1
|
Wolfe AR, Cui T, Baie S, Corrales-Guerrero S, Webb A, Castro-Aceituno V, Shyu DL, Karasinska JM, Topham JT, Renouf DJ, Schaeffer DF, Halloran M, Packard R, Robb R, Chen W, Denko N, Lisanti M, Thompson TC, Frank P, Williams TM. Nutrient scavenging-fueled growth in pancreatic cancer depends on caveolae-mediated endocytosis under nutrient-deprived conditions. SCIENCE ADVANCES 2024; 10:eadj3551. [PMID: 38427741 PMCID: PMC10906919 DOI: 10.1126/sciadv.adj3551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 01/26/2024] [Indexed: 03/03/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is characterized by its nutrient-scavenging ability, crucial for tumor progression. Here, we investigated the roles of caveolae-mediated endocytosis (CME) in PDAC progression. Analysis of patient data across diverse datasets revealed a strong association of high caveolin-1 (Cav-1) expression with higher histologic grade, the most aggressive PDAC molecular subtypes, and worse clinical outcomes. Cav-1 loss markedly promoted longer overall and tumor-free survival in a genetically engineered mouse model. Cav-1-deficient tumor cell lines exhibited significantly reduced proliferation, particularly under low nutrient conditions. Supplementing cells with albumin rescued the growth of Cav-1-proficient PDAC cells, but not in Cav-1-deficient PDAC cells under low glutamine conditions. In addition, Cav-1 depletion led to significant metabolic defects, including decreased glycolytic and mitochondrial metabolism, and downstream protein translation signaling pathways. These findings highlight the crucial role of Cav-1 and CME in fueling pancreatic tumorigenesis, sustaining tumor growth, and promoting survival through nutrient scavenging.
Collapse
Affiliation(s)
- Adam R. Wolfe
- Department of Radiation Oncology, The University of Arkansas for Medical Sciences, The Winthrop P. Rockefeller Cancer Institute, Little Rock, AR, USA
| | - Tiantian Cui
- Department of Radiation Oncology, City of Hope, Duarte, CA, USA
| | - Sooin Baie
- Department of Cancer Biology and Genetics, The Ohio State University Wexner Medical Center, Arthur G. James Comprehensive Cancer Center and Richard J. Solove Research Institute, Columbus, OH, USA
| | | | - Amy Webb
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA
| | | | - Duan-Liang Shyu
- Department of Radiation Oncology, The Ohio State University Wexner Medical Center, Arthur G. James Comprehensive Cancer Center and Richard J. Solove Research Institute, Columbus, OH, USA
| | | | | | - Daniel J. Renouf
- Pancreas Centre BC, Vancouver, BC, Canada
- Department of Medical Oncology, BC Cancer, Vancouver, BC, Canada
| | - David F. Schaeffer
- Pancreas Centre BC, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, Vancouver General Hospital, Vancouver, BC, Canada
| | - Megan Halloran
- Department of Radiation Oncology, The Ohio State University Wexner Medical Center, Arthur G. James Comprehensive Cancer Center and Richard J. Solove Research Institute, Columbus, OH, USA
| | - Rebecca Packard
- Department of Radiation Oncology, The Ohio State University Wexner Medical Center, Arthur G. James Comprehensive Cancer Center and Richard J. Solove Research Institute, Columbus, OH, USA
| | - Ryan Robb
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Wei Chen
- Department of Pathology, The Ohio State University Wexner Medical Center, Arthur G. James Comprehensive Cancer Center and Richard J. Solove Research Institute, Columbus, OH, USA
| | - Nicholas Denko
- Department of Radiation Oncology, The Ohio State University Wexner Medical Center, Arthur G. James Comprehensive Cancer Center and Richard J. Solove Research Institute, Columbus, OH, USA
| | - Michael Lisanti
- Translational Medicine, University of Salford, Greater Manchester M5 4WT, UK
- Lunella Biotech, Inc., 145 Richmond Road, Ottawa, ON K1Z 1A1, Canada
| | - Timothy C. Thompson
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, USA
| | - Philippe Frank
- SGS France, Health & Nutrition, Saint-Benoît, France
- N2C, Nutrition Growth and Cancer, Faculté de Médecine, Université de Tours, Inserm, UMR, 1069 Tours, France
| | | |
Collapse
|
2
|
Xia W, Li X, Wu Q, Xu A, Zhang L, Xia Z. The importance of caveolin as a target in the prevention and treatment of diabetic cardiomyopathy. Front Immunol 2022; 13:951381. [PMID: 36405687 PMCID: PMC9666770 DOI: 10.3389/fimmu.2022.951381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 10/21/2022] [Indexed: 08/30/2023] Open
Abstract
The diabetic population has been increasing in the past decades and diabetic cardiomyopathy (DCM), a pathology that is defined by the presence of cardiac remodeling and dysfunction without conventional cardiac risk factors such as hypertension and coronary heart diseases, would eventually lead to fatal heart failure in the absence of effective treatment. Impaired insulin signaling, commonly known as insulin resistance, plays an important role in the development of DCM. A family of integral membrane proteins named caveolins (mainly caveolin-1 and caveolin-3 in the myocardium) and a protein hormone adiponectin (APN) have all been shown to be important for maintaining normal insulin signaling. Abnormalities in caveolins and APN have respectively been demonstrated to cause DCM. This review aims to summarize recent research findings of the roles and mechanisms of caveolins and APN in the development of DCM, and also explore the possible interplay between caveolins and APN.
Collapse
Affiliation(s)
- Weiyi Xia
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Guangdong, China
- Department of Orthopaedics and Traumatology, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Xia Li
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qingping Wu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Aimin Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Liangqing Zhang
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Guangdong, China
| | - Zhengyuan Xia
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Guangdong, China
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| |
Collapse
|
3
|
Hatmal MM, Al-Hatamleh MAI, Olaimat AN, Alshaer W, Hasan H, Albakri KA, Alkhafaji E, Issa NN, Al-Holy MA, Abderrahman SM, Abdallah AM, Mohamud R. Immunomodulatory Properties of Human Breast Milk: MicroRNA Contents and Potential Epigenetic Effects. Biomedicines 2022; 10:1219. [PMID: 35740242 PMCID: PMC9219990 DOI: 10.3390/biomedicines10061219] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/15/2022] [Accepted: 05/17/2022] [Indexed: 02/07/2023] Open
Abstract
Infants who are exclusively breastfed in the first six months of age receive adequate nutrients, achieving optimal immune protection and growth. In addition to the known nutritional components of human breast milk (HBM), i.e., water, carbohydrates, fats and proteins, it is also a rich source of microRNAs, which impact epigenetic mechanisms. This comprehensive work presents an up-to-date overview of the immunomodulatory constituents of HBM, highlighting its content of circulating microRNAs. The epigenetic effects of HBM are discussed, especially those regulated by miRNAs. HBM contains more than 1400 microRNAs. The majority of these microRNAs originate from the lactating gland and are based on the remodeling of cells in the gland during breastfeeding. These miRNAs can affect epigenetic patterns by several mechanisms, including DNA methylation, histone modifications and RNA regulation, which could ultimately result in alterations in gene expressions. Therefore, the unique microRNA profile of HBM, including exosomal microRNAs, is implicated in the regulation of the genes responsible for a variety of immunological and physiological functions, such as FTO, INS, IGF1, NRF2, GLUT1 and FOXP3 genes. Hence, studying the HBM miRNA composition is important for improving the nutritional approaches for pregnancy and infant's early life and preventing diseases that could occur in the future. Interestingly, the composition of miRNAs in HBM is affected by multiple factors, including diet, environmental and genetic factors.
Collapse
Affiliation(s)
- Ma’mon M. Hatmal
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan;
| | - Mohammad A. I. Al-Hatamleh
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu 16150, Malaysia;
| | - Amin N. Olaimat
- Department of Clinical Nutrition and Dietetics, Faculty of Applied Medical Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan; (A.N.O.); (M.A.A.-H.)
| | - Walhan Alshaer
- Cell Therapy Center (CTC), The University of Jordan, Amman 11942, Jordan;
| | - Hanan Hasan
- Department of Pathology, Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman 11942, Jordan;
| | - Khaled A. Albakri
- Faculty of Medicine, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan;
| | - Enas Alkhafaji
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, The University of Jordan, Amman 11942, Jordan;
| | - Nada N. Issa
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan;
| | - Murad A. Al-Holy
- Department of Clinical Nutrition and Dietetics, Faculty of Applied Medical Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan; (A.N.O.); (M.A.A.-H.)
| | - Salim M. Abderrahman
- Department of Biology and Biotechnology, Faculty of Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan;
| | - Atiyeh M. Abdallah
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha 2713, Qatar;
| | - Rohimah Mohamud
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu 16150, Malaysia;
| |
Collapse
|
4
|
Lolo FN, Jiménez-Jiménez V, Sánchez-Álvarez M, Del Pozo MÁ. Tumor-stroma biomechanical crosstalk: a perspective on the role of caveolin-1 in tumor progression. Cancer Metastasis Rev 2021; 39:485-503. [PMID: 32514892 DOI: 10.1007/s10555-020-09900-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Tumor stiffening is a hallmark of malignancy that actively drives tumor progression and aggressiveness. Recent research has shed light onto several molecular underpinnings of this biomechanical process, which has a reciprocal crosstalk between tumor cells, stromal fibroblasts, and extracellular matrix remodeling at its core. This dynamic communication shapes the tumor microenvironment; significantly determines disease features including therapeutic resistance, relapse, or metastasis; and potentially holds the key for novel antitumor strategies. Caveolae and their components emerge as integrators of different aspects of cell function, mechanotransduction, and ECM-cell interaction. Here, we review our current knowledge on the several pivotal roles of the essential caveolar component caveolin-1 in this multidirectional biomechanical crosstalk and highlight standing questions in the field.
Collapse
Affiliation(s)
- Fidel Nicolás Lolo
- Mechanoadaptation and Caveolae Biology Lab, Cell and Developmental Biology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Víctor Jiménez-Jiménez
- Mechanoadaptation and Caveolae Biology Lab, Cell and Developmental Biology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Miguel Sánchez-Álvarez
- Mechanoadaptation and Caveolae Biology Lab, Cell and Developmental Biology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Miguel Ángel Del Pozo
- Mechanoadaptation and Caveolae Biology Lab, Cell and Developmental Biology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.
| |
Collapse
|
5
|
Peng H, Mu P, Li H, Lin S, Lin C, Lin K, Liu K, Zeng W, Zeng L. Caveolin-1 Is Essential for the Improvement of Insulin Sensitivity through AKT Activation during Glargine Treatment on Diabetic Mice. J Diabetes Res 2021; 2021:9943344. [PMID: 34917687 PMCID: PMC8670926 DOI: 10.1155/2021/9943344] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 09/28/2021] [Indexed: 11/17/2022] Open
Abstract
Insulin treatment was confirmed to reduce insulin resistance, but the underlying mechanism remains unknown. Caveolin-1 (Cav-1) is a functional protein of the membrane lipid rafts, known as caveolae, and is widely expressed in mammalian adipose tissue. There is increasing evidence that show the involvement of Cav-1 in the AKT activation, which is responsible for insulin sensitivity. Our aim was to investigate the effect of Cav-1 depletion on insulin sensitivity and AKT activation in glargine-treated type 2 diabetic mice. Mice were exposed to a high-fat diet and subject to intraperitoneal injection of streptozotocin to induce diabetes. Next, glargine was administered to treat T2DM mice for 3 weeks (insulin group). The expression of Cav-1 was then silenced by injecting lentiviral-vectored short hairpin RNA (shRNA) through the tail vein of glargine-treated T2DM mice (CAV1-shRNA group), while scramble virus injection was used as a negative control (Ctrl-shRNA group). The results showed that glargine was able to upregulate the expression of PI3K and activate serine phosphorylation of AKT through the upregulation of Cav-1 expression in paraepididymal adipose tissue of the insulin group. However, glargine treatment could not activate AKT pathway in Cav-1 silenced diabetic mice. These results suggest that Cav-1 is essential for the activation of AKT and improving insulin sensitivity in type 2 diabetic mice during glargine treatment.
Collapse
Affiliation(s)
- Hangya Peng
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510630, China
- Ward 2 of Coronary Heart Diseases Centre, Fuwai Yunnan Cardiovascular Hospital, Kunming 650000, China
| | - Panwei Mu
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510630, China
| | - Haicheng Li
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510630, China
| | - Shuo Lin
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510630, China
| | - Chuwen Lin
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510630, China
| | - Keyi Lin
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510630, China
| | - Kunying Liu
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510630, China
| | - Wen Zeng
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510630, China
| | - Longyi Zeng
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510630, China
| |
Collapse
|
6
|
Fachim HA, Siddals K, Malipatil N, Donn RP, Moreno GYC, Dalton CF, Adam S, Soran H, Gibson JM, Heald AH. Lifestyle intervention in individuals with impaired glucose regulation affects Caveolin-1 expression and DNA methylation. Adipocyte 2020; 9:96-107. [PMID: 32125224 PMCID: PMC7153542 DOI: 10.1080/21623945.2020.1732513] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Aims: We investigated whether a lifestyle intervention could influence expression and DNA methylation of diabetes-related genes in patients with impaired glucose regulation (IGR), the results were compared to bariatric surgery, considering it an intensive change. Methods: Twenty participants with IGR had adipose tissue biopsy and blood collected pre- and post-lifestyle (6 months) intervention; 12 obese patients had subcutaneous fat taken before and after bariatric surgery. RNA/DNA was extracted from all samples and underwent qPCR. DNA was bisulphite converted and 12 CpG sites of Caveolin-1 (CAV1) promoter were pyrosequenced. Results: lifestyle intervention resulted in opposite direction changes in fat tissue and blood for CAV1 expression and DNA methylation and these changes were correlated between tissues, while no significative differences were found in CAV1 expression after bariatric surgery. Conclusions: Our findings suggest a role for CAV1 in modulating adipocyte function as a consequence of lifestyle changes, as exercises and diet. These results may provide insights into new therapeutic targets for diabetes prevention.
Collapse
Affiliation(s)
- Helene A. Fachim
- Faculty of Biology, Medicine and Health and Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK
- Department of Diabetes and Endocrinology, Salford Royal NHS Foundation Trust, Salford, UK
| | - Kirk Siddals
- Faculty of Biology, Medicine and Health and Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK
- Department of Diabetes and Endocrinology, Salford Royal NHS Foundation Trust, Salford, UK
| | - Nagaraj Malipatil
- Faculty of Biology, Medicine and Health and Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK
- Department of Diabetes and Endocrinology, Salford Royal NHS Foundation Trust, Salford, UK
| | - Rachelle P Donn
- Faculty of Biology, Medicine and Health and Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK
| | - Gabriela YC Moreno
- Dirección General de Calidad y Educación en Salud, Secretaría de Salud, Mexico City, Mexico
| | - Caroline F Dalton
- Biomolecular Science Research Centre, Sheffield Hallam University, Sheffield, UK
| | - Safwaan Adam
- Faculty of Biology, Medicine and Health and Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK
- Department of Endocrinology, The Christie NHS Foundation Trust, Manchester, UK
- Department of Endocrinology, Diabetes and Metabolism, Manchester Royal Infirmary, Manchester, UK
| | - Handrean Soran
- Department of Endocrinology, Diabetes and Metabolism, Manchester Royal Infirmary, Manchester, UK
- Lipoprotein Research Group, Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine & Health, University of Manchester, Core Technology Facility, Manchester, UK
| | - J Martin Gibson
- Faculty of Biology, Medicine and Health and Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK
- Department of Diabetes and Endocrinology, Salford Royal NHS Foundation Trust, Salford, UK
| | - Adrian H Heald
- Faculty of Biology, Medicine and Health and Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK
- Department of Diabetes and Endocrinology, Salford Royal NHS Foundation Trust, Salford, UK
| |
Collapse
|
7
|
Kagawa Y, Umaru BA, Shima H, Ito R, Zama R, Islam A, Kanno SI, Yasui A, Sato S, Jozaki K, Shil SK, Miyazaki H, Kobayashi S, Yamamoto Y, Kogo H, Shimamoto-Mitsuyama C, Sugawara A, Sugino N, Kanamori M, Tominaga T, Yoshikawa T, Fukunaga K, Igarashi K, Owada Y. FABP7 Regulates Acetyl-CoA Metabolism Through the Interaction with ACLY in the Nucleus of Astrocytes. Mol Neurobiol 2020; 57:4891-4910. [PMID: 32812201 PMCID: PMC7541391 DOI: 10.1007/s12035-020-02057-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 08/07/2020] [Indexed: 01/17/2023]
Abstract
Fatty acid binding protein 7 (FABP7) is an intracellular fatty acid chaperon that is highly expressed in astrocytes, oligodendrocyte-precursor cells, and malignant glioma. Previously, we reported that FABP7 regulates the response to extracellular stimuli by controlling the expression of caveolin-1, an important component of lipid raft. Here, we explored the detailed mechanisms underlying FABP7 regulation of caveolin-1 expression using primary cultured FABP7-KO astrocytes as a model of loss of function and NIH-3T3 cells as a model of gain of function. We discovered that FABP7 interacts with ATP-citrate lyase (ACLY) and is important for acetyl-CoA metabolism in the nucleus. This interaction leads to epigenetic regulation of several genes, including caveolin-1. Our novel findings suggest that FABP7-ACLY modulation of nuclear acetyl-CoA has more influence on histone acetylation than cytoplasmic acetyl-CoA. The changes to histone structure may modify caveolae-related cell activity in astrocytes and tumors, including malignant glioma.
Collapse
Affiliation(s)
- Yoshiteru Kagawa
- Department of Organ Anatomy, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan.
| | - Banlanjo Abdulaziz Umaru
- Department of Organ Anatomy, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Hiroki Shima
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Ryo Ito
- Department of Molecular Endocrinology, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Ryo Zama
- Department of Organ Anatomy, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Ariful Islam
- Department of Organ Anatomy, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Shin-Ichiro Kanno
- Division of Dynamic Proteome in Aging and Cancer, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai, 980-8575, Japan
| | - Akira Yasui
- Division of Dynamic Proteome in Aging and Cancer, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai, 980-8575, Japan
| | - Shun Sato
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Ube, 755-0046, Japan
| | - Kosuke Jozaki
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Ube, 755-0046, Japan
| | - Subrata Kumar Shil
- Department of Organ Anatomy, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Hirofumi Miyazaki
- Department of Organ Anatomy, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Shuhei Kobayashi
- Department of Organ Anatomy, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Yui Yamamoto
- Department of Organ Anatomy, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Hiroshi Kogo
- Department of Anatomy and Cell Biology, Gunma University Graduate School of Medicine, Maebashi, 371-8511, Japan
| | | | - Akira Sugawara
- Department of Molecular Endocrinology, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Norihiro Sugino
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Ube, 755-0046, Japan
| | - Masayuki Kanamori
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Teiji Tominaga
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Takeo Yoshikawa
- Laboratory for Molecular Psychiatry, RIKEN Center for Brain Science, Wako, 351-0198, Japan
| | - Kohji Fukunaga
- Department of Pharmacology, Tohoku University Graduate School of Pharmaceutical Sciences, Sendai, 980-8578, Japan
| | - Kazuhiko Igarashi
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Yuji Owada
- Department of Organ Anatomy, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan.
| |
Collapse
|
8
|
Kruglikov IL, Scherer PE. Caveolin-1 as a possible target in the treatment for acne. Exp Dermatol 2020; 29:177-183. [PMID: 31769542 PMCID: PMC6995412 DOI: 10.1111/exd.14063] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 11/03/2019] [Accepted: 11/19/2019] [Indexed: 12/13/2022]
Abstract
Expression of caveolin-1 (Cav-1) is an important pathophysiological factor in acne. Cav-1 strongly interacts with such well-recognized etiopathogenic factors such as hyperseborrhea, follicular hyperkeratinization and pathogenicity of Cutibacterium acnes. Cav-1 is a strong negative regulator of transforming growth factor beta (TGF-β) expression. It acts as a critical determinant of autophagy, which is significantly induced in acne lesions through C. acnes and by absorption of fatty acids. Cav-1 also demonstrates different correlations with the development of innate immunity. We propose that normalization of Cav-1 expression can serve as a target in anti-acne therapy.
Collapse
Affiliation(s)
| | - Philipp E Scherer
- Department of Internal Medicine, Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
9
|
Kruglikov IL, Scherer PE. Caveolin as a Universal Target in Dermatology. Int J Mol Sci 2019; 21:E80. [PMID: 31877626 PMCID: PMC6981867 DOI: 10.3390/ijms21010080] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/14/2019] [Accepted: 12/18/2019] [Indexed: 02/07/2023] Open
Abstract
Caveolin-1 is strongly expressed in different dermal and subdermal cells and physically interacts with signaling molecules and receptors, among them with transforming growth factor beta (TGF-β), matrix metalloproteinases, heat shock proteins, toll-like and glucocorticoid receptors. It should therefore be heavily involved in the regulation of cellular signaling in various hyperproliferative and inflammatory skin conditions. We provide an overview of the role of the caveolin-1 expression in different hyperproliferative and inflammatory skin diseases and discuss its possible active involvement in the therapeutic effects of different well-known drugs widely applied in dermatology. We also discuss the possible role of caveolin expression in development of the drug resistance in dermatology. Caveolin-1 is not only an important pathophysiological factor in different hyperproliferative and inflammatory dermatological conditions, but can also serve as a target for their treatment. Targeted regulation of caveolin is likely to serve as a new treatment strategy in dermatology.
Collapse
Affiliation(s)
| | - Philipp E. Scherer
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390-8549, USA
| |
Collapse
|
10
|
Caveolin-1 as a pathophysiological factor and target in psoriasis. NPJ Aging Mech Dis 2019; 5:4. [PMID: 30729030 PMCID: PMC6363785 DOI: 10.1038/s41514-019-0034-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 01/03/2019] [Indexed: 12/14/2022] Open
Abstract
Low expression of caveolin-1 (Cav-1) is typical in psoriatic lesions and overexpression of Cav-1 leads to a reduction of inflammation and suppression of epidermal hyperproliferation, thus ameliorating these two well-known hallmarks of psoriasis. At the same time, the interfacial layers of the white adipose tissue (WAT) adjacent to psoriatic lesions demonstrate much higher stiffness, which also points to a modification of Cav-1 expression in this tissue. These processes are connected with each other and regulated via exosomal exchange. Here we discuss the role of Cav-1 expression in inflammatory and hyperproliferative processes and analyze the ways to provide spatially different modulation of Cav-1 expression in the skin and WAT. Such modulation can be induced by different pharmacological and physical factors. These include application of mechanical stress and supra-physiological temperatures. Cav-1 should therefore be considered as an important target in treatment of psoriasis.
Collapse
|
11
|
Wang B, Fu X, Zhu MJ, Du M. Retinoic acid inhibits white adipogenesis by disrupting GADD45A-mediated Zfp423 DNA demethylation. J Mol Cell Biol 2018; 9:338-349. [PMID: 28992291 DOI: 10.1093/jmcb/mjx026] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 08/01/2017] [Indexed: 12/20/2022] Open
Abstract
Retinoic acid (RA), a bioactive metabolite of vitamin A, is a critical mediator of cell differentiation. RA blocks adipogenesis, but mechanisms remain to be established. ZFP423 is a key transcription factor maintaining white adipose identity. We found that RA inhibits Zfp423 expression and adipogenesis via blocking DNA demethylation in the promoter of Zfp423, a process mediated by growth arrest and DNA-damage-inducible protein alpha (GADD45A). RA induces the partnering between retinoic acid receptor (RAR) and tumor suppressor inhibitor of growth protein 1 (ING1), which prevents the formation of GADD45A and ING1 complex necessary for locus-specific Zfp423 DNA demethylation. In vivo, vitamin A supplementation prevents obesity, downregulates Gadd45a expression, and reduces GADD45A binding and DNA demethylation in the Zfp423 promoter. Inhibition of Zfp423 expression due to RA contributes to the enhanced brown adipogenesis. In summary, RA inhibits white adipogenesis by inducing RAR and ING1 interaction and inhibiting Gadd45a expression, which prevents GADD45A-mediated DNA demethylation.
Collapse
Affiliation(s)
- B Wang
- Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100094, China.,Department of Animal Sciences, Washington State University, Pullman, WA 99164, USA
| | - Xing Fu
- Department of Animal Sciences, Washington State University, Pullman, WA 99164, USA
| | - Mei-Jun Zhu
- School of Food Science, Washington State University, Pullman, WA 99164, USA
| | - Min Du
- Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100094, China.,Department of Animal Sciences, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
12
|
Melnik BC, Schmitz G. Milk's Role as an Epigenetic Regulator in Health and Disease. Diseases 2017; 5:diseases5010012. [PMID: 28933365 PMCID: PMC5456335 DOI: 10.3390/diseases5010012] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 03/02/2017] [Accepted: 03/07/2017] [Indexed: 12/16/2022] Open
Abstract
It is the intention of this review to characterize milk's role as an epigenetic regulator in health and disease. Based on translational research, we identify milk as a major epigenetic modulator of gene expression of the milk recipient. Milk is presented as an epigenetic "doping system" of mammalian development. Milk exosome-derived micro-ribonucleic acids (miRNAs) that target DNA methyltransferases are implicated to play the key role in the upregulation of developmental genes such as FTO, INS, and IGF1. In contrast to miRNA-deficient infant formula, breastfeeding via physiological miRNA transfer provides the appropriate signals for adequate epigenetic programming of the newborn infant. Whereas breastfeeding is restricted to the lactation period, continued consumption of cow's milk results in persistent epigenetic upregulation of genes critically involved in the development of diseases of civilization such as diabesity, neurodegeneration, and cancer. We hypothesize that the same miRNAs that epigenetically increase lactation, upregulate gene expression of the milk recipient via milk-derived miRNAs. It is of critical concern that persistent consumption of pasteurized cow's milk contaminates the human food chain with bovine miRNAs, that are identical to their human analogs. Commercial interest to enhance dairy lactation performance may further increase the epigenetic miRNA burden for the milk consumer.
Collapse
Affiliation(s)
- Bodo C Melnik
- Department of Dermatology, Environmental Medicine and Health Theory, Faculty of Human Sciences, University of Osnabrück, Am Finkenhügel 7a, D-49076 Osnabrück, Germany.
| | - Gerd Schmitz
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, University of Regensburg, Franz-Josef-Strauß-Allee 11, D-93053 Regensburg, Germany.
| |
Collapse
|
13
|
Codenotti S, Vezzoli M, Monti E, Fanzani A. Focus on the role of Caveolin and Cavin protein families in liposarcoma. Differentiation 2017; 94:21-26. [DOI: 10.1016/j.diff.2016.11.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 11/15/2016] [Accepted: 11/22/2016] [Indexed: 01/06/2023]
|
14
|
Yao G, Zhang Y, Wang D, Yang R, Sang H, Han L, Zhu Y, Lu Y, Tan Y, Shang Z. GDM-Induced Macrosomia Is Reversed by Cav-1 via AMPK-Mediated Fatty Acid Transport and GLUT1-Mediated Glucose Transport in Placenta. PLoS One 2017; 12:e0170490. [PMID: 28125642 PMCID: PMC5268469 DOI: 10.1371/journal.pone.0170490] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 01/05/2017] [Indexed: 12/21/2022] Open
Abstract
Objective To investigate if the role of Cav-1 in GDM-induced macrosomia is through regulating AMPK signaling pathway in placenta. Methods We used diagnostic criteria of gestational diabetes mellitus (GDM) and macrosomia to separate and compare placental protein and mRNA levels from GDM with macrosomia group (GDMM), GDM with normal birth weight group (GDMN) and normal glucose tolerance (NGT) with normal birth weight group (CON). Western blotting was performed to examine differentially expressed proteins of caveolin-1 (Cav-1) and Adenosine monophosphate-activated protein kinase (AMPK) signaling pathway related proteins, including phosphorylated-AMPKα(Thr172), AMPKα, phosphorylated-Acetyl-CoA carboxylase(Ser79) (p-ACC(Ser79)), ACC and glucose transporter 1 (GLUT1) in placenta between the three groups. The mRNA levels of Cav-1, AMPKα, ACC and GLUT1 in placenta were measured by real time-PCR. Results In the GDMM placenta group, both protein and mRNA levels of Cav-1 were down-regulated, while GLUT1 was up-regulated; the phosphorylation and mRNA levels of ACC and AMPKα were decreased, but total ACC protein levels were increased compared to both the GDMN (p<0.05) and CON groups (p<0.05). In GDMM placenta group, there was a significant negative correlation observed between neonatal birth weight (NBW) and protein expression levels of Cav-1, p-ACC(Ser79) and p-AMPKα(Thr172) (p<0.05), while positive relationship with ACC and GLUT1 protein levels. Besides, in GDMM group placental mRNA levels, NBW had a positive correlation with GLUT1 (p<0.05), while negative with Cav-1, AMPKα and ACC expression (p<0.05). Cav-1 protein expression was positively associated with p-AMPK and p-ACC (p<0.05), and negatively associated with GLUT1 (p<0.05). Interestingly, p-AMPK protein expression was closely related to p-ACC (p<0.05), but not with GLUT1. Conclusion GDM-induced macrosomias have more severe inhibition of Cav-1 expression in placenta. Cav-1 is associated with placental glucose and fatty acid transport via the induction of AMPK signaling pathway and the reduction of GLUT1 signaling pathway to reverse GDM-induced macrosomia.
Collapse
Affiliation(s)
- Guo Yao
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, China
- Department of Pediatrics, Taian City Central Hospital, Taian, China
| | - Yafang Zhang
- Department of Pediatrics, Taian City Central Hospital, Taian, China
- Department of Pathophysiology, Taishan Medical University, Taian, China
| | - Di Wang
- Taian City Central Hospital, Taian, China
| | - Ruirui Yang
- Department of Pathophysiology, Taishan Medical University, Taian, China
| | - Hui Sang
- Department of Pathophysiology, Taishan Medical University, Taian, China
| | - Linlin Han
- Department of Pathophysiology, Taishan Medical University, Taian, China
| | - Yuexia Zhu
- Department of Pathophysiology, Taishan Medical University, Taian, China
| | - Yanyan Lu
- Taian City Central Hospital, Taian, China
| | - Yeke Tan
- Taian City Central Hospital, Taian, China
| | - Zhanping Shang
- Department of Pathophysiology, Taishan Medical University, Taian, China
- * E-mail:
| |
Collapse
|
15
|
Nwosu ZC, Ebert MP, Dooley S, Meyer C. Caveolin-1 in the regulation of cell metabolism: a cancer perspective. Mol Cancer 2016; 15:71. [PMID: 27852311 PMCID: PMC5112640 DOI: 10.1186/s12943-016-0558-7] [Citation(s) in RCA: 156] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 11/03/2016] [Indexed: 12/16/2022] Open
Abstract
Caveolin-1 (CAV1) is an oncogenic membrane protein associated with endocytosis, extracellular matrix organisation, cholesterol distribution, cell migration and signaling. Recent studies reveal that CAV1 is involved in metabolic alterations – a critical strategy adopted by cancer cells to their survival advantage. Consequently, research findings suggest that CAV1, which is altered in several cancer types, influences tumour development or progression by controlling metabolism. Understanding the molecular interplay between CAV1 and metabolism could help uncover druggable metabolic targets or pathways of clinical relevance in cancer therapy. Here we review from a cancer perspective, the findings that CAV1 modulates cell metabolism with a focus on glycolysis, mitochondrial bioenergetics, glutaminolysis, fatty acid metabolism, and autophagy.
Collapse
Affiliation(s)
- Zeribe Chike Nwosu
- Department of Medicine II, Medical Faculty Mannheim, University of Heidelberg, Mannheim, 68167, Germany.,Molecular Hepatology Section, Medical Faculty Mannheim, University of Heidelberg, Mannheim, 68167, Germany
| | - Matthias Philip Ebert
- Department of Medicine II, Medical Faculty Mannheim, University of Heidelberg, Mannheim, 68167, Germany
| | - Steven Dooley
- Department of Medicine II, Medical Faculty Mannheim, University of Heidelberg, Mannheim, 68167, Germany.,Molecular Hepatology Section, Medical Faculty Mannheim, University of Heidelberg, Mannheim, 68167, Germany
| | - Christoph Meyer
- Department of Medicine II, Medical Faculty Mannheim, University of Heidelberg, Mannheim, 68167, Germany. .,Molecular Hepatology Section, Medical Faculty Mannheim, University of Heidelberg, Mannheim, 68167, Germany.
| |
Collapse
|
16
|
Codenotti S, Vezzoli M, Poliani PL, Cominelli M, Bono F, Kabbout H, Faggi F, Chiarelli N, Colombi M, Zanella I, Biasiotto G, Montanelli A, Caimi L, Monti E, Fanzani A. Caveolin-1, Caveolin-2 and Cavin-1 are strong predictors of adipogenic differentiation in human tumors and cell lines of liposarcoma. Eur J Cell Biol 2016; 95:252-64. [DOI: 10.1016/j.ejcb.2016.04.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 04/28/2016] [Accepted: 04/28/2016] [Indexed: 12/15/2022] Open
|
17
|
Palacios-Ortega S, Varela-Guruceaga M, Martínez JA, de Miguel C, Milagro FI. Effects of high glucose on caveolin-1 and insulin signaling in 3T3-L1 adipocytes. Adipocyte 2016; 5:65-80. [PMID: 27144098 DOI: 10.1080/21623945.2015.1122856] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 10/29/2015] [Accepted: 11/12/2015] [Indexed: 12/17/2022] Open
Abstract
Adipocytes exposed to high glucose concentrations exhibit impaired metabolic function, including an increase of oxidative and proinflammatory factors that might favor the development of insulin resistance. Caveolin-1 (Cav-1) is a key mediator of the insulin transduction pathway whose expression is significantly enhanced during adipocyte differentiation. In this work, we studied the effects of high glucose concentration on the regulation of Cav-1 expression and activation and its relation to the insulin signaling pathway during the adipogenic process and in long-term differentiated adipocytes. Both, long-term high glucose exposure during adipogenesis and short-term glucose incubation of mature adipocytes, promoted triglyceride accumulation in 3T3-L1 cells. The short-term exposure of mature adipocytes to high glucose significantly reduced the sensitivity to insulin of Cav-1, insulin receptor (IR) and potein kinase B (AKT-2) phosphorylation, as well as insulin-induced deoxyglucose uptake. Adipocytes differentiated in the presence of high glucose lost Cav-1 and IR response to insulin-stimulated phosphorylation, but maintained the insulin sensitivity of AKT-2 phosphorylation and deoxyglucose uptake. Although long-term high glucose exposure increased DNA methylation in Cav-1 promoter, Cav-1 expression was not affected. Moreover, these cells showed an increase of Cav-1, IR and AKT-2 protein content, pointing to an adaptive response induced by the long-term high glucose exposure.
Collapse
|
18
|
Kim JD, Lee A, Choi J, Park Y, Kang H, Chang W, Lee MS, Kim J. Epigenetic modulation as a therapeutic approach for pulmonary arterial hypertension. Exp Mol Med 2015; 47:e175. [PMID: 26228095 PMCID: PMC4525299 DOI: 10.1038/emm.2015.45] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a rare but progressive and currently incurable disease, which is characterized by vascular remodeling in association with muscularization of the arterioles, medial thickening and plexiform lesion formation. Despite our advanced understanding of the pathogenesis of PAH and the recent therapeutic advances, PAH still remains a fatal disease. In addition, the susceptibility to PAH has not yet been adequately explained. Much evidence points to the involvement of epigenetic changes in the pathogenesis of a number of human diseases including cancer, peripheral hypertension and asthma. The knowledge gained from the epigenetic study of various human diseases can also be applied to PAH. Thus, the pursuit of novel therapeutic targets via understanding the epigenetic alterations involved in the pathogenesis of PAH, such as DNA methylation, histone modification and microRNA, might be an attractive therapeutic avenue for the development of a novel and more effective treatment. This review provides a general overview of the current advances in epigenetics associated with PAH, and discusses the potential for improved treatment through understanding the role of epigenetics in the development of PAH.
Collapse
Affiliation(s)
- Jun-Dae Kim
- Department of Internal Medicine, Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Aram Lee
- Department of Life Systems, Sookmyung Women's University, Seoul, Korea
| | - Jihea Choi
- Department of Life Systems, Sookmyung Women's University, Seoul, Korea
| | - Youngsook Park
- Department of Life Systems, Sookmyung Women's University, Seoul, Korea
| | - Hyesoo Kang
- Department of Life Systems, Sookmyung Women's University, Seoul, Korea
| | - Woochul Chang
- Department of Biology Education, College of Education, Pusan National University, Busan, Korea
| | - Myeong-Sok Lee
- Department of Life Systems, Sookmyung Women's University, Seoul, Korea
| | - Jongmin Kim
- Department of Life Systems, Sookmyung Women's University, Seoul, Korea
| |
Collapse
|