1
|
Piersanti S, Rebora M, Salerno G, Vitecek S, Anton S. Sensory pathway in aquatic basal polyneoptera: Antennal sensilla and brain morphology in stoneflies. ARTHROPOD STRUCTURE & DEVELOPMENT 2024; 79:101345. [PMID: 38493543 DOI: 10.1016/j.asd.2024.101345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 02/27/2024] [Accepted: 02/27/2024] [Indexed: 03/19/2024]
Abstract
Aquatic insects represent a great portion of Arthropod diversity and the major fauna in inland waters. The sensory biology and neuroanatomy of these insects are, however, poorly investigated. This research aims to describe the antennal sensilla of nymphs of the stonefly Dinocras cephalotes using scanning electron microscopy and comparing them with the adult sensilla. Besides, central antennal pathways in nymphs and adults are investigated by neuron mass-tracing with tetramethylrhodamine, and their brain structures are visualized with an anti-synapsin antibody. No dramatic changes occur in the antennal sensilla during nymphal development, while antennal sensilla profoundly change from nymphs to adults when switching from an aquatic to an aerial lifestyle. However, similar brain structures are used in nymphs and adults to process diverging sensory information, perceived through different sensilla in water and air. These data provide valuable insights into the evolution of aquatic heterometabolous insects, maintaining a functional sensory system throughout development, including a distinct adaptation of the peripheral olfactory systems during the transition from detection of water-soluble chemicals to volatile compounds in the air. From a conservation biology perspective, the present data contribute to a better knowledge of the biology of stoneflies, which are very important bioindicators in rivers.
Collapse
Affiliation(s)
- Silvana Piersanti
- Dipartimento di Chimica, Biologia e Biotecnologie, University of Perugia, Via Elce di Sotto 8, 06123, Perugia, Italy.
| | - Manuela Rebora
- Dipartimento di Chimica, Biologia e Biotecnologie, University of Perugia, Via Elce di Sotto 8, 06123, Perugia, Italy.
| | - Gianandrea Salerno
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, University of Perugia, Borgo XX Giugno 74, 06121, Perugia, Italy.
| | - Simon Vitecek
- QUIVER, WasserCluster Lunz -Biologische Station, Dr.-Carl-Kupelwieserpromenade5, 3293, Lunz am See, Austria; Institute of Hydrobiology and Aquatic Ecosystem Management, University of Natural Resources and Life Sciences, Gregor-Mendel-Straße 33, 1180, Vienna, Austria.
| | - Sylvia Anton
- IGEPP, INRAE, Institut Agro, University of Rennes, 2, rue André Le Nôtre, 49045, Angers Cedex 01, France.
| |
Collapse
|
2
|
Lianos L, Mollemberg M, Colavite J, Lopes E Silva A, Zara FJ, Santana W. Much more than hooked: Setal adaptations for camouflage in Macrocoeloma trispinosum (Latreille, 1825) (Crustacea: Decapoda: Brachyura). ARTHROPOD STRUCTURE & DEVELOPMENT 2022; 66:101132. [PMID: 34863064 DOI: 10.1016/j.asd.2021.101132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 10/29/2021] [Accepted: 11/01/2021] [Indexed: 06/13/2023]
Abstract
Several majoid crabs are known to adhere exogenous materials to their bodies, a behaviour called decoration. Until now, the adhesion of exogenous materials to the body is most attributed to the well-known hooked setae. Here, we analysed the carapace of Macrocoeloma trispinosum (Latreille, 1825) under light and electron microscopy to study the different mechanisms allowing majoid crabs to decorate themselves. Five setal types are described here, of which four for the first time: velvet type I, velvet type II, depressa and cattail seta. These setae are morphologically and histologically detailed, and new hypotheses about the fixation of exogenous material on the carapace are explored. M. trispinosum has a complex setal apparatus for the adhesion of the decoration, with tegumental ducts along the shaft of most setae. These tegumental ducts are connected to glands formed by large cells arranged radially (rosette or acini) at the base of the setae, in the connective tissue, just below the epithelium. We could observe these glands in different stages of maturation, and no valve-like structure was observed, which may indicate a continuous flow of protein secretion that could serve as an adhesive substance found in the apex of most setae. This is the first record indicating a potential chemical adhesion mechanism aiding the masking process in decorator crabs.
Collapse
Affiliation(s)
- Laira Lianos
- Laboratório de Sistemática Zoológica, Universidade Estadual Paulista "Júlio de Mesquita Filho", Botucatu, 18618-970, SP, Brazil.
| | - Michelle Mollemberg
- Laboratório de Sistemática Zoológica, Universidade Estadual Paulista "Júlio de Mesquita Filho", Botucatu, 18618-970, SP, Brazil.
| | - Jessica Colavite
- Laboratório de Sistemática Zoológica, Universidade Estadual Paulista "Júlio de Mesquita Filho", Botucatu, 18618-970, SP, Brazil; Museu de Zoologia, Universidade de São Paulo, São Paulo, 04263-000, SP, Brazil.
| | - Amanda Lopes E Silva
- Laboratório de Sistemática Zoológica, Universidade Estadual Paulista "Júlio de Mesquita Filho", Botucatu, 18618-970, SP, Brazil.
| | - Fernando José Zara
- Laboratório de Morfologia de Invertebrados (LMI), Departamento de Biologia Aplicada. Universidade Estadual Paulista (UNESP), Faculdade de Ciências Agrárias e Veterinárias, Jaboticabal, 14884-900, SP, Brazil.
| | - William Santana
- Laboratório de Sistemática Zoológica, Universidade Estadual Paulista "Júlio de Mesquita Filho", Botucatu, 18618-970, SP, Brazil; Universidade Regional Do Cariri - URCA, Crato, 63100-000, CE, Brazil.
| |
Collapse
|
3
|
Krieger J, Hörnig MK, Kenning M, Hansson BS, Harzsch S. More than one way to smell ashore - Evolution of the olfactory pathway in terrestrial malacostracan crustaceans. ARTHROPOD STRUCTURE & DEVELOPMENT 2021; 60:101022. [PMID: 33385761 DOI: 10.1016/j.asd.2020.101022] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 12/02/2020] [Accepted: 12/02/2020] [Indexed: 06/12/2023]
Abstract
Crustaceans provide a fascinating opportunity for studying adaptations to a terrestrial lifestyle because within this group, the conquest of land has occurred at least ten times convergently. The evolutionary transition from water to land demands various morphological and physiological adaptations of tissues and organs including the sensory and nervous system. In this review, we aim to compare the brain architecture between selected terrestrial and closely related marine representatives of the crustacean taxa Amphipoda, Isopoda, Brachyura, and Anomala with an emphasis on the elements of the olfactory pathway including receptor molecules. Our comparison of neuroanatomical structures between terrestrial members and their close aquatic relatives suggests that during the convergent evolution of terrestrial life-styles, the elements of the olfactory pathway were subject to different morphological transformations. In terrestrial anomalans (Coenobitidae), the elements of the primary olfactory pathway (antennules and olfactory lobes) are in general considerably enlarged whereas they are smaller in terrestrial brachyurans compared to their aquatic relatives. Studies on the repertoire of receptor molecules in Coenobitidae do not point to specific terrestrial adaptations but suggest that perireceptor events - processes in the receptor environment before the stimuli bind - may play an important role for aerial olfaction in this group. In terrestrial members of amphipods (Amphipoda: Talitridae) as well as of isopods (Isopoda: Oniscidea), however, the antennules and olfactory sensilla (aesthetascs) are largely reduced and miniaturized. Consequently, their primary olfactory processing centers are suggested to have been lost during the evolution of a life on land. Nevertheless, in terrestrial Peracarida, the (second) antennae as well as their associated tritocerebral processing structures are presumed to compensate for this loss or rather considerable reduction of the (deutocerebral) primary olfactory pathway. We conclude that after the evolutionary transition from water to land, it is not trivial for arthropods to establish aerial olfaction. If we consider insects as an ingroup of Crustacea, then the Coenobitidae and Insecta may be seen as the most successful crustacean representatives in this respect.
Collapse
Affiliation(s)
- Jakob Krieger
- University of Greifswald, Zoological Institute and Museum, Cytology and Evolutionary Biology, 17489, Greifswald, Germany.
| | - Marie K Hörnig
- University of Greifswald, Zoological Institute and Museum, Cytology and Evolutionary Biology, 17489, Greifswald, Germany.
| | - Matthes Kenning
- University of Greifswald, Zoological Institute and Museum, Cytology and Evolutionary Biology, 17489, Greifswald, Germany.
| | - Bill S Hansson
- Max-Planck-Institute for Chemical Ecology, Department of Evolutionary Neuroethology, 07745, Jena, Germany.
| | - Steffen Harzsch
- University of Greifswald, Zoological Institute and Museum, Cytology and Evolutionary Biology, 17489, Greifswald, Germany.
| |
Collapse
|
4
|
Piersanti S, Rebora M, Salerno G, Anton S. The Antennal Pathway of Dragonfly Nymphs, from Sensilla to the Brain. INSECTS 2020; 11:E886. [PMID: 33339188 PMCID: PMC7765675 DOI: 10.3390/insects11120886] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/09/2020] [Accepted: 12/15/2020] [Indexed: 11/25/2022]
Abstract
Dragonflies are hemimetabolous insects, switching from an aquatic life style as nymphs to aerial life as adults, confronted to different environmental cues. How sensory structures on the antennae and the brain regions processing the incoming information are adapted to the reception of fundamentally different sensory cues has not been investigated in hemimetabolous insects. Here we describe the antennal sensilla, the general brain structure, and the antennal sensory pathways in the last six nymphal instars of Libellula depressa, in comparison with earlier published data from adults, using scanning electron microscopy, and antennal receptor neuron and antennal lobe output neuron mass-tracing with tetramethylrhodamin. Brain structure was visualized with an anti-synapsin antibody. Differently from adults, the nymphal antennal flagellum harbors many mechanoreceptive sensilla, one olfactory, and two thermo-hygroreceptive sensilla at all investigated instars. The nymphal brain is very similar to the adult brain throughout development, despite the considerable differences in antennal sensilla and habitat. Like in adults, nymphal brains contain mushroom bodies lacking calyces and small aglomerular antennal lobes. Antennal fibers innervate the antennal lobe similar to adult brains and the gnathal ganglion more prominently than in adults. Similar brain structures are thus used in L. depressa nymphs and adults to process diverging sensory information.
Collapse
Affiliation(s)
- Silvana Piersanti
- Dipartimento di Chimica, Biologia e Biotecnologie, University of Perugia, 06123 Perugia, Italy; (S.P.); (M.R.)
| | - Manuela Rebora
- Dipartimento di Chimica, Biologia e Biotecnologie, University of Perugia, 06123 Perugia, Italy; (S.P.); (M.R.)
| | - Gianandrea Salerno
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, University of Perugia, 06123 Perugia, Italy;
| | - Sylvia Anton
- IGEPP, INRAE, Institut Agro, Univ Rennes, 49045 Angers, France
| |
Collapse
|
5
|
Polanska MA, Kirchhoff T, Dircksen H, Hansson BS, Harzsch S. Functional morphology of the primary olfactory centers in the brain of the hermit crab Coenobita clypeatus (Anomala, Coenobitidae). Cell Tissue Res 2020; 380:449-467. [PMID: 32242250 PMCID: PMC7242284 DOI: 10.1007/s00441-020-03199-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 03/03/2020] [Indexed: 11/07/2022]
Abstract
Terrestrial hermit crabs of the genus Coenobita display strong behavioral responses to volatile odors and are attracted by chemical cues of various potential food sources. Several aspects of their sense of aerial olfaction have been explored in recent years including behavioral aspects and structure of their peripheral and central olfactory pathway. Here, we use classical histological methods and immunohistochemistry against the neuropeptides orcokinin and allatostatin as well as synaptic proteins and serotonin to provide insights into the functional organization of their primary olfactory centers in the brain, the paired olfactory lobes. Our results show that orcokinin is present in the axons of olfactory sensory neurons, which target the olfactory lobe. Orcokinin is also present in a population of local olfactory interneurons, which may relay lateral inhibition across the array of olfactory glomeruli within the lobes. Extensive lateral connections of the glomeruli were also visualized using the histological silver impregnation method according to Holmes-Blest. This technique also revealed the structural organization of the output pathway of the olfactory system, the olfactory projection neurons, the axons of which target the lateral protocerebrum. Within the lobes, the course of their axons seems to be reorganized in an axon-sorting zone before they exit the system. Together with previous results, we combine our findings into a model on the functional organization of the olfactory system in these animals.
Collapse
Affiliation(s)
- Marta A Polanska
- Department of Animal Physiology, Institute of Zoology, Faculty of Biology, University of Warsaw, 1 Miecznikowa Street, 02-096, Warsaw, Poland
| | - Tina Kirchhoff
- Zoological Institute and Museum, Department of Cytology and Evolutionary Biology, University of Greifswald, Soldmannstrasse 23, 17498, Greifswald, Germany
| | - Heinrich Dircksen
- Department of Zoology, Stockholm University, Svante Arrhenius väg 18B, SE-10691, Stockholm, Sweden
| | - Bill S Hansson
- Max-Planck-Institute for Chemical Ecology, Department of Evolutionary Neuroethology, Hans-Knöll-Straße 8, 07745, Jena, Germany
| | - Steffen Harzsch
- Zoological Institute and Museum, Department of Cytology and Evolutionary Biology, University of Greifswald, Soldmannstrasse 23, 17498, Greifswald, Germany.
- Max-Planck-Institute for Chemical Ecology, Department of Evolutionary Neuroethology, Hans-Knöll-Straße 8, 07745, Jena, Germany.
| |
Collapse
|
6
|
Piersanti S, Rebora M. The antennae of damselfly larvae. ARTHROPOD STRUCTURE & DEVELOPMENT 2018; 47:36-44. [PMID: 29191794 DOI: 10.1016/j.asd.2017.11.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 11/24/2017] [Accepted: 11/25/2017] [Indexed: 06/07/2023]
Abstract
The larval antennal sensilla of two Zygoptera species, Calopteryx haemorroidalis (Calopterygidae) and Ischnura elegans (Coenagrionidae) are investigated with SEM and TEM. These two species have different antennae (geniculate, setaceous) and live in different environments (lotic, lentic waters). Notwithstanding this, similarities in the kind and distribution of sensilla are outlined: in both species the majority of sensilla types is located on the apical portion of the antenna, namely a composed coeloconic sensillum (possible chemoreceptor), two other coeloconic sensilla (possible thermo-hygroreceptors) and an apical seta (direct contact mechanoreceptor). Other mechanoreceptors, such as filiform hairs sensitive to movements of the surrounding medium or bristles positioned to sense the movements of the flagellar segments, are present on the antenna. Similarities in the antennal sensilla types and distribution are observed also with other dragonfly species, such as Onychogomphus forcipatus and Libellula depressa. A peculiar structure with an internal organization similar to that of a gland is observed in the apical antenna of C. haemorroidalis and I. elegans and it is present also in O. forcipatus and L. depressa. The possible function of this structure is at the moment unknown but deserves further investigations owing to its widespread presence in Odonata larvae.
Collapse
Affiliation(s)
- Silvana Piersanti
- Dipartimento di Chimica, Biologia e Biotecnologie, University of Perugia, Via Elce di Sotto, 1, 06121 Perugia, Italy.
| | - Manuela Rebora
- Dipartimento di Chimica, Biologia e Biotecnologie, University of Perugia, Via Elce di Sotto, 1, 06121 Perugia, Italy
| |
Collapse
|
7
|
Crustacean olfactory systems: A comparative review and a crustacean perspective on olfaction in insects. Prog Neurobiol 2017; 161:23-60. [PMID: 29197652 DOI: 10.1016/j.pneurobio.2017.11.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 11/10/2017] [Accepted: 11/28/2017] [Indexed: 12/20/2022]
Abstract
Malacostracan crustaceans display a large diversity of sizes, morphs and life styles. However, only a few representatives of decapod taxa have served as models for analyzing crustacean olfaction, such as crayfish and spiny lobsters. Crustaceans bear multiple parallel chemosensory pathways represented by different populations of unimodal chemosensory and bimodal chemo- and mechanosensory sensilla on the mouthparts, the walking limbs and primarily on their two pairs of antennae. Here, we focus on the olfactory pathway associated with the unimodal chemosensory sensilla on the first antennal pair, the aesthetascs. We explore the diverse arrangement of these sensilla across malacostracan taxa and point out evolutionary transformations which occurred in the central olfactory pathway. We discuss the evolution of chemoreceptor proteins, comparative aspects of active chemoreception and the temporal resolution of crustacean olfactory system. Viewing the evolution of crustacean brains in light of energetic constraints can help us understand their functional morphology and suggests that in various crustacean lineages, the brains were simplified convergently because of metabolic limitations. Comparing the wiring of afferents, interneurons and output neurons within the olfactory glomeruli suggests a deep homology of insect and crustacean olfactory systems. However, both taxa followed distinct lineages during the evolutionary elaboration of their olfactory systems. A comparison with insects suggests their olfactory systems ö especially that of the vinegar fly ö to be superb examples for "economy of design". Such a comparison also inspires new thoughts about olfactory coding and the functioning of malacostracan olfactory systems in general.
Collapse
|
8
|
Neretin NY. The morphology and ultrastructure of “amphipod silk” glands in Ampithoe rubricata (Crustacea, Amphipoda, Ampithoidae). BIOL BULL+ 2017. [DOI: 10.1134/s106235901607013x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
9
|
Mollo E, Garson MJ, Polese G, Amodeo P, Ghiselin MT. Taste and smell in aquatic and terrestrial environments. Nat Prod Rep 2017; 34:496-513. [DOI: 10.1039/c7np00008a] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The review summarizes results up to 2017 on chemosensory cues occurring in both aquatic and terrestrial environments.
Collapse
Affiliation(s)
- E. Mollo
- National Research Council of Italy
- Institute of Biomolecular Chemistry
- Italy
| | - M. J. Garson
- University of Queensland
- School of Chemistry and Molecular Sciences
- Brisbane Q 4072
- Australia
| | - G. Polese
- University of Naples “Federico II”
- Department of Biology
- 80126 Naples
- Italy
| | - P. Amodeo
- National Research Council of Italy
- Institute of Biomolecular Chemistry
- Italy
| | - M. T. Ghiselin
- California Academy of Sciences
- Department of Invertebrate Zoology
- San Francisco
- USA
| |
Collapse
|
10
|
Ionotropic Receptors Identified within the Tentacle of the Freshwater Snail Biomphalaria glabrata, an Intermediate Host of Schistosoma mansoni. PLoS One 2016; 11:e0156380. [PMID: 27253696 PMCID: PMC4890853 DOI: 10.1371/journal.pone.0156380] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 05/15/2016] [Indexed: 12/21/2022] Open
Abstract
Biomphalaria glabrata (B. glabrata) is an air-breathing aquatic mollusc found in freshwater habitats across the Western Hemisphere. It is most well-known for its recognized capacity to act as a major intermediate host for Schistosoma mansoni, the human blood fluke parasite. Ionotropic receptors (IRs), a variant family of the ionotropic glutamate receptors (iGluR), have an evolutionary ancient function in detecting odors to initiate chemosensory signaling. In this study, we applied an array of methods towards the goal of identifying IR-like family members in B. glabrata, ultimately revealing two types, the iGluR and IR. Sequence alignment showed that three ligand-binding residues are conserved in most Biomphalaria iGluR sequences, while the IRs did exhibit a variable pattern, lacking some or all known glutamate-interactingresidues, supporting their distinct classification from the iGluRs. We show that B. glabrata contains 7 putative IRs, some of which are expressed within its chemosensory organs. To further investigate a role for the more ancient IR25a type in chemoreception, we tested its spatial distribution pattern within the snail cephalic tentacle by in situ hybridization. The presence of IR25a within presumptive sensory neurons supports a role for this receptor in olfactory processing, contributing to our understanding of the molecular pathways that are involved in Biomphalaria olfactory processing.
Collapse
|
11
|
Krieger J, Braun P, Rivera NT, Schubart CD, Müller CH, Harzsch S. Comparative analyses of olfactory systems in terrestrial crabs (Brachyura): evidence for aerial olfaction? PeerJ 2015; 3:e1433. [PMID: 26713228 PMCID: PMC4690415 DOI: 10.7717/peerj.1433] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Accepted: 11/03/2015] [Indexed: 11/30/2022] Open
Abstract
Adaptations to a terrestrial lifestyle occurred convergently multiple times during the evolution of the arthropods. This holds also true for the "true crabs" (Brachyura), a taxon that includes several lineages that invaded land independently. During an evolutionary transition from sea to land, animals have to develop a variety of physiological and anatomical adaptations to a terrestrial life style related to respiration, reproduction, development, circulation, ion and water balance. In addition, sensory systems that function in air instead of in water are essential for an animal's life on land. Besides vision and mechanosensory systems, on land, the chemical senses have to be modified substantially in comparison to their function in water. Among arthropods, insects are the most successful ones to evolve aerial olfaction. Various aspects of terrestrial adaptation have also been analyzed in those crustacean lineages that evolved terrestrial representatives including the taxa Anomala, Brachyura, Amphipoda, and Isopoda. We are interested in how the chemical senses of terrestrial crustaceans are modified to function in air. Therefore, in this study, we analyzed the brains and more specifically the structure of the olfactory system of representatives of brachyuran crabs that display different degrees of terrestriality, from exclusively marine to mainly terrestrial. The methods we used included immunohistochemistry, detection of autofluorescence- and confocal microscopy, as well as three-dimensional reconstruction and morphometry. Our comparative approach shows that both the peripheral and central olfactory pathways are reduced in terrestrial members in comparison to their marine relatives, suggesting a limited function of their olfactory system on land. We conclude that for arthropod lineages that invaded land, evolving aerial olfaction is no trivial task.
Collapse
Affiliation(s)
- Jakob Krieger
- Zoological Institute and Museum, Department of Cytology and Evolutionary Biology, Ernst-Moritz-Arndt Universität Greifswald, Greifswald, Germany
| | - Philipp Braun
- Zoological Institute and Museum, Department of Cytology and Evolutionary Biology, Ernst-Moritz-Arndt Universität Greifswald, Greifswald, Germany
| | - Nicole T. Rivera
- Institute for Zoology, Department of Zoology & Evolution, Universität Regensburg, Regensburg, Germany
| | - Christoph D. Schubart
- Institute for Zoology, Department of Zoology & Evolution, Universität Regensburg, Regensburg, Germany
| | - Carsten H.G. Müller
- Zoological Institute and Museum, Department of General and Systematic Zoology, Ernst-Moritz-Arndt Universität Greifswald, Greifswald, Germany
| | - Steffen Harzsch
- Zoological Institute and Museum, Department of Cytology and Evolutionary Biology, Ernst-Moritz-Arndt Universität Greifswald, Greifswald, Germany
| |
Collapse
|
12
|
Tuchina O, Koczan S, Harzsch S, Rybak J, Wolff G, Strausfeld NJ, Hansson BS. Central projections of antennular chemosensory and mechanosensory afferents in the brain of the terrestrial hermit crab (Coenobita clypeatus; Coenobitidae, Anomura). Front Neuroanat 2015; 9:94. [PMID: 26236202 PMCID: PMC4502362 DOI: 10.3389/fnana.2015.00094] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 06/29/2015] [Indexed: 11/28/2022] Open
Abstract
The Coenobitidae (Decapoda, Anomura, Paguroidea) is a taxon of hermit crabs that includes two genera with a fully terrestrial life style as adults. Previous studies have shown that Coenobitidae have evolved a sense of spatial odor localization that is behaviorally highly relevant. Here, we examined the central olfactory pathway of these animals by analyzing central projections of the antennular nerve of Coenobita clypeatus, combining backfilling of the nerve with dextran-coupled dye, Golgi impregnations and three-dimensional reconstruction of the primary olfactory center, the antennular lobe. The principal pattern of putative olfactory sensory afferents in C. clypeatus is in many aspects similar to what have been established for aquatic decapod crustaceans, such as the spiny lobster Panulirus argus. However, there are also obvious differences that may, or may not represent adaptations related to a terrestrial lifestyle. In C. clypeatus, the antennular lobe dominates the deutocerebrum, having more than one thousand allantoid-shaped subunits. We observed two distinct patterns of sensory neuron innervation: putative olfactory afferents from the aesthetascs either supply the cap/subcap region of the subunits or they extend through its full depth. Our data also demonstrate that any one sensory axon can supply input to several subunits. Putative chemosensory (non-aesthetasc) and mechanosensory axons represent a different pathway and innervate the lateral and median antennular neuropils. Hence, we suggest that the chemosensory input in C. clypeatus might be represented via a dual pathway: aesthetascs target the antennular lobe, and bimodal sensilla target the lateral antennular neuropil and median antennular neuropil. The present data is compared to related findings in other decapod crustaceans.
Collapse
Affiliation(s)
- Oksana Tuchina
- Department of Evolutionary Neuroethology, Beutenberg Campus, Max Planck Institute for Chemical Ecology Jena, Germany ; Laboratory for Genomic and Proteomic Research, Institute of Chemistry and Biology, Immanuel Kant Baltic Federal University Kaliningrad, Russia
| | - Stefan Koczan
- Department of Evolutionary Neuroethology, Beutenberg Campus, Max Planck Institute for Chemical Ecology Jena, Germany
| | - Steffen Harzsch
- Cytology and Evolutionary Biology, Zoological Institute and Museum, Ernst Moritz Arndt University Greifswald Greifswald, Germany
| | - Jürgen Rybak
- Department of Evolutionary Neuroethology, Beutenberg Campus, Max Planck Institute for Chemical Ecology Jena, Germany
| | - Gabriella Wolff
- Department of Neuroscience, The University of Arizona Tucson, AZ, USA
| | | | - Bill S Hansson
- Department of Evolutionary Neuroethology, Beutenberg Campus, Max Planck Institute for Chemical Ecology Jena, Germany
| |
Collapse
|
13
|
Groh-Lunow KC, Getahun MN, Grosse-Wilde E, Hansson BS. Expression of ionotropic receptors in terrestrial hermit crab's olfactory sensory neurons. Front Cell Neurosci 2015; 8:448. [PMID: 25698921 PMCID: PMC4313712 DOI: 10.3389/fncel.2014.00448] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 12/12/2014] [Indexed: 01/11/2023] Open
Abstract
Coenobitidae are one out of at least five crustacean lineages which independently succeeded in the transition from water to land. This change in lifestyle required adaptation of the peripheral olfactory organs, the antennules, in order to sense chemical cues in the new terrestrial habitat. Hermit crab olfactory aesthetascs are arranged in a field on the distal segment of the antennular flagellum. Aesthetascs house approximately 300 dendrites with their cell bodies arranged in spindle-like complexes of ca. 150 cell bodies each. While the aesthetascs of aquatic crustaceans have been shown to be the place of odor uptake and previous studies identified ionotropic receptors (IRs) as the putative chemosensory receptors expressed in decapod antennules, the expression of IRs besides the IR co-receptors IR25a and IR93a in olfactory sensory neurons (OSNs) has not been documented yet. Our goal was to reveal the expression and distribution pattern of non-co-receptor IRs in OSNs of Coenobita clypeatus, a terrestrial hermit crab, with RNA in situ hybridization. We expanded our previously published RNAseq dataset, and revealed 22 novel IR candidates in the Coenobita antennules. We then used RNA probes directed against three different IRs to visualize their expression within the OSN cell body complexes. Furthermore we aimed to characterize ligand spectra of single aesthetascs by recording local field potentials and responses from individual dendrites. This also allowed comparison to functional data from insect OSNs expressing antennal IRs. We show that this orphan receptor subgroup with presumably non-olfactory function in insects is likely the basis of olfaction in terrestrial hermit crabs.
Collapse
Affiliation(s)
- Katrin C Groh-Lunow
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology Jena, Germany
| | - Merid N Getahun
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology Jena, Germany
| | - Ewald Grosse-Wilde
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology Jena, Germany
| | - Bill S Hansson
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology Jena, Germany
| |
Collapse
|
14
|
Mollo E, Fontana A, Roussis V, Polese G, Amodeo P, Ghiselin MT. Sensing marine biomolecules: smell, taste, and the evolutionary transition from aquatic to terrestrial life. Front Chem 2014; 2:92. [PMID: 25360437 PMCID: PMC4199317 DOI: 10.3389/fchem.2014.00092] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Accepted: 09/29/2014] [Indexed: 01/03/2023] Open
Abstract
The usual definition of smell and taste as distance and contact forms of chemoreception, respectively, has resulted in the belief that, during the shift from aquatic to terrestrial life, odorant receptors (ORs) were selected mainly to recognize airborne hydrophobic ligands, instead of the hydrophilic molecules involved in marine remote-sensing. This post-adaptive evolutionary scenario, however, neglects the fact that marine organisms 1) produce and detect a wide range of small hydrophobic and volatile molecules, especially terpenoids, and 2) contain genes coding for ORs that are able to bind those compounds. These apparent anomalies can be resolved by adopting an alternative, pre-adaptive scenario. Before becoming airborne on land, small molecules, almost insoluble in water, already played a key role in aquatic communication, but acting in "contact" forms of olfaction that did not require major molecular innovations to become effective at a distance in air. Rather, when air was "invaded" by volatile marine terpenoids, an expansion of the spatial range of olfaction was an incidental consequence rather than an adaptation.
Collapse
Affiliation(s)
- Ernesto Mollo
- Institute of Biomolecular Chemistry, National Research Council of Italy Pozzuoli, Italy
| | - Angelo Fontana
- Institute of Biomolecular Chemistry, National Research Council of Italy Pozzuoli, Italy
| | | | - Gianluca Polese
- Department of Biology, University of Naples "Federico II," Naples, Italy
| | - Pietro Amodeo
- Institute of Biomolecular Chemistry, National Research Council of Italy Pozzuoli, Italy
| | - Michael T Ghiselin
- Department of Invertebrate Zoology and Geology, California Academy of Sciences San Francisco, CA, USA
| |
Collapse
|