van Tets
- Department of Biological Sciences, University of Alaska Anchorage, Anchorage, Alaska
| | | | - Seth W Donahue
- Mechanical Engineering Department, Colorado State University, Fort Collins, Colorado
| | - Kelly L Drew
- Chemistry and Biochemistry Department, Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, Alaska
| |
Collapse
|
34
|
Zhang Y, Aguilar OA, Storey KB. Transcriptional activation of muscle atrophy promotes cardiac muscle remodeling during mammalian hibernation. PeerJ 2016; 4:e2317. [PMID: 27602284 PMCID: PMC4991874 DOI: 10.7717/peerj.2317] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 07/12/2016] [Indexed: 12/12/2022] Open
Abstract
Background. Mammalian hibernation in thirteen-lined ground squirrels (Ictidomys tridecemlineatus) is characterized by dramatic changes on a physiological and molecular level. During hibernation, mammalian hearts show a propensity to hypertrophy due to the need for increasing contractility to pump colder and more viscous blood. While cardiac hypertrophy is quite often a process characterized by decompensation, the ground squirrel studied is an excellent model of cardiac plasticity and cardioprotection under conditions of hypothermia and ischemia. The forkhead box O (Foxo) family of proteins and myogenin (MyoG) are transcription factors that control protein degradation and muscle atrophy by regulating the expression of the E3 ubiquitin ligases, MAFbx and MuRF1. These ligases are part of the ubiquitin proteasome system by transferring ubiquitin to proteins and targeting these proteins for degradation. Regulation of Foxo1 and 3a occurs through phosphorylation at different residues. The threonine-24 (Thr-24) and serine-319 (Ser-319) residues on Foxo1, and the Thr-32 residue on Foxo3a are phosphorylated by Akt, leading to cytoplasmic localization of Foxo. We propose that the described mechanism contributes to the changes taking place in cardiac muscle throughout hibernation. Methods. Total and phosphorylated protein levels of Foxo1 and Foxo3a, as well as total protein levels of MyoG, MAFbx, and MuRF1, were studied using immunoblotting. Results. Immunoblotting results demonstrated upregulations in Foxo1 and Foxo3a total protein levels (1.3- and 4.5-fold increases relative to euthermic control, for Foxo1 and 3a respectively) during late torpor, and protein levels remained elevated throughout the rest of torpor and at interbout arousal. We also observed decreases in inactive, phosphorylated Foxo1 and 3a proteins during throughout torpor, where levels of p-Foxo1 Ser319 and Thr24, as well as p-Foxo3a Thr32 decreased by at least 45% throughout torpor. MyoG was upregulated only during late torpor by 2.4-fold. Protein levels of MAFbx and MuRF1 increased in late torpor as well as during early arousal by as much as 2.8-fold, and MAFbx levels remained elevated during interbout arousal, whereas MuRF1 levels returned to control levels. Discussion. The present results indicate that upregulation and activation of Foxo1 and 3a, in addition to the increase in MyoG levels at late torpor, may be upregulating the expression of MAFbx and MuRF1. These findings suggest that there is activation of the ubiquitin proteasome system (UPS) as ground squirrels arouse from torpor. Therefore, the signalling pathway involving MyoG, and the E3 ligases MAFbx and MuRF1, plays a significant role in cardiac muscle remodelling during hibernation. These findings provide insights into the regulation of protein degradation and turnover in the cardiac muscle of a hibernator model.
Collapse
Affiliation(s)
- Yichi Zhang
- Institute of Biochemistry and Department of Biology, Carleton University , Ottawa , ON , Canada
| | - Oscar A Aguilar
- Institute of Biochemistry and Department of Biology, Carleton University , Ottawa , ON , Canada
| | - Kenneth B Storey
- Institute of Biochemistry and Department of Biology, Carleton University , Ottawa , ON , Canada
| |
Collapse
|
35
|
Dondelinger Y, Hulpiau P, Saeys Y, Bertrand MJM, Vandenabeele P. An evolutionary perspective on the necroptotic pathway. Trends Cell Biol 2016; 26:721-732. [PMID: 27368376 DOI: 10.1016/j.tcb.2016.06.004] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 06/02/2016] [Accepted: 06/06/2016] [Indexed: 02/08/2023]
Abstract
Throughout the animal kingdom, innate immune receptors protect the organism from microbial intruders by activating pathways that mediate inflammation and pathogen clearance. Necroptosis contributes to the innate immune response by killing pathogen-infected cells and by alerting the immune system through the release of danger signals. Components of the necroptotic signaling axis - TIR-domain-containing adapter-inducing interferon-β (TRIF), Z-DNA sensor DAI, receptor-interacting kinase (RIPK)1, RIPK3 and mixed-lineage kinase domain-like protein (MLKL) - are therefore expected to be found in all animals. However, a phylogenetic analysis reveals that the necroptotic axis, except for RIPK1, is poorly conserved in the animal kingdom, suggesting that alternative mechanisms regulate necroptosis in these species or that necroptosis would apparently be absent. These findings question the universal role of necroptosis during innate immunity in the animal kingdom.
Collapse
Affiliation(s)
- Yves Dondelinger
- VIB Inflammation Research Center, Technologiepark 927, Zwijnaarde-Ghent, 9052, Belgium; Department of Biomedical Molecular Biology, Ghent University, Technologiepark 927, Zwijnaarde-Ghent, 9052, Belgium
| | - Paco Hulpiau
- VIB Inflammation Research Center, Technologiepark 927, Zwijnaarde-Ghent, 9052, Belgium; Department of Biomedical Molecular Biology, Ghent University, Technologiepark 927, Zwijnaarde-Ghent, 9052, Belgium
| | - Yvan Saeys
- VIB Inflammation Research Center, Technologiepark 927, Zwijnaarde-Ghent, 9052, Belgium; Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Mathieu J M Bertrand
- VIB Inflammation Research Center, Technologiepark 927, Zwijnaarde-Ghent, 9052, Belgium; Department of Biomedical Molecular Biology, Ghent University, Technologiepark 927, Zwijnaarde-Ghent, 9052, Belgium
| | - Peter Vandenabeele
- VIB Inflammation Research Center, Technologiepark 927, Zwijnaarde-Ghent, 9052, Belgium; Department of Biomedical Molecular Biology, Ghent University, Technologiepark 927, Zwijnaarde-Ghent, 9052, Belgium.
| |
Collapse
|
36
|
Onufriev MV, Semenova TP, Volkova EP, Sergun’kina MA, Yakovlev AA, Zakharova NM, Gulyaeva NV. Seasonal changes in actin and Cdk5 expression in different brain regions of the Yakut ground squirrel (Spermophilus undulatus). NEUROCHEM J+ 2016. [DOI: 10.1134/s1819712416020070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
37
|
Abstract
Many environmental conditions can constrain the ability of animals to obtain sufficient food energy, or transform that food energy into useful chemical forms. To survive extended periods under such conditions animals must suppress metabolic rate to conserve energy, water, or oxygen. Amongst small endotherms, this metabolic suppression is accompanied by and, in some cases, facilitated by a decrease in core body temperature-hibernation or daily torpor-though significant metabolic suppression can be achieved even with only modest cooling. Within some ectotherms, winter metabolic suppression exceeds the passive effects of cooling. During dry seasons, estivating ectotherms can reduce metabolism without changes in body temperature, conserving energy reserves, and reducing gas exchange and its inevitable loss of water vapor. This overview explores the similarities and differences of metabolic suppression among these states within adult animals (excluding developmental diapause), and integrates levels of organization from the whole animal to the genome, where possible. Several similarities among these states are highlighted, including patterns and regulation of metabolic balance, fuel use, and mitochondrial metabolism. Differences among models are also apparent, particularly in whether the metabolic suppression is intrinsic to the tissue or depends on the whole-animal response. While in these hypometabolic states, tissues from many animals are tolerant of hypoxia/anoxia, ischemia/reperfusion, and disuse. These natural models may, therefore, serve as valuable and instructive models for biomedical research.
Collapse
Affiliation(s)
- James F Staples
- Department of Biology, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
38
|
Nathaniel TI, Williams-Hernandez A, Hunter AL, Liddy C, Peffley DM, Umesiri FE, Imeh-Nathaniel A. Tissue hypoxia during ischemic stroke: adaptive clues from hypoxia-tolerant animal models. Brain Res Bull 2015; 114:1-12. [PMID: 25738761 DOI: 10.1016/j.brainresbull.2015.02.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Revised: 02/12/2015] [Accepted: 02/19/2015] [Indexed: 10/23/2022]
Abstract
The treatment and prevention of hypoxic/ischemic brain injury in stroke patients remain a severe and global medical issue. Numerous clinical studies have resulted in a failure to develop chemical neuroprotection for acute, ischemic stroke. Over 150 estimated clinical trials of ischemic stroke treatments have been done, and more than 200 drugs and combinations of drugs for ischemic and hemorrhagic strokes have been developed. Billions of dollars have been invested for new scientific breakthroughs with only limited success. The revascularization of occluded cerebral arteries such as anti-clot treatments of thrombolysis has proven effective, but it can only be used in a 3-4.5h time frame after the onset of a stroke, and not for every patient. This review is about novel insights on how to resist tissue hypoxia from unconventional animal models. Ability to resist tissue hypoxia is an extraordinary ability that is not common in many laboratory animals such as rat and mouse models. For example, we can learn from a naked mole-rat, Chrysemys picta, how to actively regulate brain metabolic activity to defend the brain against fluctuating oxygen tension and acute bouts of oxidative stress following the onset of a stroke. Additionally, a euthermic arctic ground squirrel can teach us how the brain of a stroke patient can remain well oxygenated during tissue hypoxia with no evidence of cellular stress. In this review, we discuss how these animals provide us with a system to gain insight into the possible mechanisms of tissue hypoxia/ischemia. This issue is of clinical significance to stroke patients. We describe specific physiological and molecular adaptations employed by different animals' models of hypoxia tolerance in aquatic and terrestrial environments. We highlight how these adaptations might provide potential clues on strategies to adapt for the clinical management of tissue hypoxia during conditions such as stroke where oxygen demand fails to match the supply.
Collapse
Affiliation(s)
- Thomas I Nathaniel
- University of South Carolina School of Medicine-Greenville, 701 Grove Road, Greenville, SC 29605, United States.
| | - Ashley Williams-Hernandez
- University of South Carolina School of Medicine-Greenville, 701 Grove Road, Greenville, SC 29605, United States
| | - Anan L Hunter
- University of South Carolina School of Medicine-Greenville, 701 Grove Road, Greenville, SC 29605, United States
| | - Caroline Liddy
- University of South Carolina School of Medicine-Greenville, 701 Grove Road, Greenville, SC 29605, United States
| | - Dennis M Peffley
- University of South Carolina School of Medicine-Greenville, 701 Grove Road, Greenville, SC 29605, United States
| | - Francis E Umesiri
- Chemistry department, John Brown University, 2000 W. University Street, Siloam Springs, AR 72761, United States
| | - Adebobola Imeh-Nathaniel
- Department of Biology, North Greenville University, 7801 North Tigerville Road, Tigerville, SC 29688, United States
| |
Collapse
|
39
|
Neuronal UCP1 expression suggests a mechanism for local thermogenesis during hibernation. Proc Natl Acad Sci U S A 2015; 112:1607-12. [PMID: 25605929 DOI: 10.1073/pnas.1421419112] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Hibernating mammals possess a unique ability to reduce their body temperature to ambient levels, which can be as low as -2.9 °C, by active down-regulation of metabolism. Despite such a depressed physiologic phenotype, hibernators still maintain activity in their nervous systems, as evidenced by their continued sensitivity to auditory, tactile, and thermal stimulation. The molecular mechanisms that underlie this adaptation remain unknown. We report, using differential transcriptomics alongside immunohistologic and biochemical analyses, that neurons from thirteen-lined ground squirrels (Ictidomys tridecemlineatus) express mitochondrial uncoupling protein 1 (UCP1). The expression changes seasonally, with higher expression during hibernation compared with the summer active state. Functional and pharmacologic analyses show that squirrel UCP1 acts as the typical thermogenic protein in vitro. Accordingly, we found that mitochondria isolated from torpid squirrel brain show a high level of palmitate-induced uncoupling. Furthermore, torpid squirrels during the hibernation season keep their brain temperature significantly elevated above ambient temperature and that of the rest of the body, including brown adipose tissue. Together, our findings suggest that UCP1 contributes to local thermogenesis in the squirrel brain, and thus supports nervous tissue function at low body temperature during hibernation.
Collapse
|
40
|
Bogren LK, Murphy CJ, Johnston EL, Sinha N, Serkova NJ, Drew KL. 1H-NMR metabolomic biomarkers of poor outcome after hemorrhagic shock are absent in hibernators. PLoS One 2014; 9:e107493. [PMID: 25211248 PMCID: PMC4161479 DOI: 10.1371/journal.pone.0107493] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 08/12/2014] [Indexed: 11/20/2022] Open
Abstract
Background Hemorrhagic shock (HS) following trauma is a leading cause of death among persons under the age of 40. During HS the body undergoes systemic warm ischemia followed by reperfusion during medical intervention. Ischemia/reperfusion (I/R) results in a disruption of cellular metabolic processes that ultimately lead to tissue and organ dysfunction or failure. Resistance to I/R injury is a characteristic of hibernating mammals. The present study sought to identify circulating metabolites in the rat as biomarkers for metabolic alterations associated with poor outcome after HS. Arctic ground squirrels (AGS), a hibernating species that resists I/R injury independent of decreased body temperature (warm I/R), was used as a negative control. Methodology/principal findings Male Sprague-Dawley rats and AGS were subject to HS by withdrawing blood to a mean arterial pressure (MAP) of 35 mmHg and maintaining the low MAP for 20 min before reperfusing with Ringers. The animals’ temperature was maintained at 37±0.5°C for the duration of the experiment. Plasma samples were taken immediately before hemorrhage and three hours after reperfusion. Hydrophilic and lipid metabolites from plasma were then analyzed via 1H–NMR from unprocessed plasma and lipid extracts, respectively. Rats, susceptible to I/R injury, had a qualitative shift in their hydrophilic metabolic fingerprint including differential activation of glucose and anaerobic metabolism and had alterations in several metabolites during I/R indicative of metabolic adjustments and organ damage. In contrast, I/R injury resistant AGS, regardless of season or body temperature, maintained a stable metabolic homeostasis revealed by a qualitative 1H–NMR metabolic profile with few changes in quantified metabolites during HS-induced global I/R. Conclusions/significance An increase in circulating metabolites indicative of anaerobic metabolism and activation of glycolytic pathways is associated with poor prognosis after HS in rats. These same biomarkers are absent in AGS after HS with warm I/R.
Collapse
Affiliation(s)
- Lori K. Bogren
- Department of Chemistry and Biochemistry, University of Alaska Fairbanks, Fairbanks, AK, United States of America
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK, United States of America
- * E-mail:
| | - Carl J. Murphy
- Department of Chemistry and Biochemistry, University of Alaska Fairbanks, Fairbanks, AK, United States of America
| | - Erin L. Johnston
- Department of Chemistry and Biochemistry, University of Alaska Fairbanks, Fairbanks, AK, United States of America
| | - Neeraj Sinha
- Centre of Biomedical Research, SGPGIMS Campus, Lucknow, Uttar Pradesh, India
| | - Natalie J. Serkova
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States of America
- University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO, United States of America
| | - Kelly L. Drew
- Department of Chemistry and Biochemistry, University of Alaska Fairbanks, Fairbanks, AK, United States of America
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK, United States of America
| |
Collapse
|
41
|
Bogren LK, Drew KL. Ischemia/reperfusion injury resistance in hibernators is more than an effect of reduced body temperature or winter season. Temperature (Austin) 2014; 1:87-8. [PMID: 27583285 PMCID: PMC4977161 DOI: 10.4161/temp.29761] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 06/26/2014] [Accepted: 06/27/2014] [Indexed: 11/24/2022] Open
Abstract
Hibernating mammals are resistant to injury following cardiac arrest. The basis of this protection has been proposed to be due to their ability to lower body temperature or metabolic rate in a seasonally-dependent manner. However, recent studies have shown that neither reduced body temperature nor hibernation season are components this protection.
Collapse
Affiliation(s)
- Lori K Bogren
- Department of Chemistry and Biochemistry; University of Alaska Fairbanks; Fairbanks, AK USA; Institute of Arctic Biology; University of Alaska Fairbanks; Fairbanks, AK USA
| | - Kelly L Drew
- Department of Chemistry and Biochemistry; University of Alaska Fairbanks; Fairbanks, AK USA; Institute of Arctic Biology; University of Alaska Fairbanks; Fairbanks, AK USA
| |
Collapse
|