1
|
Jing Y, Qi L, Zhang X, Zheng L, Yang P, Yin J, Shi Y, Yan S. miR-let-7a inhibits sympathetic nerve remodeling after myocardial infarction by downregulating the expression of nerve growth factor. Open Med (Wars) 2024; 19:20240975. [PMID: 38883335 PMCID: PMC11179384 DOI: 10.1515/med-2024-0975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/15/2024] [Accepted: 05/02/2024] [Indexed: 06/18/2024] Open
Abstract
Objective Sympathetic hyperinnervation following myocardial infarction (MI) is one of the primary causes of ventricular arrhythmias (VAs) after MI. Nerve growth factor (NGF) is a key molecule that induces sympathetic nerve remodeling. Previous studies have confirmed that microRNA (miR)-let-7a interacts with NGF. However, whether miR-let-7a is involved in sympathetic remodeling after MI remains unknown. We aimed to investigate whether miR-let-7a was associated with the occurrence of VA after MI. Methods and results A rat model of myocardial infarction was established using left coronary artery ligation. miR-let-7a expression levels were analyzed by reverse transcription-quantitative PCR. Western blotting was also used to examine NGF expression levels in vivo and in M1 macrophages in vitro. The relationship between miR-let-7a and NGF levels was investigated using a luciferase reporter assay. The results revealed that the expression of miR-let-7a decreased significantly after MI, while NGF expression was significantly upregulated. In addition, overexpression of miR-let-7a effectively inhibited NGF expression in rats, which was also verified in M1 macrophages. Tyrosine hydroxylase and growth-associated protein 43 immunofluorescence results revealed that the administration of a miR-let-7a overexpression lentivirus to rats inhibited sympathetic remodeling after MI. Programmed electrical stimulation, renal sympathetic nerve activity recording, and heart rate variability measurements showed that miR-let-7a overexpression decreased sympathetic activity. Conclusions These findings provide novel insights into the molecular mechanisms by which miR-let-7a and NGF contribute to the progression of sympathetic nerve remodeling after MI. Therefore, miR-let-7a may be a promising therapeutic target to reduce the incidence of arrhythmia following MI.
Collapse
Affiliation(s)
- Yanyan Jing
- Department of Cardiology, Yantai Yuhuangding Hospital, Shandong University, Yantai, China
- Department of Cardiology, Shandong Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Lei Qi
- Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Cardiac Electrophysiology and Arrhythmia, Shandong, 250014, China
| | - Xueli Zhang
- Department of Cardiology, Shandong Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Lu Zheng
- Department of Cardiology, Shandong Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Peijin Yang
- Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Cardiac Electrophysiology and Arrhythmia, Shandong, 250014, China
| | - Jie Yin
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Cardiac Electrophysiology and Arrhythmia, Shandong, 250014, China
| | - Yugen Shi
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Cardiac Electrophysiology and Arrhythmia, Shandong, 250014, China
| | - Suhua Yan
- Department of Cardiology, Shandong Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Cardiac Electrophysiology and Arrhythmia, 16766 Jingshi Road, Jinan, Shandong, 250014, China
| |
Collapse
|
2
|
Bauer J, Vlcek J, Pauly V, Hesse N, Xia R, Mo L, Chivukula AS, Villgrater H, Dressler M, Hildebrand B, Wolf E, Rizas KD, Bauer A, Kääb S, Tomsits P, Schüttler D, Clauss S. Biomarker Periodic Repolarization Dynamics Indicates Enhanced Risk for Arrhythmias and Sudden Cardiac Death in Myocardial Infarction in Pigs. J Am Heart Assoc 2024; 13:e032405. [PMID: 38639363 PMCID: PMC11179938 DOI: 10.1161/jaha.123.032405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 03/08/2024] [Indexed: 04/20/2024]
Abstract
BACKGROUND Periodic repolarization dynamics (PRD) is an electrocardiographic biomarker that captures repolarization instability in the low frequency spectrum and is believed to estimate the sympathetic effect on the ventricular myocardium. High PRD indicates an increased risk for postischemic sudden cardiac death (SCD). However, a direct link between PRD and proarrhythmogenic autonomic remodeling has not yet been shown. METHODS AND RESULTS We investigated autonomic remodeling in pigs with myocardial infarction (MI)-related ischemic heart failure induced by balloon occlusion of the left anterior descending artery (n=17) compared with pigs without MI (n=11). Thirty days after MI, pigs demonstrated enhanced sympathetic innervation in the infarct area, border zone, and remote left ventricle paralleled by altered expression of autonomic marker genes/proteins. PRD was enhanced 30 days after MI compared with baseline (pre-MI versus post-MI: 1.75±0.30 deg2 versus 3.29±0.79 deg2, P<0.05) reflecting pronounced autonomic alterations on the level of the ventricular myocardium. Pigs with MI-related ventricular fibrillation and SCD had significantly higher pre-MI PRD than pigs without tachyarrhythmias, suggesting a potential role for PRD as a predictive biomarker for ischemia-related arrhythmias (no ventricular fibrillation versus ventricular fibrillation: 1.50±0.39 deg2 versus 3.18±0.53 deg2 [P<0.05]; no SCD versus SCD: 1.67±0.32 deg2 versus 3.91±0.63 deg2 [P<0.01]). CONCLUSIONS We demonstrate that ischemic heart failure leads to significant proarrhythmogenic autonomic remodeling. The concomitant elevation of PRD levels in pigs with ischemic heart failure and pigs with MI-related ventricular fibrillation/SCD suggests PRD as a biomarker for autonomic remodeling and as a potential predictive biomarker for ventricular arrhythmias/survival in the context of MI.
Collapse
Affiliation(s)
- Julia Bauer
- Department of Medicine IUniversity Hospital, LMU MunichMunichGermany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart AllianceMunichGermany
- Institute of Surgical Research at the Walter‐Brendel‐Centre of Experimental MedicineUniversity Hospital, LMU MunichMunichGermany
| | - Julia Vlcek
- Department of Medicine IUniversity Hospital, LMU MunichMunichGermany
- Institute of Surgical Research at the Walter‐Brendel‐Centre of Experimental MedicineUniversity Hospital, LMU MunichMunichGermany
| | - Valerie Pauly
- Department of Medicine IUniversity Hospital, LMU MunichMunichGermany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart AllianceMunichGermany
- Institute of Surgical Research at the Walter‐Brendel‐Centre of Experimental MedicineUniversity Hospital, LMU MunichMunichGermany
| | - Nora Hesse
- Department of Medicine IUniversity Hospital, LMU MunichMunichGermany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart AllianceMunichGermany
- Institute of Surgical Research at the Walter‐Brendel‐Centre of Experimental MedicineUniversity Hospital, LMU MunichMunichGermany
| | - Ruibing Xia
- Department of Medicine IUniversity Hospital, LMU MunichMunichGermany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart AllianceMunichGermany
- Institute of Surgical Research at the Walter‐Brendel‐Centre of Experimental MedicineUniversity Hospital, LMU MunichMunichGermany
| | - Li Mo
- Department of Medicine IUniversity Hospital, LMU MunichMunichGermany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart AllianceMunichGermany
- Institute of Surgical Research at the Walter‐Brendel‐Centre of Experimental MedicineUniversity Hospital, LMU MunichMunichGermany
| | - Aparna Sharma Chivukula
- Department of Medicine IUniversity Hospital, LMU MunichMunichGermany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart AllianceMunichGermany
- Institute of Surgical Research at the Walter‐Brendel‐Centre of Experimental MedicineUniversity Hospital, LMU MunichMunichGermany
| | - Hannes Villgrater
- Department of Medicine IUniversity Hospital, LMU MunichMunichGermany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart AllianceMunichGermany
- Institute of Surgical Research at the Walter‐Brendel‐Centre of Experimental MedicineUniversity Hospital, LMU MunichMunichGermany
| | - Marie Dressler
- Department of Medicine IUniversity Hospital, LMU MunichMunichGermany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart AllianceMunichGermany
- Institute of Surgical Research at the Walter‐Brendel‐Centre of Experimental MedicineUniversity Hospital, LMU MunichMunichGermany
| | - Bianca Hildebrand
- Department of Medicine IUniversity Hospital, LMU MunichMunichGermany
| | - Eckhard Wolf
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU MunichMunichGermany
- Interfaculty Center for Endocrine and Cardiovascular Disease Network Modelling and Clinical Transfer (ICONLMU), LMU MunichMunichGermany
| | - Konstantinos D. Rizas
- Department of Medicine IUniversity Hospital, LMU MunichMunichGermany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart AllianceMunichGermany
| | - Axel Bauer
- German Center for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart AllianceMunichGermany
- University Hospital for Internal Medicine IIIMedical University of InnsbruckInnsbruckAustria
| | - Stefan Kääb
- Department of Medicine IUniversity Hospital, LMU MunichMunichGermany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart AllianceMunichGermany
- Interfaculty Center for Endocrine and Cardiovascular Disease Network Modelling and Clinical Transfer (ICONLMU), LMU MunichMunichGermany
| | - Philipp Tomsits
- Department of Medicine IUniversity Hospital, LMU MunichMunichGermany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart AllianceMunichGermany
- Institute of Surgical Research at the Walter‐Brendel‐Centre of Experimental MedicineUniversity Hospital, LMU MunichMunichGermany
| | - Dominik Schüttler
- Department of Medicine IUniversity Hospital, LMU MunichMunichGermany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart AllianceMunichGermany
- Institute of Surgical Research at the Walter‐Brendel‐Centre of Experimental MedicineUniversity Hospital, LMU MunichMunichGermany
| | - Sebastian Clauss
- Department of Medicine IUniversity Hospital, LMU MunichMunichGermany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart AllianceMunichGermany
- Institute of Surgical Research at the Walter‐Brendel‐Centre of Experimental MedicineUniversity Hospital, LMU MunichMunichGermany
- Interfaculty Center for Endocrine and Cardiovascular Disease Network Modelling and Clinical Transfer (ICONLMU), LMU MunichMunichGermany
| |
Collapse
|
3
|
XU JY, XUE ZK, ZHANG YR, LIU X, ZHANG X, YANG X, LIU T, CHEN KY. Atorvastatin, etanercept and the nephrogenic cardiac sympathetic remodeling in chronic renal failure rats. J Geriatr Cardiol 2024; 21:443-457. [PMID: 38800544 PMCID: PMC11112150 DOI: 10.26599/1671-5411.2024.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024] Open
Abstract
BACKGROUND Chronic renal failure (CRF) patients are predisposed to arrhythmias, while the detailed mechanisms are unclear. We hypothesized the chronic inflammatory state of CRF patients may lead to cardiac sympathetic remodeling, increasing the incidence of ventricular arrhythmia (VA) and sudden cardiac death. And explored the role of atorvastatin and etanercept in this process. METHODS A total of 48 rats were randomly divided into sham operation group (Sham group), CRF group, CRF + atorvastatin group (CRF + statin group), and CRF + etanercept group (CRF + rhTNFR-Fc group). Sympathetic nerve remodeling was assessed by immunofluorescence of growth-associated protein 43 (GAP-43) and tyrosine hydroxylase positive area fraction. Electrophysiological testing was performed to assess the incidence of VA by assessing the ventricular effective refractory period and ventricular fibrillation threshold. The levels of tumor necrosis factor-alpha (TNF-α) and interleukin-1beta were determined by Western blotting and enzyme-linked immunosorbent assay. RESULTS Echocardiogram showed that compared with the Sham group, left ventricular end-systolic diameter and ventricular weight/body weight ratio were significantly higher in the CRF group. Hematoxylin-eosin and Masson staining indicated that myocardial fibers were broken, disordered, and fibrotic in the CRF group. Western blotting, enzyme-linked immunosorbent assay, immunofluorescence and electrophysiological examination suggested that compared with the Sham group, GAP-43 and TNF-α proteins were significantly upregulated, GAP-43 and tyrosine hydroxylase positive nerve fiber area was increased, and ventricular fibrillation threshold was significantly decreased in the CRF group. The above effects were inhibited in the CRF + statin group and the CRF + rhTNFR-Fc group. CONCLUSIONS In CRF rats, TNF-α was upregulated, cardiac sympathetic remodeling was more severe, and the nephrogenic cardiac sympathetic remodeling existed. Atorvastatin and etanercept could downregulate the expression of TNF-α or inhibit its activity, thus inhibited the above effects, and reduced the occurrence of VA and sudden cardiac death.
Collapse
Affiliation(s)
- Jing-Yue XU
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, the Second Hospital of Tianjin Medical University, Tianjin, China
| | - Zheng-Kai XUE
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, the Second Hospital of Tianjin Medical University, Tianjin, China
| | - Ya-Ru ZHANG
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, the Second Hospital of Tianjin Medical University, Tianjin, China
| | - Xing LIU
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, the Second Hospital of Tianjin Medical University, Tianjin, China
| | - Xue ZHANG
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, the Second Hospital of Tianjin Medical University, Tianjin, China
| | - Xi YANG
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, the Second Hospital of Tianjin Medical University, Tianjin, China
| | - Tong LIU
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, the Second Hospital of Tianjin Medical University, Tianjin, China
| | - Kang-Yin CHEN
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, the Second Hospital of Tianjin Medical University, Tianjin, China
| |
Collapse
|
4
|
SUN Q, CHENG K, DAI X, YANG Z, WU X, XU C, QIU X, GAO X, LIU D, YANG Q. Effect of electroacupuncture at Neiguan (PC6) at different time points on myocardial ischemia reperfusion arrhythmia in rats. J TRADIT CHIN MED 2024; 44:113-121. [PMID: 38213246 PMCID: PMC10774726 DOI: 10.19852/j.cnki.jtcm.20231110.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 05/17/2023] [Indexed: 01/13/2024]
Abstract
OBJECTIVE To observe the effects of electroacupuncture at Neiguan (PC6) at different time points on reperfusion arrhythmia (RA) after myocardial ischemia and reperfusion in rats, and to investigate the correlation of this protective effect with nerve growth factor (NGF), tyrosine kinase A (TrkA), tyrosine hydroxylase (TH), and norepinephrine (NE). METHODS:A total of 72 Sprague-Dawley male rats were randomly divided into six groups (n = 12 rats/group): normal group (Norm), sham operation group (Sham), ischemia reperfusion group (I/R), pre-ischemic electroacupuncture group (EAI), pre-reperfusion electroacupuncture group (EAII), post-reperfusion electroacupuncture group (EAIII). The myocardial ischemia-reperfusion injury (MIRI) model was induced by occlusion of left anterior descending coronary artery for 20 min followed by reperfusion for 40 min in rats. With no intervention in the Norm group and only threading without ligation in the Sham group. Electroacupuncture pre-treatment at 20 min/d for 7 d before ligation in the EAⅠ group, 20 min of electroacupuncture before reperfusion in the EAII group and 20 min of electroacupuncture after reperfusion in the EAIII group. The electrocardiogram (ECG) of each group was recorded throughout the whole process, and the success of the MIRI model was determined based on the changs of J-point and T-wave in the ECG. The arrhythmia score was used to record premature ventricular contractions, ventricular tachycardia and ventricular fibrillation during the reperfusion period to assess the reperfusion induced arrhythmias. The expression levels of NGF, TrkA, TH protein were measured by Western blot. Moreover, the expression levels of plasma and myocardial NE levels were detected by enzyme linked immunosorbent assay. RESULTS The differences between Norm group and Sham group were not statistically significant in all indexes. Arrhythmia score, myocardial NGF, TrkA, TH, and NE expression were significantly higher in the I/R group compared with the Sham group. Arrhythmia score, myocardial NGF, TrkA, TH, and NE expression were significantly lower in each EA group compared with the I/R group. CONCLUSION Electroacupuncture at Neiguan (PC6) at different time points can reduce the incidence and severity of reperfusion arrhythmias in rats. This protective effect is related to electroacupuncture regulating NGF, TrkA, TH, NE expression and reducing sympathetic hyperactivation.
Collapse
Affiliation(s)
- Qianhui SUN
- 1 School of Acupuncture and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Kai CHENG
- 2 School of Acupuncture and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xingye DAI
- 1 School of Acupuncture and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Zhiwen YANG
- 1 School of Acupuncture and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xiaoling WU
- 1 School of Acupuncture and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Chang XU
- 1 School of Acupuncture and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xinghua QIU
- 1 School of Acupuncture and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xiaofeng GAO
- 3 Beijing MedEx Technology Co., Ltd., Beijing 100029, China
| | - Daonan LIU
- 1 School of Acupuncture and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Qirui YANG
- 1 School of Acupuncture and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China
| |
Collapse
|
5
|
Chen HS, van Roon L, Schoones J, Zeppenfeld K, DeRuiter MC, Jongbloed MRM. Cardiac sympathetic hyperinnervation after myocardial infarction: a systematic review and qualitative analysis. Ann Med 2023; 55:2283195. [PMID: 38065671 PMCID: PMC10836288 DOI: 10.1080/07853890.2023.2283195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 11/08/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Cardiac sympathetic hyperinnervation after myocardial infarction (MI) is associated with arrhythmogenesis and sudden cardiac death. The characteristics of cardiac sympathetic hyperinnervation remain underexposed. OBJECTIVE To provide a systematic review on cardiac sympathetic hyperinnervation after MI, taking into account: (1) definition, experimental model and quantification method and (2) location, amount and timing, in order to obtain an overview of current knowledge and to expose gaps in literature. METHODS References on cardiac sympathetic hyperinnervation were screened for inclusion. The included studies received a full-text review and quality appraisal. Relevant data on hyperinnervation were collected and qualitatively analysed. RESULTS Our literature search identified 60 eligible studies performed between 2000 and 2022. Cardiac hyperinnervation is generally defined as an increased sympathetic nerve density or increased number of nerves compared to another control group (100%). Studies were performed in a multitude of experimental models, but most commonly in male rats with permanent left anterior descending (LAD) artery ligation (male: 63%, rat: 68%, permanent ligation: 93%, LAD: 97%). Hyperinnervation seems to occur mainly in the borderzone. Quantification after MI was performed in regions of interest in µm2/mm2 (41%) or in percentage of nerve fibres (46%) and the reported amount showed a great variation ranging from 439 to 126,718 µm2/mm2. Hyperinnervation seems to start from three days onwards to >3 months without an evident peak, although studies on structural evaluation over time and in the chronic phase were scarce. CONCLUSIONS Cardiac sympathetic hyperinnervation after MI occurs mainly in the borderzone from three days onwards and remains present at later timepoints, for at least 3 months. It is most commonly studied in male rats with permanent LAD ligation. The amount of hyperinnervation differs greatly between studies, possibly due to differential quantification methods. Further studies are required that evaluate cardiac sympathetic hyperinnervation over time and in the chronic phase, in transmural sections, in the female sex, and in MI with reperfusion.
Collapse
Affiliation(s)
- H. Sophia Chen
- Department of Cardiology, Center of Congenital Heart Disease Amsterdam Leiden (CAHAL), Leiden University Medical Center, Leiden, The Netherlands
- Department of Anatomy & Embryology, Leiden University Medical Center, Leiden, The Netherlands
| | - Lieke van Roon
- Department of Anatomy & Embryology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jan Schoones
- Dictorate of Research Policy, Leiden University Medical Center, Leiden, The Netherlands
| | - Katja Zeppenfeld
- Department of Cardiology, Center of Congenital Heart Disease Amsterdam Leiden (CAHAL), Leiden University Medical Center, Leiden, The Netherlands
| | - Marco C. DeRuiter
- Department of Anatomy & Embryology, Leiden University Medical Center, Leiden, The Netherlands
| | - Monique R. M. Jongbloed
- Department of Cardiology, Center of Congenital Heart Disease Amsterdam Leiden (CAHAL), Leiden University Medical Center, Leiden, The Netherlands
- Department of Anatomy & Embryology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
6
|
Elia A, Fossati S. Autonomic nervous system and cardiac neuro-signaling pathway modulation in cardiovascular disorders and Alzheimer's disease. Front Physiol 2023; 14:1060666. [PMID: 36798942 PMCID: PMC9926972 DOI: 10.3389/fphys.2023.1060666] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 01/19/2023] [Indexed: 01/31/2023] Open
Abstract
The heart is a functional syncytium controlled by a delicate and sophisticated balance ensured by the tight coordination of its several cell subpopulations. Accordingly, cardiomyocytes together with the surrounding microenvironment participate in the heart tissue homeostasis. In the right atrium, the sinoatrial nodal cells regulate the cardiac impulse propagation through cardiomyocytes, thus ensuring the maintenance of the electric network in the heart tissue. Notably, the central nervous system (CNS) modulates the cardiac rhythm through the two limbs of the autonomic nervous system (ANS): the parasympathetic and sympathetic compartments. The autonomic nervous system exerts non-voluntary effects on different peripheral organs. The main neuromodulator of the Sympathetic Nervous System (SNS) is norepinephrine, while the principal neurotransmitter of the Parasympathetic Nervous System (PNS) is acetylcholine. Through these two main neurohormones, the ANS can gradually regulate cardiac, vascular, visceral, and glandular functions by turning on one of its two branches (adrenergic and/or cholinergic), which exert opposite effects on targeted organs. Besides these neuromodulators, the cardiac nervous system is ruled by specific neuropeptides (neurotrophic factors) that help to preserve innervation homeostasis through the myocardial layers (from epicardium to endocardium). Interestingly, the dysregulation of this neuro-signaling pathway may expose the cardiac tissue to severe disorders of different etiology and nature. Specifically, a maladaptive remodeling of the cardiac nervous system may culminate in a progressive loss of neurotrophins, thus leading to severe myocardial denervation, as observed in different cardiometabolic and neurodegenerative diseases (myocardial infarction, heart failure, Alzheimer's disease). This review analyzes the current knowledge on the pathophysiological processes involved in cardiac nervous system impairment from the perspectives of both cardiac disorders and a widely diffused and devastating neurodegenerative disorder, Alzheimer's disease, proposing a relationship between neurodegeneration, loss of neurotrophic factors, and cardiac nervous system impairment. This overview is conducive to a more comprehensive understanding of the process of cardiac neuro-signaling dysfunction, while bringing to light potential therapeutic scenarios to correct or delay the adverse cardiovascular remodeling, thus improving the cardiac prognosis and quality of life in patients with heart or neurodegenerative disorders.
Collapse
|
7
|
Lee CC, Chen SY, Lee TM. 17β-Oestradiol facilitates M2 macrophage skewing and ameliorates arrhythmias in ovariectomized female infarcted rats. J Cell Mol Med 2022; 26:3396-3409. [PMID: 35514058 PMCID: PMC9189348 DOI: 10.1111/jcmm.17344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 02/13/2022] [Accepted: 03/25/2022] [Indexed: 11/27/2022] Open
Abstract
Epidemiological studies have suggested a lower incidence of arrhythmia‐induced sudden cardiac death in women than in men. 17β‐oestradiol (E2) has been reported to have a post‐myocardial infarction antiarrhythmic effect, although the mechanisms have yet to be elucidated. We investigated whether E2‐mediated antioxidation regulates macrophage polarization and affects cardiac sympathetic reinnervation in rats after MI. Ovariectomized Wistar rats were randomly assigned to placebo pellets, E2 treatment, or E2 treatment +3‐morpholinosydnonimine (a peroxynitrite generator) and followed for 4 weeks. The infarct sizes were similar among the infarcted groups. At Day 3 after infarction, post‐infarction was associated with increased superoxide levels, which were inhibited by administering E2. E2 significantly increased myocardial IL‐10 levels and the percentage of regulatory M2 macrophages compared with the ovariectomized infarcted alone group as assessed by immunohistochemical staining, Western blot and RT‐PCR. Nerve growth factor colocalized with both M1 and M2 macrophages at the magnitude significantly higher in M1 compared with M2. At Day 28 after infarction, E2 was associated with attenuated myocardial norepinephrine levels and sympathetic hyperinnervation. These effects of E2 were functionally translated in inhibiting fatal arrhythmias. The beneficial effect of E2 on macrophage polarization and sympathetic hyperinnervation was abolished by 3‐morpholinosydnonimine. Our results indicated that E2 polarized macrophages into the M2 phenotype by inhibiting the superoxide pathway, leading to attenuated nerve growth factor‐induced sympathetic hyperinnervation after myocardial infarction.
Collapse
Affiliation(s)
| | - Syue-Yi Chen
- Cardiovascular Institute, An Nan Hospital, China Medical University, Tainan, Taiwan
| | - Tsung-Ming Lee
- Cardiovascular Institute, An Nan Hospital, China Medical University, Tainan, Taiwan.,Department of Medicine, China Medical University, Taichung, Taiwan
| |
Collapse
|
8
|
Impact of Yiqi Huoxue Decoction on the Relationship between Remodeling of Cardiac Nerves and Macrophages after Myocardial Infarction in Rats. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:4441603. [PMID: 35432831 PMCID: PMC9010163 DOI: 10.1155/2022/4441603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 03/18/2022] [Indexed: 11/17/2022]
Abstract
Sympathetic nerve remodeling after myocardial infarction (MI) has an indispensable role in cardiac remodeling. Numerous works have shown that sympathetic nerve remodeling can be delayed by inhibition of inflammatory response. Earlier studies have shown improvement in ventricular remodeling and inhibited chronic stage neural remodeling by Yiqi Huoxue decoction (YQHX). Therefore, the current study looked at the inhibitory effect of YQHX prescription on proinflammatory mediators and macrophages and the effect on neural remodeling at 3 and 7 days after MI. YQHX inhibited the expression of Toll-like receptor 4 (TLR4) and nuclear factor kappa B (NF-κB) proteins and macrophage infiltration within 7 days after myocardial infarction. YQHX could decrease Th-positive nerve fiber density in the area around infarction and reduce the expression of growth-associated protein 43 (GAP43), nerve growth factor (NGF), and tyrosine hydroxylase (TH) proteins, which was associated with the remodeling of sympathetic nerves. Thus, the nerve remodeling inhibition after MI due to YQHX may be through its anti-inflammatory action. These data provide direct evidence for the potential application of traditional Chinese medicine (TCM) in the remodeling of sympathetic nerves after MI.
Collapse
|
9
|
Liu Z, Liu J, Hu D, Du J, Liu D, Wang X, Zhang J, Hou Y. Activation of Neural Modeling-Related Genes in the Heart of Mice after Gamma Irradiation. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2021; 2021:8522417. [PMID: 35003326 PMCID: PMC8741381 DOI: 10.1155/2021/8522417] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/29/2021] [Accepted: 12/04/2021] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Radiation-induced heart disease (RIHD) is a common sequela of thoracic irradiation. At the same time, nerve remodeling is involved in the progression of heart disease. However, the activation of the nerve remodeling related genes in radiation-induced heart disease is still lacking. METHODS In this study, C57BL/J mice was anesthetized by intraperitoneal injection with pentobarbital sodium (2%, 40 mg/kg), and radiation was delivered using a cobalt-60 (60Co) teletherapy unit (Cirus). When the mice were anesthetized, none of them showed the signs of peritonitis, pain, or discomfort. The mice hearts were exposed to a γ-radiation field of 5 mm × 5 mm. The total dose of γ-radiation was 3 Gy/day for each animal for 5 consecutive days. The mice were executed by severed neck, and its limbs were weak. Quantitative Polymerase Chain Reaction (qPCR) and immunohistochemistry were used to explore the possible mechanism of arrhythmia in patients with RIHD. RESULTS Our results demonstrated that Growth-Associated Protein 43 (GAP43) was increased significantly after radioactive heart injury compared with the control group. Moreover, the protein expression of Tyrosine hydroxylase (TH) and Choline acetyl-transferase (CHAT) was significantly decreased compared with the control group and gradually increased with time rend. The nerve growth factor (NGF) was remarkably increased after radiation-induced heart injury compared with the control group. Immunohistochemistry results indicated that the nerve growth factors GAP43 and NGF were significantly increased after radiation-induced heart injury. CONCLUSIONS Chest radiotherapy could activate the neural modeling related genes in RIHD. This may provide a new treatment plan for the future treatment of heart problems caused by chest radiotherapy.
Collapse
Affiliation(s)
- Zhiyong Liu
- Department of Cardiology, Shandong Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
- Department of Cardiology, Dezhou People's Hospital, Dezhou, Shandong 253014, China
| | - Jing Liu
- Department of Endocrinology, Dezhou People's Hospital, Dezhou, Shandong 253014, China
| | - Dan Hu
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250012, China
| | - Juanjuan Du
- Department of Cardiology, Shandong Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Donglu Liu
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Ximin Wang
- Department of Cardiology, Shandong Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Jiandong Zhang
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250012, China
| | - Yinglong Hou
- Department of Cardiology, Shandong Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| |
Collapse
|
10
|
Su M, Luo Z, Yu J, Zhang R, Wang J, Huang C, Li W, Yuan W, Zhang H, Cai G, Shen S. Effects of fastigial nucleus electrostimulation on cardiac nerve regeneration, neurotransmitter release, and malignant arrhythmia inducibility in a post-infarction rat model. Eur J Neurosci 2021; 54:8006-8019. [PMID: 34755396 DOI: 10.1111/ejn.15521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 10/17/2021] [Accepted: 11/03/2021] [Indexed: 11/28/2022]
Abstract
The reduced density of cardiac autonomic nerves plays an important role in malignant arrhythmia after myocardial infarction (MI). Previous studies have shown that there is an interaction between the brain and the heart, and fastigial nucleus electrostimulation (FNS) promotes central nerve regeneration. Whether and how it can promote cardiac nerve regeneration after MI and the underlying mechanisms remain unknown. This study investigated whether FNS promotes cardiac nerve regeneration and reduces malignant arrhythmia inducibility in a post-infarction rat model. Ninety-eight Wistar rats were randomly assigned to Sham control, MI (left anterior descending coronary artery ligation without FNS), FNS (MI plus FNS), and FNL (fastigial nucleus lesion plus FNS plus MI) groups. The frequency of malignant arrhythmia was significantly lower in the FNS group than in the MI and FNL groups. The density of cardiac autonomic nerves was less in the MI group than in the Sham group, which was promoted by FNS. The nerve growth factor (NGF) mRNA expression was downregulated in the MI group compared to the Sham group, which was significantly enhanced by FNS. The expression levels of norepinephrine (NE) and acetylcholine (ACh) were higher and lower respectively in the MI and FNL groups than in the Sham group. After FNS, NE concentration was reduced and Ach level was elevated compared to the MI group. These data suggested that FNS promoted the regeneration of cardiac autonomic nerves and reduced the incidence of malignant arrhythmias in MI rat model. The mechanisms might involve up-regulation of NGF mRNA expression, decrease of NE release and increase of ACh release.
Collapse
Affiliation(s)
- Mouxiao Su
- Department of Neurology, Mianyang Central Hospital, Mianyang, China
| | - Zhi Luo
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jiang Yu
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Runfeng Zhang
- Department of Cardiology, The Third Hospital of Mianyang/Sichuan Mental Health Center, Mianyang, China
| | - Jisheng Wang
- Department of Clinical Pharmacy, The Third Hospital of Mianyang/Sichuan Mental Health Center, Mianyang, China
| | - Changquan Huang
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wensong Li
- Department of Cardiology, Sichuan Mianyang 404 Hospital, Mianyang, China
| | - Wei Yuan
- Department of Cardiology, Sichuan Mianyang 404 Hospital, Mianyang, China
| | - Heng Zhang
- Department of Cardiology, The Third Hospital of Mianyang/Sichuan Mental Health Center, Mianyang, China
| | - Guocai Cai
- Department of Cardiology, The Third Hospital of Mianyang/Sichuan Mental Health Center, Mianyang, China
| | - Songlin Shen
- Department of Cardiology, The Third Hospital of Mianyang/Sichuan Mental Health Center, Mianyang, China
| |
Collapse
|
11
|
Wang Y, Shao C, Qi L, Tan J, Zhao Y, Xue M, Li X, Cheng W, Li X, Yin J, Shi Y, Wang Y, Wang K, Hu H, Yan S. EphrinB2-RhoA upregulation attenuates sympathetic hyperinnervation and decreases the incidence of ventricular arrhythmia after myocardial infarction. J Cardiol 2021; 79:423-431. [PMID: 34750029 DOI: 10.1016/j.jjcc.2021.10.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 09/28/2021] [Accepted: 10/06/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND Cardiac sympathetic hyperinnervation after myocardial infarction (MI) is associated with a high incidence of lethal arrhythmia. Erythropoietin-producing hepatoma interactor B2 (EphrinB2), a diffusible axonal chemorepellent that can induce growth cone collapse and axon repulsion of several neuronal populations, is crucial in neurodevelopment during disease development and progression. However, whether EphrinB2 could inhibit cardiac sympathetic hyperinnervation after MI remains unclear. METHODS AND RESULTS A rat model of MI was developed by left anterior descending coronary artery ligation. EphrinB2 expression was markedly increased in the infarcted border at 3 days after MI. Downregulation of EphrinB2 by intramyocardial injection of lentivirus carrying EphrinB2-shRNA significantly increased sympathetic hyperinnervation along with downregulated RhoA expression. In contrast, injection of EphrinB2-overexpressing lentivirus markedly upregulated EphrinB2, concomitant with inhibition of sympathetic sprouting and upregulated RhoA expression, accompanied by decreased incidence of ventricular arrhythmias (VAs). However, co-administering EphrinB2-overexpressing lentivirus and Fasudil (Rho kinase inhibitor) nearly abolished the inhibition of nerve sprouting effect. Additionally, EphrinB2 expression did not affect nerve growth factor level in the infarcted heart. CONCLUSIONS Overexpression of EphrinB2 may ameliorate MI-induced sympathetic hyperinnervation and further reduce the incidence of VAs, at least in part by activating RhoA-mediated axonal retraction.
Collapse
Affiliation(s)
- Ye Wang
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Cardiac Electrophysiology and Arrhythmia, Jinan, China
| | | | - Lei Qi
- Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Jiayu Tan
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Cardiac Electrophysiology and Arrhythmia, Jinan, China
| | - Yuepeng Zhao
- Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Mei Xue
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Cardiac Electrophysiology and Arrhythmia, Jinan, China
| | - Xiaolu Li
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Cardiac Electrophysiology and Arrhythmia, Jinan, China
| | - Wenjuan Cheng
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Cardiac Electrophysiology and Arrhythmia, Jinan, China
| | - Xinran Li
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Cardiac Electrophysiology and Arrhythmia, Jinan, China
| | - Jie Yin
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Cardiac Electrophysiology and Arrhythmia, Jinan, China
| | - Yugen Shi
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Cardiac Electrophysiology and Arrhythmia, Jinan, China
| | - Yu Wang
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Cardiac Electrophysiology and Arrhythmia, Jinan, China
| | - Kang Wang
- Department of Cardiology, Shandong Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Hesheng Hu
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Cardiac Electrophysiology and Arrhythmia, Jinan, China.
| | - Suhua Yan
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Cardiac Electrophysiology and Arrhythmia, Jinan, China.
| |
Collapse
|
12
|
Su L, Liu Y, Tang Y, Zhou M, Xiong L, Huang C. Resiniferatoxin reduces cardiac sympathetic nerve activation to exert a cardioprotective effect during myocardial infarction. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2021; 14:408-416. [PMID: 33936362 PMCID: PMC8085824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 12/10/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND AND OBJECTIVE Myocardial infarction (MI) is a common critical disease of the cardiovascular system. The process of MI is often accompanied by the excessive activation of cardiac sympathetic nerves, which leads to arrhythmia. Resiniferatoxin (RTX) is a transient receptor potential vanilloid 1 (TRPV1), involved in the cardiac sympathetic afferent reflex. However, whether RTX can reduce the occurrence of arrhythmia and exert a cardioprotective effect by inhibiting the sympathetic reflex during MI is still unknown. METHODS The left anterior descending artery of cardiac was clamped to construct a model of MI. RTX (50 μg/ml) was used by epicardial application in MI rats. Ventricular electrophysiologic properties were continuously monitored by a body surface ECG. Yrosine hydroxylase (TH) and growth associated protein 43 (GAP43) were detected by Immunofluorescence staining. Connexin43 and transforming growth factor beta receptor 1 (TGF-β1) were detected by western blot. Norepinephrine (NE) and BNP levels in blood and tissue were determined by ELISA. Cardiac function was assessed by echocardiography. RESULTS The ERP, APD90, QRS, QT and the Tend-Tpeak intervals in MI rats were all prolonged, but decreased after RTX treatment (n = 3, P<0.05). In contrast, the RR interval was shortened in the MI group, but prolonged in the MI+RTX group (n = 3, P<0.05). RTX treatment significantly reduced ventricular arrhythmias after MI. TH- and GAP43-positive nerve densities and TGF-β1, and cx-43 protein expression were up-regulated in the MI group compared to the sham group, and they were decreased in the MI+RTX group compared to the MI group (n = 3, P<0.05). RTX can decrease serum and tissue NE and BNP levels (n = 3, P<0.05). RTX pretreatment significantly decreased heart rate, HW/BW ratio and LVIDS, and increased LVEF andLVFS values (n = 3, P<0.05). CONCLUSION RTX improved cardiac dysfunction, ventricular electrophysiologic properties, and sympathetic nerve remodeling in rats with MI by inhibiting the excessive cardiac sympathetic drive.
Collapse
Affiliation(s)
- Ludefu Su
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute of Wuhan University, Hubei Key Laboratory of Cardiology Wuhan 430000, People's Republic of China
| | - Yu Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute of Wuhan University, Hubei Key Laboratory of Cardiology Wuhan 430000, People's Republic of China
| | - Yanhong Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute of Wuhan University, Hubei Key Laboratory of Cardiology Wuhan 430000, People's Republic of China
| | - Mingmin Zhou
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute of Wuhan University, Hubei Key Laboratory of Cardiology Wuhan 430000, People's Republic of China
| | - Liang Xiong
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute of Wuhan University, Hubei Key Laboratory of Cardiology Wuhan 430000, People's Republic of China
| | - Congxin Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute of Wuhan University, Hubei Key Laboratory of Cardiology Wuhan 430000, People's Republic of China
| |
Collapse
|
13
|
Activation of Paraventricular Melatonin Receptor 2 Mediates Melatonin-Conferred Cardioprotection Against Myocardial Ischemia/Reperfusion Injury. J Cardiovasc Pharmacol 2021; 76:197-206. [PMID: 32433359 DOI: 10.1097/fjc.0000000000000851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Previous studies have shown that melatonin (Mel) can effectively ameliorate myocardial ischemia/reperfusion (MI/R) injury, but the mechanism is yet to be fully elucidated. Mel receptors are expressed in the paraventricular nucleus (PVN), which is also involved in regulating cardiac sympathetic nerve activity. The aim of this study was to examine whether Mel receptors in the PVN are involved in the protective effects of Mel against MI/R injury. The results of quantitative polymerase chain reaction, western blot, and immunofluorescence assays indicated that Mel receptor 2 (MT2) expression in the PVN was upregulated after MI/R. Intraperitoneal administration of Mel significantly improved post-MI/R cardiac function and reduced the infarct size, whereas shRNA silencing of MT2 in the PVN partially blocked this effect. Intraperitoneal administration of Mel reduced sympathetic nerve overexcitation caused by MI/R, whereas shRNA silencing of MT2 in the PVN partially diminished this effect. Furthermore, enzyme-linked immunosorbent assay and western blot results indicated that intraperitoneal administration of Mel lowered the levels of inflammatory cytokines in the PVN after MI/R injury, whereas the application of sh-MT2 in the PVN reduced this effect of Mel. Mel significantly reduced the levels of NF-κB after astrocyte oxygen and glucose deprivation/reoxygenation injury, and this effect was offset when MT2 was silenced. The above experimental results suggest that MT2 in the PVN partially mediated the protective effects of Mel against MI/R injury, and its underlying mechanisms may be related to postactivation amelioration of PVN inflammation and reduction of cardiac sympathetic nerve overexcitation.
Collapse
|
14
|
Zhu F, Li Q, Li J, Li B, Li D. Long noncoding Mirt2 reduces apoptosis to alleviate myocardial infarction through regulation of the miR-764/PDK1 axis. J Transl Med 2021; 101:165-176. [PMID: 33199822 DOI: 10.1038/s41374-020-00504-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 10/13/2020] [Accepted: 10/16/2020] [Indexed: 11/08/2022] Open
Abstract
Acute myocardial infarction (AMI) is a common clinical cardiovascular disease, which is the leading cause of death and disability worldwide. Abnormal expression of long noncoding RNAs (lncRNA) is reported to be related to myocardial dysfunctions such as myocardial infarction (MI). In this study, we aimed to investigate the role of lncRNA myocardial infarction-related transcription factors 2 (Mirt2) in AMI and the underlying molecular mechanisms in vivo and in vitro. In vivo AMI model was established by occlusion of the left anterior descending coronary artery. Rats were randomly divided into two groups (five rats per group): the sham group and the AMI group. H9c2 cells were cultured under hypoxia for 4 h and then cultured under normoxia to establish the in vitro hypoxia reoxygenation (H/R) model. Our study shows that the myocardial infarct size and the apoptosis in AMI rats were both significantly increased, indicating that the AMI rat model was successfully established. Additionally, the levels of Mirt2 in AMI rats were increased significantly. Knockdown of Mirt2 by shRNA (shMirt2) had no significant effect on apoptosis and MI in sham rats, but significantly promoted apoptosis and MI in AMI rats. In vitro experiments showed that shMirt2 significantly decreased the level of Mirt2 in H9c2 cells and H9c2 cells treated with H/R. It is worth noting that shMirt2 had no significant effect on H9c2 cells, but significantly increased the levels of oxidative stress markers (malondialdehyde and lactate dehydrogenase), and also increased the number of apoptosis of H/R-treated H9c2 cells. Further mechanistic analysis showed that Mirt2 could protect MI and apoptosis in AMI rats by competitively adsorbing miR-764 and reducing the inhibitory effect of miR-764 on 3-phosphoinositide-dependent kinase 1 (PDK1). More importantly, after overexpression of Mirt2, MI and apoptosis were significantly improved in AMI rats, indicating that Mirt2 showed a protective effect in AMI rats. In summary, these findings suggest that that Mirt2 participated in the regulation of MI through the miR-764/PDK1 axis. Therefore, the current findings provide a theoretical basis for the diagnosis and treatment of clinical MI with changes in Mirt2 levels.
Collapse
Affiliation(s)
- Fen Zhu
- Department of Cardiology, Wuhan Third Hospital & Tongren Hospital of Wuhan University, Wuhan, 430060, Hubei, China.
| | - Qing Li
- Department of Cardio-Pulmonary Function, Wuhan Third Hospital & Tongren Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Jun Li
- Department of Cardiology, Wuhan Third Hospital & Tongren Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Benlei Li
- Department of Cardiology, Wuhan Third Hospital & Tongren Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Dongsheng Li
- Department of Cardiology, Wuhan Third Hospital & Tongren Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| |
Collapse
|
15
|
Pius-Sadowska E, Machaliński B. Pleiotropic activity of nerve growth factor in regulating cardiac functions and counteracting pathogenesis. ESC Heart Fail 2021; 8:974-987. [PMID: 33465292 PMCID: PMC8006610 DOI: 10.1002/ehf2.13138] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 11/05/2020] [Accepted: 11/11/2020] [Indexed: 12/30/2022] Open
Abstract
Cardiac innervation density generally reflects the levels of nerve growth factor (NGF) produced by the heart—changes in NGF expression within the heart and vasculature contribute to neuronal remodelling (e.g. sympathetic hyperinnervation or denervation). Its synthesis and release are altered under different pathological conditions. Although NGF is well known for its survival effects on neurons, it is clear that these effects are more wide ranging. Recent studies reported both in vitro and in vivo evidence for beneficial actions of NGF on cardiomyocytes in normal and pathological hearts, including prosurvival and antiapoptotic effects. NGF also plays an important role in the crosstalk between the nervous and cardiovascular systems. It was the first neurotrophin to be implicated in postnatal angiogenesis and vasculogenesis by autocrine and paracrine mechanisms. In connection with these unique cardiovascular properties of NGF, we have provided comprehensive insight into its function and potential effect of NGF underlying heart sustainable/failure conditions. This review aims to summarize the recent data on the effects of NGF on various cardiovascular neuronal and non‐neuronal functions. Understanding these mechanisms with respect to the diversity of NGF functions may be crucial for developing novel therapeutic strategies, including NGF action mechanism‐guided therapies.
Collapse
Affiliation(s)
- Ewa Pius-Sadowska
- Department of General Pathology, Pomeranian Medical University, Powstańców Wlkp. 72, Szczecin, 70111, Poland
| | - Bogusław Machaliński
- Department of General Pathology, Pomeranian Medical University, Powstańców Wlkp. 72, Szczecin, 70111, Poland
| |
Collapse
|
16
|
Shi Y, Li Y, Yin J, Hu H, Xue M, Li X, Cheng W, Wang Y, Li X, Wang Y, Tan J, Yan S. A novel sympathetic neuronal GABAergic signalling system regulates NE release to prevent ventricular arrhythmias after acute myocardial infarction. Acta Physiol (Oxf) 2019; 227:e13315. [PMID: 31116911 PMCID: PMC6813916 DOI: 10.1111/apha.13315] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 05/09/2019] [Accepted: 05/16/2019] [Indexed: 11/30/2022]
Abstract
AIM Overactivation of the sympathetic nerve may lead to severe ventricular arrhythmias (VAs) after myocardial infarction (MI). Thus, targeting sympathetic nerve activity is an effective strategy to prevent VAs clinically. The superior cervical ganglion (SCG), the extracardiac sympathetic ganglion innervating cardiac muscles, has been found to have a GABAergic signalling system, the physiological significance of which is obscure. We aimed to explore the functional significance of SCG post MI and whether the GABAergic signal system is involved in the process. METHODS Adult male Sprague-Dawley rats were divided into seven different groups. Rats in the MI groups underwent ligation of the left anterior descending coronary artery. All animals were used for electrophysiological testing, renal sympathetic nerve activity (RSNA) testing, and ELISA. Primary SCG sympathetic neurons were used for the in vitro study. RESULTS The GABAA receptor agonist muscimol significantly decreased the ATP-induced increase in intracellular Ca2+ (P < 0.05). GABA treatment in MI rats significantly attenuated the level of serum and cardiac norepinephrine (NE; P < 0.05). Sympathetic activity and inducible VAs were also lower in MI + GABA rats than in MI rats (P < 0.05). Knockdown of the GABAA Rs β2 subunit (GABAA Rβ2 ) in the SCG of MI rats increased the NE levels in serum and cardiac tissue, RSNA and inducible VAs compared with vehicle shRNA (P < 0.05). CONCLUSION The GABAergic signalling system is functionally expressed in SCG sympathetic neurons, and activation of this system suppresses sympathetic activity, thereby facilitating cardiac protection and making it a potential target to alleviate VAs.
Collapse
Affiliation(s)
- Yugen Shi
- Department of CardiologyShandong Provincial Qianfoshan Hospital, Shandong UniversityShandongChina
| | - Yan Li
- Medical Research CenterShandong Provincial Qianfoshan Hospital, Shandong UniversityShandongChina
- School of MedicineShandong UniversityShandongChina
| | - Jie Yin
- Department of CardiologyShandong Provincial Qianfoshan Hospital, Shandong UniversityShandongChina
| | - Hesheng Hu
- Department of CardiologyShandong Provincial Qianfoshan Hospital, Shandong UniversityShandongChina
| | - Mei Xue
- Department of CardiologyShandong Provincial Qianfoshan Hospital, Shandong UniversityShandongChina
| | - Xiaolu Li
- Department of CardiologyShandong Provincial Qianfoshan Hospital, Shandong UniversityShandongChina
| | - Wenjuan Cheng
- Department of CardiologyShandong Provincial Qianfoshan Hospital, Shandong UniversityShandongChina
| | - Ye Wang
- Department of CardiologyShandong Provincial Qianfoshan Hospital, Shandong UniversityShandongChina
| | - Xinran Li
- Department of CardiologyShandong Provincial Qianfoshan Hospital, Shandong UniversityShandongChina
| | - Yu Wang
- Department of CardiologyShandong Provincial Qianfoshan Hospital, Shandong UniversityShandongChina
| | - Jiayu Tan
- Department of CardiologyShandong Provincial Qianfoshan Hospital, Shandong UniversityShandongChina
| | - Suhua Yan
- Department of CardiologyShandong Provincial Qianfoshan Hospital, Shandong UniversityShandongChina
| |
Collapse
|
17
|
Wang Y, Tan J, Yin J, Hu H, Shi Y, Wang Y, Xue M, Li X, Liu J, Li Y, Cheng W, Li X, Liu F, Liu Q, Gao P, Yan S. Targeting blockade of nuclear factor-κB in the hypothalamus paraventricular nucleus to prevent cardiac sympathetic hyperinnervation post myocardial infarction. Neurosci Lett 2019; 707:134319. [DOI: 10.1016/j.neulet.2019.134319] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 06/03/2019] [Accepted: 06/04/2019] [Indexed: 12/09/2022]
|
18
|
Wang S, Wu L, Li X, Li B, Zhai Y, Zhao D, Jiang H. Light-emitting diode therapy protects against ventricular arrhythmias by neuro-immune modulation in myocardial ischemia and reperfusion rat model. J Neuroinflammation 2019; 16:139. [PMID: 31287006 PMCID: PMC6615251 DOI: 10.1186/s12974-019-1513-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Accepted: 06/04/2019] [Indexed: 12/21/2022] Open
Abstract
Background Sympathetic overactivation and inflammation are two major mediators to post-myocardial ischemia-reperfusion (I/R)-induced ventricular arrhythmia (VA). The vicious cycle between microglia and sympathetic activation plays an important role in sympathetic hyperactivity related to cardiovascular diseases. Recently, studies have shown that microglial activation might be attenuated by light-emitting diode (LED) therapy. Therefore, we hypothesized that LED therapy might protect against myocardial I/R-induced VAs by attenuating microglial and sympathetic activation. Methods Thirty-six male anesthetized rats were randomized into four groups: control group (n = 6), LED group (n = 6), I/R group (n = 12), and LED+I/R group (n = 12). I/R was generated by left anterior descending artery occlusion for 30 min followed by 3 h reperfusion. ECG and left stellate ganglion (LSG) neural activity were recorded continuously. After 3 h reperfusion, a programmed stimulation protocol was conducted to test the inducibility of VA. Furthermore, we extracted the brain tissue to examine the microglial activation, and the peri-ischemic myocardium to examine the expression of NGF and inflammatory cytokines (IL-1β, IL-18, IL-6, and TNF-α). Results As compared to the I/R group, LED illumination significantly inhibited the LSG neural activity (P < 0.01) and reduced the inducibility of VAs (arrhythmia score 4.417 ± 0.358 vs. 3 ± 0.3257, P < 0.01) in the LED+I/R group. Furthermore, LED significantly attenuated microglial activation and downregulated the expression of inflammatory cytokines and NGF in the peri-infarct myocardium. Conclusions LED therapy may protect against myocardial I/R-induced VAs by central and peripheral neuro-immune regulation.
Collapse
Affiliation(s)
- Songyun Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute of Wuhan University, Wuhan, 430060, Hubei, People's Republic of China
| | - Lin Wu
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute of Wuhan University, Wuhan, 430060, Hubei, People's Republic of China
| | - Xuemeng Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute of Wuhan University, Wuhan, 430060, Hubei, People's Republic of China
| | - Binxun Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute of Wuhan University, Wuhan, 430060, Hubei, People's Republic of China
| | - Yi Zhai
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute of Wuhan University, Wuhan, 430060, Hubei, People's Republic of China
| | - Dongdong Zhao
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, People's Republic of China.
| | - Hong Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute of Wuhan University, Wuhan, 430060, Hubei, People's Republic of China.
| |
Collapse
|
19
|
Wang S, Wu L, Zhai Y, Li X, Li B, Zhao D, Jiang H. Noninvasive light emitting diode therapy: A novel approach for postinfarction ventricular arrhythmias and neuroimmune modulation. J Cardiovasc Electrophysiol 2019; 30:1138-1147. [PMID: 31104349 DOI: 10.1111/jce.13974] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 04/18/2019] [Accepted: 04/18/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Sympathetic neural activation plays a key role in the incidence and maintenance of acute myocardial infarction (AMI) induced ventricular arrhythmia (VA). Furthermore, previous studies showed that AMI might induce microglia and sympathetic activation and that microglial activation might contribute to sympathetic activation. Recently, studies showed that light emitting diode (LED) therapy might attenuate microglial activation. Therefore, we hypothesized that LED therapy might reduce AMI-induced VA by attenuating microglia and sympathetic activation. METHODS Thirty anesthetized rats were randomly divided into three groups: the Control group (n = 6), AMI group (n = 12), and AMI + LED group (n = 12). Electrocardiogram (ECG) and left stellate ganglion (LSG) neural activity were continuously recorded. The incidence of VAs was recorded during the first hour after AMI. Furthermore, we sampled the brain and myocardium tissue of the different groups to examine the microglial activation and expression of nerve growth factor (NGF), interleukin-18 (IL-18), and IL-1β, respectively. RESULTS Compared to the AMI group, LED therapy significantly reduced the incidence of AMI-induced VAs (ventricular premature beats [VPB] number: 85.08 ± 13.91 vs 27.5 ± 9.168, P < .01; nonsustained ventricular tachycardia (nSVT) duration: 34.39 ± 8.562 vs 9.005 ± 3.442, P < .05; nSVT number: 18.92 ± 4.52 vs 7.583 ± 3.019, P < .05; incidence rate of SVT/VF: 58.33% vs. 8.33%, P < .05) and reduced the LSG neural activity (P < .01) in the AMI + LED group. Furthermore, LED significantly attenuated microglial activation and reduced IL-18, IL-1β, and NGF expression in the peri-infarct myocardium. CONCLUSION LED therapy may protect against AMI-induced VAs by suppressing sympathetic neural activity and the inflammatory response.
Collapse
Affiliation(s)
- Songyun Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute of Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Lin Wu
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute of Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Yi Zhai
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute of Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Xuemeng Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute of Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Binxun Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute of Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Dongdong Zhao
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Hong Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute of Wuhan University, Wuhan, Hubei, People's Republic of China
| |
Collapse
|
20
|
Primary Mechanism Study of Panax notoginseng Flower (Herb) on Myocardial Infarction in Rats. Cardiol Res Pract 2019; 2019:8723076. [PMID: 31192006 PMCID: PMC6525894 DOI: 10.1155/2019/8723076] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 02/25/2019] [Indexed: 01/06/2023] Open
Abstract
Background Panax notoginseng (Burk.) F. H. Chen is one of the most common herbs in China. Because of its good efficacy and little adverse reaction, Panax notoginseng has been used widely to treat cardiovascular diseases (CVDs). Objective To investigate effects of Panax notoginseng flower (PN-F) on rats with myocardial infarction (MI). Methods The proximal left anterior descending coronary artery in rats was ligated to induce acute myocardial infarction. Then, animals were randomly assigned to four experimental groups: MI control group, Betaloc control group (with Betaloc 10 mg/kg/d), FD500 (low-dose) group (Panax notoginseng flower decoction 500 mg/kg, n=10), and FD1000 (high-dose) group (Panax notoginseng flower decoction 1000 mg/kg, n=10). Panax notoginseng flower decoction or Betaloc was orally administrated for two to four weeks before and after operation. Sham-operated group was used as a normal untreated group, in which animals were treated with double distilled water, once daily. HE (hematoxylin and eosin) staining, immunofluorescent assay, TUNEL assay, quantitative real-time PCR, and western blot analysis were, respectively, performed to observe morphology, count mean minimal vessels, investigate apoptotic cells, and record gene (HIF-1, VEGFA, and KDR) and protein (Bcl-2 and Bax) expressions. Results Two weeks after MI, PN-F significantly enhanced capillary density in the border area of MI, decreased infarct size, improved minimal vessels, suppressed cell apoptosis, and enhanced expressions of genes (HIF-1, VEGFA, and KDR) and proteins (Bcl-2 and Bax). Conclusions PN-F demonstrated a potential herb to treat rats with myocardial infarction through promoting angiogenesis and inhibition of apoptosis in the infarct area.
Collapse
|
21
|
Shi Y, Yin J, Hu H, Xue M, Li X, Liu J, Li Y, Cheng W, Wang Y, Li X, Wang Y, Liu F, Liu Q, Tan J, Yan S. Targeted regulation of sympathetic activity in paraventricular nucleus reduces inducible ventricular arrhythmias in rats after myocardial infarction. J Cardiol 2019; 73:81-88. [DOI: 10.1016/j.jjcc.2018.06.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 05/29/2018] [Accepted: 06/05/2018] [Indexed: 11/17/2022]
|
22
|
Li P, Jie Y, YuGen S, Yu W, Yan S. High mobility group box-1 in hypothalamic paraventricular nuclei attenuates sympathetic tone in rats at post-myocardial infarction. Cardiol J 2018; 26:555-563. [PMID: 30338842 DOI: 10.5603/cj.a2018.0117] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 08/25/2018] [Accepted: 09/24/2018] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Inflammation is associated with increased sympathetic drive in cardiovascular diseases. The paraventricular nucleus (PVN) of the hypothalamus is a key regulator of sympathetic nerve activity at post-myocardial infarction (MI). High mobility group box-1 (HMGB1) exhibits inflammatory cytokine like activity in the extracellular space. Inflammation is associated with increased sympathetic drive in cardiovscular diseases. However, the role of HMGB1 in sympathetic nerve activity at post-MI remains unknown. The aim of the present study is to determine the role and mechanism of HMGB1 in the PVN, in terms of sympathetic activity and arrhythmia after MI. METHODS Sprague-Dawley rats underwent left anterior descending coronary artery ligation to induce MI. Anti-HMGB1 polyclonal antibody or control IgG was bilaterally microinjected into the PVN (5 μL every second day for seven consecutive days). Then, renal sympathetic nerve activity (RSNA) was recorded. The association between ventricular arrhythmias (VAs) and MI was evaluated using programmed electrophysiological stimulation. After performing electrophysiological experiments in vivo, immunohistochemistry was used to detect the distribution of HMGB1, while Western blot was used to detect the expression of HMGB1 and p-ERK in the PVN of MI rats. RESULTS HMGB1 and p-ERK were upregulated in the PVN in rats at post-MI. Moreover, bilateral PVN microinjection of anti-HMGB1 polyclonal antibody reversed the expression of HMGB1 and p-ERK, and consequently decreased the baseline RSNA and inducible VAs, when compared to those in sham rats. CONCLUSIONS These results suggest that MI causes the translocation of HMGB1 in the PVN, which leads to sympathetic overactivation through the ERK1/2 signaling pathway. The bilateral PVN microinjection of anti-HMGB1 antibody can be an effective therapy for MI-induced arrhythmia.
Collapse
Affiliation(s)
- Pang Li
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China.
| | - Yin Jie
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Shi YuGen
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Wang Yu
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Suhua Yan
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| |
Collapse
|
23
|
Li T, Liu Y, Yu L, Lao J, Zhang M, Jin J, Lu Z, Liu Z, Xu Y. Human Umbilical Cord Mesenchymal Stem Cells Protect Against SCA3 by Modulating the Level of 70 kD Heat Shock Protein. Cell Mol Neurobiol 2018; 38:641-655. [PMID: 28667374 DOI: 10.1007/s10571-017-0513-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Accepted: 06/17/2017] [Indexed: 02/06/2023]
Abstract
Spinocerebellar ataxia 3 (SCA3), which is a progressive neurodegenerative disease, is currently incurable. Emerging studies have reported that human umbilical cord mesenchymal stem cells (HUC-MSCs) transplantation could be a promising therapeutic strategy for cerebellar ataxias. However, few studies have evaluated the effects of HUC-MSCs on SCA3 transgenic mouse. Thus, we investigated the effects of HUC-MSCs on SCA3 mice and the underlying mechanisms in this study. SCA3 transgenic mice received systematic administration of 2 × 106 HUC-MSCs once per week for 12 continuous weeks. Motor coordination was measured blindly by open field tests and footprint tests. Immunohistochemistry and Nissl staining were applied to detect neuropathological alternations. Neurotrophic factors in the cerebellum were assessed by ELISA. We used western blotting to detect the alternations of heat shock protein 70 (HSP70), IGF-1, mutant ataxin-3, and apoptosis-associated proteins. Tunel staining was also used to detect apoptosis of affected cells. The distribution and differentiation of HUC-MSCs were determined by immunofluorescence. Our results exhibited that HUC-MSCs transplantation significantly alleviated motor impairments, corresponding to a reduction of cerebellar atrophy, preservation of neurons, decreased expression of mutant ataxin-3, and increased expression of HSP70. Implanted HUC-MSCs were mainly distributed in the cerebellum and pons with no obvious differentiation, and the expressions of IGF-1, VEGF, and NGF in the cerebellum were significantly elevated. Furthermore, with the use of HSP70 analogy quercetin injection, it demonstrated that HSP70 is involved in mutant ataxin-3 reduction. These results showed that HUC-MSCs implantation is a potential treatment for SCA3, likely through upregulating the IGF-1/HSP70 pathway and subsequently inhibiting mutant ataxin-3 toxicity.
Collapse
Affiliation(s)
- Tan Li
- Department of Neurology, Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 ZhongShan Road, Nanjing City, 210008, Jiangsu Province, People's Republic of China
| | - Yi Liu
- Department of Neurology, Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 ZhongShan Road, Nanjing City, 210008, Jiangsu Province, People's Republic of China
| | - Linjie Yu
- Department of Neurology, Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 ZhongShan Road, Nanjing City, 210008, Jiangsu Province, People's Republic of China
| | - Jiamin Lao
- Department of Neurology, Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 ZhongShan Road, Nanjing City, 210008, Jiangsu Province, People's Republic of China
| | - Meijuan Zhang
- Department of Neurology, Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 ZhongShan Road, Nanjing City, 210008, Jiangsu Province, People's Republic of China
- Department of Neurology, Drum Tower Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Jiali Jin
- Department of Neurology, Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 ZhongShan Road, Nanjing City, 210008, Jiangsu Province, People's Republic of China
- Department of Neurology, Drum Tower Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Zhengjuan Lu
- Department of Neurology, Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 ZhongShan Road, Nanjing City, 210008, Jiangsu Province, People's Republic of China
- Department of Neurology, Drum Tower Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Zhuo Liu
- Department of Neurology, Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 ZhongShan Road, Nanjing City, 210008, Jiangsu Province, People's Republic of China.
- Department of Neurology, Drum Tower Hospital of Nanjing Medical University, Nanjing, People's Republic of China.
| | - Yun Xu
- Department of Neurology, Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 ZhongShan Road, Nanjing City, 210008, Jiangsu Province, People's Republic of China
- Department of Neurology, Drum Tower Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| |
Collapse
|
24
|
Ding X, Yu C, Liu Y, Yan S, Li W, Wang D, Sun L, Han Y, Li M, Zhang S, Yun F, Zhao H, Li Y. Chronic obstructive sleep apnea accelerates pulmonary remodeling via TGF-β/miR-185/CoLA1 signaling in a canine model. Oncotarget 2018; 7:57545-57555. [PMID: 27542203 PMCID: PMC5295371 DOI: 10.18632/oncotarget.11296] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 08/03/2016] [Indexed: 01/05/2023] Open
Abstract
Chronic obstructive sleep apnea syndrome (OSAS) is considered to be associated with pulmonary diseases. However, the roles and mechanisms of OSA in pulmonary remodeling remain ambiguous. Thus, this study was aimed to elucidate the morphological and mechanical action of OSA in lung remodeling. In the present study, we employed a novel OSA model to mimic the OSA patient and investigate the role of OSA in pulmonary remodeling. We showed that pulmonary artery pressure of OSA group has no significant increased compared with the sham group. Nevertheless, we found that fibrotic tissue was predominantly located around the bronchi and vascular in the lung. Additionally, inflammatory cell infiltration was also detected in the peribonchial and perivascular space. The morphological change in OSA canines was ascertained by ultrastructure variation characterized by mitochondrial swelling, lamellar bodies degeneration and vascular smooth muscle incrassation. Moreover, sympathetic nerve sprouting was markedly increased in OSA group. Mechanistically, we showed that several pivotal proteins including collagen type I(CoLA1), GAP-43, TH and NGF were highly expressed in OSA groups. Furthermore, we found OSA could activated the expression of TGF-β, which subsequently suppressed miR-185 and promoted CoL A1 expression. This signaling cascade leads to pulmonary remodeling. In conclusion, Our data demonstrates that OSA can accelerate the progression of pulmonary remodeling through TGF-β/miR-185/CoLA1 signaling, which would potentially provide therapeutic strategies for chronic OSAS.
Collapse
Affiliation(s)
- Xue Ding
- Department of Cardiology, the First Affiliated Hospital, Harbin Medical University, Harbin 150001, Heilongjiang Province, P. R. China
| | - Chengyuan Yu
- Department of Cardiology, the First Affiliated Hospital, Harbin Medical University, Harbin 150001, Heilongjiang Province, P. R. China
| | - Yang Liu
- Department of Cardiology, the First Affiliated Hospital, Harbin Medical University, Harbin 150001, Heilongjiang Province, P. R. China
| | - Sen Yan
- Department of Cardiology, the First Affiliated Hospital, Harbin Medical University, Harbin 150001, Heilongjiang Province, P. R. China
| | - Wenpeng Li
- Department of Cardiology, the First Affiliated Hospital, Harbin Medical University, Harbin 150001, Heilongjiang Province, P. R. China
| | - Dingyu Wang
- Department of Cardiology, the First Affiliated Hospital, Harbin Medical University, Harbin 150001, Heilongjiang Province, P. R. China
| | - Li Sun
- Department of Cardiology, the First Affiliated Hospital, Harbin Medical University, Harbin 150001, Heilongjiang Province, P. R. China
| | - Yu Han
- Department of Cardiology, the First Affiliated Hospital, Harbin Medical University, Harbin 150001, Heilongjiang Province, P. R. China
| | - Minghui Li
- Department of Cardiology, the First Affiliated Hospital, Harbin Medical University, Harbin 150001, Heilongjiang Province, P. R. China
| | - Song Zhang
- Department of Cardiology, the First Affiliated Hospital, Harbin Medical University, Harbin 150001, Heilongjiang Province, P. R. China
| | - Fengxiang Yun
- Department of Cardiology, the First Affiliated Hospital, Harbin Medical University, Harbin 150001, Heilongjiang Province, P. R. China
| | - Hongwei Zhao
- Department of Cardiology, the First Affiliated Hospital, Harbin Medical University, Harbin 150001, Heilongjiang Province, P. R. China
| | - Yue Li
- Department of Cardiology, the First Affiliated Hospital, Harbin Medical University, Harbin 150001, Heilongjiang Province, P. R. China.,Key Laboratory of Cardiac Diseases and Heart Failure, Harbin Medical University, Harbin, 150001, Heilongjiang Province, P. R. China.,Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Harbin, 150001, Heilongjiang Province, P. R. China
| |
Collapse
|
25
|
Yin J, Wang Y, Hu H, Li X, Xue M, Cheng W, Wang Y, Li X, Yang N, Shi Y, Yan S. P2X 7 receptor inhibition attenuated sympathetic nerve sprouting after myocardial infarction via the NLRP3/IL-1β pathway. J Cell Mol Med 2017; 21:2695-2710. [PMID: 28470940 PMCID: PMC5661108 DOI: 10.1111/jcmm.13185] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 02/21/2017] [Indexed: 01/08/2023] Open
Abstract
Mounting evidence supports the hypothesis that inflammation modulates sympathetic sprouting after myocardial infarction (MI). The myeloid P2X7 signal has been shown to activate the nucleotide-binding and oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome, a master regulator of inflammation. We investigated whether P2X7 signal participated in the pathogenesis of sympathetic reinnervation after MI, and whether NLRP3/interleukin-1β (IL-1β) axis is involved in the process. We explored the relationship between P2X7 receptor (P2X7 R) and IL-1β in the heart tissue of lipopolysaccharide (LPS)-primed naive rats. 3'-O-(4-benzoyl) benzoyl adenosine 5'-triphosphate (BzATP), a P2X7 R agonist, induced caspase-1 activation and mature IL-1β release, which was further neutralized by a NLRP3 inhibitor (16673-34-0). MI was induced by coronary artery ligation. Following infarction, a marked increase in P2X7 R was localized within infiltrated macrophages and observed in parallel with an up-regulation of NLRP3 inflammasome levels and the release of IL-1β in the left ventricle. The administration of A-740003 (a P2X7 R antagonist) significantly prevented the NLRP3/IL-1β increase. A-740003 and/or Anakinra (an IL-1 receptor antagonist) significantly reduced macrophage infiltration as well as macrophage-based IL-1β and NGF (nerve growth factor) production and eventually blunted sympathetic hyperinnervation, as assessed by the immunofluorescence of tyrosine hydroxylase (TH) and growth-associated protein 43 (GAP 43). Moreover, the use of Anakinra partly attenuated sympathetic sprouting. This indicated that the effect of P2X7 on neural remodelling was mediated at least partially by IL-1β. The arrhythmia score of programmed electric stimulation was in accordance with the degree of sympathetic hyperinnervation. In vitro studies showed that BzATP up-regulated secretion of nerve growth factor (NGF) in M1 macrophages via IL-1β. Together, these data indicate that P2X7 R contributes to neural and cardiac remodelling, at least partly mediated by NLRP3/IL-1β axis. Therapeutic interventions targeting P2X7 signal may be a novel approach to ameliorate arrhythmia following MI.
Collapse
Affiliation(s)
- Jie Yin
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Yu Wang
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Hesheng Hu
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Xiaolu Li
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Mei Xue
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Wenjuan Cheng
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Ye Wang
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Xinran Li
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Na Yang
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Yugen Shi
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Suhua Yan
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| |
Collapse
|
26
|
Evaluation of specific neural marker GAP-43 and TH combined with Masson-trichrome staining for forensic autopsy cases with old myocardial infarction. Int J Legal Med 2017; 132:187-195. [PMID: 28401305 DOI: 10.1007/s00414-017-1590-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 04/04/2017] [Indexed: 10/19/2022]
|
27
|
Gao H, Yin J, Shi Y, Hu H, Li X, Xue M, Cheng W, Wang Y, Li X, Li Y, Wang Y, Yan S. Targeted P2X 7 R shRNA delivery attenuates sympathetic nerve sprouting and ameliorates cardiac dysfunction in rats with myocardial infarction. Cardiovasc Ther 2017; 35. [PMID: 28039938 DOI: 10.1111/1755-5922.12245] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Inflammation-dominated sympathetic sprouting adjacent to the necrotic region following myocardial infarction (MI) has been implicated in the etiology of arrhythmias resulting in sudden cardiac death; however, the mechanisms responsible remain to be elucidated. Although P2X7 R is a key immune mediator, its role has yet to be explored. OBJECTIVE We investigated whether P2X7 R regulates NF-κB and affects cardiac sympathetic reinnervation in rats undergoing MI. METHODS AND RESULTS An adenoviral vector with a short hairpin RNA (shRNA) sequence inserted was adopted for the inhibition of P2X7 R in vivo. Myocardial infarction was induced by left coronary artery ligation, and immediately after that, recombinant P2X7 R-shRNA adenovirus, negative adenovirus (control), or normal saline solution (vehicle) was injected intramyocardially around the MI region and border areas. A high level of P2X7 R was activated in the infarcted tissue at an early stage. The administration of P2X7 R RNAi resulted in the inhibition of Akt and Erk1/2 phosphorylation and decreased the activation of NF-κB and macrophage infiltration, as well as attenuated the expression of nerve growth factor (NGF). Eventually, the NGF-induced sympathetic hyperinnervation was blunted, as assessed by the immunofluorescence of tyrosine hydroxylase (TH) and growth-associated protein 43 (GAP 43). At 7 days post-MI, the arrhythmia score of programmed electrical stimulation in the vehicle-treated infarcted rats was higher than the MI-shRNA group. Further amelioration of cardiac dysfunction was also detected. CONCLUSIONS The administration of P2X7 R RNAi during the acute inflammatory response phase prevented the process of sympathetic hyperinnervation after MI, which was associated in part with inhibiting the Akt and ERK1/2 pathways and NF-κB activation.
Collapse
Affiliation(s)
- Hongmei Gao
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China.,Department of Cardiology, Shandong Provincial Corps Hospital, Chinese People's Armed Police Force, Jinan, China
| | - Jie Yin
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Yugen Shi
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Hesheng Hu
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Xiaolu Li
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Mei Xue
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Wenjuan Cheng
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Ye Wang
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Xinran Li
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Yongkang Li
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Yu Wang
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Suhua Yan
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| |
Collapse
|
28
|
Coskun V, Lombardo DM. Studying the pathophysiologic connection between cardiovascular and nervous systems using stem cells. J Neurosci Res 2016; 94:1499-1510. [PMID: 27629698 DOI: 10.1002/jnr.23924] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 08/25/2016] [Accepted: 08/25/2016] [Indexed: 12/17/2022]
Abstract
The cardiovascular and nervous systems are deeply connected during development, health, and disease. Both systems affect and regulate the development of each other during embryogenesis and the early postnatal period. Specialized neural crest cells contribute to cardiac structures, and a number of growth factors released from the cardiac tissue (e.g., glial cell line-derived neurotrophic factor, neurturin, nerve growth factor, Neurotrophin-3) ensure proper maturation of the incoming parasympathetic and sympathetic neurons. Physiologically, the cardiovascular and nervous systems operate in harmony to adapt to various physical and emotional conditions to maintain homeostasis through sympathetic and parasympathetic nervous systems. Moreover, neurocardiac regulation involves a neuroaxis consisting of cortex, amygdala, and other subcortical structures, which have the ability to modify lower-level neurons in the hierarchy. Given the interconnectivity of cardiac and neural systems, when one undergoes pathological changes, the other is affected to a certain extent. In addition, there are specific neurocardiac diseases that affect both systems simultaneously, such as Huntington disease, Lewy body diseases, Friedreich ataxia, congenital heart diseases, Danon disease, and Timothy syndrome. Over the last decade, in vitro modeling of neurocardiac diseases using induced pluripotent stem cells (iPSCs) has provided an invaluable opportunity to elevate our knowledge about the brain-heart connection, since previously primary cardiomyocytes and neurons had been extremely difficult to maintain long-term in vitro. Ultimately, the ability of iPSC technology to model abnormal functional phenotypes of human neurocardiac disorders, combined with the ease of therapeutic screening using this approach, will transform patient care through personalized medicine in the future. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Volkan Coskun
- Department of Medicine, Division of Cardiology, University of California, Irvine, Irvine, California.
| | - Dawn M Lombardo
- Department of Medicine, Division of Cardiology, University of California, Irvine, Irvine, California
| |
Collapse
|
29
|
Yang N, Cheng W, Hu H, Xue M, Li X, Wang Y, Xuan Y, Li X, Yin J, Shi Y, Yan S. Atorvastatin attenuates sympathetic hyperinnervation together with the augmentation of M2 macrophages in rats postmyocardial infarction. Cardiovasc Ther 2016; 34:234-44. [PMID: 27149420 DOI: 10.1111/1755-5922.12193] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Affiliation(s)
- Na Yang
- Department of Cardiology; School of Medicine; Shandong University; Ji'nan Shandong China
| | - Wenjuan Cheng
- Department of Cardiology; Shandong Provincial Qianfoshan Hospital; Ji'nan Shandong China
| | - Hesheng Hu
- Department of Cardiology; Shandong Provincial Qianfoshan Hospital; Ji'nan Shandong China
| | - Mei Xue
- Department of Cardiology; Shandong Provincial Qianfoshan Hospital; Ji'nan Shandong China
| | - Xiaolu Li
- Department of Cardiology; Shandong Provincial Qianfoshan Hospital; Ji'nan Shandong China
| | - Ye Wang
- Department of Cardiology; Shandong Provincial Qianfoshan Hospital; Ji'nan Shandong China
| | - Yongli Xuan
- Department of Cardiology; School of Medicine; Shandong University; Ji'nan Shandong China
| | - Xinran Li
- Department of Cardiology; School of Medicine; Shandong University; Ji'nan Shandong China
| | - Jie Yin
- Department of Cardiology; School of Medicine; Shandong University; Ji'nan Shandong China
| | - Yugen Shi
- Department of Cardiology; School of Medicine; Shandong University; Ji'nan Shandong China
| | - Suhua Yan
- Department of Cardiology; Shandong Provincial Qianfoshan Hospital; Ji'nan Shandong China
| |
Collapse
|
30
|
Li X, Hu H, Wang Y, Xue M, Li X, Cheng W, Xuan Y, Yin J, Yang N, Yan S. Valsartan Upregulates Kir2.1 in Rats Suffering from Myocardial Infarction via Casein Kinase 2. Cardiovasc Drugs Ther 2016; 29:209-18. [PMID: 26095682 PMCID: PMC4522035 DOI: 10.1007/s10557-015-6598-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Purpose Myocardial infarction (MI) results in an increased susceptibility to ventricular arrhythmias, due in part to decreased inward-rectifier K+ current (IK1), which is mediated primarily by the Kir2.1 protein. The use of renin-angiotensin-aldosterone system antagonists is associated with a reduced incidence of ventricular arrhythmias. Casein kinase 2 (CK2) binds and phosphorylates SP1, a transcription factor of KCNJ2 that encodes Kir2.1. Whether valsartan represses CK2 activation to ameliorate IK1 remodeling following MI remains unclear. Methods Wistar rats suffering from MI received either valsartan or saline for 7 days. The protein levels of CK2 and Kir2.1 were each detected via a Western blot analysis. The mRNA levels of CK2 and Kir2.1 were each examined via quantitative real-time PCR. Results CK2 expression was higher at the infarct border; and was accompanied by a depressed IK1/Kir2.1 protein level. Additionally, CK2 overexpression suppressed KCNJ2/Kir2.1 expression. By contrast, CK2 inhibition enhanced KCNJ2/Kir2.1 expression, establishing that CK2 regulates KCNJ2 expression. Among the rats suffering from MI, valsartan reduced CK2 expression and increased Kir2.1 expression compared with the rats that received saline treatment. In vitro, hypoxia increased CK2 expression and valsartan inhibited CK2 expression. The over-expression of CK2 in cells treated with valsartan abrogated its beneficial effect on KCNJ2/Kir2.1. Conclusions AT1 receptor antagonist valsartan reduces CK2 activation, increases Kir2.1 expression and thereby ameliorates IK1 remodeling after MI in the rat model.
Collapse
Affiliation(s)
- Xinran Li
- School of Medicine, Shandong University, Ji'nan, Shandong, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Valsartan Attenuates KIR2.1 by Downregulating the Th1 Immune Response in Rats Following Myocardial Infarction. J Cardiovasc Pharmacol 2016; 67:252-9. [DOI: 10.1097/fjc.0000000000000341] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
32
|
Hu H, Xuan Y, Xue M, Cheng W, Wang Y, Li X, Yin J, Li X, Yang N, Shi Y, Yan S. Semaphorin 3A attenuates cardiac autonomic disorders and reduces inducible ventricular arrhythmias in rats with experimental myocardial infarction. BMC Cardiovasc Disord 2016; 16:16. [PMID: 26787044 PMCID: PMC4719212 DOI: 10.1186/s12872-016-0192-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 01/08/2016] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND To investigate the effects of semaphorin 3A (sema 3A) on cardiac autonomic regulation and subsequent ventricular arrhythmias (VAs) in post-infarcted hearts. METHOD AND RESULTS In order to explore the functions of sema 3A in post-infarcted hearts, lentivirus-Sema 3A-shRNA and negative control vectors were delivered to the peri-infarcted myocardium rats respectively. Meanwhile, recombinant sema 3A and control (0.9% NaCl solution) were injected intravenously into infarcted rats to test the therapeutic potential of sema 3A. Results indicated that levels of sema 3A were higher in post-infarcted hearts compared with sham rats. However, sema 3A silencing leaded to sympathetic hyperinnervation, increased myocardial norepinephrine (NE) content and inducible VAs. Conversely, the intravenous administration of sema 3A to infarcted rats reduced sympathetic nerve sprouting, improved cardiac autonomic regulation, and decreased the incidence of inducible VAs. However, both infarct size and cardiac function were similar among infarcted hearts. CONCLUSIONS The upregulation and administration of sema 3A exerted beneficial effects on infarction-induced cardiac autonomic disorders by increasing cardiac electrical stability and reducing VAs. Sema 3A might be a potential therapeutic agent for cardiac autonomic abnormalities induced arrhythmias.
Collapse
Affiliation(s)
- Hesheng Hu
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Shandong University, 250014, Jinan, China.
| | - Yongli Xuan
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Shandong University, 250014, Jinan, China.
| | - Mei Xue
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Shandong University, 250014, Jinan, China.
| | - Wenjuan Cheng
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Shandong University, 250014, Jinan, China.
| | - Ye Wang
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Shandong University, 250014, Jinan, China.
| | - Xinran Li
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Shandong University, 250014, Jinan, China.
| | - Jie Yin
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Shandong University, 250014, Jinan, China.
| | - Xiaolu Li
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Shandong University, 250014, Jinan, China.
| | - Na Yang
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Shandong University, 250014, Jinan, China.
| | - Yugen Shi
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Shandong University, 250014, Jinan, China.
| | - Suhua Yan
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Shandong University, 250014, Jinan, China.
| |
Collapse
|
33
|
Cardiac Sympathetic Nerve Sprouting and Susceptibility to Ventricular Arrhythmias after Myocardial Infarction. Cardiol Res Pract 2015; 2015:698368. [PMID: 26793403 PMCID: PMC4697091 DOI: 10.1155/2015/698368] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 12/02/2015] [Indexed: 12/04/2022] Open
Abstract
Ventricular arrhythmogenesis is thought to be a common cause of sudden cardiac death following myocardial infarction (MI). Nerve remodeling as a result of MI is known to be an important genesis of life-threatening arrhythmias. It is hypothesized that neural modulation might serve as a therapeutic option of malignant arrhythmias. In fact, left stellectomy or β-blocker therapy is shown to be effective in the prevention of ventricular tachyarrhythmias (VT), ventricular fibrillation (VF), and sudden cardiac death (SCD) after MI both in patients and in animal models. Results from decades of research already evidenced a positive relationship between abnormal nerve density and ventricular arrhythmias after MI. In this review, we summarized the molecular mechanisms involved in cardiac sympathetic rejuvenation and mechanisms related to sympathetic hyperinnervation and arrhythmogenesis after MI and analyzed the potential therapeutic implications of nerve sprouting modification for ventricular arrhythmias and SCD control.
Collapse
|
34
|
Yu L, Wang S, Zhou X, Wang Z, Huang B, Liao K, Saren G, Chen M, Po SS, Jiang H. Chronic Intermittent Low-Level Stimulation of Tragus Reduces Cardiac Autonomic Remodeling and Ventricular Arrhythmia Inducibility in a Post-Infarction Canine Model. JACC Clin Electrophysiol 2015; 2:330-339. [PMID: 29766893 DOI: 10.1016/j.jacep.2015.11.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 10/27/2015] [Accepted: 11/26/2015] [Indexed: 11/24/2022]
Abstract
OBJECTIVES This study investigated whether chronic low-level tragus stimulation (LL-TS) inhibits cardiac sympathetic remodeling and reduces ventricular arrhythmia inducibility in a post-infarction canine model. BACKGROUND Low-level vagal stimulation has been shown to suppress cardiac sympathetic activity, which plays an important role in ventricular arrhythmia after myocardial infarction (MI). Our previous studies reported a noninvasive approach to deliver vagal stimulation by transcutaneous stimulation at the tragus, where the auricular branch of the vagus nerve is located. METHODS Twenty-two beagles were randomized to the normal control (n = 6), MI (left anterior descending coronary artery ligation without LL-TS [n = 8]), and TS (MI plus LL-TS [n = 8]) groups. LL-TS was delivered 2 h each day at 80% below the threshold which slowed sinus rate. RESULTS At 2-month follow-up, LL-TS was found to significantly reduce ventricular arrhythmia inducibility (arrhythmia score: 1.8 ± 0.8 vs. 3.6 ± 0.7, p < 0.01, compared to the MI group), decreased left stellate ganglion (LSG) activity (frequency: 32 ± 15 vs. 112 ± 29 impulses/s; and amplitude: 0.15 ± 0.12 mV vs. 0.38 ± 0.12 mV, compared to MI group), and attenuated cardiac sympathetic remodeling induced by chronic MI. The nerve growth factor (NGF) protein was down-regulated, whereas the small conductance calcium-activated potassium channel type2 (SK2) protein was up-regulated in the LSG by chronic LL-TS. CONCLUSIONS Chronic LL-TS could reduce the ventricular arrhythmia inducibility, LSG neural activity and sympathetic neural remodeling in a post-infarction canine model. Down-regulation of NGF protein and up-regulation of SK2 protein in the LSG contribute to the salutary effects of LL-TS.
Collapse
Affiliation(s)
- Lilei Yu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Songyun Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xiaoya Zhou
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Zhuo Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Bing Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Kai Liao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Gaowa Saren
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Mingxian Chen
- Department of Cardiology, the Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Sunny S Po
- Heart Rhythm Institute, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA.
| | - Hong Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.
| |
Collapse
|
35
|
Yin J, Hu H, Li X, Xue M, Cheng W, Wang Y, Xuan Y, Li X, Yang N, Shi Y, Yan S. Inhibition of Notch signaling pathway attenuates sympathetic hyperinnervation together with the augmentation of M2 macrophages in rats post-myocardial infarction. Am J Physiol Cell Physiol 2015; 310:C41-53. [PMID: 26491050 DOI: 10.1152/ajpcell.00163.2015] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 10/13/2015] [Indexed: 02/05/2023]
Abstract
Inflammation-dominated sympathetic sprouting adjacent to the necrotic region following myocardial infarction (MI) has been implicated in the etiology of arrhythmias resulting in sudden cardiac death; however, the mechanisms responsible remain to be elucidated. Although being a key immune mediator, the role of Notch has yet to be explored. We investigated whether Notch regulates macrophage responses to inflammation and affects cardiac sympathetic reinnervation in rats undergoing MI. MI was induced by coronary artery ligation. A high level of Notch intracellular domain was observed in the macrophages that infiltrated the infarct area at 3 days post-MI. The administration of the Notch inhibitor N-N-(3,5-difluorophenacetyl-L-alanyl)-S-phenylglycine-t-butyl ester (DAPT) (intravenously 30 min before MI and then daily until death) decreased the number of macrophages and significantly increased the M2 macrophage activation profile in the early stages and attenuated the expression of nerve growth factor (NGF). Eventually, NGF-induced sympathetic hyperinnervation was blunted, as assessed by the immunofluorescence of tyrosine hydroxylase. At 7 days post-MI, the arrhythmia score of programmed electric stimulation in the vehicle-treated infarcted rats was higher than that in rats treated with DAPT. Further deterioration in cardiac function and decreases in the plasma levels of TNF-α and IL-1β were also detected. In vitro studies revealed that LPS/IFN-γ upregulated the surface expression of NGF in M1 macrophages in a Notch-dependent manner. We concluded that Notch inhibition during the acute inflammatory response phase is associated with the downregulation of NGF, probably through a macrophage-dependent pathway, thus preventing the process of sympathetic hyperinnervation.
Collapse
Affiliation(s)
- Jie Yin
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Hesheng Hu
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Xiaolu Li
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Mei Xue
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Wenjuan Cheng
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Ye Wang
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Yongli Xuan
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Xinran Li
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Na Yang
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Yugen Shi
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Suhua Yan
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| |
Collapse
|
36
|
Li Y, Li L, Dong F, Guo L, Hou Y, Hu H, Yan S, Zhou X, Liao L, Allen TD, Liu JU. Plasma von Willebrand factor level is transiently elevated in a rat model of acute myocardial infarction. Exp Ther Med 2015; 10:1743-1749. [PMID: 26640545 PMCID: PMC4665708 DOI: 10.3892/etm.2015.2721] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Accepted: 08/07/2015] [Indexed: 01/17/2023] Open
Abstract
The von Willebrand factor (vWF) is a plasma glycoprotein that plays an essential role in hemostasis by supporting platelet adhesion and thrombus formation in response to vascular injury. Plasma levels of vWF are an independent risk factor for patients with acute myocardial infarction (AMI); however, clinical data have demonstrated a marked variation of vWF levels in patients with AMI, the reason for which has not yet been identified. In the present study, a rat model of ST-segment elevation AMI was established, and cardiac and peripheral blood was collected for a time-course examination of the plasma levels of vWF and tumor necrosis factor-α (TNF-α). The level of vWF in the blood plasma increased, peaked at 1 h and decreased to normal levels by day 7 following AMI, while the level of TNF-α peaked at 24 h and remained elevated until day 7. The effects of TNF-α on vWF secretion and expression were examined in cultured human umbilical vascular endothelial cells (HUVECs). TNF-α treatment increased vWF secretion from the HUVECs but inhibited the mRNA and protein expression of vWF in the HUVECs. These results indicate that vWF secretion from endothelial cells is transiently elevated following AMI, and then decreases as the expression of vWF is inhibited by TNF-α. The present study increases the understanding of the pathophysiology of vWF and indicates that the determination of vWF levels may be useful in the clinical evaluation of AMI.
Collapse
Affiliation(s)
- Yan Li
- Children's Health Care Center, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, P.R. China
| | - Liqun Li
- Laboratory of Microvascular Medicine, Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, P.R. China
| | - Fengyun Dong
- Laboratory of Microvascular Medicine, Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, P.R. China
| | - Ling Guo
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, P.R. China
| | - Yinglong Hou
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, P.R. China
| | - Hesheng Hu
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, P.R. China
| | - Suhua Yan
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, P.R. China
| | - Xiaojun Zhou
- Department of Endocrinology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, P.R. China
| | - Lin Liao
- Department of Endocrinology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, P.R. China
| | - Thaddeus D Allen
- G.W. Hooper Research Foundation, University of California at San Francisco, San Francisco, CA 94143-0552, USA
| | - J U Liu
- Laboratory of Microvascular Medicine, Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, P.R. China
| |
Collapse
|
37
|
Zheng LR, Zhang YY, Han J, Sun ZW, Zhou SX, Zhao WT, Wang LH. Nerve growth factor rescues diabetic mice heart after ischemia/reperfusion injury via up-regulation of the TRPV1 receptor. J Diabetes Complications 2015; 29:323-8. [PMID: 25650182 DOI: 10.1016/j.jdiacomp.2015.01.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 01/06/2015] [Accepted: 01/10/2015] [Indexed: 11/22/2022]
Abstract
AIMS Nerve growth factor (NGF), a member of the neurotrophin family, plays an essential role in diabetic neuropathy and ischemic heart disease. In the present study, we explored the potential role of NGF and the involvement of TRPV1 receptor in isolated diabetic mouse hearts following ischemia/reperfusion (I/R) injury. METHODS Adenovirus-mediated NGF gene delivery was performed on diabetic and sham hearts 8weeks after streptozotocin treatment. The sciatic nerve conduction velocity was recorded using a biological signal acquisition system. Forty-eight hours after heart surgery, mice were subjected to I/R injury using a Langendorff system. Several cardiac parameters and the expression of associated molecules were analyzed during the experiment. RESULTS The sciatic nerve conduction velocity was reduced in diabetic mice compared with that in control mice. Decreased expression of NGF, TRPV1, and the downstream neurotransmitters CGRP and SP was observed in the diabetic hearts. Adenovirus-mediated NGF overexpression reversed the reduction in TRPV1 and downstream neuropeptides, resulting in improved cardiac recovery post-I/R injury in diabetic hearts. The protective effect of NGF was abolished by CGRP8-37 (a selective CGRP antagonist), while it was preserved by low-dose capsaicin. CONCLUSIONS The NGF-induced up-regulation of TRPV1 via the increased synthesis and release of endogenous CGRP leads to improved cardiac performance in I/R-injured diabetic heart.
Collapse
Affiliation(s)
- Liang-Rong Zheng
- Department of Cardiovascular Sciences, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Yuan-Yuan Zhang
- Department of Cardiovascular Sciences, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Jie Han
- Department of Cardiovascular Sciences, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Ze-Wei Sun
- Department of Cardiovascular Sciences, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Shi-Xian Zhou
- Department of Geriatrics, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Wen-Ting Zhao
- Department of Cardiovascular Sciences, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Li-Hong Wang
- Department of Cardiovascular Sciences, Zhejiang Provincial People's Hospital, Hangzhou 310014, China.
| |
Collapse
|