1
|
Pauzuolyte V, Patel A, Wawrzynski JR, Ingham NJ, Leong YC, Karda R, Bitner‐Glindzicz M, Berger W, Waddington SN, Steel KP, Sowden JC. Systemic gene therapy rescues retinal dysfunction and hearing loss in a model of Norrie disease. EMBO Mol Med 2023; 15:e17393. [PMID: 37642150 PMCID: PMC10565640 DOI: 10.15252/emmm.202317393] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/31/2023] Open
Abstract
Deafness affects 5% of the world's population, yet there is a lack of treatments to prevent hearing loss due to genetic causes. Norrie disease is a recessive X-linked disorder, caused by NDP gene mutation. It manifests as blindness at birth and progressive sensorineural hearing loss, leading to debilitating dual sensory deprivation. To develop a gene therapy, we used a Norrie disease mouse model (Ndptm1Wbrg ), which recapitulates abnormal retinal vascularisation and progressive hearing loss. We delivered human NDP cDNA by intravenous injection of adeno-associated viral vector (AAV)9 at neonatal, juvenile and young adult pathological stages and investigated its therapeutic effects on the retina and cochlea. Neonatal treatment prevented the death of the sensory cochlear hair cells and rescued cochlear disease biomarkers as demonstrated by RNAseq and physiological measurements of auditory function. Retinal vascularisation and electroretinograms were restored to normal by neonatal treatment. Delivery of NDP gene therapy after the onset of the degenerative inner ear disease also ameliorated the cochlear pathology, supporting the feasibility of a clinical treatment for progressive hearing loss in people with Norrie disease.
Collapse
Affiliation(s)
- Valda Pauzuolyte
- UCL Great Ormond Street Institute of Child Health, University College LondonLondonUK
- NIHR Great Ormond Street Hospital Biomedical Research CentreLondonUK
| | - Aara Patel
- UCL Great Ormond Street Institute of Child Health, University College LondonLondonUK
- NIHR Great Ormond Street Hospital Biomedical Research CentreLondonUK
| | - James R Wawrzynski
- UCL Great Ormond Street Institute of Child Health, University College LondonLondonUK
- NIHR Great Ormond Street Hospital Biomedical Research CentreLondonUK
| | - Neil J Ingham
- Wolfson Centre for Age‐Related Diseases, King's College LondonLondonUK
| | - Yeh Chwan Leong
- UCL Great Ormond Street Institute of Child Health, University College LondonLondonUK
- NIHR Great Ormond Street Hospital Biomedical Research CentreLondonUK
| | - Rajvinder Karda
- EGA Institute for Woman's Health, University College LondonLondonUK
| | - Maria Bitner‐Glindzicz
- UCL Great Ormond Street Institute of Child Health, University College LondonLondonUK
- NIHR Great Ormond Street Hospital Biomedical Research CentreLondonUK
| | - Wolfgang Berger
- Institute of Medical Molecular Genetics, University of ZürichZürichSwitzerland
- Zurich Center for Integrative Human Physiology (ZIHP), University of ZürichZürichSwitzerland
- Neuroscience Center Zurich, University and ETH Zurich, University of ZürichZürichSwitzerland
| | - Simon N Waddington
- EGA Institute for Woman's Health, University College LondonLondonUK
- MRC Antiviral Gene Therapy Research Unit, Faculty of Health SciencesUniversity of the WitswatersrandJohannesburgSouth Africa
| | - Karen P Steel
- Wolfson Centre for Age‐Related Diseases, King's College LondonLondonUK
| | - Jane C Sowden
- UCL Great Ormond Street Institute of Child Health, University College LondonLondonUK
- NIHR Great Ormond Street Hospital Biomedical Research CentreLondonUK
| |
Collapse
|
2
|
Yoshida YG, Yan S, Xu H, Yang J. Novel Metal Nanomaterials to Promote Angiogenesis in Tissue Regeneration. ENGINEERED REGENERATION 2023; 4:265-276. [PMID: 37234753 PMCID: PMC10207714 DOI: 10.1016/j.engreg.2023.03.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023] Open
Abstract
Angiogenesis-the formation of new blood vessels from existing blood vessels-has drawn significant attention in medical research. New techniques have been developed to control proangiogenic factors to obtain desired effects. Two important research areas are 1) understanding cellular mechanisms and signaling pathways involved in angiogenesis and 2) discovering new biomaterials and nanomaterials with proangiogenic effects. This paper reviews recent developments in controlling angiogenesis in the context of regenerative medicine and wound healing. We focus on novel proangiogenic materials that will advance the field of regenerative medicine. Specifically, we mainly focus on metal nanomaterials. We also discuss novel technologies developed to carry these proangiogenic inorganic molecules efficiently to target sites. We offer a comprehensive overview by combining existing knowledge regarding metal nanomaterials with novel developments that are still being refined to identify new nanomaterials.
Collapse
Affiliation(s)
- Yuki G. Yoshida
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Su Yan
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Hui Xu
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Jian Yang
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
3
|
Qin C, Zhang H, Chen L, Zhang M, Ma J, Zhuang H, Huan Z, Xiao Y, Wu C. Cell-Laden Scaffolds for Vascular-Innervated Bone Regeneration. Adv Healthc Mater 2023; 12:e2201923. [PMID: 36748277 DOI: 10.1002/adhm.202201923] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 12/22/2022] [Indexed: 02/08/2023]
Abstract
For regeneration of highly vascularized and innervated tissues, like bone, simultaneous ingrowth of blood vessels and nerves is essential but largely neglected. To address this issue, a "pre-angiogenic" cell-laden scaffold with durable angiogenic functions is prepared according to the bioactivities of silicate bioceramics and the instructive effects of vascular cells on neurogenesis and bone repair. Compared with traditional cell-free scaffolds, the prepared cell-laden scaffolds printed with active cells and bioactive inks can support long-term cell survival and growth for three weeks. The long-lived scaffolds exhibited durable angiogenic capability both in vitro and in vivo. The pre-angiogenic scaffolds can induce the neurogenetic differentiation of neural cells and the osteogenic differentiation of mesenchymal stem cells by the synergistic effects of released bioactive ions and the ability of vascular cells to attract neurons. The enhanced bone regeneration with both vascularization and innervation is attributed to these physiological functions of the pre-angiogenic cell-laden scaffolds, which is defined as "vascular-innervated" bone regeneration. It is suggested that the concept of "vascular-innervated scaffolds" may represent the future direction of biomaterials for complex tissue/organ regeneration.
Collapse
Affiliation(s)
- Chen Qin
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Hongjian Zhang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Lei Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Meng Zhang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Jingge Ma
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Hui Zhuang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Zhiguang Huan
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Yin Xiao
- School of Mechanical, Medical & Process Engineering, Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, Queensland, 4000, Australia
| | - Chengtie Wu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| |
Collapse
|
4
|
Fluoxetine plus lithium for treatment of mental health impairment in Long Covid. DISCOVER MENTAL HEALTH 2023; 3:1. [PMID: 36618714 PMCID: PMC9810252 DOI: 10.1007/s44192-022-00027-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 12/16/2022] [Indexed: 01/05/2023]
Abstract
Purposes (1) To summarize the mental conditions that may accompany persistent symptoms following acute infection by SARS-CoV-2, often termed Long Covid; (2) to formulate treatment based upon the brain cells that are dominantly affected. Methods (1) Review the reports relating to the mental symptoms occurring in Long Covid. (2) Review the drugs that address the brain cells affected in Long Covid, and suggest pharmacotherapy for those patients whose response to psychotherapy is suboptimal. Results Long Covid affects ~ 10% of patients infected by SARS-CoV-2, and mental symptoms affect ~ 20% of persons with Long Covid. The brain cell-types that have been demonstrated as dominantly affected in Long Covid are astrocytes, oligodendrocytes, neurons, endothelial cells/pericytes, and microglia. Lithium and fluoxetine each address all of those four cell-types. Low dosage of each is likely to be well-tolerated and to cause neither clinically important adverse events (AE) nor serious adverse events (SAE). Conclusion For those patients whose response to psychotherapy is suboptimal, lithium and fluoxetine should be administered in combination for both depth of benefit and reduction of dosages.
Collapse
|
5
|
Selective Activation of the Wnt-Signaling Pathway as a Novel Therapy for the Treatment of Diabetic Retinopathy and Other Retinal Vascular Diseases. Pharmaceutics 2022; 14:pharmaceutics14112476. [PMID: 36432666 PMCID: PMC9697247 DOI: 10.3390/pharmaceutics14112476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/07/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022] Open
Abstract
Retinal ischemia, often associated with various disorders such as diabetic retinopathy (DR), retinal vein occlusion, glaucoma, optic neuropathies, stroke, and other retinopathies, is a major cause of visual impairment and blindness worldwide. As proper blood supply to the retina is critical to maintain its high metabolic demand, any impediment to blood flow can lead to a decrease in oxygen supply, resulting in retinal ischemia. In the pathogenesis of DR, including diabetic macular edema (DME), elevated blood glucose leads to blood-retina barrier (BRB) disruptions, vascular leakage, and capillary occlusion and dropouts, causing insufficient delivery of oxygen to the retina, and ultimately resulting in visual impairment. Other potential causes of DR include neuronal dysfunction in the absence of vascular defect, genetic, and environmental factors. The exact disease progression remains unclear and varies from patient to patient. Vascular leakage leading to edema clearly links to visual impairment and remains an important target for therapy. Despite recent advances in the treatment of DME and DR with anti-VEGFs, effective therapies with new mechanisms of action to address current treatment limitations regarding vessel regeneration and reperfusion of ischemic retinal areas are still needed. The Wnt signaling pathway plays a critical role in proper vascular development and maintenance in the retina, and thus provides a novel therapeutic approach for the treatment of diabetic and other retinopathies. In this review, we summarize the potential of this pathway to address treatment gaps with current therapies, its promise as a novel and potentially disease modifying therapy for patients with DR and opportunities in other retinal vascular diseases.
Collapse
|
6
|
Farmani AR, Salmeh MA, Golkar Z, Moeinzadeh A, Ghiasi FF, Amirabad SZ, Shoormeij MH, Mahdavinezhad F, Momeni S, Moradbeygi F, Ai J, Hardy JG, Mostafaei A. Li-Doped Bioactive Ceramics: Promising Biomaterials for Tissue Engineering and Regenerative Medicine. J Funct Biomater 2022; 13:162. [PMID: 36278631 PMCID: PMC9589997 DOI: 10.3390/jfb13040162] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/18/2022] [Accepted: 09/20/2022] [Indexed: 12/03/2022] Open
Abstract
Lithium (Li) is a metal with critical therapeutic properties ranging from the treatment of bipolar depression to antibacterial, anticancer, antiviral and pro-regenerative effects. This element can be incorporated into the structure of various biomaterials through the inclusion of Li chloride/carbonate into polymeric matrices or being doped in bioceramics. The biocompatibility and multifunctionality of Li-doped bioceramics present many opportunities for biomedical researchers and clinicians. Li-doped bioceramics (capable of immunomodulation) have been used extensively for bone and tooth regeneration, and they have great potential for cartilage/nerve regeneration, osteochondral repair, and wound healing. The synergistic effect of Li in combination with other anticancer drugs as well as the anticancer properties of Li underline the rationale that bioceramics doped with Li may be impactful in cancer treatments. The role of Li in autophagy may explain its impact in regenerative, antiviral, and anticancer research. The combination of Li-doped bioceramics with polymers can provide new biomaterials with suitable flexibility, especially as bio-ink used in 3D printing for clinical applications of tissue engineering. Such Li-doped biomaterials have significant clinical potential in the foreseeable future.
Collapse
Affiliation(s)
- Ahmad Reza Farmani
- Tissue Engineering and Applied Cell Sciences Department, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran 14166-34793, Iran
- Tissue Engineering Department, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa 74615-168, Iran
- Students’ Scientific Research Center, Tehran University of Medical Sciences, Tehran 14166-34793, Iran
| | - Mohammad Ali Salmeh
- Department of Biotechnology, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran 14155-6619, Iran
| | - Zahra Golkar
- Department of Midwifery, Firoozabad Branch, Islamic Azad University, Firoozabad 74715-117, Iran
| | - Alaa Moeinzadeh
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 14496-14535, Iran
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 14496-14535, Iran
| | - Farzaneh Farid Ghiasi
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 14496-14535, Iran
| | - Sara Zamani Amirabad
- Department of Chemical Engineering, Faculty of Engineering, Yasouj University, Yasouj 75918-74934, Iran
| | - Mohammad Hasan Shoormeij
- Emergency Medicine Department, Shariati Hospital, Tehran University of Medical Sciences, Tehran 14166-34793, Iran
| | - Forough Mahdavinezhad
- Anatomy Department, School of Medicine, Tehran University of Medical Sciences, Tehran 14166-34793, Iran
- Department of Infertility, Velayat Hospital, Qazvin University of Medical Sciences, Qazvin 34199-15315, Iran
| | - Simin Momeni
- Chemistry Department, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz 83151-61355, Iran
| | - Fatemeh Moradbeygi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran
| | - Jafar Ai
- Tissue Engineering and Applied Cell Sciences Department, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran 14166-34793, Iran
| | - John G. Hardy
- Department of Chemistry, Faraday Building, Lancaster University, Lancaster LA1 4YB, UK
- Materials Science Institute, Lancaster University, Lancaster LA1 4YW, UK
| | - Amir Mostafaei
- Department of Mechanical, Materials, and Aerospace Engineering, Illinois Institute of Technology, 10 W 32nd Street, Chicago, IL 60616, USA
| |
Collapse
|
7
|
Chang KC, Liu PF, Chang CH, Lin YC, Chen YJ, Shu CW. The interplay of autophagy and oxidative stress in the pathogenesis and therapy of retinal degenerative diseases. Cell Biosci 2022; 12:1. [PMID: 34980273 PMCID: PMC8725349 DOI: 10.1186/s13578-021-00736-9] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 12/19/2021] [Indexed: 12/27/2022] Open
Abstract
Oxidative stress is mainly caused by intracellular reactive oxygen species (ROS) production, which is highly associated with normal physiological homeostasis and the pathogenesis of diseases, particularly ocular diseases. Autophagy is a self-clearance pathway that removes oxidized cellular components and regulates cellular ROS levels. ROS can modulate autophagy activity through transcriptional and posttranslational mechanisms. Autophagy further triggers transcription factor activation and degrades impaired organelles and proteins to eliminate excessive ROS in cells. Thus, autophagy may play an antioxidant role in protecting ocular cells from oxidative stress. Nevertheless, excessive autophagy may cause autophagic cell death. In this review, we summarize the mechanisms of interaction between ROS and autophagy and their roles in the pathogenesis of several ocular diseases, including glaucoma, age-related macular degeneration (AMD), diabetic retinopathy (DR), and optic nerve atrophy, which are major causes of blindness. The autophagy modulators used to treat ocular diseases are further discussed. The findings of the studies reviewed here might shed light on the development and use of autophagy modulators for the future treatment of ocular diseases.
Collapse
Affiliation(s)
- Kun-Che Chang
- Department of Ophthalmology and Neurobiology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Pei-Feng Liu
- Department of Biomedical Science and Environmental Biology, PhD Program in Life Science, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chia-Hsuan Chang
- Institute of BioPharmaceutical Sciences, National Sun Yat-Sen University, No. 70, Lianhai Rd., Gushan Dist., Kaohsiung, 80424, Taiwan
| | - Ying-Cheng Lin
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Yen-Ju Chen
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan.,Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Chih-Wen Shu
- Institute of BioPharmaceutical Sciences, National Sun Yat-Sen University, No. 70, Lianhai Rd., Gushan Dist., Kaohsiung, 80424, Taiwan.
| |
Collapse
|
8
|
Widholz B, Westhauser F. Biomaterials for angiogenesis applications in an orthopedic context. BIOMATERIALS FOR VASCULOGENESIS AND ANGIOGENESIS 2022:415-438. [DOI: 10.1016/b978-0-12-821867-9.00016-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
9
|
Kuffler DP. Can lithium enhance the extent of axon regeneration and neurological recovery following peripheral nerve trauma? Neural Regen Res 2021; 17:948-952. [PMID: 34558506 PMCID: PMC8552832 DOI: 10.4103/1673-5374.324830] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The clinical “gold standard” technique for attempting to restore function to nerves with a gap is to bridge the gap with sensory autografts. However, autografts induce good to excellent recovery only across short nerve gaps, in young patients, and when repairs are performed a short time post nerve trauma. Even under the best of conditions, < 50% of patients recover good recovery. Although many alternative techniques have been tested, none is as effective as autografts. Therefore, alternative techniques are required that increase the percentage of patients who recover function and the extent of their recovery. This paper examines the actions of lithium, and how it appears to trigger all the cellular and molecular events required to promote axon regeneration, and how both in animal models and clinically, lithium administration enhances both the extent of axon regeneration and neurological recovery. The paper proposes more extensive clinical testing of lithium for its ability and reliability to increase the extent of axon regeneration and functional recovery.
Collapse
Affiliation(s)
- Damien P Kuffler
- Institute of Neurobiology, Medical Sciences Campus, University of Puerto Rico, San Juan, PR, USA
| |
Collapse
|
10
|
Mani S, Radhakrishnan S, Cheramangalam RN, Harkar S, Rajendran S, Ramanan N. Shh-Mediated Increase in β-Catenin Levels Maintains Cerebellar Granule Neuron Progenitors in Proliferation. THE CEREBELLUM 2021; 19:645-664. [PMID: 32495183 DOI: 10.1007/s12311-020-01138-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cerebellar granule neuron progenitors (CGNPs) give rise to the cerebellar granule neurons in the developing cerebellum. Generation of large number of these neurons is made possible by the high proliferation rate of CGNPs in the external granule layer (EGL) in the dorsal cerebellum. Here, we show that upregulation of β-catenin can maintain murine CGNPs in a state of proliferation. Further, we show that β-catenin mRNA and protein levels can be regulated by the mitogen Sonic hedgehog (Shh). Shh signaling led to an increase in the level of the transcription factor N-myc. N-myc was found to bind the β-catenin promoter, and the increase in β-catenin mRNA and protein levels could be prevented by blocking N-myc upregulation downstream of Shh signaling. Furthermore, blocking Wingless-type MMTV integration site (Wnt) signaling by Wnt signaling pathway inhibitor Dickkopf 1 (Dkk-1) in the presence of Shh did not prevent the upregulation of β-catenin. We propose that in culture, Shh signaling regulates β-catenin expression through N-myc and results in increased CGNP proliferation.
Collapse
Affiliation(s)
- Shyamala Mani
- Centre for Neuroscience, Indian Institute of Science, Bengaluru, 560012, India. .,Curadev Pharma, Pvt. Ltd., B-87, Sector 83, Noida, Uttar Pradesh, 201305, India. .,Université de Paris, Inserm UMR 1141 NeuroDiderot, F-75019, Paris, France.
| | | | | | - Shalini Harkar
- Centre for Neuroscience, Indian Institute of Science, Bengaluru, 560012, India
| | - Samyutha Rajendran
- Centre for Neuroscience, Indian Institute of Science, Bengaluru, 560012, India
| | | |
Collapse
|
11
|
Yuan J, Hou Q, Zhong L, Dai X, Lu Q, Li M, Fu X. Sustained release of inhibitor from bionic scaffolds for wound healing and functional regeneration. Biomater Sci 2020; 8:5647-5655. [PMID: 33049013 DOI: 10.1039/d0bm00929f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Small molecules play remarkable roles in promoting tissue regeneration, but are limited by their burst release. Small molecules such as deferoxamine (DFO) have been released slowly from silk hydrogels and stimulated angiogenesis and wound healing, but failed to achieve functional recovery of skin. Various bioactive molecules are required to create a suitable niche for better skin regeneration by controlling their release behaviors. Herein, a small molecule SB216763, a GSK-3 inhibitor, was loaded on silk fibroin nanofibers (SNF), and then mixed with chitosan (CS) to prepare the small molecule-loaded composite bionic scaffolds (CSNF-SB). Given the interaction of SNF and SB216763, the sustained release of SB216763 for more than 21 days was achieved for SNF and CSNF-SB composite scaffolds. Compared to drug-free CSNF scaffolds, CSNF-SB showed better cell adhesion and proliferation capacity, suggesting bioactivity. The upregulated expression of β-catenin in fibroblasts in vitro revealed that the released small molecules maintained their function in composite scaffolds. Quicker and better wound healing was realized with the drug-loaded scaffolds, which was significantly superior to that treated with drug-free scaffolds. Unlike the DFO-loaded silk hydrogel system, hair follicle neogenesis was also found in the drug-loaded-scaffold treatment wounds, demonstrating functional recovery. Therefore, silk nanofibers as versatile carriers for different small bioactive molecules could be used to fabricate scaffolds with optimized niches and then achieve functional recovery of tissues. The small molecule-loaded bionic scaffolds have a promising future in skin tissue regeneration.
Collapse
Affiliation(s)
- Jifang Yuan
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College, China.
| | | | | | | | | | | | | |
Collapse
|
12
|
Nezamoleslami S, Sheibani M, Mumtaz F, Esmaeili J, Shafaroodi H, Dehpour AR. Lithium reverses the effect of opioids on eNOS/nitric oxide pathway in human umbilical vein endothelial cells. Mol Biol Rep 2020; 47:6829-6840. [PMID: 32888132 DOI: 10.1007/s11033-020-05740-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 08/25/2020] [Indexed: 11/30/2022]
Abstract
The main challenge of pain management with opioids is development of acute and chronic analgesic tolerance. Several studies on neuronal cells have focused on the molecular mechanisms involved in tolerance such as cyclic AMP (cAMP) activation, and nitric oxide (NO) pathway. However, the effects of opioids on non-neuronal cells and tolerance development have been poorly investigated. Lithium chloride is a glycogen synthase kinase 3β (GSK-3β) inhibitor and exert its effects through modulation of nitric oxide pathway. In this study we examined the effect of lithium on acute/chronic morphine and methadone administration in endothelial cells which express mu opioid receptors. Human umbilical vein endothelial cells (HUVECs) were treated with different doses of morphine, methadone, and lithium for six and 48 h. Then we evaluated cell viability, nitrite and cyclic AMP levels, as well as the expression of endothelial nitric oxide synthase (eNOS) protein using Immunocytochemistry (ICC) assay and phosphorylated GSK-3β enzyme by western blot analysis in cells. Both chronic morphine and methadone treatment increased NO level and eNOS expression in HUVECs. Morphine induced cAMP overproduction after 48 h exposure with cells. Lithium pretreatment (10 mM) in both morphine and methadone received groups significantly reduced nitrite and cAMP levels as well as eNOS expression as compared to the control. The decreased amount of phospho GSK-3β due to the opioid exposure was increased following lithium treatment. Tolerance like pattern may occur in non-neuronal cells with opioid receptors and this study clearly revealed the attenuation of morphine and methadone tolerance like behavior by lithium treatment in HUVECs.
Collapse
Affiliation(s)
- Sadaf Nezamoleslami
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, P.O. Box 13145-784, Tehran, Iran
- Experimental Medicine Research Center, Tehran University of Medical Sciences, P.O. Box 13145-784, Tehran, Iran
| | - Mohammad Sheibani
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, P.O. Box 13145-784, Tehran, Iran
- Experimental Medicine Research Center, Tehran University of Medical Sciences, P.O. Box 13145-784, Tehran, Iran
| | - Faiza Mumtaz
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, P.O. Box 13145-784, Tehran, Iran
- Experimental Medicine Research Center, Tehran University of Medical Sciences, P.O. Box 13145-784, Tehran, Iran
| | - Jamileh Esmaeili
- Department of Biology, Islamic Azad University, P.O. Box 1477893855, Tehran, Iran
| | - Hamed Shafaroodi
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, P.O. Box 13145-784, Tehran, Iran.
| | - Ahmad Reza Dehpour
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, P.O. Box 13145-784, Tehran, Iran.
- Experimental Medicine Research Center, Tehran University of Medical Sciences, P.O. Box 13145-784, Tehran, Iran.
| |
Collapse
|
13
|
Kargozar S, Baino F, Hamzehlou S, Hamblin MR, Mozafari M. Nanotechnology for angiogenesis: opportunities and challenges. Chem Soc Rev 2020; 49:5008-5057. [PMID: 32538379 PMCID: PMC7418030 DOI: 10.1039/c8cs01021h] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Angiogenesis plays a critical role within the human body, from the early stages of life (i.e., embryonic development) to life-threatening diseases (e.g., cancer, heart attack, stroke, wound healing). Many pharmaceutical companies have expended huge efforts on both stimulation and inhibition of angiogenesis. During the last decade, the nanotechnology revolution has made a great impact in medicine, and regulatory approvals are starting to be achieved for nanomedicines to treat a wide range of diseases. Angiogenesis therapies involve the inhibition of angiogenesis in oncology and ophthalmology, and stimulation of angiogenesis in wound healing and tissue engineering. This review aims to summarize nanotechnology-based strategies that have been explored in the broad area of angiogenesis. Lipid-based, carbon-based and polymeric nanoparticles, and a wide range of inorganic and metallic nanoparticles are covered in detail. Theranostic and imaging approaches can be facilitated by nanoparticles. Many preparations have been reported to have a bimodal effect where they stimulate angiogenesis at low dose and inhibit it at higher doses.
Collapse
Affiliation(s)
- Saeid Kargozar
- Tissue Engineering Research Group (TERG), Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, 917794-8564 Mashhad, Iran
| | - Francesco Baino
- Institute of Materials Physics and Engineering, Applied Science and Technology Department, Politecnico di Torino, Corso Duca degli Abruzzi 24, 101 29 Torino, Italy
| | - Sepideh Hamzehlou
- Hematology/Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Michael R. Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Dermatology, Harvard Medical School, Boston, MA 02115, USA
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
| | - Masoud Mozafari
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
14
|
Díaz-Coránguez M, Lin CM, Liebner S, Antonetti DA. Norrin restores blood-retinal barrier properties after vascular endothelial growth factor-induced permeability. J Biol Chem 2020; 295:4647-4660. [PMID: 32086377 DOI: 10.1074/jbc.ra119.011273] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 02/11/2020] [Indexed: 12/25/2022] Open
Abstract
Vascular endothelial growth factor (VEGF) contributes to blood-retinal barrier (BRB) dysfunction in several blinding eye diseases, including diabetic retinopathy. Signaling via the secreted protein norrin through the frizzled class receptor 4 (FZD4)/LDL receptor-related protein 5-6 (LRP5-6)/tetraspanin 12 (TSPAN12) receptor complex is required for developmental vascularization and BRB formation. Here, we tested the hypothesis that norrin restores BRB properties after VEGF-induced vascular permeability in diabetic rats or in animals intravitreally injected with cytokines. Intravitreal co-injection of norrin with VEGF completely ablated VEGF-induced BRB permeability to Evans Blue-albumin. Likewise, 5-month diabetic rats exhibited increased permeability of FITC-albumin, and a single norrin injection restored BRB properties. These results were corroborated in vitro, where co-stimulation of norrin with VEGF or stimulation of norrin after VEGF exposure restored barrier properties, indicated by electrical resistance or 70-kDa RITC-dextran permeability in primary endothelial cell culture. Interestingly, VEGF promoted norrin signaling by increasing the FZD4 co-receptor TSPAN12 at cell membranes in an MAPK/ERK kinase (MEK)/ERK-dependent manner. Norrin signaling through β-catenin was required for BRB restoration, but glycogen synthase kinase 3 α/β (GSK-3α/β) inhibition did not restore BRB properties. Moreover, levels of the tight junction protein claudin-5 were increased with norrin and VEGF or with VEGF alone, but both norrin and VEGF were required for enriched claudin-5 localization at the tight junction. These results suggest that VEGF simultaneously induces vascular permeability and promotes responsiveness to norrin. Norrin, in turn, restores tight junction complex organization and BRB properties in a β-catenin-dependent manner.
Collapse
Affiliation(s)
- Mónica Díaz-Coránguez
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan 48105
| | - Cheng-Mao Lin
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan 48105
| | - Stefan Liebner
- Institute of Neurology (Edinger Institute), University Hospital, Goethe University, 60538 Frankfurt, Germany
| | - David A Antonetti
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan 48105
| |
Collapse
|
15
|
Abstract
Ischemic retinal diseases can be caused by various pathologies, which often lead to formation of preretinal neovascularization. A very common and well-established model to study normal as well as pathological angiogenic mechanisms in retina is the oxygen-induced retinopathy model in mice. This model is based on oxygen exposure of mouse pups during retinal vascular development, leading to a depletion of retinal capillaries. Upon return to room air, the lack of retinal vasculature results in hypoxia, which in turn induces vascular repair and preretinal neovascularization. In this review, we will focus on the scientific options, practical implementation, and quantification of the OIR model and its potential pitfalls.
Collapse
Affiliation(s)
- Raffael Liegl
- Department of Ophthalmology, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Claudia Priglinger
- Department of Ophthalmology, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Andreas Ohlmann
- Department of Ophthalmology, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany.
| |
Collapse
|
16
|
Haro Durand LA, Vargas GE, Vera-Mesones R, Baldi A, Zago MP, Fanovich MA, Boccaccini AR, Gorustovich A. In Vitro Human Umbilical Vein Endothelial Cells Response to Ionic Dissolution Products from Lithium-Containing 45S5 Bioactive Glass. MATERIALS (BASEL, SWITZERLAND) 2017; 10:E740. [PMID: 28773103 PMCID: PMC5551783 DOI: 10.3390/ma10070740] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 06/24/2017] [Accepted: 06/29/2017] [Indexed: 12/27/2022]
Abstract
Since lithium (Li⁺) plays roles in angiogenesis, the localized and controlled release of Li⁺ ions from bioactive glasses (BGs) represents a promising alternative therapy for the regeneration and repair of tissues with a high degree of vascularization. Here, microparticles from a base 45S5 BG composition containing (wt %) 45% SiO₂, 24.5% Na₂O, 24.5% CaO, and 6% P₂O₅, in which Na₂O was partially substituted by 5% Li₂O (45S5.5Li), were obtained. The results demonstrate that human umbilical vein endothelial cells (HUVECs) have greater migratory and proliferative response and ability to form tubules in vitro after stimulation with the ionic dissolution products (IDPs) of the 45S5.5Li BG. The results also show the activation of the canonical Wnt/β-catenin pathway and the increase in expression of proangiogenic cytokines insulin like growth factor 1 (IGF1) and transforming growth factor beta (TGFβ). We conclude that the IDPs of 45S5.5Li BG would act as useful inorganic agents to improve tissue repair and regeneration, ultimately stimulating HUVECs behavior in the absence of exogenous growth factors.
Collapse
Affiliation(s)
- Luis A Haro Durand
- Department of Pathology and Molecular Pharmacology, IByME-CONICET, C1428ADN Buenos Aires, Argentina.
| | - Gabriela E Vargas
- Department of Developmental Biology, National University of Salta, A4408FVY Salta, Argentina.
| | - Rosa Vera-Mesones
- Department of Developmental Biology, National University of Salta, A4408FVY Salta, Argentina.
| | - Alberto Baldi
- Department of Pathology and Molecular Pharmacology, IByME-CONICET, C1428ADN Buenos Aires, Argentina.
| | - María P Zago
- Institute of Experimental Pathology, IPE-CONICET, A4408FVY Salta, Argentina.
| | - María A Fanovich
- Research Institute for Materials Science and Technology, INTEMA-CONICET, B7608FDQ Mar del Plata, Argentina.
| | - Aldo R Boccaccini
- Department of Materials Science and Engineering, Institute of Biomaterials, University of Erlangen-Nuremberg, 91058 Erlangen, Germany.
| | - Alejandro Gorustovich
- Interdisciplinary Materials Group-IESIING-UCASAL, INTECIN UBA-CONICET, A4400EDD Salta, Argentina.
| |
Collapse
|
17
|
Kwon HJE, Jia S, Lan Y, Liu H, Jiang R. Activin and Bmp4 Signaling Converge on Wnt Activation during Odontogenesis. J Dent Res 2017; 96:1145-1152. [PMID: 28605600 DOI: 10.1177/0022034517713710] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Previous studies show that both activin and Bmp4 act as crucial mesenchymal odontogenic signals during early tooth development. Remarkably, mice lacking activin-βA ( Inhba-/-) and mice with neural crest-specific inactivation of Bmp4 ( Bmp4ncko/ncko) both exhibit bud-stage developmental arrest of the mandibular molar tooth germs while their maxillary molar tooth germs completed morphogenesis. In this study, we found that, whereas expression of Inhba and Bmp4 in the developing tooth mesenchyme is independent of each other, Bmp4ncko/nckoInhba-/- compound mutant mice exhibit early developmental arrest of all tooth germs. Moreover, genetic inactivation of Osr2, a negative regulator of the odontogenic function of the Bmp4-Msx1 signaling pathway, rescues mandibular molar morphogenesis in Inhba-/- embryos. We recently reported that Osr2 and the Bmp4-Msx1 pathway control the bud-to-cap transition of tooth morphogenesis through antagonistic regulation of expression of secreted Wnt antagonists, including Dkk2 and Sfrp2, in the developing tooth mesenchyme. We show here that expression of Dkk2 messenger RNAs was significantly upregulated and expanded into the tooth bud mesenchyme in Inhba-/- embryos in comparison with wild-type littermates. Furthermore, in utero treatment with either lithium chloride, an agonist of canonical Wnt signaling, or the DKK inhibitor IIIC3a rescued mandibular molar tooth morphogenesis in Inhba-/- embryos. Together with our finding that the developing mandibular molar tooth bud mesenchyme expresses significantly higher levels of Dkk2 than the developing maxillary molar tooth mesenchyme, these data indicate that Bmp4 and activin signaling pathways converge on activation of the Wnt signaling pathway to promote tooth morphogenesis through the bud-to-cap transition and that the differential effects of loss of activin or Bmp4 signaling on maxillary and mandibular molar tooth morphogenesis are mainly due to the differential expression of Wnt antagonists, particularly Dkk2, in the maxillary and mandibular tooth mesenchyme.
Collapse
Affiliation(s)
- H-J E Kwon
- 1 Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - S Jia
- 1 Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,University of Utah School of Dentistry, Salt Lake City, UT, USA
| | - Y Lan
- 1 Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,2 Division of Plastic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - H Liu
- 1 Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - R Jiang
- 1 Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,2 Division of Plastic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| |
Collapse
|
18
|
Jia S, Kwon HJE, Lan Y, Zhou J, Liu H, Jiang R. Bmp4-Msx1 signaling and Osr2 control tooth organogenesis through antagonistic regulation of secreted Wnt antagonists. Dev Biol 2016; 420:110-119. [PMID: 27713059 DOI: 10.1016/j.ydbio.2016.10.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 10/01/2016] [Accepted: 10/02/2016] [Indexed: 01/08/2023]
Abstract
Mutations in MSX1 cause craniofacial developmental defects, including tooth agenesis, in humans and mice. Previous studies suggest that Msx1 activates Bmp4 expression in the developing tooth mesenchyme to drive early tooth organogenesis. Whereas Msx1-/- mice exhibit developmental arrest of all tooth germs at the bud stage, mice with neural crest-specific inactivation of Bmp4 (Bmp4ncko/ncko), which lack Bmp4 expression in the developing tooth mesenchyme, showed developmental arrest of only mandibular molars. We recently demonstrated that deletion of Osr2, which encodes a zinc finger transcription factor expressed in a lingual-to-buccal gradient in the developing tooth bud mesenchyme, rescued molar tooth morphogenesis in both Msx1-/- and Bmp4ncko/ncko mice. In this study, through RNA-seq analyses of the developing tooth mesenchyme in mutant and wildtype embryos, we found that Msx1 and Osr2 have opposite effects on expression of several secreted Wnt antagonists in the tooth bud mesenchyme. Remarkably, both Dkk2 and Sfrp2 exhibit Osr2-dependent preferential expression on the lingual side of the tooth bud mesenchyme and expression of both genes was up-regulated and expanded into the tooth bud mesenchyme in Msx1-/- and Bmp4ncko/ncko mutant embryos. We show that pharmacological activation of canonical Wnt signaling by either lithium chloride (LiCl) treatment or by inhibition of DKKs in utero was sufficient to rescue mandibular molar tooth morphogenesis in Bmp4ncko/ncko mice. Furthermore, whereas inhibition of DKKs or inactivation of Sfrp2 alone was insufficient to rescue tooth morphogenesis in Msx1-/- mice, pharmacological inhibition of DKKs in combination with genetic inactivation of Sfrp2 and Sfrp3 rescued maxillary molar morphogenesis in Msx1-/- mice. Together, these data reveal a novel mechanism that the Bmp4-Msx1 pathway and Osr2 control tooth organogenesis through antagonistic regulation of expression of secreted Wnt antagonists.
Collapse
Affiliation(s)
- Shihai Jia
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Hyuk-Jae Edward Kwon
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Yu Lan
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Division of Plastic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Jing Zhou
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Han Liu
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Rulang Jiang
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Division of Plastic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
| |
Collapse
|
19
|
Pharmacologic Activation of Wnt Signaling by Lithium Normalizes Retinal Vasculature in a Murine Model of Familial Exudative Vitreoretinopathy. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:2588-600. [PMID: 27524797 DOI: 10.1016/j.ajpath.2016.06.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 06/16/2016] [Accepted: 06/21/2016] [Indexed: 12/12/2022]
Abstract
Familial exudative vitreoretinopathy (FEVR) is characterized by delayed retinal vascular development, which promotes hypoxia-induced pathologic vessels. In severe cases FEVR may lead to retinal detachment and visual impairment. Genetic studies linked FEVR with mutations in Wnt signaling ligand or receptors, including low-density lipoprotein receptor-related protein 5 (LRP5) gene. Here, we investigated ocular pathologies in a Lrp5 knockout (Lrp5(-/-)) mouse model of FEVR and explored whether treatment with a pharmacologic Wnt activator lithium could bypass the genetic defects, thereby protecting against eye pathologies. Lrp5(-/-) mice displayed significantly delayed retinal vascular development, absence of deep layer retinal vessels, leading to increased levels of vascular endothelial growth factor and subsequent pathologic glomeruloid vessels, as well as decreased inner retinal visual function. Lithium treatment in Lrp5(-/-) mice significantly restored the delayed development of retinal vasculature and the intralaminar capillary networks, suppressed formation of pathologic glomeruloid structures, and promoted hyaloid vessel regression. Moreover, lithium treatment partially rescued inner-retinal visual function and increased retinal thickness. These protective effects of lithium were largely mediated through restoration of canonical Wnt signaling in Lrp5(-/-) retina. Lithium treatment also substantially increased vascular tubular formation in LRP5-deficient endothelial cells. These findings suggest that pharmacologic activation of Wnt signaling may help treat ocular pathologies in FEVR and potentially other defective Wnt signaling-related diseases.
Collapse
|
20
|
Abstract
One of the remarkable discoveries in the field of psychopharmacology from late 1940s is Lithium (Li) that reminds of old but still gold. It continues to be a distinctive mood stabilizer that matches various standards recommended for mood stabilizers. Apart from this Li is also known to affect immune cell functions. Lithium response and regulations of different immune cells in bipolar patients, related immune disorders are not well defined. Here, we provide an overview of literature with regard to Li's effects on different immune cells. However, the use of Li is currently limited to bipolar disorders and there is no empirical evidence for immune cell disorders. The objective of this article is to provide the evaluations of Li responses towards the different immune cells based on the existing studies. Further, more studies are needed to understand the mechanistic basis and heterogeneous responses of Li's effect in bipolar, also unravel relative immune disorders.
Collapse
Affiliation(s)
- Narendra Maddu
- Department of Biochemistry, Sri Krishnadevaraya University , Anantapur, Andhra Pradesh , India and
| | | |
Collapse
|