1
|
Duda D, Dima S, Sorop A, Kitahara S, Setia N, Chivu-Economescu M, Matei L, Herlea V, Pechianu N, Inomata T, Matsui A, Khachatryan A, Aoki S, Lauwers G, Popescu I. A tumor microenvironment-based classification of gastric cancer for more effective diagnosis and treatment. RESEARCH SQUARE 2023:rs.3.rs-3089359. [PMID: 37577519 PMCID: PMC10418549 DOI: 10.21203/rs.3.rs-3089359/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
With approximately one million diagnosed cases and over 700,000 deaths recorded annually, gastric cancer (GC) is the third most common cause of cancer-related deaths worldwide. GC is a heterogeneous tumor. Thus, optimal management requires biomarkers of prognosis, treatment selection, and treatment response. The Cancer Genome Atlas program sub-classified GC into molecular subtypes, providing a framework for treatment personalization using traditional chemotherapies or biologics. Here, we report a comprehensive study of GC vascular and immune tumor microenvironment (TME)-based on stage and molecular subtypes of the disease and their correlation with outcomes. Using tissues and blood circulating biomarkers and a molecular classification, we identified cancer cell and tumor archetypes, which show that the TME evolves with the disease stage and is a major determinant of prognosis. Moreover, our TME-based subtyping strategy allowed the identification of archetype-specific prognostic biomarkers such as CDH1-mutant GC and circulating IL-6 that provided information beyond and independent of TMN staging, MSI status, and consensus molecular subtyping. The results show that integrating molecular subtyping with TME-specific biomarkers could contribute to improved patient prognostication and may provide a basis for treatment stratification, including for contemporary anti-angiogenesis and immunotherapy approaches.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Lilia Matei
- Stefan S. Nicolau Institute of Virology, Bucharest, Romania
| | | | | | | | - Aya Matsui
- Graduate School of Medical Science, Kanazawa University
| | | | | | | | | |
Collapse
|
2
|
De Groot AS, Moise L, Terry F, Gutierrez AH, Hindocha P, Richard G, Hoft DF, Ross TM, Noe AR, Takahashi Y, Kotraiah V, Silk SE, Nielsen CM, Minassian AM, Ashfield R, Ardito M, Draper SJ, Martin WD. Better Epitope Discovery, Precision Immune Engineering, and Accelerated Vaccine Design Using Immunoinformatics Tools. Front Immunol 2020; 11:442. [PMID: 32318055 PMCID: PMC7154102 DOI: 10.3389/fimmu.2020.00442] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 02/26/2020] [Indexed: 12/19/2022] Open
Abstract
Computational vaccinology includes epitope mapping, antigen selection, and immunogen design using computational tools. Tools that facilitate the in silico prediction of immune response to biothreats, emerging infectious diseases, and cancers can accelerate the design of novel and next generation vaccines and their delivery to the clinic. Over the past 20 years, vaccinologists, bioinformatics experts, and advanced programmers based in Providence, Rhode Island, USA have advanced the development of an integrated toolkit for vaccine design called iVAX, that is secure and user-accessible by internet. This integrated set of immunoinformatic tools comprises algorithms for scoring and triaging candidate antigens, selecting immunogenic and conserved T cell epitopes, re-engineering or eliminating regulatory T cell epitopes, and re-designing antigens to induce immunogenicity and protection against disease for humans and livestock. Commercial and academic applications of iVAX have included identifying immunogenic T cell epitopes in the development of a T-cell based human multi-epitope Q fever vaccine, designing novel influenza vaccines, identifying cross-conserved T cell epitopes for a malaria vaccine, and analyzing immune responses in clinical vaccine studies. Animal vaccine applications to date have included viral infections of pigs such as swine influenza A, PCV2, and African Swine Fever. “Rapid-Fire” applications for biodefense have included a demonstration project for Lassa Fever and Q fever. As recent infectious disease outbreaks underscore the significance of vaccine-driven preparedness, the integrated set of tools available on the iVAX toolkit stand ready to help vaccine developers deliver genome-derived, epitope-driven vaccines.
Collapse
Affiliation(s)
- Anne S De Groot
- EpiVax, Inc., Providence, RI, United States.,Institute for Immunology and Informatics, Providence, RI, United States
| | - Leonard Moise
- EpiVax, Inc., Providence, RI, United States.,Institute for Immunology and Informatics, Providence, RI, United States
| | | | - Andres H Gutierrez
- EpiVax, Inc., Providence, RI, United States.,Institute for Immunology and Informatics, Providence, RI, United States
| | | | | | - Daniel Fredric Hoft
- Departments of Molecular Microbiology & Immunology and Internal Medicine, Division of Infectious Diseases, Allergy & Immunology, Saint Louis University, St. Louis, MO, United States
| | - Ted M Ross
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, United States
| | - Amy R Noe
- Leidos Life Sciences, Frederick, MD, United States
| | | | | | - Sarah E Silk
- Jenner Institute, University of Oxford, Oxford, United Kingdom
| | | | | | | | | | - Simon J Draper
- Jenner Institute, University of Oxford, Oxford, United Kingdom
| | | |
Collapse
|
3
|
Prediction and Validation of Immunogenic Domains of Pneumococcal Proteins Recognized by Human CD4 + T Cells. Infect Immun 2019; 87:IAI.00098-19. [PMID: 30910792 PMCID: PMC6529658 DOI: 10.1128/iai.00098-19] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 02/28/2019] [Indexed: 12/24/2022] Open
Abstract
CD4+ T-cell mechanisms are implied in protection against pneumococcal colonization; however, their target antigens and function are not well defined. In contrast to high-throughput protein arrays for serology, basic antigen tools for CD4+ T-cell studies are lacking. CD4+ T-cell mechanisms are implied in protection against pneumococcal colonization; however, their target antigens and function are not well defined. In contrast to high-throughput protein arrays for serology, basic antigen tools for CD4+ T-cell studies are lacking. Here, we evaluate the potential of a bioinformatics tool for in silico prediction of immunogenicity as a method to reveal domains of pneumococcal proteins targeted by human CD4+ T cells. For 100 pneumococcal proteins, CD4+ T-cell immunogenicity was predicted based on HLA-DRB1 binding motifs. For 20 potentially CD4+ T-cell immunogenic proteins, epitope regions were verified by testing synthetic peptides in T-cell assays using peripheral blood mononuclear cells from healthy adults. Peptide pools of 19 out of 20 proteins evoked T-cell responses. The most frequent responses (detectable in ≥20% of donors tested) were found to SP_0117 (PspA), SP_0468 (putative sortase), SP_0546 (BlpZ), SP_1650 (PsaA), SP_1923 (Ply), SP_2048 (conserved hypothetical protein), SP_2216 (PscB), and SPR_0907 (PhtD). Responding donors had diverging recognition patterns and profiles of signature cytokines (gamma interferon [IFN-γ], tumor necrosis factor alpha [TNF-α], interleukin-13 [IL-13], and/or IL-17A) against single-epitope regions. Natural HLA-DR-restricted presentation and recognition of a predicted SP_1923-derived epitope were validated through the isolation of a CD4+ T-cell clone producing IFN-γ, TNF-α, and IL-17A in response to the synthetic peptide, whole protein, and heat-inactivated pneumococcus. This proof of principle for a bioinformatics tool to identify pneumococcal protein epitopes targeted by human CD4+ T cells provides a peptide-based strategy to study cell-mediated immune mechanisms for the pneumococcal proteome, advancing the development of immunomonitoring assays and targeted vaccine approaches.
Collapse
|
4
|
Nezafat N, Eslami M, Negahdaripour M, Rahbar MR, Ghasemi Y. Designing an efficient multi-epitope oral vaccine against Helicobacter pylori using immunoinformatics and structural vaccinology approaches. MOLECULAR BIOSYSTEMS 2017; 13:699-713. [PMID: 28194462 DOI: 10.1039/c6mb00772d] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Helicobacter pylori is the cunning bacterium that can live in the stomachs of many people without any symptoms, but gradually can lead to gastric cancer. Due to various obstacles, which are related to anti-H. pylori antibiotic therapy, recently developing an anti-H. pylori vaccine has attracted more attention. In this study, different immunoinformatics and computational vaccinology approaches were employed to design an efficient multi-epitope oral vaccine against H. pylori. Our multi-epitope vaccine is composed of heat labile enterotoxin IIc B (LT-IIc) that is used as a mucosal adjuvant to enhance vaccine immunogenicity for oral immunization, cartilage oligomeric matrix protein (COMP) to increase vaccine stability in acidic pH of gut, one experimentally protective antigen, OipA, and two hypothetical protective antigens, HP0487 and HP0906, and "CTGKSC" peptide motif that target epithelial microfold cells (M cells) to enhance vaccine uptake from the gut barrier. All the aforesaid segments were joined to each other by proper linkers. The vaccine construct was modeled, validated, and refined by different programs to achieve a high-quality 3D structure. The resulting high-quality model was applied for conformational B-cell epitopes selection and docking analyses with a toll-like receptor 2 (TLR2). Moreover, molecular dynamics studies demonstrated that the protein-TLR2 docked model was stable during simulation time. We believe that our vaccine candidate can induce mucosal sIgA and IgG antibodies, and Th1/Th2/Th17-mediated protective immunity that are crucial for eradicating H. pylori infection. In sum, the computational results suggest that our newly designed vaccine could serve as a promising anti-H. pylori vaccine candidate.
Collapse
Affiliation(s)
- Navid Nezafat
- Pharmaceutical Science Research Center, Shiraz University of Medical Science, Shiraz, Iran
| | - Mahboobeh Eslami
- Pharmaceutical Science Research Center, Shiraz University of Medical Science, Shiraz, Iran
| | - Manica Negahdaripour
- Pharmaceutical Science Research Center, Shiraz University of Medical Science, Shiraz, Iran and Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Mohammad Reza Rahbar
- Pharmaceutical Science Research Center, Shiraz University of Medical Science, Shiraz, Iran and Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Younes Ghasemi
- Pharmaceutical Science Research Center, Shiraz University of Medical Science, Shiraz, Iran and Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran. and Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
5
|
Mirzaei N, Poursina F, Moghim S, Rashidi N, Ghasemian Safaei H. The study of H. pylori putative candidate factors for single- and multi-component vaccine development. Crit Rev Microbiol 2017; 43:631-650. [PMID: 28581361 DOI: 10.1080/1040841x.2017.1291578] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Helicobacter pylori has grown to colonize inside the stomach of nearly half of the world's population, turning into the most prevalent infections in the universe. Medical care failures noticeably confirm the need for a vaccine to hinder or deal with H. pylori. This review is planned to discuss the most known factors as a vaccine candidate, including single (AhpC, BG, CagA, KatA, Fla, Hsp, HWC, Lpp, LPS, NAP, OMP, OMV, SOD, Tpx, Urease, VacA) and multi-component vaccines. Many promising results in the field of single and multivalent vaccine can be seen, but there is no satisfactory outcome and neither a prophylactic nor a therapeutic vaccine to treat or eradicate the infection in human has been acquired. Hence, selecting suitable antigen is an important factor as an appropriate adjuvant. Taken all together, the development of efficient anti-H. pylori vaccines relies on the fully understanding of the interactions between H. pylori and its host immune system. Therefore, more work should be done on epitope mapping, analysis of molecular structure, and determination of the antigen determinant region as well due to design a vaccine, preferably a multi-component vaccine to elicit specific CD4 T-cell responses that are required for H. pylori vaccine efficacy.
Collapse
Affiliation(s)
- Nasrin Mirzaei
- a Department of Microbiology , Tonekabon Branch, Islamic Azad University , Tonekabon , Iran
| | - Farkhondeh Poursina
- b Department of Microbiology , Isfahan University of Medical Sciences , Isfahan , Iran
| | - Sharareh Moghim
- b Department of Microbiology , Isfahan University of Medical Sciences , Isfahan , Iran
| | - Niloufar Rashidi
- c Department of Laboratory Sciences , Ahvaz University of Medical Sciences , Ahvaz , Iran
| | | |
Collapse
|
6
|
Moise L, Gutierrez A, Kibria F, Martin R, Tassone R, Liu R, Terry F, Martin B, De Groot AS. iVAX: An integrated toolkit for the selection and optimization of antigens and the design of epitope-driven vaccines. Hum Vaccin Immunother 2016; 11:2312-21. [PMID: 26155959 PMCID: PMC4635942 DOI: 10.1080/21645515.2015.1061159] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Computational vaccine design, also known as computational vaccinology, encompasses epitope mapping, antigen selection and immunogen design using computational tools. The iVAX toolkit is an integrated set of tools that has been in development since 1998 by De Groot and Martin. It comprises a suite of immunoinformatics algorithms for triaging candidate antigens, selecting immunogenic and conserved T cell epitopes, eliminating regulatory T cell epitopes, and optimizing antigens for immunogenicity and protection against disease. iVAX has been applied to vaccine development programs for emerging infectious diseases, cancer antigens and biodefense targets. Several iVAX vaccine design projects have had success in pre-clinical studies in animal models and are progressing toward clinical studies. The toolkit now incorporates a range of immunoinformatics tools for infectious disease and cancer immunotherapy vaccine design. This article will provide a guide to the iVAX approach to computational vaccinology.
Collapse
Affiliation(s)
- Leonard Moise
- a Institute for Immunology and Informatics; University of Rhode Island ; Providence , RI USA
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Why Don't We Have a Vaccine Against……….? Part 3. Bacteria, Too. INFECTIOUS DISEASES IN CLINICAL PRACTICE 2016. [DOI: 10.1097/ipc.0000000000000363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
Rossi AFT, Cadamuro ACT, Biselli-Périco JM, Leite KRM, Severino FE, Reis PP, Cordeiro JA, Silva AE. Interaction between inflammatory mediators and miRNAs in Helicobacter pylori infection. Cell Microbiol 2016; 18:1444-58. [PMID: 26945693 PMCID: PMC5074252 DOI: 10.1111/cmi.12587] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 02/12/2016] [Accepted: 02/29/2016] [Indexed: 12/13/2022]
Abstract
Helicobacter pylori cause chronic inflammation favouring gastric carcinogenesis, and its eradication may prevent malignant transformation. We evaluated whether H. pylori infection and its eradication modify the expression of inflammatory mediators in patients with chronic gastritis. Furthermore, we assessed whether microRNAs modulate inflammatory pathways induced by H. pylori and identified miRNA–gene interaction networks. mRNA and protein expression of TNFA, IL6, IL1B, IL12A, IL2 and TGFBRII and miRNAs miR‐103a‐3p, miR‐181c‐5p, miR‐370‐3p, miR‐375 and miR‐223‐3p were evaluated in tissue samples from 20 patients with chronic gastritis H. pylori negative (Hp−) and 31 H. pylori positive (Hp+), before and three months after bacterium eradication therapy, in comparison with a pool of Hp− normal gastric mucosa. Our results showed that H. pylori infection leads to up‐regulation of TNFA, IL6, IL12A and IL2 and down‐regulation of miRNAs. Bacterium eradication reduces the expression of TNFA and IL6 and up‐regulates TGFBRII and all investigated miRNAs, except miR‐223‐3p. Moreover, transcriptional profiles of inflammatory mediators and miRNAs after eradication are different from the non‐infected group. Deregulated miRNA–mRNA interaction networks were observed in the Hp+ group before and after eradication. Therefore, miRNAs modulated cytokine expression in the presence of H. pylori and after its eradication, suggesting that miRNAs participate in the pathological process triggered by H. pylori in the gastric mucosa.
Collapse
Affiliation(s)
- Ana Flávia Teixeira Rossi
- UNESP, São Paulo State University, Department of Biology, Rua Cristóvão Colombo, 2265, São José do Rio Preto, SP, Brazil
| | - Aline Cristina Targa Cadamuro
- UNESP, São Paulo State University, Department of Biology, Rua Cristóvão Colombo, 2265, São José do Rio Preto, SP, Brazil
| | - Joice Matos Biselli-Périco
- UNESP, São Paulo State University, Department of Biology, Rua Cristóvão Colombo, 2265, São José do Rio Preto, SP, Brazil
| | - Kátia Ramos Moreira Leite
- USP, São Paulo University, Faculty of Medicine, Department of Surgery, Avenida Dr. Arnaldo, 455, São Paulo, SP, Brazil
| | - Fábio Eduardo Severino
- UNESP, São Paulo State University, Faculty of Medicine, Department of Surgery and Orthopedics, Avenida Prof. Montenegro, Botucatu, SP, Brazil
| | - Patricia P Reis
- UNESP, São Paulo State University, Faculty of Medicine, Department of Surgery and Orthopedics, Avenida Prof. Montenegro, Botucatu, SP, Brazil
| | - José Antonio Cordeiro
- UNESP, São Paulo State University, Department of Biology, Rua Cristóvão Colombo, 2265, São José do Rio Preto, SP, Brazil
| | - Ana Elizabete Silva
- UNESP, São Paulo State University, Department of Biology, Rua Cristóvão Colombo, 2265, São José do Rio Preto, SP, Brazil.
| |
Collapse
|
9
|
Simons BC, Spradling PR, Bruden DJT, Zanis C, Case S, Choromanski TL, Apodaca M, Brogdon HD, Dwyer G, Snowball M, Negus S, Bruce MG, Morishima C, Knall C, McMahon BJ. A Longitudinal Hepatitis B Vaccine Cohort Demonstrates Long-lasting Hepatitis B Virus (HBV) Cellular Immunity Despite Loss of Antibody Against HBV Surface Antigen. J Infect Dis 2016; 214:273-80. [PMID: 27056956 DOI: 10.1093/infdis/jiw142] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 04/01/2016] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Long-lasting protection resulting from hepatitis B vaccine, despite loss of antibody against hepatitis B virus (HBV) surface antigen (anti-HBs), is undetermined. METHODS We recruited persons from a cohort vaccinated with plasma-derived hepatitis B vaccine in 1981 who have been followed periodically since. We performed serological testing for anti-HBs and microRNA-155 and assessed HBV-specific T-cell responses by enzyme-linked immunospot and cytometric bead array. Study subgroups were defined 32 years after vaccination as having an anti-HBs level of either ≥10 mIU/mL (group 1; n = 13) or <10 mIU/mL (group 2; n = 31). RESULTS All 44 participants, regardless of anti-HBs level, tested positive for tumor necrosis factor α, interleukin 10, or interleukin 6 production by HBV surface antigen-specific T cells. The frequency of natural killer T cells correlated with the level of anti-HBs (P = .008). The proportion of participants who demonstrated T-cell responses to HBV core antigen varied among the cytokines measured, suggesting some natural exposure to HBV in the study group. No participant had evidence of breakthrough HBV infection. CONCLUSIONS Evidence of long-lasting cellular immunity, regardless of anti-HBs level, suggests that protection afforded by primary immunization with plasma-derived hepatitis B vaccine during childhood and adulthood lasts at least 32 years.
Collapse
Affiliation(s)
- Brenna C Simons
- Liver Disease and Hepatitis Program, Alaska Native Tribal Health Consortium Arctic Investigations Program, Division of Preparedness and Emerging Infections, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention (CDC) WWAMI School of Medical Education, College of Health, University of Alaska Anchorage
| | - Philip R Spradling
- Division of Viral Hepatitis, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, CDC, Atlanta, Georgia
| | - Dana J T Bruden
- Arctic Investigations Program, Division of Preparedness and Emerging Infections, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention (CDC)
| | - Carolyn Zanis
- Arctic Investigations Program, Division of Preparedness and Emerging Infections, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention (CDC)
| | - Samantha Case
- Arctic Investigations Program, Division of Preparedness and Emerging Infections, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention (CDC)
| | | | - Minjun Apodaca
- Department of Laboratory Medicine, University of Washington, Seattle
| | - Hazel D Brogdon
- WWAMI School of Medical Education, College of Health, University of Alaska Anchorage
| | - Gaelen Dwyer
- WWAMI School of Medical Education, College of Health, University of Alaska Anchorage
| | - Mary Snowball
- Liver Disease and Hepatitis Program, Alaska Native Tribal Health Consortium
| | - Susan Negus
- Liver Disease and Hepatitis Program, Alaska Native Tribal Health Consortium
| | - Michael G Bruce
- Arctic Investigations Program, Division of Preparedness and Emerging Infections, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention (CDC)
| | - Chihiro Morishima
- Department of Laboratory Medicine, University of Washington, Seattle
| | - Cindy Knall
- WWAMI School of Medical Education, College of Health, University of Alaska Anchorage
| | - Brian J McMahon
- Liver Disease and Hepatitis Program, Alaska Native Tribal Health Consortium Arctic Investigations Program, Division of Preparedness and Emerging Infections, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention (CDC)
| |
Collapse
|
10
|
Moise L, Beseme S, Tassone R, Liu R, Kibria F, Terry F, Martin W, De Groot AS. T cell epitope redundancy: cross-conservation of the TCR face between pathogens and self and its implications for vaccines and autoimmunity. Expert Rev Vaccines 2016; 15:607-17. [PMID: 26588466 DOI: 10.1586/14760584.2016.1123098] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
T cells are extensively trained on 'self' in the thymus and then move to the periphery, where they seek out and destroy infections and regulate immune response to self-antigens. T cell receptors (TCRs) on T cells' surface recognize T cell epitopes, short linear strings of amino acids presented by antigen-presenting cells. Some of these epitopes activate T effectors, while others activate regulatory T cells. It was recently discovered that T cell epitopes that are highly conserved on their TCR face with human genome sequences are often associated with T cells that regulate immune response. These TCR-cross-conserved or 'redundant epitopes' are more common in proteins found in pathogens that have co-evolved with humans than in other non-commensal pathogens. Epitope redundancy might be the link between pathogens and autoimmune disease. This article reviews recently published data and addresses epitope redundancy, the "elephant in the room" for vaccine developers and T cell immunologists.
Collapse
Affiliation(s)
- Leonard Moise
- a EpiVax, Inc ., Providence , RI , USA.,b Institute for Immunology and Informatics , University of Rhode Island , Providence , RI , USA
| | | | - Ryan Tassone
- b Institute for Immunology and Informatics , University of Rhode Island , Providence , RI , USA
| | - Rui Liu
- b Institute for Immunology and Informatics , University of Rhode Island , Providence , RI , USA
| | | | | | | | - Anne S De Groot
- a EpiVax, Inc ., Providence , RI , USA.,b Institute for Immunology and Informatics , University of Rhode Island , Providence , RI , USA
| |
Collapse
|
11
|
De Groot AS, Moise L, Liu R, Gutierrez AH, Tassone R, Bailey-Kellogg C, Martin W. Immune camouflage: relevance to vaccines and human immunology. Hum Vaccin Immunother 2015; 10:3570-5. [PMID: 25483703 PMCID: PMC4514035 DOI: 10.4161/hv.36134] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
High strain sequence variability, interference with innate immune mechanisms, and epitope deletion are all examples of strategies that pathogens have evolved to subvert host defenses. To this list we would add another strategy: immune camouflage. Pathogens whose epitope sequences are cross-conserved with multiple human proteins at the TCR-facing residues may be exploiting “ignorance and tolerance," which are mechanisms by which mature T cells avoid immune responses to self-antigens. By adopting amino acid configurations that may be recognized by autologous regulatory T cells, pathogens may be actively suppressing protective immunity. Using the new JanusMatrix TCR-homology-mapping tool, we have identified several such ‘camouflaged’ tolerizing epitopes that are present in the viral genomes of pathogens such as emerging H7N9 influenza. Thus in addition to the overall low number of T helper epitopes that is present in H7 hemaglutinin (as described previously, see http://dx.doi.org/10.4161/hv.24939), the presence of such tolerizing epitopes in H7N9 could explain why, in recent vaccine trials, whole H7N9-HA was poorly immunogenic and associated with low seroconversion rates (see http://dx.doi.org/10.4161/hv.28135). In this commentary, we provide an overview of the immunoinformatics process leading to the discovery of tolerizing epitopes in pathogen genomic sequences, provide a brief summary of laboratory data that validates the discovery, and point the way forward. Removal of viral, bacterial and parasite tolerizing epitopes may permit researchers to develop more effective vaccines and immunotherapeutics in the future.
Collapse
Key Words
- Biologic
- Deimmunization
- EpiMatrix
- HA, hemagglutinin
- HCV, Hepatitis C virus
- HIV, human immunodeficiency virus
- HLA, human leukocyte antigen
- IAVs, influenza A viruses
- JanusMatrix
- TCR, T cell receptor
- Td response, T cell-driven response
- Tolerance
- Treg
- Treg, regulatory T cell
- Tregitope
- Tregitope, Treg epitope
- Vaccine
- nTreg, natural regulatory T cells
Collapse
|
12
|
Walduck A, Andersen LP, Raghavan S. Inflammation, Immunity, and Vaccines for Helicobacter pylori Infection. Helicobacter 2015; 20 Suppl 1:17-25. [PMID: 26372820 DOI: 10.1111/hel.12252] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
During the last year, a variety of studies have been published that increases our understanding of the basic mechanisms of immunity and inflammation in Helicobacter pylori infection and progression to gastric cancer. Innate immune regulation and epithelial cell response were covered by several studies that contribute with new insights in the host response to H. pylori infection. Also, the adaptive immune response to H. pylori and particularly the role of IL-22 have been addressed in some studies. These advances may improve vaccine development where new strategies have been published. Two major studies analyzed H. pylori genomes of 39 worldwide strains and looked at the protein profiles. In addition, multi-epitope vaccines for therapeutic use have been investigated. Studies on different adjuvants and delivery systems have also given us new insights. This review presents articles from the last year that reveal detailed insight into immunity and regulation of inflammation, the contribution of immune cells to the development of gastric cancer, and understanding mechanisms of vaccine-induced protection.
Collapse
Affiliation(s)
- Anna Walduck
- Health Innovations Research Institute, School of Applied Sciences RMIT University, Bundoora, Melbourne, Vic., Australia
| | - Leif P Andersen
- Department of Infection Control, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Sukanya Raghavan
- Department of Microbiology and Immunology, Institute for Biomedicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
13
|
Rugge M. Gastric Cancer Risk in Patients with Helicobacter pylori Infection and Following Its Eradication. Gastroenterol Clin North Am 2015; 44:609-24. [PMID: 26314671 DOI: 10.1016/j.gtc.2015.05.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
As Helicobacter pylori is a first-class carcinogen, eradication of the infection would be expected to be a beneficial measure for the (primary) prevention of gastric cancer. Given the natural history of gastric cancer, it is plausible that eradication before gastric atrophy sets in offers the best chance for cancer risk reduction. The beneficial effects of eradication may, nevertheless, still be achievable in more advanced disease. The reversibility of inflammatory lesions has been supported by undeniable evidence; the regression of mucosal atrophy/metaplasia has also been confirmed by several recent histologic studies.
Collapse
Affiliation(s)
- Massimo Rugge
- Surgical Pathology & Cytopathology Unit, Department of Medicine - DIMED, University of Padova, Via Aristide Gabelli, 61, Padova 35121, Italy.
| |
Collapse
|
14
|
Terry FE, Moise L, Martin RF, Torres M, Pilotte N, Williams SA, De Groot AS. Time for T? Immunoinformatics addresses vaccine design for neglected tropical and emerging infectious diseases. Expert Rev Vaccines 2014; 14:21-35. [PMID: 25193104 PMCID: PMC4743591 DOI: 10.1586/14760584.2015.955478] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Vaccines have been invaluable for global health, saving lives and reducing healthcare costs, while also raising the quality of human life. However, newly emerging infectious diseases (EID) and more well-established tropical disease pathogens present complex challenges to vaccine developers; in particular, neglected tropical diseases, which are most prevalent among the world's poorest, include many pathogens with large sizes, multistage life cycles and a variety of nonhuman vectors. EID such as MERS-CoV and H7N9 are highly pathogenic for humans. For many of these pathogens, while their genomes are available, immune correlates of protection are currently unknown. These complexities make developing vaccines for EID and neglected tropical diseases all the more difficult. In this review, we describe the implementation of an immunoinformatics-driven approach to systematically search for key determinants of immunity in newly available genome sequence data and design vaccines. This approach holds promise for the development of 21st century vaccines, improving human health everywhere.
Collapse
|