1
|
Pathak AK, Simonian H, Ibrahim IAA, Hrechdakian P, Behar DM, Ayub Q, Arsanov P, Metspalu E, Yepiskoposyan L, Rootsi S, Endicott P, Villems R, Sahakyan H. Human Y chromosome haplogroup L1-M22 traces Neolithic expansion in West Asia and supports the Elamite and Dravidian connection. iScience 2024; 27:110016. [PMID: 38883810 PMCID: PMC11177204 DOI: 10.1016/j.isci.2024.110016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/06/2024] [Accepted: 05/14/2024] [Indexed: 06/18/2024] Open
Abstract
West and South Asian populations profoundly influenced Eurasian genetic and cultural diversity. We investigate the genetic history of the Y chromosome haplogroup L1-M22, which, while prevalent in these regions, lacks in-depth study. Robust Bayesian analyses of 165 high-coverage Y chromosomes favor a West Asian origin for L1-M22 ∼20.6 thousand years ago (kya). Moreover, this haplogroup parallels the genome-wide genetic ancestry of hunter-gatherers from the Iranian Plateau and the Caucasus. We characterized two L1-M22 harboring population groups during the Early Holocene. One expanded with the West Asian Neolithic transition. The other moved to South Asia ∼8-6 kya but showed no expansion. This group likely participated in the spread of Dravidian languages. These South Asian L1-M22 lineages expanded ∼4-3 kya, coinciding with the Steppe ancestry introduction. Our findings advance the current understanding of Eurasian historical dynamics, emphasizing L1-M22's West Asian origin, associated population movements, and possible linguistic impacts.
Collapse
Affiliation(s)
- Ajai Kumar Pathak
- Estonian Biocentre, Institute of Genomics, University of Tartu, 51010 Tartu, Estonia
- Department of Human Genetics, KU Leuven, 3000 Leuven, Belgium
| | - Hovann Simonian
- Armenian DNA Project at Family Tree DNA, Houston, TX 77008, USA
| | - Ibrahim Abdel Aziz Ibrahim
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | | | - Doron M Behar
- Estonian Biocentre, Institute of Genomics, University of Tartu, 51010 Tartu, Estonia
| | - Qasim Ayub
- Monash University Malaysia Genomics Platform, School of Science, Monash University, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia
| | - Pakhrudin Arsanov
- Chechen-Noahcho DNA Project at Family Tree DNA, Kostanay 110008, Kazakhstan
| | - Ene Metspalu
- Estonian Biocentre, Institute of Genomics, University of Tartu, 51010 Tartu, Estonia
| | - Levon Yepiskoposyan
- Laboratory of Evolutionary Genomics, Institute of Molecular Biology of National Academy of Sciences of the Republic of Armenia, Yerevan 0014, Armenia
| | - Siiri Rootsi
- Estonian Biocentre, Institute of Genomics, University of Tartu, 51010 Tartu, Estonia
| | - Phillip Endicott
- Estonian Biocentre, Institute of Genomics, University of Tartu, 51010 Tartu, Estonia
- Department of Archaeology and Anthropology, Bournemouth University, Fern Barrow, Poole, Dorset BH12 5BB, UK
- Department of Linguistics, University of Hawai'i at Mānoa, Honolulu, Hawai'i 96822, USA
- DFG Center for Advanced Studies, University of Tübingen, 72074 Tübingen, Germany
| | - Richard Villems
- Estonian Biocentre, Institute of Genomics, University of Tartu, 51010 Tartu, Estonia
| | - Hovhannes Sahakyan
- Estonian Biocentre, Institute of Genomics, University of Tartu, 51010 Tartu, Estonia
- Laboratory of Evolutionary Genomics, Institute of Molecular Biology of National Academy of Sciences of the Republic of Armenia, Yerevan 0014, Armenia
| |
Collapse
|
2
|
Ghafari M, Sõmera M, Sarmiento C, Niehl A, Hébrard E, Tsoleridis T, Ball J, Moury B, Lemey P, Katzourakis A, Fargette D. Revisiting the origins of the Sobemovirus genus: A case for ancient origins of plant viruses. PLoS Pathog 2024; 20:e1011911. [PMID: 38206964 PMCID: PMC10807823 DOI: 10.1371/journal.ppat.1011911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/24/2024] [Accepted: 12/18/2023] [Indexed: 01/13/2024] Open
Abstract
The discrepancy between short- and long-term rate estimates, known as the time-dependent rate phenomenon (TDRP), poses a challenge to extrapolating evolutionary rates over time and reconstructing evolutionary history of viruses. The TDRP reveals a decline in evolutionary rate estimates with the measurement timescale, explained empirically by a power-law rate decay, notably observed in animal and human viruses. A mechanistic evolutionary model, the Prisoner of War (PoW) model, has been proposed to address TDRP in viruses. Although TDRP has been studied in animal viruses, its impact on plant virus evolutionary history remains largely unexplored. Here, we investigated the consequences of TDRP in plant viruses by applying the PoW model to reconstruct the evolutionary history of sobemoviruses, plant pathogens with significant importance due to their impact on agriculture and plant health. Our analysis showed that the Sobemovirus genus dates back over four million years, indicating an ancient origin. We found evidence that supports deep host jumps to Poaceae, Fabaceae, and Solanaceae occurring between tens to hundreds of thousand years ago, followed by specialization. Remarkably, the TDRP-corrected evolutionary history of sobemoviruses was extended far beyond previous estimates that had suggested their emergence nearly 9,000 years ago, a time coinciding with the Neolithic period in the Near East. By incorporating sequences collected through metagenomic analyses, the resulting phylogenetic tree showcases increased genetic diversity, reflecting a deep history of sobemovirus species. We identified major radiation events beginning between 4,600 to 2,000 years ago, which aligns with the Neolithic period in various regions, suggesting a period of rapid diversification from then to the present. Our findings make a case for the possibility of deep evolutionary origins of plant viruses.
Collapse
Affiliation(s)
- Mahan Ghafari
- Department of Biology, University of Oxford, Oxford, United Kingdom
| | - Merike Sõmera
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Cecilia Sarmiento
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Annette Niehl
- Julius Kühn Institute (JKI)–Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Braunschweig, Germany
| | - Eugénie Hébrard
- PHIM Plant Health Institute, Univ Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Theocharis Tsoleridis
- The Wolfson Centre for Global Virus Research and School of Life Sciences, The University of Nottingham, Queen’s Medical Centre, Nottingham, United Kingdom
| | - Jonathan Ball
- The Wolfson Centre for Global Virus Research and School of Life Sciences, The University of Nottingham, Queen’s Medical Centre, Nottingham, United Kingdom
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
| | | | - Philippe Lemey
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Aris Katzourakis
- Department of Biology, University of Oxford, Oxford, United Kingdom
| | - Denis Fargette
- PHIM Plant Health Institute, Univ Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, France
| |
Collapse
|
3
|
Mas-Coma S, Valero MA, Bargues MD. Human and Animal Fascioliasis: Origins and Worldwide Evolving Scenario. Clin Microbiol Rev 2022; 35:e0008819. [PMID: 36468877 PMCID: PMC9769525 DOI: 10.1128/cmr.00088-19] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Fascioliasis is a plant- and waterborne zoonotic parasitic disease caused by two trematode species: (i) Fasciola hepatica in Europe, Asia, Africa, the Americas, and Oceania and (ii) F. gigantica, which is restricted to Africa and Asia. Fasciolid liver flukes infect mainly herbivores as ruminants, equids, and camelids but also omnivore mammals as humans and swine and are transmitted by freshwater Lymnaeidae snail vectors. Two phases may be distinguished in fasciolid evolution. The long predomestication period includes the F. gigantica origin in east-southern Africa around the mid-Miocene, the F. hepatica origin in the Near-Middle East of Asia around the latest Miocene to Early Pliocene, and their subsequent local spread. The short postdomestication period includes the worldwide spread by human-guided movements of animals in the last 12,000 years and the more recent transoceanic anthropogenic introductions of F. hepatica into the Americas and Oceania and of F. gigantica into several large islands of the Pacific with ships transporting livestock in the last 500 years. The routes and chronology of the spreading waves followed by both fasciolids into the five continents are redefined on the basis of recently generated knowledge of human-guided movements of domesticated hosts. No local, zonal, or regional situation showing disagreement with historical records was found, although in a few world zones the available knowledge is still insufficient. The anthropogenically accelerated evolution of fasciolids allows us to call them "peridomestic endoparasites." The multidisciplinary implications for crucial aspects of the disease should therefore lead the present baseline update to be taken into account in future research studies.
Collapse
Affiliation(s)
- Santiago Mas-Coma
- Departamento de Parasitologia, Facultad de Farmacia, Universidad de Valencia, Valencia, Spain
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos IIII, Madrid, Spain
| | - M. Adela Valero
- Departamento de Parasitologia, Facultad de Farmacia, Universidad de Valencia, Valencia, Spain
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos IIII, Madrid, Spain
| | - M. Dolores Bargues
- Departamento de Parasitologia, Facultad de Farmacia, Universidad de Valencia, Valencia, Spain
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos IIII, Madrid, Spain
| |
Collapse
|
4
|
Environmental effects on the spread of the Neolithic crop package to South Asia. PLoS One 2022; 17:e0268482. [PMID: 35816489 PMCID: PMC9273075 DOI: 10.1371/journal.pone.0268482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/29/2022] [Indexed: 11/19/2022] Open
Abstract
The emergence of Neolithic economies and their spread through Eurasia was one of the most crucial transitions of the Holocene, with different mechanisms of diffusion—demic, cultural—being proposed. While this phenomenon has been exhaustively studied in Europe, with repeated attempts to model the speed of Neolithic diffusion based on radiocarbon dates, much less attention has been devoted to the dispersal towards the East, and in particular to South Asia. The Neolithic in the latter region at least partly derived from southwest Asia, given the presence of “founder crops” such as wheat and barley. The process of their eastward diffusion, however, may have been significantly different to the westward dispersal, which was mainly due to demic diffusion, as local domesticates were already available and farming was already practiced in parts of South Asia. Here, we use radiocarbon dates specifically related to the spread of the southwest Asian Neolithic crops to model the speed of dispersal of this agricultural package towards South Asia. To assess potential geographical and environmental effects on the dispersal, we simulate different speeds depending on the biomes being crossed, employing a genetic algorithm to search for the values that most closely approach the radiocarbon dates. We find that the most important barrier to be crossed were the Zagros mountains, where the speed was lowest, possibly due to topography and climate. A large portion of the study area is dominated by deserts and shrublands, where the speed of advance, albeit closer to the range expected for demic diffusion, was lower than observed in Europe, which can also potentially be attributed to environmental constraints in the adaptation of the crops. Finally, a notable acceleration begins in the Indus valley, exceeding the range of demic diffusion in the tropical and subtropical environments east of the Indus. We propose that the latter is due to the rapid diffusion among populations already familiar with plant cultivation.
Collapse
|
5
|
Abstract
The purpose of this work is to present the archaeological and historical background of viticulture and winemaking from ancient times to the present day in the Mediterranean basin. According to recent archaeological, archaeochemical and archaeobotanical data, winemaking emerged during the Neolithic period (c. 7th–6th millennium BC) in the South Caucasus, situated between the basins of the Black and Caspian Seas, and subsequently reached the Iberian Peninsula and Western Europe during the local beginning of Iron Age (c. 8th century BC), following the main maritime civilizations. This review summarises the most relevant findings evidencing that the expansion of wine production, besides depending on adequate pedo-climatic conditions and wine-growing practices, also required the availability of pottery vessels to properly ferment, store and transport wine without deterioration. The domestication of wild grapevines enabled the selection of more productive varieties, further sustaining the development of wine trade. Other fermented beverages such as mead and beer gradually lost their relevance and soon wine became the most valorised. Together with grapes, it became an object and a system of value for religious rituals and social celebrations throughout successive ancient Western civilizations. Moreover, wine was used for medicinal purposes and linked to a wide variety of health benefits. In everyday life, wine was a pleasant drink consumed by the elite classes and commoner populations during jubilee years, festivals, and banquets, fulfilling the social function of easy communication. In the present work, emphasis is put on the technical interpretation of the selected archaeological and historical sources that may explain present viticultural and oenological practices. Hopefully, this review will contribute to nurturing mutual understanding between archaeologists and wine professionals.
Collapse
|
6
|
Das R, Ivanisenko VA, Anashkina AA, Upadhyai P. The story of the lost twins: decoding the genetic identities of the Kumhar and Kurcha populations from the Indian subcontinent. BMC Genet 2020; 21:117. [PMID: 33092524 PMCID: PMC7583313 DOI: 10.1186/s12863-020-00919-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 05/28/2020] [Indexed: 11/10/2022] Open
Abstract
Background The population structure of the Indian subcontinent is a tapestry of extraordinary diversity characterized by the amalgamation of autochthonous and immigrant ancestries and rigid enforcement of sociocultural stratification. Here we investigated the genetic origin and population history of the Kumhars, a group of people who inhabit large parts of northern India. We compared 27 previously published Kumhar SNP genotype data sampled from Uttar Pradesh in north India to various modern day and ancient populations. Results Various approaches such as Principal Component Analysis (PCA), Admixture, TreeMix concurred that Kumhars have high ASI ancestry, minimal Steppe component and high genomic proximity to the Kurchas, a small and relatively little-known population found ~ 2500 km away in Kerala, south India. Given the same, biogeographical mapping using Geographic Population Structure (GPS) assigned most Kumhar samples in areas neighboring to those where Kurchas are found in south India. Conclusions We hypothesize that the significant genomic similarity between two apparently distinct modern-day Indian populations that inhabit well separated geographical areas with no known overlapping history or links, likely alludes to their common origin during or post the decline of the Indus Valley Civilization (estimated by ALDER). Thereafter, while they dispersed towards opposite ends of the Indian subcontinent, their genomic integrity and likeness remained preserved due to endogamous social practices. Our findings illuminate the genomic history of two Indian populations, allowing a glimpse into one or few of numerous of human migrations that likely occurred across the Indian subcontinent and contributed to shape its varied and vibrant evolutionary past.
Collapse
Affiliation(s)
- Ranajit Das
- Yenepoya Research Centre (YRC), Yenepoya (Deemed to be University), Mangalore, Karnataka, India.
| | - Vladimir A Ivanisenko
- Humanitarian Institute, Novosibirsk State University, 630090, Novosibirsk, Russia.,Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
| | - Anastasia A Anashkina
- The Digital Health Institute, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia.,Engelhardt Institute of Molecular Biology RAS, Moscow, Russia
| | - Priyanka Upadhyai
- Department of Medical Genetics, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
7
|
Mahal DG. Y-DNA genetic evidence reveals several different ancient origins in the Brahmin population. Mol Genet Genomics 2020; 296:67-78. [PMID: 32978661 DOI: 10.1007/s00438-020-01725-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 09/09/2020] [Indexed: 10/23/2022]
Abstract
The ancient geographical origins of Brahmins-a prominent ethnic group in the Indian subcontinent-have remained controversial for a long time. This study employed the AMOVA (analysis of molecular variance) test to evaluate genetic affinities of this group with thirty populations of Central Asia and Europe. A domestic comparison was performed with fifty non-Brahmin groups in India. The results showed that Brahmins had genetic affinities with several foreign populations and also shared their genetic heritage with several domestic non-Brahmin groups. The study identified the deep ancient origins of Brahmins by tracing their Y-chromosome haplogroups and genetic markers on the Y-DNA phylogenetic tree. It was confirmed that the progenitors of this group emerged from at least 12 different geographic regions of the world. The study concluded that about 83% of the Brahmins in the dataset belonged to four major haplogroups, of which two emerged from Central Asia, one from the Fertile Crescent, and one was of an indigenous Indian origin.
Collapse
Affiliation(s)
- David G Mahal
- DGM Associates, Pacific Palisades, CA, USA. .,Institut Avrio de Geneve, Geneva, Switzerland.
| |
Collapse
|
8
|
Rare human mitochondrial HV lineages spread from the Near East and Caucasus during post-LGM and Neolithic expansions. Sci Rep 2019; 9:14751. [PMID: 31611588 PMCID: PMC6791841 DOI: 10.1038/s41598-019-48596-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 06/21/2019] [Indexed: 01/05/2023] Open
Abstract
Of particular significance to human population history in Eurasia are the migratory events that connected the Near East to Europe after the Last Glacial Maximum (LGM). Utilizing 315 HV*(xH,V) mitogenomes, including 27 contemporary lineages first reported here, we found the genetic signatures for distinctive movements out of the Near East and South Caucasus both westward into Europe and eastward into South Asia. The parallel phylogeographies of rare, yet widely distributed HV*(xH,V) subclades reveal a connection between the Italian Peninsula and South Caucasus, resulting from at least two (post-LGM, Neolithic) waves of migration. Many of these subclades originated in a population ancestral to contemporary Armenians and Assyrians. One such subclade, HV1b-152, supports a postexilic, northern Mesopotamian origin for the Ashkenazi HV1b2 lineages. In agreement with ancient DNA findings, our phylogenetic analysis of HV12 and HV14, the two exclusively Asian subclades of HV*(xH,V), point to the migration of lineages originating in Iran to South Asia before and during the Neolithic period. With HV12 being one of the oldest HV subclades, our results support an origin of HV haplogroup in the region defined by Western Iran, Mesopotamia, and the South Caucasus, where the highest prevalence of HV has been found.
Collapse
|
9
|
Application of geographic population structure (GPS) algorithm for biogeographical analyses of populations with complex ancestries: a case study of South Asians from 1000 genomes project. BMC Genet 2017; 18:109. [PMID: 29297311 PMCID: PMC5751663 DOI: 10.1186/s12863-017-0579-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Background The utilization of biological data to infer the geographic origins of human populations has been a long standing quest for biologists and anthropologists. Several biogeographical analysis tools have been developed to infer the geographical origins of human populations utilizing genetic data. However due to the inherent complexity of genetic information these approaches are prone to misinterpretations. The Geographic Population Structure (GPS) algorithm is an admixture based tool for biogeographical analyses and has been employed for the geo-localization of various populations worldwide. Here we sought to dissect its sensitivity and accuracy for localizing highly admixed groups. Given the complex history of population dispersal and gene flow in the Indian subcontinent, we have employed the GPS tool to localize five South Asian populations, Punjabi, Gujarati, Tamil, Telugu and Bengali from the 1000 Genomes project, some of whom were recent migrants to USA and UK, using populations from the Indian subcontinent available in Human Genome Diversity Panel (HGDP) and those previously described as reference. Results Our findings demonstrate reasonably high accuracy with regards to GPS assignment even for recent migrant populations sampled elsewhere, namely the Tamil, Telugu and Gujarati individuals, where 96%, 87% and 79% of the individuals, respectively, were positioned within 600 km of their native locations. While the absence of appropriate reference populations resulted in moderate-to-low levels of precision in positioning of Punjabi and Bengali genomes. Conclusions Our findings reflect that the GPS approach is useful but likely overtly dependent on the relative proportions of admixture in the reference populations for determination of the biogeographical origins of test individuals. We conclude that further modifications are desired to make this approach more suitable for highly admixed individuals. Electronic supplementary material The online version of this article (doi: 10.1186/s12863-017-0579-2) contains supplementary material, which is available to authorized users.
Collapse
|
10
|
Whole genome SNP analysis of bovine B. anthracis strains from Switzerland reflects strict regional separation of Simmental and Swiss Brown breeds in the past. Vet Microbiol 2016; 196:1-8. [DOI: 10.1016/j.vetmic.2016.10.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 08/11/2016] [Accepted: 10/09/2016] [Indexed: 11/20/2022]
|
11
|
Gallego-Llorente M, Connell S, Jones ER, Merrett DC, Jeon Y, Eriksson A, Siska V, Gamba C, Meiklejohn C, Beyer R, Jeon S, Cho YS, Hofreiter M, Bhak J, Manica A, Pinhasi R. The genetics of an early Neolithic pastoralist from the Zagros, Iran. Sci Rep 2016; 6:31326. [PMID: 27502179 PMCID: PMC4977546 DOI: 10.1038/srep31326] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Accepted: 07/15/2016] [Indexed: 12/20/2022] Open
Abstract
The agricultural transition profoundly changed human societies. We sequenced and analysed the first genome (1.39x) of an early Neolithic woman from Ganj Dareh, in the Zagros Mountains of Iran, a site with early evidence for an economy based on goat herding, ca. 10,000 BP. We show that Western Iran was inhabited by a population genetically most similar to hunter-gatherers from the Caucasus, but distinct from the Neolithic Anatolian people who later brought food production into Europe. The inhabitants of Ganj Dareh made little direct genetic contribution to modern European populations, suggesting those of the Central Zagros were somewhat isolated from other populations of the Fertile Crescent. Runs of homozygosity are of a similar length to those from Neolithic farmers, and shorter than those of Caucasus and Western Hunter-Gatherers, suggesting that the inhabitants of Ganj Dareh did not undergo the large population bottleneck suffered by their northern neighbours. While some degree of cultural diffusion between Anatolia, Western Iran and other neighbouring regions is possible, the genetic dissimilarity between early Anatolian farmers and the inhabitants of Ganj Dareh supports a model in which Neolithic societies in these areas were distinct.
Collapse
Affiliation(s)
| | - S Connell
- School of Archaeology and Earth Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - E R Jones
- Department of Zoology, University of Cambridge, Cambridge, CB2 3EJ, UK
| | - D C Merrett
- Department of Archaeology, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Y Jeon
- The Genomics Institute, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.,Department of Biomedical Engineering, School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - A Eriksson
- Department of Zoology, University of Cambridge, Cambridge, CB2 3EJ, UK.,Integrative Systems Biology Laboratory, Division of Biological and Environmental Sciences &Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - V Siska
- Department of Zoology, University of Cambridge, Cambridge, CB2 3EJ, UK
| | - C Gamba
- School of Archaeology and Earth Institute, University College Dublin, Belfield, Dublin 4, Ireland.,Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, Copenhagen 1350, Denmark
| | - C Meiklejohn
- Department of Anthropology, University of Winnipeg, Winnipeg, MB R3B 2E9, Canada
| | - R Beyer
- McDonald Institute for Archaeological Research, University of Cambridge, Cambridge CB2 3ER, UK
| | - S Jeon
- The Genomics Institute, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.,Department of Biomedical Engineering, School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Y S Cho
- The Genomics Institute, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.,Department of Biomedical Engineering, School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - M Hofreiter
- Evolutionary Adaptive Genomics, Institute for Biochemistry and Biology, Department of Mathematics and Natural Sciences, University of Potsdam, Karl-Liebknechtstraße 24-25, Potsdam, 14476, Germany
| | - J Bhak
- The Genomics Institute, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - A Manica
- Department of Zoology, University of Cambridge, Cambridge, CB2 3EJ, UK
| | - R Pinhasi
- School of Archaeology and Earth Institute, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
12
|
Singh S, Singh A, Rajkumar R, Sampath Kumar K, Kadarkarai Samy S, Nizamuddin S, Singh A, Ahmed Sheikh S, Peddada V, Khanna V, Veeraiah P, Pandit A, Chaubey G, Singh L, Thangaraj K. Dissecting the influence of Neolithic demic diffusion on Indian Y-chromosome pool through J2-M172 haplogroup. Sci Rep 2016; 6:19157. [PMID: 26754573 PMCID: PMC4709632 DOI: 10.1038/srep19157] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 10/08/2015] [Indexed: 11/24/2022] Open
Abstract
The global distribution of J2-M172 sub-haplogroups has been associated with Neolithic demic diffusion. Two branches of J2-M172, J2a-M410 and J2b-M102 make a considerable part of Y chromosome gene pool of the Indian subcontinent. We investigated the Neolithic contribution of demic dispersal from West to Indian paternal lineages, which majorly consists of haplogroups of Late Pleistocene ancestry. To accomplish this, we have analysed 3023 Y-chromosomes from different ethnic populations, of which 355 belonged to J2-M172. Comparison of our data with worldwide data, including Y-STRs of 1157 individuals and haplogroup frequencies of 6966 individuals, suggested a complex scenario that cannot be explained by a single wave of agricultural expansion from Near East to South Asia. Contrary to the widely accepted elite dominance model, we found a substantial presence of J2a-M410 and J2b-M102 haplogroups in both caste and tribal populations of India. Unlike demic spread in Eurasia, our results advocate a unique, complex and ancient arrival of J2a-M410 and J2b-M102 haplogroups into Indian subcontinent.
Collapse
Affiliation(s)
- Sakshi Singh
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, India
| | - Ashish Singh
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, India
| | - Raja Rajkumar
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, India
| | | | | | - Sheikh Nizamuddin
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, India
| | - Amita Singh
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, India
| | | | - Vidya Peddada
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, India
| | - Vinee Khanna
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, India
| | | | - Aridaman Pandit
- Theoretical Biology and Bioinformatics, Utrecht University, Utrecht, Netherlands
| | | | - Lalji Singh
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, India
| | | |
Collapse
|
13
|
Jerardino A, Fort J, Isern N, Rondelli B. Cultural diffusion was the main driving mechanism of the Neolithic transition in southern Africa. PLoS One 2014; 9:e113672. [PMID: 25517968 PMCID: PMC4269434 DOI: 10.1371/journal.pone.0113672] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 10/27/2014] [Indexed: 11/19/2022] Open
Abstract
It is well known that the Neolithic transition spread across Europe at a speed of about 1 km/yr. This result has been previously interpreted as a range expansion of the Neolithic driven mainly by demic diffusion (whereas cultural diffusion played a secondary role). However, a long-standing problem is whether this value (1 km/yr) and its interpretation (mainly demic diffusion) are characteristic only of Europe or universal (i.e. intrinsic features of Neolithic transitions all over the world). So far Neolithic spread rates outside Europe have been barely measured, and Neolithic spread rates substantially faster than 1 km/yr have not been previously reported. Here we show that the transition from hunting and gathering into herding in southern Africa spread at a rate of about 2.4 km/yr, i.e. about twice faster than the European Neolithic transition. Thus the value 1 km/yr is not a universal feature of Neolithic transitions in the world. Resorting to a recent demic-cultural wave-of-advance model, we also find that the main mechanism at work in the southern African Neolithic spread was cultural diffusion (whereas demic diffusion played a secondary role). This is in sharp contrast to the European Neolithic. Our results further suggest that Neolithic spread rates could be mainly driven by cultural diffusion in cases where the final state of this transition is herding/pastoralism (such as in southern Africa) rather than farming and stockbreeding (as in Europe).
Collapse
Affiliation(s)
- Antonieta Jerardino
- ICREA/Department of Experimental & Health Sciences, Universitat Pompeu Fabra, CaSEs Research Group, Ramon Trias Fargas 25-27, 08005 Barcelona, Spain
- * E-mail:
| | - Joaquim Fort
- Complex Systems Lab, Department of Physics, University of Girona, C/. M Aurèlia Capmany 61, 17071 Girona, Catalonia, Spain
| | - Neus Isern
- Laboratori d'Arqueologia Quantitativa (LAQU), Departament de Prehistòria, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Bernardo Rondelli
- CaSEs Research Group, Department of Archaeology and Anthropology, Institució Milà i Fontanals, Spanish National Research Council (IMF-CSIC), C/Egipcíaques, 15, 08001 Barcelona, Spain
| |
Collapse
|