1
|
Bellich B, Cacioppo M, De Zorzi R, Rizzo R, Brady JW, Cescutti P. Interactions of biofilm polysaccharides produced by human infective bacteria with molecules of the quorum sensing system. A microscopy and NMR study. Int J Biol Macromol 2024; 281:136222. [PMID: 39362422 DOI: 10.1016/j.ijbiomac.2024.136222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/20/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024]
Abstract
Biofilms are the most common lifestyle adopted by bacterial communities where cells live embedded in a self-produced hydrated matrix. Although polysaccharides are considered essential for matrix architecture, their possible functional roles are still rather unexplored. The primary structure of polysaccharides produced by Klebsiella pneumoniae and species of the Burkholderia cepacia Complex revealed a composition rich in rhamnose. The methyl group on carbon 6 of rhamnose units lowers the polymer hydrophilicity and can form low polarity regions on the polysaccharide chains. These regions promote chain-chain interactions that contribute to the biofilm matrix stability, but may also act as binding sites for low-polarity molecules, aiding their mobility through the hydrated matrix. In particular, quorum sensing system components crucial for the biofilm life cycle often display poor solubility in water. Therefore, cis-11-methyl-2-dodecenoic acid and L-homoserine-lactones were investigated by NMR spectroscopy for their possible interaction with polysaccharides. In addition, the macromolecular morphology of the polysaccharides was assessed using atomic force and electron microscopies to define the role of Rha residues on the three-dimensional conformation of the polymer. NMR data revealed that quorum sensing components interact with Rhamnose-rich polysaccharides, and the extent of interaction depends on the specific primary structure of each polysaccharide.
Collapse
Affiliation(s)
- Barbara Bellich
- Advanced Translational Diagnostics Laboratory, Institute for Maternal and Child Health-IRCCS "Burlo Garofolo", Via dell'Istria 65/1, 34137 Trieste, Italy
| | - Michele Cacioppo
- Department of Chemical and Pharmaceutical Sciences, INSTM UdR Trieste, University of Trieste, Via Licio Giorgieri 1, 34127 Trieste, Italy
| | - Rita De Zorzi
- Department of Chemical and Pharmaceutical Sciences, INSTM UdR Trieste, University of Trieste, Via Licio Giorgieri 1, 34127 Trieste, Italy
| | - Roberto Rizzo
- Department of Life Sciences, Bld C11 University of Trieste, Via Licio Giorgieri 1, 34127 Trieste, Italy
| | - John W Brady
- Food Science Department, Cornell University, 101A Stocking Hall, Ithaca, NY 14853, USA
| | - Paola Cescutti
- Department of Life Sciences, Bld C11 University of Trieste, Via Licio Giorgieri 1, 34127 Trieste, Italy.
| |
Collapse
|
2
|
Pooladian F, Das A, Wise JW, Demchenko AV. Synthesis of regioselectively protected building blocks of benzyl β-d-glucopyranoside. Carbohydr Res 2024; 544:109250. [PMID: 39214041 PMCID: PMC11391699 DOI: 10.1016/j.carres.2024.109250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/20/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
Reported herein is the synthesis of benzyl β-d-glucopyranoside and its derivatives that provide straightforward access to 3,4-branched glycans. Modes to diversify the synthetic intermediates via introduction of various temporary protecting groups have been demonstrated.
Collapse
Affiliation(s)
- Faranak Pooladian
- Department of Chemistry, Saint Louis University, 3501 Laclede Ave, St. Louis, Missouri, 63103, USA
| | - Anupama Das
- Department of Chemistry, Saint Louis University, 3501 Laclede Ave, St. Louis, Missouri, 63103, USA
| | - Joseph W Wise
- Department of Chemistry, Saint Louis University, 3501 Laclede Ave, St. Louis, Missouri, 63103, USA
| | - Alexei V Demchenko
- Department of Chemistry, Saint Louis University, 3501 Laclede Ave, St. Louis, Missouri, 63103, USA.
| |
Collapse
|
3
|
Garcia-Muchart E, Martínez-Avila O, Mejias L, Gilles E, Bluteau C, Lavergne L, Ponsá S. Novel biostimulant bacterial exopolysaccharides production via solid-state fermentation as a valorisation strategy for agri-food waste. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-34435-y. [PMID: 39044054 DOI: 10.1007/s11356-024-34435-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 07/16/2024] [Indexed: 07/25/2024]
Abstract
Bacterial exopolysaccharides (EPS) are extracellular polymer-based substances recently defined as potential plant biostimulants, as they can increase nutrient uptake, water retention, and resistance to abiotic stress. As sugar-based substances, the bacteria producing them need to grow in a sugar-rich substrate. Hence, some agri-food by-products could be used as suitable carbon sources for EPS production as a cost-effective and more sustainable alternative to conventional substrates. Thus, this study aimed to produce EPS from specific bacterial strains through solid-state fermentation (SSF) using agri-food waste as a low-cost substrate. Six residues and five bacterial strains were tested in a lab-scale SSF system. From the assessed substrate-strain combinations, Burkholderia cepacia with ginger juice waste (GJW) resulted in the most promising considering several process parameters (EPS production, cumulative oxygen consumption, biomass growth, reducing sugars consumption). Also, dynamic monitoring of the system allowed for establishing 5 days as a suitable fermentation time. Then, using response surface methodology (Box-Behnken design), the process was optimised based on airflow rate (AF), inoculum size (IS), and micronutrient concentration (MN). In this stage, the best conditions found were at 0.049 (± 0.014) L h-1 per gram of dry matter (DM) for AF, 8.4 (± 0.9) E + 09 CFU g-1 DM for IS, and 0.07 (± 0.01) mL g-1 DM for MN, reaching up to 71.1 (± 3.2) mg crude EPS g-1 DM. Results show the potential of this approach to provide a new perspective on the value chain for the agri-food industry by introducing it to a circular economy framework.
Collapse
Affiliation(s)
- Enric Garcia-Muchart
- BETA Tech Centre (TECNIO Network), University of Vic-Central University of Catalonia, Ctra. de Roda 70, 08500, Vic, Spain
| | - Oscar Martínez-Avila
- BETA Tech Centre (TECNIO Network), University of Vic-Central University of Catalonia, Ctra. de Roda 70, 08500, Vic, Spain.
| | - Laura Mejias
- BETA Tech Centre (TECNIO Network), University of Vic-Central University of Catalonia, Ctra. de Roda 70, 08500, Vic, Spain
| | - Eline Gilles
- BETA Tech Centre (TECNIO Network), University of Vic-Central University of Catalonia, Ctra. de Roda 70, 08500, Vic, Spain
| | - Chloé Bluteau
- BETA Tech Centre (TECNIO Network), University of Vic-Central University of Catalonia, Ctra. de Roda 70, 08500, Vic, Spain
| | - Lucie Lavergne
- BETA Tech Centre (TECNIO Network), University of Vic-Central University of Catalonia, Ctra. de Roda 70, 08500, Vic, Spain
| | - Sergio Ponsá
- BETA Tech Centre (TECNIO Network), University of Vic-Central University of Catalonia, Ctra. de Roda 70, 08500, Vic, Spain
| |
Collapse
|
4
|
Tsiareshyna M, Wang TH, Lin YS, Piorkowski D, Huang SYT, Huang YL, Chao WT, Chang YJ, Liao CP, Wang PH, Tso IM. Bacteria inhabiting spider webs enhance host silk extensibility. Sci Rep 2024; 14:11011. [PMID: 38744937 PMCID: PMC11093983 DOI: 10.1038/s41598-024-61723-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 05/08/2024] [Indexed: 05/16/2024] Open
Abstract
Spider silk is a promising material with great potential in biomedical applications due to its incredible mechanical properties and resistance to degradation of commercially available bacterial strains. However, little is known about the bacterial communities that may inhabit spider webs and how these microorganisms interact with spider silk. In this study, we exposed two exopolysaccharide-secreting bacteria, isolated from webs of an orb spider, to major ampullate (MA) silk from host spiders. The naturally occurring lipid and glycoprotein surface layers of MA silk were experimentally removed to further probe the interaction between bacteria and silk. Extensibility of major ampullate silk produced by Triconephila clavata that was exposed to either Microbacterium sp. or Novosphigobium sp. was significantly higher than that of silk that was not exposed to bacteria (differed by 58.7%). This strain-enhancing effect was not observed when the lipid and glycoprotein surface layers of MA silks were removed. The presence of exopolysaccharides was detected through NMR from MA silks exposed to these two bacteria but not from those without exposure. Here we report for the first time that exopolysaccharide-secreting bacteria inhabiting spider webs can enhance extensibility of host MA silks and silk surface layers play a vital role in mediating such effects.
Collapse
Affiliation(s)
| | - Te-Hsin Wang
- Department of Life Science, Tunghai University, Taichung, Taiwan
| | - Ying-Sheng Lin
- Department of Chemistry, Tunghai University, Taichung, Taiwan
| | | | - Sammi Yen-Ting Huang
- Department of Life Science, Tunghai University, Taichung, Taiwan
- Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan
| | - Yi-Lun Huang
- Department of Life Science, Tunghai University, Taichung, Taiwan
| | - Wei-Ting Chao
- Department of Life Science, Tunghai University, Taichung, Taiwan
| | - Yuan Jay Chang
- Department of Chemistry, Tunghai University, Taichung, Taiwan
| | - Chen-Pan Liao
- Department of Life Science, Tunghai University, Taichung, Taiwan
- Department of Biology, National Museum of Natural Science, Taichung, Taiwan
| | - Pi-Han Wang
- Department of Life Science, Tunghai University, Taichung, Taiwan.
- Center for Ecology and Environment, Tunghai University, Taichung, Taiwan.
| | - I-Min Tso
- Department of Life Science, Tunghai University, Taichung, Taiwan.
- Center for Ecology and Environment, Tunghai University, Taichung, Taiwan.
| |
Collapse
|
5
|
Cacioppo M, De Zorzi R, Syrgiannis Z, Bellich B, Bertoncin P, Jou IA, Brady JW, Rizzo R, Cescutti P. Microscopy and modelling investigations on the morphology of the biofilm exopolysaccharide produced by Burkholderia multivorans strain C1576. Int J Biol Macromol 2023; 253:127294. [PMID: 37813217 PMCID: PMC10872726 DOI: 10.1016/j.ijbiomac.2023.127294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/26/2023] [Accepted: 10/05/2023] [Indexed: 10/11/2023]
Abstract
Bacteria form very often biofilms where they embed in a self-synthesized matrix exhibiting a gel-like appearance. Matrices offer several advantages, including defence against external threats and the easiness of intercellular communication. In infections, biofilm formation enhances bacteria resistance against antimicrobials, causing serious clinical problems for patients' treatments. Biofilm matrices are composed of proteins, extracellular DNA, and polysaccharides, the latter being the major responsible for matrix architecture. The repeating unit of the biofilm polysaccharide synthesized by Burkholderia multivorans strain C1576 contains two mannoses and two sequentially linked rhamnoses, one of them 50 % methylated on C-3. Rhamnose, a 6-deoxysugar, has lower polarity than other common monosaccharides and its methylation further reduces polarity. This suggests a possible role of this polysaccharide in the biofilm matrix; in fact, computer modelling and atomic force microscopy studies evidenced intra- and inter-molecular non-polar interactions both within polysaccharides and with aliphatic molecules. In this paper, the polysaccharide three-dimensional morphology was investigated using atomic force microscopy in both solid and solution states. Independent evidence of the polymer conformation was obtained by transmission electron microscopy which confirmed the formation of globular compact structures. Finally, data from computer dynamic simulations were used to model the three-dimensional structure.
Collapse
Affiliation(s)
- Michele Cacioppo
- Department of Chemical and Pharmaceutical Sciences, INSTM UdR Trieste, University of Trieste, Via Licio Giorgieri 1, 34127 Trieste, Italy
| | - Rita De Zorzi
- Department of Chemical and Pharmaceutical Sciences, INSTM UdR Trieste, University of Trieste, Via Licio Giorgieri 1, 34127 Trieste, Italy
| | - Zois Syrgiannis
- Simpson Querrey Institute, Northwestern University, Chicago, IL 60611, USA; Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | - Barbara Bellich
- Department of Life Sciences, University of Trieste, Via Licio Giorgieri 1, 34127 Trieste, Italy
| | - Paolo Bertoncin
- Department of Life Sciences, University of Trieste, Via Licio Giorgieri 1, 34127 Trieste, Italy
| | - Ining A Jou
- Food Science Department, Cornell University, 101A Stocking Hall, Ithaca, NY 14853, USA
| | - John W Brady
- Food Science Department, Cornell University, 101A Stocking Hall, Ithaca, NY 14853, USA
| | - Roberto Rizzo
- Department of Life Sciences, University of Trieste, Via Licio Giorgieri 1, 34127 Trieste, Italy
| | - Paola Cescutti
- Department of Life Sciences, University of Trieste, Via Licio Giorgieri 1, 34127 Trieste, Italy.
| |
Collapse
|
6
|
Bellich B, Terán LC, Fazli MM, Berti F, Rizzo R, Tolker-Nielsen T, Cescutti P. The Bep gene cluster in Burkholderia cenocepacia H111 codes for a water-insoluble exopolysaccharide essential for biofilm formation. Carbohydr Polym 2023; 301:120318. [PMID: 36436859 PMCID: PMC9713610 DOI: 10.1016/j.carbpol.2022.120318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/22/2022] [Accepted: 11/05/2022] [Indexed: 11/13/2022]
Abstract
Burkholderia cenocepacia is an opportunistic pathogen isolated from cystic fibrosis patients where it causes infections that are extremely difficult to treat with antibiotics, and sometimes have a fatal outcome. Biofilm is a virulence trait of B. cenocepacia, and is associated with infection persistence and increased tolerance to antibiotics. In biofilms exopolysaccharides have an important role, conferring mechanical stability and antibiotic tolerance. Two different exopolysaccharides were isolated from B. cenocepacia H111 biofilms: a water-soluble polysaccharide rich in rhamnose and containing an L-Man residue, and a water-insoluble polymer made of glucose, galactose and mannose. In the present work, the product encoded by B. cenocepacia H111 bepA-L gene cluster was identified as the water-insoluble exopolysaccharide, using mutant strains and NMR spectroscopy of the purified polysaccharides. It was also demonstrated that the B. cenocepacia H111 wild type strain produces the water-insoluble exopolysaccharide in pellicles, thus underlining its potential importance in in vivo infections.
Collapse
Affiliation(s)
- Barbara Bellich
- Department of Life Sciences, University of Trieste, via L. Giorgieri 1, Bdg. C11, 34127 Trieste, Italy
| | - Lucrecia C Terán
- Department of Life Sciences, University of Trieste, via L. Giorgieri 1, Bdg. C11, 34127 Trieste, Italy
| | - Magnus M Fazli
- Costerton Biofilm Center, Department of Immunology and Microbiology, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | | | - Roberto Rizzo
- Department of Life Sciences, University of Trieste, via L. Giorgieri 1, Bdg. C11, 34127 Trieste, Italy
| | - Tim Tolker-Nielsen
- Costerton Biofilm Center, Department of Immunology and Microbiology, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Paola Cescutti
- Department of Life Sciences, University of Trieste, via L. Giorgieri 1, Bdg. C11, 34127 Trieste, Italy.
| |
Collapse
|
7
|
Nyanasegran PK, Nathan S, Firdaus-Raih M, Muhammad NAN, Ng CL. Biofilm Signaling, Composition and Regulation in Burkholderia pseudomallei. J Microbiol Biotechnol 2023; 33:15-27. [PMID: 36451302 PMCID: PMC9899790 DOI: 10.4014/jmb.2207.07032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 12/04/2022]
Abstract
The incidence of melioidosis cases caused by the gram-negative pathogen Burkholderia pseudomallei (BP) is seeing an increasing trend that has spread beyond its previously known endemic regions. Biofilms produced by BP have been associated with antimicrobial therapy limitation and relapse melioidosis, thus making it urgently necessary to understand the mechanisms of biofilm formation and their role in BP biology. Microbial cells aggregate and enclose within a self-produced matrix of extracellular polymeric substances (EPSs) to form biofilm. The transition mechanism of bacterial cells from planktonic state to initiate biofilm formation, which involves the formation of surface attachment microcolonies and the maturation of the biofilm matrix, is a dynamic and complex process. Despite the emerging findings on the biofilm formation process, systemic knowledge on the molecular mechanisms of biofilm formation in BP remains fractured. This review provides insights into the signaling systems, matrix composition, and the biosynthesis regulation of EPSs (exopolysaccharide, eDNA and proteins) that facilitate the formation of biofilms in order to present an overview of our current knowledge and the questions that remain regarding BP biofilms.
Collapse
Affiliation(s)
| | - Sheila Nathan
- Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| | - Mohd Firdaus-Raih
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia,Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| | - Nor Azlan Nor Muhammad
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| | - Chyan Leong Ng
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia,Corresponding author Phone: +03 8921 4561 Fax: +603 8921 3398 E-mail:
| |
Collapse
|
8
|
Pseudomonas aeruginosa biofilm dispersion by the mouse antimicrobial peptide CRAMP. Vet Res 2022; 53:80. [PMID: 36209206 PMCID: PMC9548163 DOI: 10.1186/s13567-022-01097-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 08/15/2022] [Indexed: 11/10/2022] Open
Abstract
Pseudomonas aeruginosa (P. aeruginosa) is a known bacterium that produces biofilms and causes severe infection. Furthermore, P. aeruginosa biofilms are extremely difficult to eradicate, leading to the development of chronic and antibiotic-resistant infections. Our previous study showed that a cathelicidin-related antimicrobial peptide (CRAMP) inhibits the formation of P. aeruginosa biofilms and markedly reduces the biomass of preformed biofilms, while the mechanism of eradicating bacterial biofilms remains elusive. Therefore, in this study, the potential mechanism by which CRAMP eradicates P. aeruginosa biofilms was investigated through an integrative analysis of transcriptomic, proteomic, and metabolomic data. The omics data revealed CRAMP functioned against P. aeruginosa biofilms by different pathways, including the Pseudomonas quinolone signal (PQS) system, cyclic dimeric guanosine monophosphate (c-di-GMP) signalling pathway, and synthesis pathways of exopolysaccharides and rhamnolipid. Moreover, a total of 2914 differential transcripts, 785 differential proteins, and 280 differential metabolites were identified. A series of phenotypic validation tests demonstrated that CRAMP reduced the c-di-GMP level with a decrease in exopolysaccharides, especially alginate, in P. aeruginosa PAO1 biofilm cells, improved bacterial flagellar motility, and increased the rhamnolipid content, contributing to the dispersion of biofilms. Our study provides new insight into the development of CRAMP as a potentially effective antibiofilm dispersant.
Collapse
|
9
|
Singh K, Kulkarni SS. Small Carbohydrate Derivatives as Potent Antibiofilm Agents. J Med Chem 2022; 65:8525-8549. [PMID: 35777073 DOI: 10.1021/acs.jmedchem.1c01039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Biofilm formation by most pathogenic bacteria is considered as one of the key mechanisms associated with virulence and antibiotic resistance. Biofilm-forming bacteria adhere to the surfaces of biological or implant medical devices and create communities within their self-produced extracellular matrix that are difficult to treat by existing antibiotics. There is an urgent need to synthesize and screen structurally diverse molecules for their antibiofilm activity that can remove or minimize the bacterial biofilm. The development of carbohydrate-based small molecules as antibiofilm agents holds a great promise in addressing the problem of the eradication of biofilm-related infections. Owing to their structural diversity and specificity, the sugar scaffolds are valuable entities for developing antibiofilm agents. In this perspective, we discuss the literature pertaining to carbohydrate-based natural antibiofilm agents and provide an overview of the design, activity, and mode of action of potent synthetic carbohydrate-based molecules.
Collapse
Affiliation(s)
- Kartikey Singh
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, India 400076
| | - Suvarn S Kulkarni
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, India 400076
| |
Collapse
|
10
|
Athmika, Ghate SD, Arun AB, Rao SS, Kumar STA, Kandiyil MK, Saptami K, Rekha PD. Genome analysis of a halophilic bacterium Halomonas malpeensis YU-PRIM-29 T reveals its exopolysaccharide and pigment producing capabilities. Sci Rep 2021; 11:1749. [PMID: 33462335 PMCID: PMC7814019 DOI: 10.1038/s41598-021-81395-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 01/04/2021] [Indexed: 11/08/2022] Open
Abstract
Halomonas malpeensis strain YU-PRIM-29T is a yellow pigmented, exopolysaccharide (EPS) producing halophilic bacterium isolated from the coastal region. To understand the biosynthesis pathways involved in the EPS and pigment production, whole genome analysis was performed. The complete genome sequencing and the de novo assembly were carried out using Illumina sequencing and SPAdes genome assembler (ver 3.11.1) respectively followed by detailed genome annotation. The genome consists of 3,607,821 bp distributed in 18 contigs with 3337 protein coding genes and 53% of the annotated CDS are having putative functions. Gene annotation disclosed the presence of genes involved in ABC transporter-dependent pathway of EPS biosynthesis. As the ABC transporter-dependent pathway is also implicated in the capsular polysaccharide (CPS) biosynthesis, we employed extraction protocols for both EPS (from the culture supernatants) and CPS (from the cells) and found that the secreted polysaccharide i.e., EPS was predominant. The EPS showed good emulsifying activities against the petroleum hydrocarbons and its production was dependent on the carbon source supplied. The genome analysis also revealed genes involved in industrially important metabolites such as zeaxanthin pigment, ectoine and polyhydroxyalkanoate (PHA) biosynthesis. To confirm the genome data, we extracted these metabolites from the cultures and successfully identified them. The pigment extracted from the cells showed the distinct UV-Vis spectra having characteristic absorption peak of zeaxanthin (λmax 448 nm) with potent antioxidant activities. The ability of H. malpeensis strain YU-PRIM-29T to produce important biomolecules makes it an industrially important bacterium.
Collapse
Affiliation(s)
- Athmika
- Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangalore, 575018, India
| | - Sudeep D Ghate
- Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangalore, 575018, India
| | - A B Arun
- Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangalore, 575018, India
| | - Sneha S Rao
- Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangalore, 575018, India
| | - S T Arun Kumar
- Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangalore, 575018, India
| | - Mrudula Kinarulla Kandiyil
- Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangalore, 575018, India
| | - Kanekar Saptami
- Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangalore, 575018, India
| | - P D Rekha
- Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangalore, 575018, India.
| |
Collapse
|
11
|
Bellich B, Jou IA, Buriola C, Ravenscroft N, Brady JW, Fazli M, Tolker-Nielsen T, Rizzo R, Cescutti P. The biofilm of Burkholderia cenocepacia H111 contains an exopolysaccharide composed of l-rhamnose and l-mannose: Structural characterization and molecular modelling. Carbohydr Res 2021; 499:108231. [PMID: 33440288 PMCID: PMC9638112 DOI: 10.1016/j.carres.2020.108231] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/23/2020] [Accepted: 12/24/2020] [Indexed: 10/22/2022]
Abstract
Burkholderia cenocepacia belongs to the Burkholderia Cepacia Complex, a group of 22 closely related species both of clinical and environmental origin, infecting cystic fibrosis patients. B. cenocepacia accounts for the majority of the clinical isolates, comprising the most virulent and transmissible strains. The capacity to form biofilms is among the many virulence determinants of B. cenocepacia, a characteristic that confers enhanced tolerance to some antibiotics, desiccation, oxidizing agents, and host defenses. Exopolysaccharides are a major component of biofilm matrices, particularly providing mechanical stability to biofilms. Recently, a water-insoluble exopolysaccharide produced by B. cenocepacia H111 in biofilm was characterized. In the present study, a water-soluble exopolysaccharide was extracted from B. cenocepacia H111 biofilm, and its structure was determined by GLC-MS, NMR and ESI-MS. The repeating unit is a linear rhamno-tetrasaccharide with 50% replacement of a 3-α-L-Rha with a α-3-L-Man. [2)-α-L-Rhap-(1→3)-α-L-[Rhap or Manp]-(1→3)-α-L-Rhap-(1→2)-α-L-Rhap-(1→]n Molecular modelling was used to obtain information about local structural motifs which could give information about the polysaccharide conformation.
Collapse
Affiliation(s)
- Barbara Bellich
- Department of Life Sciences, University of Trieste, Via L. Giorgieri 1, Bdg. C11, 34127, Trieste, Italy
| | - Ining A Jou
- Department of Food Science, Cornell University, Ithaca, NY, 14853, USA
| | - Claudia Buriola
- Department of Life Sciences, University of Trieste, Via L. Giorgieri 1, Bdg. C11, 34127, Trieste, Italy
| | - Neil Ravenscroft
- Department of Chemistry, University of Cape Town, Rondebosch, 7701, South Africa
| | - John W Brady
- Department of Food Science, Cornell University, Ithaca, NY, 14853, USA
| | - Mustafa Fazli
- Costerton Biofilm Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Tim Tolker-Nielsen
- Costerton Biofilm Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Roberto Rizzo
- Department of Life Sciences, University of Trieste, Via L. Giorgieri 1, Bdg. C11, 34127, Trieste, Italy
| | - Paola Cescutti
- Department of Life Sciences, University of Trieste, Via L. Giorgieri 1, Bdg. C11, 34127, Trieste, Italy.
| |
Collapse
|
12
|
Terán LC, Distefano M, Bellich B, Petrosino S, Bertoncin P, Cescutti P, Sblattero D. Proteomic Studies of the Biofilm Matrix including Outer Membrane Vesicles of Burkholderia multivorans C1576, a Strain of Clinical Importance for Cystic Fibrosis. Microorganisms 2020; 8:E1826. [PMID: 33228110 PMCID: PMC7699398 DOI: 10.3390/microorganisms8111826] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 12/28/2022] Open
Abstract
Biofilms are aggregates of microbial cells encased in a highly hydrated matrix made up of self-produced extracellular polymeric substances (EPS) which consist of polysaccharides, proteins, nucleic acids, and lipids. While biofilm matrix polysaccharides are unraveled, there is still poor knowledge about the identity and function of matrix-associated proteins. With this work, we performed a comprehensive proteomic approach to disclose the identity of proteins associated with the matrix of biofilm-growing Burkholderia multivorans C1576 reference strain, a cystic fibrosis clinical isolate. Transmission electron microscopy showed that B. multivorans C1576 also releases outer membrane vesicles (OMVs) in the biofilm matrix, as already demonstrated for other Gram-negative species. The proteomic analysis revealed that cytoplasmic and membrane-bound proteins are widely represented in the matrix, while OMVs are highly enriched in outer membrane proteins and siderophores. Our data suggest that cell lysis and OMVs production are the most important sources of proteins for the B. multivorans C1576 biofilm matrix. Of note, some of the identified proteins are lytic enzymes, siderophores, and proteins involved in reactive oxygen species (ROS) scavenging. These proteins might help B. multivorans C1576 in host tissue invasion and defense towards immune system assaults.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Daniele Sblattero
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (L.C.T.); (M.D.); (B.B.); (S.P.); (P.B.); (P.C.)
| |
Collapse
|
13
|
De Volder AL, Teves S, Isasmendi A, Pinheiro JL, Ibarra L, Breglia N, Herrera T, Vazquez M, Hernandez C, Degrossi J. Distribution of Burkholderia cepacia complex species isolated from industrial processes and contaminated products in Argentina. Int Microbiol 2020; 24:157-167. [PMID: 33184776 DOI: 10.1007/s10123-020-00151-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 10/21/2020] [Accepted: 10/29/2020] [Indexed: 01/03/2023]
Abstract
Burkholderia cepacia complex (Bcc) members have clinical relevance as opportunistic pathogens in patients with cystic fibrosis and are responsible of numerous nosocomial infections. These closely related bacteria are also reported as frequent contaminants of industrial products. In this retrospective study, we use PCR and recA gene sequence analysis to identify at species level Bcc isolates recovered from massive consumption products and industrial processes in Argentina during the last 25 years. The sequences obtained were also compared with recA sequences from clinical Bcc isolates deposited in GenBank database. We detected Bcc in purified water and preserved products from pharmaceutics, cosmetics, household cleaning articles, and beverages industries. B. contaminans (which is prevalent among people with cystic fibrosis in Argentina) was the most frequent Bcc species identified (42% of the Bcc isolates studied). B. cepacia (10%), B. cenocepacia (5%), B. vietnamiensis (16%), B. arboris (3%), and the recently defined B. aenigmatica (24%) were also detected. Rec A sequences from all B. cepacia and most B. contaminans industrial isolates obtained in this study displayed 100% identity with recA sequences from isolates infecting Argentinean patients. This information brings evidence for considering industrial massive consumption products as a potential source of Bcc infections. In addition, identification at species level in industrial microbiological laboratories is necessary for a better epidemiological surveillance. Particularly in Argentina, more studies are required in order to reveal the role of these products in the acquisition of B. contaminans infections.
Collapse
Affiliation(s)
- A López De Volder
- Cátedra de Microbiología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Investigaciones en Bacteriología y Virología Molecular (IBaViM), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - S Teves
- Cátedra de Microbiología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - A Isasmendi
- Servicio de Microbiología, Hospital de Pediatría Juan P. Garrahan, Buenos Aires, Argentina
| | - J L Pinheiro
- Servicio de Microbiología, Hospital de Pediatría Juan P. Garrahan, Buenos Aires, Argentina
| | - L Ibarra
- Servicio de Bacteriología Clínica, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - N Breglia
- Cátedra de Microbiología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - T Herrera
- Facultad de Ciencias Exactas, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - M Vazquez
- Servicio de Bacteriología Clínica, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - C Hernandez
- Servicio de Microbiología, Hospital de Pediatría Juan P. Garrahan, Buenos Aires, Argentina
| | - José Degrossi
- Instituto de Investigaciones en Bacteriología y Virología Molecular (IBaViM), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina. .,Cátedra de Salud Pública e Higiene Ambiental, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956 4° Floor, Ciudad Autónoma de Buenos Aires, Argentina.
| |
Collapse
|
14
|
One gene, multiple ecological strategies: A biofilm regulator is a capacitor for sustainable diversity. Proc Natl Acad Sci U S A 2020; 117:21647-21657. [PMID: 32817433 PMCID: PMC7474642 DOI: 10.1073/pnas.2008540117] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Many organisms, including bacteria, live in fluctuating environments that require attachment and dispersal. These lifestyle decisions require processing of multiple external signals by several genetic pathways, but how they are integrated is largely unknown. We conducted multiple evolution experiments totaling >20,000 generations with Burkholderia cenocepacia populations grown in a model of the biofilm life cycle and identified parallel mutations in one gene, rpfR, that is a conserved central regulator. Because RpfR has multiple sensor and catalytic domains, different mutations can produce different ecological strategies that can coexist and even increase net growth. This study demonstrates that a single gene may coordinate complex life histories in biofilm-dwelling bacteria and that selection in defined environments can reshape niche breadth by single mutations. Many bacteria cycle between sessile and motile forms in which they must sense and respond to internal and external signals to coordinate appropriate physiology. Maintaining fitness requires genetic networks that have been honed in variable environments to integrate these signals. The identity of the major regulators and how their control mechanisms evolved remain largely unknown in most organisms. During four different evolution experiments with the opportunist betaproteobacterium Burkholderia cenocepacia in a biofilm model, mutations were most frequently selected in the conserved gene rpfR. RpfR uniquely integrates two major signaling systems—quorum sensing and the motile–sessile switch mediated by cyclic-di-GMP—by two domains that sense, respond to, and control the synthesis of the autoinducer cis-2-dodecenoic acid (BDSF). The BDSF response in turn regulates the activity of diguanylate cyclase and phosphodiesterase domains acting on cyclic-di-GMP. Parallel adaptive substitutions evolved in each of these domains to produce unique life history strategies by regulating cyclic-di-GMP levels, global transcriptional responses, biofilm production, and polysaccharide composition. These phenotypes translated into distinct ecology and biofilm structures that enabled mutants to coexist and produce more biomass than expected from their constituents grown alone. This study shows that when bacterial populations are selected in environments challenging the limits of their plasticity, the evolved mutations not only alter genes at the nexus of signaling networks but also reveal the scope of their regulatory functions.
Collapse
|
15
|
Liu Y, Bellich B, Hug S, Eberl L, Cescutti P, Pessi G. The Exopolysaccharide Cepacian Plays a Role in the Establishment of the Paraburkholderia phymatum - Phaseolus vulgaris Symbiosis. Front Microbiol 2020; 11:1600. [PMID: 32765457 PMCID: PMC7378592 DOI: 10.3389/fmicb.2020.01600] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 06/18/2020] [Indexed: 12/19/2022] Open
Abstract
Paraburkholderia phymatum is a rhizobial strain that belongs to the beta-proteobacteria, a group known to form efficient nitrogen-fixing symbioses within root nodules of several legumes, including the agriculturally important common bean. The establishment of the symbiosis requires the exchange of rhizobial and plant signals such as lipochitooligosaccharides (Nod factors), polysaccharides, and flavonoids. Inspection of the genome of the competitive rhizobium P. phymatum revealed the presence of several polysaccharide biosynthetic gene clusters. In this study, we demonstrate that bceN, a gene encoding a GDP-D-mannose 4,6-dehydratase, which is involved in the production of the exopolysaccharide cepacian, an important component of biofilms produced by closely related opportunistic pathogens of the Burkholderia cepacia complex (Bcc), is required for efficient plant colonization. Wild-type P. phymatum was shown to produce cepacian while a bceN mutant did not. Additionally, the bceN mutant produced a significantly lower amount of biofilm and formed less root nodules compared to the wild-type strain with Phaseolus vulgaris as host plant. Finally, expression of the operon containing bceN was induced by the presence of germinated P. vulgaris seeds under nitrogen limiting conditions suggesting a role of this polysaccharide in the establishment of this ecologically important symbiosis.
Collapse
Affiliation(s)
- Yilei Liu
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Barbara Bellich
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Sebastian Hug
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Leo Eberl
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Paola Cescutti
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Gabriella Pessi
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
16
|
Gamboa Marin OJ, Hussain N, Ravicoularamin G, Ameur N, Gormand P, Sauvageau J, Gauthier C. Total Synthesis of 6-Amino-2,6-dideoxy-α-Kdo from d-Mannose. Org Lett 2020; 22:5783-5788. [DOI: 10.1021/acs.orglett.0c01847] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Oscar Javier Gamboa Marin
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), 531, boul. des Prairies, Laval, Québec, Canada H7V 1B7
| | - Nazar Hussain
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), 531, boul. des Prairies, Laval, Québec, Canada H7V 1B7
| | - Gokulakrishnan Ravicoularamin
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), 531, boul. des Prairies, Laval, Québec, Canada H7V 1B7
| | - Nassima Ameur
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), 531, boul. des Prairies, Laval, Québec, Canada H7V 1B7
| | - Paul Gormand
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), 531, boul. des Prairies, Laval, Québec, Canada H7V 1B7
| | - Janelle Sauvageau
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), 531, boul. des Prairies, Laval, Québec, Canada H7V 1B7
- National Research Council Canada (NRC), 100 Sussex Drive, Ottawa, Ontario, Canada K1A 0R6
| | - Charles Gauthier
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), 531, boul. des Prairies, Laval, Québec, Canada H7V 1B7
| |
Collapse
|
17
|
Sfeir MM. Point-of-Care i-STAT Testing for the Diagnosis of Meliodosis. Clin Infect Dis 2020; 70:2455-2456. [PMID: 31633156 DOI: 10.1093/cid/ciz902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Maroun M Sfeir
- Department of Pathology and Laboratory Medicine, University of Connecticut Health Center, Farmington, Connecticut, USA
| |
Collapse
|
18
|
Moody S, Bull J, Dudley E, Loveridge E. The impact of combinatorial stress on the growth dynamics and metabolome of
Burkholderia mesoacidophila
demonstrates the complexity of tolerance mechanisms. J Appl Microbiol 2019; 127:1521-1531. [DOI: 10.1111/jam.14404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 07/19/2019] [Accepted: 07/23/2019] [Indexed: 12/15/2022]
Affiliation(s)
- S.C. Moody
- College of Science Swansea University Swansea UK
- School of Sport, Health and Social Sciences Solent University Southampton UK
| | - J.C. Bull
- College of Science Swansea University Swansea UK
| | - E. Dudley
- College of Medicine Swansea University Swansea UK
| | | |
Collapse
|
19
|
Bellich B, Distefano M, Syrgiannis Z, Bosi S, Guida F, Rizzo R, Brady JW, Cescutti P. The polysaccharide extracted from the biofilm of Burkholderia multivorans strain C1576 binds hydrophobic species and exhibits a compact 3D-structure. Int J Biol Macromol 2019; 136:944-950. [PMID: 31229548 PMCID: PMC6711379 DOI: 10.1016/j.ijbiomac.2019.06.140] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/13/2019] [Accepted: 06/19/2019] [Indexed: 11/28/2022]
Abstract
Microorganisms often grow in communities called biofilms where cells are imbedded in a complex self-produced biopolymeric matrix composed mainly of polysaccharides, proteins, and DNA. This matrix, together with cell proximity, confers many advantages to these microbial communities, but also constitutes a serious concern when biofilms develop in human tissues or on implanted prostheses. Although polysaccharides are considered the main constituents of the matrices, their specific role needs to be clarified. We have investigated the chemical and morphological properties of the polysaccharide extracted from biofilms produced by the C1576 reference strain of the opportunistic pathogen Burkholderia multivorans, which causes lung infections in cystic fibrosis patients. The aim of the present study is the definition of possible interactions of the polysaccharide and the three-dimensional conformation of its chain within the biofilm matrix. Surface plasmon resonance experiments confirmed the ability of the polysaccharide to bind hydrophobic molecules, due to the presence of rhamnose dimers in its primary structure. In addition, atomic force microscopy studies evidenced an extremely compact three-dimensional structure of the polysaccharide which may form aggregates, suggesting a novel view of its structural role into the biofilm matrix.
Collapse
Affiliation(s)
- Barbara Bellich
- Department of Life Sciences, University of Trieste, Via Licio Giorgieri 1, 34127 Trieste, Italy
| | - Marco Distefano
- Department of Life Sciences, University of Trieste, Via Licio Giorgieri 1, 34127 Trieste, Italy
| | - Zois Syrgiannis
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Licio Giorgieri 1, 34127 Trieste, Italy
| | - Susanna Bosi
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Licio Giorgieri 1, 34127 Trieste, Italy
| | - Filomena Guida
- Department of Life Sciences, University of Trieste, Via Licio Giorgieri 1, 34127 Trieste, Italy
| | - Roberto Rizzo
- Department of Life Sciences, University of Trieste, Via Licio Giorgieri 1, 34127 Trieste, Italy
| | - John W Brady
- Department of Food Sciences, Cornell University, M10 Stocking Hall, Ithaca, NY 14853-5701, USA
| | - Paola Cescutti
- Department of Life Sciences, University of Trieste, Via Licio Giorgieri 1, 34127 Trieste, Italy.
| |
Collapse
|
20
|
Cloutier M, Muru K, Ravicoularamin G, Gauthier C. Polysaccharides from Burkholderia species as targets for vaccine development, immunomodulation and chemical synthesis. Nat Prod Rep 2019; 35:1251-1293. [PMID: 30023998 DOI: 10.1039/c8np00046h] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Covering: up to 2018 Burkholderia species are a vast group of human pathogenic, phytopathogenic, and plant- or environment-associated bacteria. B. pseudomallei, B. mallei, and B. cepacia complex are the causative agents of melioidosis, glanders, and cystic fibrosis-related infections, respectively, which are fatal diseases in humans and animals. Due to their high resistance to antibiotics, high mortality rates, and increased infectivity via the respiratory tract, B. pseudomallei and B. mallei have been listed as potential bioterrorism agents by the Centers for Disease Control and Prevention. Burkholderia species are able to produce a large network of surface-exposed polysaccharides, i.e., lipopolysaccharides, capsular polysaccharides, and exopolysaccharides, which are virulence factors, immunomodulators, major biofilm components, and protective antigens, and have crucial implications in the pathogenicity of Burkholderia-associated diseases. This review provides a comprehensive and up-to-date account regarding the structural elucidation and biological activities of surface polysaccharides produced by Burkholderia species. The chemical synthesis of oligosaccharides mimicking Burkholderia polysaccharides is described in detail. Emphasis is placed on the recent research efforts toward the development of glycoconjugate vaccines against melioidosis and glanders based on synthetic or native Burkholderia oligo/polysaccharides.
Collapse
Affiliation(s)
- Maude Cloutier
- INRS-Institut Armand-Frappier, Université du Québec, 531, boul. des Prairies, Laval, Québec H7V 1B7, Canada.
| | | | | | | |
Collapse
|
21
|
A Rare Culprit of Infective Endocarditis in an IV Drug User: Burkholderia cepacia. Case Rep Med 2019; 2019:6403943. [PMID: 31105761 PMCID: PMC6481116 DOI: 10.1155/2019/6403943] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 03/13/2019] [Accepted: 03/28/2019] [Indexed: 11/17/2022] Open
Abstract
Infective endocarditis (IE) is an infection of the cardiac native or prosthetic valves typically caused by Staphylococcus aureus, viridans streptococci group, and coagulase-negative staphylococci. Risk factors include congenital heart disease, structural and valvular heart disease, implantation of prosthetic heart valves, and intravenous (IV) drug abuse. IE caused by organisms such as Burkholderia cepacia is rarely seen. We herein present a case of a patient with a history of IV drug abuse previously treated for Staphylococcus aureus IE with newly diagnosed IE secondary to B. cepacia. He was taken to the operating room for mitral valve replacement after an echocardiogram revealed severe mitral regurgitation. He was successfully treated with antibiotics. After 2 months, at follow-up, the patient remained free from mechanical valve-related events, had no new occurrences of fever, and had no other symptoms of infection. He reported good exercise tolerance.
Collapse
|
22
|
Passos da Silva D, Matwichuk ML, Townsend DO, Reichhardt C, Lamba D, Wozniak DJ, Parsek MR. The Pseudomonas aeruginosa lectin LecB binds to the exopolysaccharide Psl and stabilizes the biofilm matrix. Nat Commun 2019; 10:2183. [PMID: 31097723 PMCID: PMC6522473 DOI: 10.1038/s41467-019-10201-4] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 04/12/2019] [Indexed: 11/09/2022] Open
Abstract
Pseudomonas aeruginosa biofilms are composed of exopolysaccharides (EPS), exogenous DNA, and proteins that hold these communities together. P. aeruginosa produces lectins LecA and LecB, which possess affinities towards sugars found in matrix EPS and mediate adherence of P. aeruginosa to target host cells. Here, we demonstrate that LecB binds to Psl, a key matrix EPS, and this leads to increased retention of both cells and EPS in a growing biofilm. This interaction is predicted to occur between the lectin and the branched side chains present on Psl. Finally, we show that LecB coordinates Psl localization in the biofilm. This constitutes a unique function for LecB and identifies it as a matrix protein that contributes to biofilm structure through EPS interactions.
Collapse
Affiliation(s)
| | | | | | | | - Doriano Lamba
- Istituto di Cristallografia, Consiglio Nazionale delle Ricerche, Sede Secondaria di Basovizza, Trieste, Italy
| | - Daniel J Wozniak
- Departments of Microbial Infection and Immunity, Microbiology, Ohio State University, Columbus, OH, USA
| | - Matthew R Parsek
- Department of Microbiology, University of Washington, Seattle, WA, USA.
- Integrative Microbiology Research Centre, South China Agricultural University, 510642, Guangzhou, China.
| |
Collapse
|
23
|
Mucoid switch in Burkholderia cepacia complex bacteria: Triggers, molecular mechanisms and implications in pathogenesis. ADVANCES IN APPLIED MICROBIOLOGY 2019; 107:113-140. [PMID: 31128746 DOI: 10.1016/bs.aambs.2019.03.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Bacteria produce a vast range of exopolysaccharides (EPSs) to thrive in diverse environmental niches and often display a mucoid phenotype in solid media. One such exopolysaccharide, cepacian, is produced by bacteria of the genus Burkholderia and is of interest due to its role in pathogenesis associated with lung infections in cystic fibrosis (CF) patients. Cepacian is a repeat-unit polymer that has been implicated in biofilm formation, immune system evasion, interaction with host cells, resistance against antimicrobials, and virulence. Its biosynthesis proceeds through the Wzy-dependent polymerization and secretion mechanism, which requires a multienzymatic complex. Key aspects of its structure, genetic organization, and the regulatory network involved in mucoid switch and regulation of cepacian biosynthesis at transcriptional and posttranscriptional levels are reviewed. It is also evaluated the importance of cepacian biosynthesis/regulation key players as evolutionary targets of selection and highlighted the complexity of the regulatory network, which allows cells to coordinate the expression of metabolic functions to the ones of the cell wall, in order to be successful in ever changing environments, including in the interaction with host cells.
Collapse
|
24
|
Exopolysaccharides produced by Pandoraea shows emulsifying and anti-biofilm activities. JOURNAL OF POLYMER RESEARCH 2019. [DOI: 10.1007/s10965-019-1737-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
25
|
Richter AM, Fazli M, Schmid N, Shilling R, Suppiger A, Givskov M, Eberl L, Tolker-Nielsen T. Key Players and Individualists of Cyclic-di-GMP Signaling in Burkholderia cenocepacia. Front Microbiol 2019; 9:3286. [PMID: 30687272 PMCID: PMC6335245 DOI: 10.3389/fmicb.2018.03286] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 12/17/2018] [Indexed: 12/19/2022] Open
Abstract
Burkholderia cenocepacia H111 is an opportunistic pathogen associated with chronic lung infections in cystic fibrosis patients. Biofilm formation, motility and virulence of B. cenocepacia are regulated by the second messenger cyclic di-guanosine monophosphate (c-di-GMP). In the present study, we analyzed the role of all 25 putative c-di-GMP metabolizing proteins of B. cenocepacia H111 with respect to motility, colony morphology, pellicle formation, biofilm formation, and virulence. We found that RpfR is a key regulator of c-di-GMP signaling in B. cenocepacia, affecting a broad spectrum of phenotypes under various environmental conditions. In addition, we identified Bcal2449 as a regulator of B. cenocepacia virulence in Galleria mellonella larvae. While Bcal2449 consists of protein domains that may catalyze both c-di-GMP synthesis and degradation, only the latter was essential for larvae killing, suggesting that a decreased c-di-GMP level mediated by the Bcal2449 protein is required for virulence of B. cenocepacia. Finally, our work suggests that some individual proteins play a role in regulating exclusively motility (CdpA), biofilm formation (Bcam1160) or both (Bcam2836).
Collapse
Affiliation(s)
- Anja M Richter
- Costerton Biofilm Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mustafa Fazli
- Costerton Biofilm Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nadine Schmid
- Department of Microbiology, University of Zurich, Zurich, Switzerland
| | - Rebecca Shilling
- Department of Microbiology, University of Zurich, Zurich, Switzerland
| | - Angela Suppiger
- Department of Microbiology, University of Zurich, Zurich, Switzerland
| | - Michael Givskov
- Costerton Biofilm Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Leo Eberl
- Department of Microbiology, University of Zurich, Zurich, Switzerland
| | - Tim Tolker-Nielsen
- Costerton Biofilm Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
26
|
Postgenomic Approaches and Bioinformatics Tools to Advance the Development of Vaccines against Bacteria of the Burkholderia cepacia Complex. Vaccines (Basel) 2018; 6:vaccines6020034. [PMID: 29890657 PMCID: PMC6027386 DOI: 10.3390/vaccines6020034] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 06/05/2018] [Accepted: 06/06/2018] [Indexed: 12/19/2022] Open
Abstract
Bacteria of the Burkholderia cepacia complex (Bcc) remain an important cause of morbidity and mortality among patients suffering from cystic fibrosis. Eradication of these pathogens by antimicrobial therapy often fails, highlighting the need to develop novel strategies to eradicate infections. Vaccines are attractive since they can confer protection to particularly vulnerable patients, as is the case of cystic fibrosis patients. Several studies have identified specific virulence factors and proteins as potential subunit vaccine candidates. So far, no vaccine is available to protect from Bcc infections. In the present work, we review the most promising postgenomic approaches and selected web tools available to speed up the identification of immunogenic proteins with the potential of conferring protection against Bcc infections.
Collapse
|
27
|
Yonas E, Damay V, Pranata R, Nusarintowati N. Infective endocarditis due to Burkholderia cepacia in a neonate: a case report. J Med Case Rep 2018; 12:120. [PMID: 29734941 PMCID: PMC5938803 DOI: 10.1186/s13256-018-1633-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 02/22/2018] [Indexed: 11/17/2022] Open
Abstract
Background Burkholderia is a pathogen that is rarely seen in clinical cases. However, this organism is being found more commonly in hospitals. Case presentation A female Indonesian newborn was referred to our neonatal intensive care unit because of respiratory distress. The newborn had been delivered the previous night via cesarean section. A physical examination revealed intercostal retractions and weak cry. The newborn’s gestational history was preterm, small for gestational age, and preterm premature ruptured membrane for 14 hours. Continuous positive airway pressure was administered. A multiple-antibiotic regimen consisting of ampicillin-sulbactam, gentamicin, meropenem, and ceftriaxone was initiated. Insertion of a central catheter was performed. The patient’s laboratory results were low blood albumin and globulin, anemia, and leukopenia. A blood culture revealed Burkholderia cepacia that was resistant to multiple antimicrobial agents. A chest x-ray showed infiltrate on both lung fields. Echocardiography showed two vegetations on the tricuspid valve. Conclusions B. cepacia is a rare cause of infective endocarditis. With its capability to colonize water and grow on microbicides, the presence of B. cepacia in a patient’s blood warrants further investigation in institutions providing care. This might not be the first publication on this topic.
Collapse
Affiliation(s)
- Emir Yonas
- Faculty of Medicine, Yarsi University, Jakarta, Indonesia
| | - Vito Damay
- Faculty of Medicine, Pelita Harapan University, Tangerang, Indonesia.
| | - Raymond Pranata
- Faculty of Medicine, Pelita Harapan University, Tangerang, Indonesia
| | - Nuvi Nusarintowati
- Pediatric Cardiology Division, University of Indonesia, Jakarta, Indonesia
| |
Collapse
|
28
|
Mao MY, Li M, Lei L, Yin JX, Yang YM, Hu T. The Regulator Gene rnc Is Closely Involved in Biofilm Formation in Streptococcus mutans. Caries Res 2018; 52:347-358. [PMID: 29510413 DOI: 10.1159/000486431] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 12/18/2017] [Indexed: 11/19/2022] Open
Abstract
Streptococcus mutans is an important factor in the etiology and pathogenesis of dental caries, largely owing to its ability to form a stable biofilm. Previous animal studies have indicated that rnc could decrease the amount of sulcal caries, and that the downregulation of cariogenicity might be due to its capacity to disrupt biofilm formation. However, the biofunctions by which rnc is involved in biofilm formation remain to be elucidated. In this study, we further investigate the role of rnc based on the study of mature biofilm. Scanning electron microscopy and the crystal violet assay were used to detect the biofilm forming ability. The production and distribution of exopolysaccharides within biofilm was analyzed by exopolysaccharide staining. Gel permeation chromatography was used to perform molecular weight assessment. Its adhesion force was measured by atomic force microscopy. The expression of biofilm formation-associated genes was analyzed at the mRNA level by qPCR. Here, we found that rnc could occur and function in biofilm formation by assembling well-structured, exopolysaccharide-encased, stable biofilms in S. mutans. The weakened biofilm forming ability of rnc-deficient strains was associated with the reduction of exopolysaccharide production and bacterial adhesion. Over all, these data illustrate an interesting situation in which an unappreciated regulatory gene acquired for virulence, rnc, most likely has been coopted as a potential regulator of biofilm formation in S. mutans. Further characterization of rnc may lead to the identification of a possible pathogenic biofilm-specific treatment for dental caries.
Collapse
|
29
|
Mangalea MR, Borlee GI, Borlee BR. The Current Status of Extracellular Polymeric Substances Produced by Burkholderia pseudomallei. CURRENT TROPICAL MEDICINE REPORTS 2017. [DOI: 10.1007/s40475-017-0118-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
30
|
Ruskoski SA, Champlin FR. Cell surface physiology and outer cell envelope impermeability for hydrophobic substances in Burkholderia multivorans. J Med Microbiol 2017; 66:965-971. [PMID: 28721855 DOI: 10.1099/jmm.0.000532] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
PURPOSE The purpose of the present study was to obtain a better understanding of the relationship between cell surface physiology and outer cellular envelope permeability for hydrophobic substances in mucoid and non-mucoid B. multivorans strains, as well as in two capsule-deficient derivatives of a mucoid parental strain. METHODOLOGY Cell surface hydrophobicity properties were determined using the hydrocarbon adherence method, while outer cell envelope accessibility and permeability for non-polar compounds were measured using hydrophobic antimicrobial agent susceptibility and fluorescent probe assays. Extracellular polysaccharide (EPS) production was assessed by cultivating strains of disparate origin on yeast extract agar (YEA) containing different sugars, while the resultant colonial and cellular morphological parameters were assessed macro- and microscopically, respectively.Results/Key findings. The cell surfaces of all the strains were hydrophilic, impermeable to mechanistically disparate hydrophobic antibacterial agents and inaccessible to the hydrophobic probe N-phenyl-1-napthylamine, regardless of EPS phenotype. Supplementation of basal YEA with eight different sugars enhanced macroscopic EPS expression for all but one non-mucoid strain, with mannose potentiating the greatest effect. Despite acquisition of the mucoid phenotype, non-mucoid strains remained non-capsulated and capsulation of a hyper-mucoid strain and its two non-mucoid derivative strains was unaffected, as judged by microscopic observation. CONCLUSION These data support the conclusion that EPS expression and the consistent mucoid phenotype are not necessarily associated with the ability of the outer cell surface to associate with non-polar substances or cellular capsulation.
Collapse
Affiliation(s)
- Sallie A Ruskoski
- Department of Health Professions, Northeastern State University, 3100 East New Orleans, Broken Arrow, OK 74014, USA
- Department of Biochemistry and Microbiology, Center for Health Sciences, Oklahoma State University, 1111 West 17th Street, Tulsa, OK 74107, USA
| | - Franklin R Champlin
- Department of Biochemistry and Microbiology, Center for Health Sciences, Oklahoma State University, 1111 West 17th Street, Tulsa, OK 74107, USA
| |
Collapse
|
31
|
Kuttel MM, Cescutti P, Distefano M, Rizzo R. Fluorescence and NMR spectroscopy together with molecular simulations reveal amphiphilic characteristics of a Burkholderia biofilm exopolysaccharide. J Biol Chem 2017; 292:11034-11042. [PMID: 28468829 DOI: 10.1074/jbc.m117.785048] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 04/26/2017] [Indexed: 01/09/2023] Open
Abstract
Biofilms are a collective mode of bacterial life in which a self-produced matrix confines cells in close proximity to each other. Biofilms confer many advantages, including protection from chemicals (including antibiotics), entrapment of useful extracellular enzymes and nutrients, as well as opportunities for efficient recycling of molecules from dead cells. Biofilm matrices are aqueous gel-like structures composed of polysaccharides, proteins, and DNA stabilized by intermolecular interactions that may include non-polar connections. Recently, polysaccharides extracted from biofilms produced by species of the Burkholderia cepacia complex were shown to possess clusters of rhamnose, a 6-deoxy sugar with non-polar characteristics. Molecular dynamics simulations are well suited to characterizing the structure and dynamics of polysaccharides, but only relatively few such studies exist of their interaction with non-polar molecules. Here we report an investigation into the hydrophobic properties of the exopolysaccharide produced by Burkholderia multivorans strain C1576. Fluorescence experiments with two hydrophobic fluorescent probes established that this polysaccharide complexes hydrophobic species, and NMR experiments confirmed these interactions. Molecular simulations to model the hydrodynamics of the polysaccharide and the interaction with guest species revealed a very flexible, amphiphilic carbohydrate chain that has frequent dynamic interactions with apolar molecules; both hexane and a long-chain fatty acid belonging to the quorum-sensing system of B. multivorans were tested. A possible role of the non-polar domains of the exopolysaccharide in facilitating the diffusion of aliphatic species toward specific targets within the biofilm aqueous matrix is proposed.
Collapse
Affiliation(s)
- Michelle M Kuttel
- From the Department of Computer Science, University of Cape Town, Rondebosch 7701, South Africa and
| | - Paola Cescutti
- the Department of Life Sciences, University of Trieste, Via Licio Giorgieri 1, 34127 Trieste, Italy
| | - Marco Distefano
- the Department of Life Sciences, University of Trieste, Via Licio Giorgieri 1, 34127 Trieste, Italy
| | - Roberto Rizzo
- the Department of Life Sciences, University of Trieste, Via Licio Giorgieri 1, 34127 Trieste, Italy
| |
Collapse
|
32
|
Shin JS, Jung JY, Lee SG, Shin KS, Rhee YK, Lee MK, Hong HD, Lee KT. Exopolysaccharide fraction from Pediococcus pentosaceus KFT18 induces immunostimulatory activity in macrophages and immunosuppressed mice. J Appl Microbiol 2016; 120:1390-402. [PMID: 26895351 DOI: 10.1111/jam.13099] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 01/19/2016] [Accepted: 02/04/2016] [Indexed: 12/11/2022]
Abstract
AIMS Exopolysaccharide fraction from Pediococcus pentosaceus KFT18 (PE-EPS), a lactic acid bacteria isolated from Kimchi (a Korean fermented vegetable product), was preliminary characterized and its immunostimulating effects were analysed. METHODS AND RESULTS In this study, we used interferon-γ (IFN-γ)-primed RAW 264·7 macrophages and CD3/CD28-stimulated splenocytes to determine the immunotimulatory activities of PE-EPS. Upon exposure to PE-EPS, IFN-γ-primed RAW 264·7 macrophages showed significant increases in the expressions of inducible nitric oxide synthase (iNOS), tumour necrosis factor-α (TNF-α), interleukin (IL)-6 and IL-1β. Molecular data using reporter gene assay and electrophoretic mobility shift assay (EMSA) revealed that PE-EPS upregulated transcriptional activity, DNA binding and the nuclear translocation of nuclear factor-κB (NF-κB). Furthermore, PE-EPS enhanced anti-CD3/CD28-specific proliferation and the productions of IL-2 and IFN-γ in primary splenocytes. In cyclophosphamide-induced immunosuppressed mice, pretreatment with PE-EPS (5, 15 or 45 mg kg(-1) day(-1), p.o.) increased thymus and spleen indices, and improved lymphocyte and neutrophil counts. CONCLUSION PE-EPS stimulated the IFN-γ-primed macrophages and primary splenocytes to induce immune responses and improved the cyclophosphamide-induced immunosuppression in mice. SIGNIFICANCE AND IMPACT OF THE STUDY The results in this study improved our understanding of immunostimulating activity of PE-EPS and supported its potential treatment option as a natural immunostimulant.
Collapse
Affiliation(s)
- J-S Shin
- Department of pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul, Korea.,Reactive Oxygen Species Medical Research Center, School of Medicine, Kyung Hee University, Seoul, Korea
| | - J-Y Jung
- Department of pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul, Korea.,Department of Life and Nanopharmaceutical Science, Kyung Hee University, Seoul, Korea
| | - S-G Lee
- Department of pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul, Korea.,Department of Life and Nanopharmaceutical Science, Kyung Hee University, Seoul, Korea
| | - K-S Shin
- Department of Food Science and Biotechnology, Kyonggi University, Suwon-Si, Gyeonggi, Korea
| | - Y-K Rhee
- Korea Food Research Institute, Kyunggi, Seongnam, Korea
| | - M-K Lee
- Korea Food Research Institute, Kyunggi, Seongnam, Korea
| | - H-D Hong
- Korea Food Research Institute, Kyunggi, Seongnam, Korea
| | - K-T Lee
- Department of pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul, Korea.,Department of Life and Nanopharmaceutical Science, Kyung Hee University, Seoul, Korea
| |
Collapse
|
33
|
Lei L, Yang Y, Mao M, Li H, Li M, Yang Y, Yin J, Hu T. Modulation of Biofilm Exopolysaccharides by the Streptococcus mutans vicX Gene. Front Microbiol 2015; 6:1432. [PMID: 26733973 PMCID: PMC4685068 DOI: 10.3389/fmicb.2015.01432] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 12/01/2015] [Indexed: 02/05/2023] Open
Abstract
The cariogenic pathogen Streptococcus mutans effectively utilizes dietary sucrose for the synthesis of exopolysaccharide, which act as a scaffold for its biofilm, thus contributing to its pathogenicity, environmental stress tolerance, and antimicrobial resistance. The two-component system VicRK of S. mutans regulates a group of virulence genes that are associated with biofilm matrix synthesis. Knockout of vicX affects biofilm formation, oxidative stress tolerance, and transformation of S. mutans. However, little is known regarding the vicX-modulated structural characteristics of the exopolysaccharides underlying the biofilm formation and the phenotypes of the vicX mutants. Here, we identified the role of vicX in the structural characteristics of the exopolysaccharide matrix and biofilm physiology. The vicX mutant (SmuvicX) biofilms seemingly exhibited "desertification" with architecturally impaired exopolysaccharide-enmeshed cell clusters, compared with the UA159 strain (S. mutans wild type strain). Concomitantly, SmuvicX showed a decrease in water-insoluble glucan (WIG) synthesis and in WIG/water-soluble glucan (WSG) ratio. Gel permeation chromatography (GPC) showed that the WIG isolated from the SmuvicX biofilms had a much lower molecular weight compared with the UA159 strain indicating differences in polysaccharide chain lengths. A monosaccharide composition analysis demonstrated the importance of the vicX gene in the glucose metabolism. We performed metabolite profiling via (1)H nuclear magnetic resonance spectroscopy, which showed that several chemical shifts were absent in both WSG and WIG of SmuvicX biofilms compared with the UA159 strain. Thus, the modulation of structural characteristics of exopolysaccharide by vicX provides new insights into the interaction between the exopolysaccharide structure, gene functions, and cariogenicity. Our results suggest that vicX gene modulates the structural characteristics of exopolysaccharide associated with cariogenicity, which may be explored as a potential target that contributes to dental caries management. Furthermore, the methods used to purify the EPS of S. mutans biofilms and to analyze multiple aspects of its structure (GPC, gas chromatography-mass spectrometry, and (1)H nuclear magnetic resonance spectroscopy) may be useful approaches to determine the roles of other virulence genes for dental caries prevention.
Collapse
Affiliation(s)
- Lei Lei
- State Key Laboratory of Oral Diseases, Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University Chengdu, China
| | - Yingming Yang
- Department of Preventive Dentistry, West China Hospital of Stomatology, Sichuan University Chengdu, China
| | - Mengying Mao
- State Key Laboratory of Oral Diseases, Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University Chengdu, China
| | - Hong Li
- Centre of Infectious Diseases, West China Hospital of Sichuan University Chengdu, China
| | - Meng Li
- State Key Laboratory of Oral Diseases, Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University Chengdu, China
| | - Yan Yang
- State Key Laboratory of Oral Diseases, Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University Chengdu, China
| | - Jiaxin Yin
- State Key Laboratory of Oral Diseases, Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University Chengdu, China
| | - Tao Hu
- State Key Laboratory of Oral Diseases, Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan UniversityChengdu, China; Department of Preventive Dentistry, West China Hospital of Stomatology, Sichuan UniversityChengdu, China
| |
Collapse
|
34
|
Miller RR, Hird TJ, Tang P, Zlosnik JEA. Whole-Genome Sequencing of Three Clonal Clinical Isolates of B. cenocepacia from a Patient with Cystic Fibrosis. PLoS One 2015; 10:e0143472. [PMID: 26599356 PMCID: PMC4658001 DOI: 10.1371/journal.pone.0143472] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 11/05/2015] [Indexed: 11/29/2022] Open
Abstract
Burkholderia cepacia complex bacteria are amongst the most feared of pathogens in cystic fibrosis (CF). The BCC comprises at least 20 distinct species that can cause chronic and unpredictable lung infections in CF. Historically the species B. cenocepacia has been the most prevalent in CF infections and has been associated in some centers with high rates of mortality. Modeling chronic infection by B. cenocepacia in the laboratory is challenging and no models exist which effectively recapitulate CF disease caused by BCC bacteria. Therefore our understanding of factors that contribute towards the morbidity and mortality caused by this organism is limited. In this study we used whole-genome sequencing to examine the evolution of 3 clonal clinical isolates of B. cenocepacia from a patient with cystic fibrosis. The first isolate was from the beginning of infection, and the second two almost 10 years later during the final year of the patients’ life. These isolates also demonstrated phenotypic heterogeneity, with the first isolate displaying the mucoid phenotype (conferred by the overproduction of exopolysaccharide), while one of the later two was nonmucoid. In addition we also sequenced a nonmucoid derivative of the initial mucoid isolate, acquired in the laboratory by antibiotic pressure. Examination of sequence data revealed that the two late stage isolates shared 20 variant nucleotides in common compared to the early isolate. However, despite their isolation within 10 months of one another, there was also considerable variation between the late stage isolates, including 42 single nucleotide variants and three deletions. Additionally, no sequence differences were identified between the initial mucoid isolate and its laboratory acquired nonmucoid derivative, however transcript analysis indicated at least partial down regulation of genes involved in exopolysaccharide production. Our study examines the progression of B. cenocepacia throughout chronic infection, including establishment of sub-populations likely evolved from the original isolate, suggestive of parallel evolution. Additionally, the lack of sequence differences between two of the isolates with differing mucoid phenotypes suggests that other factors, such as gene regulation, come into play in establishing the mucoid phenotype.
Collapse
Affiliation(s)
- Ruth R. Miller
- School of Population and Public Health, University of British Columbia, Vancouver, British Columbia, Canada
- British Columbia Centre for Disease Control, University of British Columbia, Canada, Vancouver, British Columbia, Canada
| | - Trevor J. Hird
- Centre for Understanding and Preventing Infection in Children, Department of Pediatrics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Patrick Tang
- British Columbia Centre for Disease Control, University of British Columbia, Canada, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - James E. A. Zlosnik
- Centre for Understanding and Preventing Infection in Children, Department of Pediatrics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- * E-mail:
| |
Collapse
|
35
|
Pellizzoni E, Ravalico F, Scaini D, Delneri A, Rizzo R, Cescutti P. Biofilms produced by Burkholderia cenocepacia: influence of media and solid supports on composition of matrix exopolysaccharides. MICROBIOLOGY-SGM 2015; 162:283-294. [PMID: 26586192 DOI: 10.1099/mic.0.000214] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Bacteria usually grow forming biofilms, which are communities of cells embedded in a self-produced dynamic polymeric matrix, characterized by a complex three-dimensional structure. The matrix holds cells together and above a surface, and eventually releases them, resulting in colonization of other surfaces. Although exopolysaccharides (EPOLs) are important components of the matrix, determination of their structure is usually performed on samples produced in non-biofilm conditions, or indirectly through genetic studies. Among the Burkholderia cepacia complex species, Burkholderia cenocepacia is an important pathogen in cystic fibrosis (CF) patients and is generally more aggressive than other species. In the present investigation, B. cenocepacia strain BTS2, a CF isolate, was grown in biofilm mode on glass slides and cellulose membranes, using five growth media, one of which mimics the nutritional content of CF sputum. The structure of the matrix EPOLs was determined by 1H-NMR spectroscopy, while visualization of the biofilms on glass slides was obtained by means of confocal laser microscopy, phase-contrast microscopy and atomic force microscopy. The results confirmed that the type of EPOLs biosynthesized depends both on the medium used and on the type of support, and showed that mucoid conditions do not always lead to significant biofilm production, while bacteria in a non-mucoid state can still form biofilm containing EPOLs.
Collapse
Affiliation(s)
- Elena Pellizzoni
- Department of Life Sciences, University of Trieste, via L. Giorgieri 1, Bdg C11, 34127Trieste, Italy
| | - Fabio Ravalico
- Department of Life Sciences, University of Trieste, via L. Giorgieri 1, Bdg C11, 34127Trieste, Italy
| | - Denis Scaini
- Department of Life Sciences, University of Trieste, via L. Giorgieri 1, Bdg C11, 34127Trieste, Italy
| | - Ambra Delneri
- Department of Life Sciences, University of Trieste, via L. Giorgieri 1, Bdg C11, 34127Trieste, Italy
| | - Roberto Rizzo
- Department of Life Sciences, University of Trieste, via L. Giorgieri 1, Bdg C11, 34127Trieste, Italy
| | - Paola Cescutti
- Department of Life Sciences, University of Trieste, via L. Giorgieri 1, Bdg C11, 34127Trieste, Italy
| |
Collapse
|
36
|
Laroussarie A, Barycza B, Andriamboavonjy H, Tamigney Kenfack M, Blériot Y, Gauthier C. Synthesis of the Tetrasaccharide Repeating Unit of the β-Kdo-Containing Exopolysaccharide from Burkholderia pseudomallei and B. cepacia Complex. J Org Chem 2015; 80:10386-96. [DOI: 10.1021/acs.joc.5b01823] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Anaïs Laroussarie
- Université de Poitiers, Institut de Chimie IC2MP, CNRS-UMR
7285, Équipe Synthèse Organique, 4 rue Michel Brunet, 86073 Poitiers Cedex 9, France
| | - Barbara Barycza
- Université de Poitiers, Institut de Chimie IC2MP, CNRS-UMR
7285, Équipe Synthèse Organique, 4 rue Michel Brunet, 86073 Poitiers Cedex 9, France
- Department
of Chemistry, Wroclaw University of Environmental and Life Sciences, Norwida
25, 50-375 Wroclaw, Poland
| | - Hanitra Andriamboavonjy
- Université de Poitiers, Institut de Chimie IC2MP, CNRS-UMR
7285, Équipe Synthèse Organique, 4 rue Michel Brunet, 86073 Poitiers Cedex 9, France
| | - Marielle Tamigney Kenfack
- Université de Poitiers, Institut de Chimie IC2MP, CNRS-UMR
7285, Équipe Synthèse Organique, 4 rue Michel Brunet, 86073 Poitiers Cedex 9, France
| | - Yves Blériot
- Université de Poitiers, Institut de Chimie IC2MP, CNRS-UMR
7285, Équipe Synthèse Organique, 4 rue Michel Brunet, 86073 Poitiers Cedex 9, France
| | - Charles Gauthier
- Université de Poitiers, Institut de Chimie IC2MP, CNRS-UMR
7285, Équipe Synthèse Organique, 4 rue Michel Brunet, 86073 Poitiers Cedex 9, France
| |
Collapse
|
37
|
Murphy MP, Caraher E. Residence in biofilms allows Burkholderia cepacia complex (Bcc) bacteria to evade the antimicrobial activities of neutrophil-like dHL60 cells. Pathog Dis 2015; 73:ftv069. [PMID: 26371179 DOI: 10.1093/femspd/ftv069] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/25/2015] [Indexed: 12/14/2022] Open
Abstract
Bacteria of the Burkholderia cepacia complex (Bcc) persist in the airways of people with cystic fibrosis (CF) despite the continuous recruitment of neutrophils. Most members of Bcc are multidrug resistant and can form biofilms. As such, we sought to investigate whether biofilm formation plays a role in protecting Bcc bacteria from neutrophils. Using the neutrophil-like, differentiated cell line, dHL60, we have shown for the first time that Bcc biofilms are enhanced in the presence of these cells. Biofilm biomass was greater following culture in the presence of dHL60 cells than in their absence, likely the result of incorporating dHL60 cellular debris into the biofilm. Moreover, we have demonstrated that mature biofilms (cultured for up to 72 h) induced necrosis in the cells. Established biofilms also acted as a barrier to the migration of the cells and masked the bacteria from being recognized by the cells; dHL60 cells expressed less IL-8 mRNA and secreted significantly less IL-8 when cultured in the presence of biofilms, with respect to planktonic bacteria. Our findings provide evidence that biofilm formation can, at least partly, enable the persistence of Bcc bacteria in the CF airway and emphasize a requirement for anti-biofilm therapeutics.
Collapse
Affiliation(s)
- Mark P Murphy
- Centre for Microbial-Host Interactions, Institute of Technology Tallaght, Dublin 24, Ireland Centre of Applied Science for Health, Institute of Technology Tallaght, Dublin 24, Ireland
| | - Emma Caraher
- Centre for Microbial-Host Interactions, Institute of Technology Tallaght, Dublin 24, Ireland Centre of Applied Science for Health, Institute of Technology Tallaght, Dublin 24, Ireland
| |
Collapse
|
38
|
Dolfi S, Sveronis A, Silipo A, Rizzo R, Cescutti P. A novel rhamno-mannan exopolysaccharide isolated from biofilms of Burkholderia multivorans C1576. Carbohydr Res 2015; 411:42-8. [PMID: 25974852 DOI: 10.1016/j.carres.2015.04.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 04/14/2015] [Accepted: 04/15/2015] [Indexed: 01/08/2023]
Abstract
Burkholderia multivorans C1576 is a Gram negative opportunistic pathogen causing serious lung infection in cystic fibrosis patients. Considering that bacteria naturally form biofilms, and exopolysaccharides are recognized as important factors for biofilm architecture set-up, B. multivorans was grown both in biofilm and in non-biofilm mode on two different media in order to compare the exopolysaccharides biosynthesized in these different experimental conditions. The exopolysaccharides produced were purified and their structure was determined resorting mainly to NMR spectroscopy, ESI mass spectrometry and gas chromatography coupled to mass spectrometry. The experimental data showed that both in biofilm and non-biofilm mode B. multivorans C1576 produced a novel exopolysaccharide having the following structure: [Formula: see text]. About 50% of the 2-linked rhamnose residues are substituted on C-3 with a methyl ether group. The high percentage of deoxysugar Rha units, coupled with OMe substitutions, suggest a possible role for polymer domains with marked hydrophobic characteristics able to create exopolysaccharide junction zones favouring the stability of the biofilm matrix.
Collapse
Affiliation(s)
- Stefania Dolfi
- Department of Life Sciences, Bldg C11, University of Trieste, Via Licio Giorgieri 1, 34127 Trieste, Italy
| | - Aris Sveronis
- Department of Life Sciences, Bldg C11, University of Trieste, Via Licio Giorgieri 1, 34127 Trieste, Italy
| | - Alba Silipo
- Department of Chemical Sciences, University of Naples "Federico II", Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Napoli, Italy
| | - Roberto Rizzo
- Department of Life Sciences, Bldg C11, University of Trieste, Via Licio Giorgieri 1, 34127 Trieste, Italy
| | - Paola Cescutti
- Department of Life Sciences, Bldg C11, University of Trieste, Via Licio Giorgieri 1, 34127 Trieste, Italy.
| |
Collapse
|