1
|
Dong B, Hua J, Ma S, Wang L, Xiao H, Qiao X, Zhao R, Liu Y. Causal associations of MICB, CTSA, and MMP9 proteins with oral cancer: Mendelian randomization study. Sci Rep 2024; 14:25645. [PMID: 39465349 PMCID: PMC11514235 DOI: 10.1038/s41598-024-77042-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 10/18/2024] [Indexed: 10/29/2024] Open
Abstract
Oral cancer (ORCA) is the most prevalent histological subtype of oral malignancies in which immune modulation is relevant. The goal of this work was to employ Mendelian randomization (MR) to investigate the causal connection between the immune-related proteins MICB, CTSA, MMP9, and ORCA. The Open GWAS database of the Integrative Epidemiology Unit (IEU) was accessed to collect GWAS data for ORCA (ieu-b-4961), MICB (prot-a-1898), CTSA (prot-a-717) and MMP9 (prot-a-1921). From 372,373 samples, the ORCA dataset comprises 7,723,107 single nucleotide polymorphisms (SNPs). MICB, CTSA, and MMP9 all have 10,534,735 SNPs and 3,301 sample sizes. Then, the primary SVMR implementation approaches were weighted mode, simple mode, inverse variance weighted (IVW), weighted median, and MR-Egger. IVW was the most effective technique. A sensitivity study was also carried out to assess the correctness of SVMR data, with special focus devoted to heterogeneity, horizontal pleiotropy, and Leave-One-Out (LOO). MVMR was eventually implemented as well. A Mendelian randomization analysis of the three exposure factors in the dataset (ieu-b-94, ebi-a-GCST012237) was also performed to validate the study results. According to the SVMR results, there was a noteworthy causal interaction between ORCA and MICB (P = 0.0014), MMP9 (P = 0.0343), and CTSA (P = 0.0003). Furthermore, odds ratios (ORs) values revealed that MMP9 (OR = 1.0005) was an ORCA risk factor, whereas MICB (OR = 0.9994) and CTSA (OR = 0.9993) were security factors. The robustness of the SVMR findings was confirmed by the p-values of the heterogeneity and horizontal pleiotropy, both of which were greater than 0.05. The MVMR result did not affect any of the safety or hazard features of these three exposure factors. However, the P value for MMP9 was greater than 0.05, implying that MICB and CTSA may have a greater influence on ORCA than MMP9. The validation outcomes in both datasets harmonized with the findings from previous research, thereby solidifying the reliability of results. Our investigation provided a crucial resource for further research on the subject by demonstrating a causal relationship between ORCA and MICB, CTSA, and MMP9.
Collapse
Affiliation(s)
- Bowen Dong
- Department of Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, People's Republic of China
| | - Jianlei Hua
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, People's Republic of China
| | - Shengxuan Ma
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, People's Republic of China
| | - Li Wang
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, People's Republic of China
| | - Haotian Xiao
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, People's Republic of China
| | - Xianghe Qiao
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, People's Republic of China
| | - Rui Zhao
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, People's Republic of China.
| | - Yiming Liu
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, People's Republic of China.
| |
Collapse
|
2
|
Hamouda HA, Sayed RH, Eid NI, El-Sayeh BM. Azilsartan Attenuates 3-Nitropropinoic Acid-Induced Neurotoxicity in Rats: The Role of IĸB/NF-ĸB and KEAP1/Nrf2 Signaling Pathways. Neurochem Res 2024; 49:1017-1033. [PMID: 38184805 PMCID: PMC10901959 DOI: 10.1007/s11064-023-04083-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 12/01/2023] [Accepted: 12/05/2023] [Indexed: 01/08/2024]
Abstract
Huntington's disease (HD) is an autosomal-dominant neurodegenerative disorder characterized by motor, psychiatric and cognitive symptoms. Injection of 3-nitropropionic acid (3-NP) is a widely used experimental model for induction of HD. The current study aimed to inspect the potential neuroprotective properties of azilsartan (Azil), an angiotensin II type 1 receptor blocker (ATR1), in 3-NP-induced striatal neurotoxicity in rats. Rats were randomly allocated into five groups and treated for 14 days as follows: group I received normal saline; group II received Azil (10 mg/kg, p.o.); group III received 3-NP (10 mg/kg, i.p); group IV and V received Azil (5 or 10 mg/kg, p.o, respectively) 1 h prior to 3-NP injection. Both doses of Azil markedly attenuated motor and behavioural dysfunction as well as striatal histopathological alterations caused by 3-NP. In addition, Azil balanced striatal neurotransmitters levels as evidenced by the increase of striatal gamma-aminobutyric acid content and the decrease of glutamate content. Azil also amended neuroinflammation and oxidative stress via modulating IĸB/NF-ĸB and KEAP1/Nrf2 downstream signalling pathways, as well as reducing iNOS and COX2 levels. Moreover, Azil demonstrated an anti-apoptotic activity by reducing caspase-3 level and BAX/BCL2 ratio. In conclusion, the present study reveals the neuroprotective potential of Azil in 3-NP-induced behavioural, histopathological and biochemical changes in rats. These findings might be attributed to inhibition of ATR1/NF-κB signalling, modulation of Nrf2/KEAP1 signalling, anti-inflammatory, anti-oxidant and anti-apoptotic properties.
Collapse
Affiliation(s)
- Hend A Hamouda
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El Aini St., Cairo, 11562, Egypt
| | - Rabab H Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El Aini St., Cairo, 11562, Egypt.
- School of Pharmacy, Newgiza University, Giza, Egypt.
| | - Nihad I Eid
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El Aini St., Cairo, 11562, Egypt
| | - Bahia M El-Sayeh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El Aini St., Cairo, 11562, Egypt
| |
Collapse
|
3
|
Fan Z, Kitaura H, Ren J, Ohori F, Noguchi T, Marahleh A, Ma J, Kanou K, Miura M, Narita K, Lin A, Mizoguchi I. Azilsartan inhibits inflammation-triggered bone resorption and osteoclastogenesis in vivo via suppression of TNF-α expression in macrophages. Front Endocrinol (Lausanne) 2023; 14:1207502. [PMID: 37795376 PMCID: PMC10545845 DOI: 10.3389/fendo.2023.1207502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 08/31/2023] [Indexed: 10/06/2023] Open
Abstract
Introduction Hypertension is a major risk factor for cardiovascular disease (CVD) and is associated with increased bone loss due to excessive activity of the local renin-angiotensin system (RAS). Angiotensinogen/Angiotensin (ANG) II/Angiotensin II type 1 receptor (AT1R) axis is considered as the core axis regulating RAS activity. Azilsartan is an FDA-approved selective AT1R antagonist that is used to treat hypertension. This study aimed to determine whether azilsartan affects formation of osteoclast, resorption of bone, and the expression of cytokines linked with osteoclastogenesis during lipopolysaccharide (LPS)-triggered inflammation in vivo. Methods In vivo, following a 5-day supracalvarial injection of LPS or tumor necrosis factor-alpha (TNF-α) with or without azilsartan, the proportion of bone resorption and the number of tartrate-resistant acid phosphatase (TRAP)-positive multinucleated cells, which are identified as osteoclasts on mice calvariae were counted. The mRNA expression levels of TRAP, cathepsin K, receptor activator of NF-κB ligand (RANKL), and TNF-α were also evaluated. In vitro, the effect of azilsartan (0, 0.01, 0.1, 1, and 10 μM) on RANKL and TNF-α-triggered osteoclastogenesis were investigated. Also, whether azilsartan restrains LPS-triggered TNF-α mRNA and protein expression in macrophages and RANKL expression in osteoblasts were assessed. Furthermore, western blotting for analysis of mitogen-activated protein kinases (MAPKs) signaling was conducted. Results Azilsartan-treated calvariae exhibited significantly lower bone resorption and osteoclastogenesis than those treated with LPS alone. In vivo, LPS with azilsartan administration resulted in lower levels of receptor activator of RANKL and TNF-α mRNA expression than LPS administration alone. Nevertheless, azilsartan did not show inhibitory effect on RANKL- and TNF-α-triggered osteoclastogenesis in vitro. Compared to macrophages treated with LPS, TNF-α mRNA and protein levels were lower in macrophages treated by LPS with azilsartan. In contrast, RANKL mRNA and protein expression levels in osteoblasts were the same in cells co-treated with azilsartan and LPS and those exposed to LPS only. Furthermore, azilsartan suppressed LPS-triggered MAPKs signaling pathway in macrophages. After 5-day supracalvarial injection, there is no difference between TNF-α injection group and TNF-α with azilsartan injection group. Conclusion These findings imply that azilsartan prevents LPS-triggered TNF-α production in macrophages, which in turn prevents LPS-Triggered osteoclast formation and bone resorption in vivo.
Collapse
Affiliation(s)
- Ziqiu Fan
- Division of Orthodontics and Dentofacial Orthopedics, Tohoku University Graduate School of Dentistry, Sendai, Miyagi, Japan
| | - Hideki Kitaura
- Division of Orthodontics and Dentofacial Orthopedics, Tohoku University Graduate School of Dentistry, Sendai, Miyagi, Japan
| | - Jiayi Ren
- Division of Orthodontics and Dentofacial Orthopedics, Tohoku University Graduate School of Dentistry, Sendai, Miyagi, Japan
| | - Fumitoshi Ohori
- Division of Orthodontics and Dentofacial Orthopedics, Tohoku University Graduate School of Dentistry, Sendai, Miyagi, Japan
| | - Takahiro Noguchi
- Division of Orthodontics and Dentofacial Orthopedics, Tohoku University Graduate School of Dentistry, Sendai, Miyagi, Japan
| | - Aseel Marahleh
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Jinghan Ma
- Division of Orthodontics and Dentofacial Orthopedics, Tohoku University Graduate School of Dentistry, Sendai, Miyagi, Japan
| | - Kayoko Kanou
- Division of Orthodontics and Dentofacial Orthopedics, Tohoku University Graduate School of Dentistry, Sendai, Miyagi, Japan
| | - Mariko Miura
- Division of Orthodontics and Dentofacial Orthopedics, Tohoku University Graduate School of Dentistry, Sendai, Miyagi, Japan
| | - Kohei Narita
- Division of Orthodontics and Dentofacial Orthopedics, Tohoku University Graduate School of Dentistry, Sendai, Miyagi, Japan
| | - Angyi Lin
- Division of Orthodontics and Dentofacial Orthopedics, Tohoku University Graduate School of Dentistry, Sendai, Miyagi, Japan
| | - Itaru Mizoguchi
- Division of Orthodontics and Dentofacial Orthopedics, Tohoku University Graduate School of Dentistry, Sendai, Miyagi, Japan
| |
Collapse
|
4
|
Semita IN, Utomo DN, Suroto H, Sudiana IK, Gandi P. The mechanism of human neural stem cell secretomes improves neuropathic pain and locomotor function in spinal cord injury rat models: through antioxidant, anti-inflammatory, anti-matrix degradation, and neurotrophic activities. Korean J Pain 2023; 36:72-83. [PMID: 36549874 PMCID: PMC9812698 DOI: 10.3344/kjp.22279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 11/09/2022] [Accepted: 11/13/2022] [Indexed: 12/24/2022] Open
Abstract
Background Globally, spinal cord injury (SCI) results in a big burden, including 90% suffering permanent disability, and 60%-69% experiencing neuropathic pain. The main causes are oxidative stress, inflammation, and degeneration. The efficacy of the stem cell secretome is promising, but the role of human neural stem cell (HNSC)-secretome in neuropathic pain is unclear. This study evaluated how the mechanism of HNSC-secretome improves neuropathic pain and locomotor function in SCI rat models through antioxidant, anti-inflammatory, anti-matrix degradation, and neurotrophic activities. Methods A proper experimental study investigated 15 Rattus norvegicus divided into normal, control, and treatment groups (30 μL HNSC-secretome, intrathecal in the level of T10, three days post-traumatic SCI). Twenty-eight days post-injury, specimens were collected, and matrix metalloproteinase (MMP)-9, F2-Isoprostanes, tumor necrosis factor (TNF)-α, transforming growth factor (TGF)-β, and brain derived neurotrophic factor (BDNF) were analyzed. Locomotor recovery was evaluated via Basso, Beattie, and Bresnahan scores. Neuropathic pain was evaluated using the Rat Grimace Scale. Results The HNSC-secretome could improve locomotor recovery and neuropathic pain, decrease F2-Isoprostane (antioxidant), decrease MMP-9 and TNF-α (anti-inflammatory), as well as modulate TGF-β and BDNF (neurotrophic factor). Moreover, HNSC-secretomes maintain the extracellular matrix of SCI by reducing the matrix degradation effect of MMP-9 and increasing the collagen formation effect of TGF-β as a resistor of glial scar formation. Conclusions The present study demonstrated the mechanism of HNSC-secretome in improving neuropathic pain and locomotor function in SCI through antioxidant, anti-inflammatory, anti-matrix degradation, and neurotrophic activities.
Collapse
Affiliation(s)
- I Nyoman Semita
- Doctoral Program of Medical Science, Faculty of Medicine, Airlangga University, Surabaya, Indonesia,Department of Orthopaedic, Faculty of Medicine, University of Jember, Jember, Indonesia
| | - Dwikora Novembri Utomo
- Department of Orthopaedic, Faculty of Medicine, Airlangga University, Surabaya, Indonesia,Correspondence: Dwikora Novembri Utomo Department of Orthopaedic, Faculty of Medicine, Airlangga University, Jl. Manyar Tirtosari IV/7, Surabaya, East Java, Indonesia, Tel: +628123036236, Fax: +62315020406, E-mail:
| | - Heri Suroto
- Department of Orthopaedic, Faculty of Medicine, Airlangga University, Surabaya, Indonesia
| | - I Ketut Sudiana
- Department of Anatomic Pathology, Faculty of Medicine, Airlangga University, Surabaya, Indonesia
| | - Parama Gandi
- Departement of Cardiology, Faculty of Medicine, Airlangga University, Surabaya, Indonesia
| |
Collapse
|
5
|
Emerging approaches of wound healing in experimental models of high-grade oral mucositis induced by anticancer therapy. Oncotarget 2021; 12:2283-2299. [PMID: 34733419 PMCID: PMC8555685 DOI: 10.18632/oncotarget.28091] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 09/24/2021] [Indexed: 01/22/2023] Open
Abstract
Clinical guidelines for oral mucositis (OM) still consist in palliative care. Herein, we summarize cellular and molecular mechanisms of OM ulceration in response to chemical therapies in animal models. We discuss evidenced anti-inflammatory and anti-oxidant drugs which have not been ever used for OM, such as synthetic peptides as well as cell therapy with mesenchymal stem cells; amniotic membranes, mucoadhesive polymers loaded with anti-inflammatory agents and natural or synthetic electrospun. These approaches have been promising to allow the production of drug-loaded membranes, scaffolds for cells encapsulation or guided tissue regeneration.
Collapse
|
6
|
Castro VMDD, Medeiros KCDP, Lemos LICD, Pedrosa LDFC, Ladd FVL, Carvalho TGD, Araújo Júnior RFD, Abreu BJ, Farias NBDS. S-methyl cysteine sulfoxide ameliorates duodenal morphological alterations in streptozotocin-induced diabetic rats. Tissue Cell 2021; 69:101483. [PMID: 33444959 DOI: 10.1016/j.tice.2020.101483] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/08/2020] [Accepted: 12/22/2020] [Indexed: 12/14/2022]
Abstract
Diabetes mellitus (DM) is a metabolic disease associated with several intestinal disorders. S-methyl cysteine sulfoxide (SMCS) is an amino acid present in Allium cepa L with hypoglycemic effects. However, the effects of SMCS on diabetic intestinal changes are unknown. Thus, we aimed to investigate the effects of SMCS on duodenal morphology and immunomodulatory markers in diabetic rats. Twenty-six rats were divided into three groups: control (C), diabetic (D) and diabetic +200 mg/kg SMCS (DSM). DM was induced by intraperitoneal injection of streptozotocin (50 mg/kg). After 30 days, duodenum samples were processed to assess histopathological and stereological alterations in volume, villus length, and immunohistochemical expression of NF-kB, IL-10, BCL-2, and caspase-3. SMCS reduced hyperglycemia and mitigated the increase in total reference volume of the duodenum, the absolute volume of the mucosa, and the length of the intestinal crypts in the DMS group when compared to D. IL-10 immunostaining was reduced in D when compared to C, while NF-kB was increased in D in comparison to the other groups. SMCS supplementation could decrease the NF-kB immunostaining observed in D. Positive staining for BCL-2 and caspase-3 were not statistically different between groups. In summary, SMCS decreased hyperglycemia and mitigated the morphological changes of the duodenum in diabetic animals, and these beneficial effects can be partially explained by NF-kB modulation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Bento João Abreu
- Department of Morphology, Federal University of Rio Grande do Norte, Natal, Brazil.
| | | |
Collapse
|
7
|
Dong Q, Li Y, Chen J, Wang N. Azilsartan Suppressed LPS-Induced Inflammation in U937 Macrophages through Suppressing Oxidative Stress and Inhibiting the TLR2/MyD88 Signal Pathway. ACS OMEGA 2021; 6:113-118. [PMID: 33458464 PMCID: PMC7807478 DOI: 10.1021/acsomega.0c03655] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 09/17/2020] [Indexed: 05/03/2023]
Abstract
BACKGROUND AND PURPOSE Lipopolysaccharide (LPS) is an important factor that induce severe inflammation, resulting in multiple types of diseases. It is reported that LPS-induced inflammation is related to the activation of the NF-κB signal pathway and reactive oxygen species (ROS)-induced oxidative stress. Azilsartan, an angiotensin II type 1 (AT1) receptor blocker, has been licensed as a new generation of Sartan antihypertensive drugs. However, the effects of azilsartan in LPS-induced inflammation have not been reported before. The present study aims to investigate the anti-inflammatory effects of azilsartan on LPS-stimulated macrophages and explore the underlying mechanism. METHODS The release of lactic dehydrogenase (LDH), secretion of HMGB-1, and concentrations of IL-6, IL-1β, MCP-1, MMP-2, MMP-9, and PGE2 were evaluated using the enzyme-linked immunosorbent assay (ELISA). The gene expression levels of IL-6, IL-1β, MCP-1, MMP-2, MMP-9, and COX-2 were determined by quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR). Western blot analysis was used to detect the protein expression level of COX-2, Nrf2, TLR2, MyD-88, and NF-κB. The level of ROS was determined using the dihydroethidium (DHE) staining assay. The activity of NF-κB was evaluated using the luciferase activity assay. RESULTS The release of LDH, HMGB-1, IL-6, IL-1β, MCP-1, MMP-2, MMP-9, and PGE2 was significantly promoted by LPS stimulation, whereas it was greatly suppressed by azilsartan. The upregulated COX-2, TLR2, MyD-88, and NF-κB in the LPS-treated macrophages were significantly downregulated by azilsartan. Interestingly, the expression level of Nrf2 was elevated by azilsartan. On the contrary, ROS levels were greatly increased by LPS but suppressed by azilsartan. Mechanistically, it was found that azilsartan suppressed LPS-induced activation of the TLR2/Myd-88/NF-κB signaling pathway. CONCLUSION Azilsartan might suppress LPS-induced inflammation in U937 macrophages through suppressing oxidative stress and inhibiting the TLR/MyD88 signal pathway.
Collapse
Affiliation(s)
- Qinglian Dong
- Department
of Critical Medicine, Dongying People’s
Hospital, No. 317, Nanyi
Road, Dongying 257091, Shandong, China
| | - Yongxia Li
- Department
of Stomatology, Dongying People’s
Hospital, No. 317, Nanyi
Road, Dongying 257091, Shandong, China
| | - Juan Chen
- Department
of Critical Medicine, Dongying People’s
Hospital, No. 317, Nanyi
Road, Dongying 257091, Shandong, China
| | - Nan Wang
- Department
of Nephrology, Dongying People’s
Hospital, No. 317, Nanyi
Road, Dongying 257091, Shandong, China
- . Tel/Fax:+86-546-8331536
| |
Collapse
|
8
|
Influence of body fat in patients with dental implant rehabilitation treated with adjunctive photodynamic therapy. Photodiagnosis Photodyn Ther 2020; 31:101831. [DOI: 10.1016/j.pdpdt.2020.101831] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 05/14/2020] [Accepted: 05/18/2020] [Indexed: 12/28/2022]
|
9
|
Gut Microbiota and Liver Interaction through Immune System Cross-Talk: A Comprehensive Review at the Time of the SARS-CoV-2 Pandemic. J Clin Med 2020; 9:jcm9082488. [PMID: 32756323 PMCID: PMC7464500 DOI: 10.3390/jcm9082488] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/23/2020] [Accepted: 07/28/2020] [Indexed: 02/06/2023] Open
Abstract
Background and aims: The gut microbiota is a complex ecosystem containing bacteria, viruses, fungi, yeasts and other single-celled organisms. It is involved in the development and maintenance of both innate and systemic immunity of the body. Emerging evidence has shown its role in liver diseases through the immune system cross-talk. We review herein literature data regarding the triangular interaction between gut microbiota, immune system and liver in health and disease. Methods: We conducted a search on the main medical databases for original articles, reviews, meta-analyses, randomized clinical trials and case series using the following keywords and acronyms and their associations: gut microbiota, microbiome, gut virome, immunity, gastrointestinal-associated lymphoid tissue (GALT), non-alcoholic fatty liver disease (NAFLD), non-alcoholic steato-hepatitis (NASH), alcoholic liver disease, liver cirrhosis, hepatocellular carcinoma. Results: The gut microbiota consists of microorganisms that educate our systemic immunity through GALT and non-GALT interactions. The latter maintain health but are also involved in the pathophysiology and in the outcome of several liver diseases, particularly those with metabolic, toxic or immune-mediated etiology. In this context, gut virome has an emerging role in liver diseases and needs to be further investigated, especially due to the link reported between severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) infection and hepatic dysfunctions. Conclusions: Changes in gut microbiota composition and alterations in the immune system response are involved in the pathogenesis of metabolic and immune-mediated liver diseases.
Collapse
|
10
|
Jeong-Hyon K, Bon-Hyuk G, Sang-Soo N, Yeon-Cheol P. A review of rat models of periodontitis treated with natural extracts. JOURNAL OF TRADITIONAL CHINESE MEDICAL SCIENCES 2020. [DOI: 10.1016/j.jtcms.2020.05.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
|
11
|
Neppelenbroek KH, Honório HM, Garlet GP. To P or not to P, is that the question? Rethinking experimental design and data analysis to improve biological significance beyond the statistical significance. J Appl Oral Sci 2019; 27:e2019ed001. [PMID: 31596371 PMCID: PMC7700743 DOI: 10.1590/1678-7757-2019-ed001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
12
|
Isolation and identification of anti-periodontitis ingredients in Lactobacillus paracasei subsp. paracasei NTU 101-fermented skim milk in vitro. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.103449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
13
|
Saber S, Basuony M, Eldin AS. Telmisartan ameliorates dextran sodium sulfate-induced colitis in rats by modulating NF-κB signalling in the context of PPARγ agonistic activity. Arch Biochem Biophys 2019; 671:185-195. [DOI: 10.1016/j.abb.2019.07.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 07/05/2019] [Accepted: 07/17/2019] [Indexed: 01/09/2023]
|
14
|
Niranjan R, Sumitha M, Sankari T, Muthukumaravel S, Jambulingam P. Nonstructural protein-1 (NS1) of dengue virus type-2 differentially stimulate expressions of matrix metalloproteinases in monocytes: protective effect of paracetamol. Int Immunopharmacol 2019; 73:270-279. [DOI: 10.1016/j.intimp.2019.05.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 05/06/2019] [Accepted: 05/10/2019] [Indexed: 12/12/2022]
|
15
|
Saber S, Khalil RM, Abdo WS, Nassif D, El-Ahwany E. Olmesartan ameliorates chemically-induced ulcerative colitis in rats via modulating NFκB and Nrf-2/HO-1 signaling crosstalk. Toxicol Appl Pharmacol 2018; 364:120-132. [PMID: 30594690 DOI: 10.1016/j.taap.2018.12.020] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 12/24/2018] [Accepted: 12/26/2018] [Indexed: 02/07/2023]
Abstract
Alteration in the expression pattern of Nrf-2 and NFκB has been reported in ulcerative colitis (UC) in which functional crosstalk between these two critical pathways has been suggested. The ameliorative potential of the AT1R blocker olmesartan (OLM) on oxidative stress and inflammatory cytokines has received considerable attention in recent years. Acetic acid (AA)-induced UC demonstrates close resemblance to human UC regarding histopathological features and cytokine profile and is associated with local intense immune response, oxidative stress and release of inflammatory cytokines. Therefore, The effect of OLM (1, 5 and 10 mg/kg) administered orally to rats subjected to intra-rectal instillation of 2 ml of 3% AA in saline solution is investigated. The study revealed that OLM ameliorated colon injury and inflammatory signs as visualized by histopathological examination. Levels of colon IL-6, TNF-α, IL-1β, TGF-β, and serum CRP were down-regulated, while the level of colon IL-10 was up-regulated. In a dose-dependent manner, OLM suppressed AA-induced neutrophils accumulation and improved colon anti-oxidant defense machinery. Also, OLM repressed the Bax:BCL-2 ratio and caspase3 expression. The mechanism of these protective effects was found to lay behind its ability to down-regulate gene expression and inhibit phosphorylation and nuclear translocation of p65 subunits. On the other hand, OLM up-regulated gene expression of Nrf-2 and HO-1. In conclusion, our data show that OLM is an Nrf2 activator, NFkB inhibitor and apoptosis inhibitor in an experimental model of ulcerative colitis. Overall, the study indicates that OLM shows promise as a potential therapy for the treatment of human inflammatory bowel diseases.
Collapse
Affiliation(s)
- Sameh Saber
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa City, Mansoura, Dakahlia, Egypt.
| | - Rania M Khalil
- Department of Biochemistry, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa City, Mansoura, Dakahlia, Egypt
| | - Walied S Abdo
- Department of Pathology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Doaa Nassif
- Department of Pharmacy Practice, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa City, Mansoura, Dakahlia, Egypt
| | - Eman El-Ahwany
- Department of Immunology, Theodor Bilharz Research Institute, Giza, Egypt
| |
Collapse
|
16
|
Panahi M, Vadgama N, Kuganesan M, Ng FS, Sattler S. Immunopharmacology of Post-Myocardial Infarction and Heart Failure Medications. J Clin Med 2018; 7:E403. [PMID: 30384415 PMCID: PMC6262592 DOI: 10.3390/jcm7110403] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 10/23/2018] [Accepted: 10/29/2018] [Indexed: 12/15/2022] Open
Abstract
The immune system responds to acute tissue damage after myocardial infarction (MI) and orchestrates healing and recovery of the heart. However, excessive inflammation may lead to additional tissue damage and fibrosis and exacerbate subsequent functional impairment, leading to heart failure. The appreciation of the immune system as a crucial factor after MI has led to a surge of clinical trials investigating the potential benefits of immunomodulatory agents previously used in hyper-inflammatory conditions, such as autoimmune disease. While the major goal of routine post-MI pharmacotherapy is to support heart function by ensuring appropriate blood pressure and cardiac output to meet the demands of the body, several drug classes also affect a range of immunological pathways and modulate the post-MI immune response, which is crucial to take into account when designing future immunomodulatory trials. This review outlines how routine post-MI pharmacotherapy affects the immune response and may thus influence post-MI outcomes and development towards heart failure. Current key drug classes are discussed, including platelet inhibitors, statins, β-blockers, and renin⁻angiotensin⁻aldosterone inhibitors.
Collapse
Affiliation(s)
- Mona Panahi
- National Heart and Lung Institute, Imperial College London, London W12 0NN, UK.
| | - Nimai Vadgama
- National Heart and Lung Institute, Imperial College London, London W12 0NN, UK.
| | - Mathun Kuganesan
- University College London Medical School, University College London, London WC1E 6BT, UK.
| | - Fu Siong Ng
- National Heart and Lung Institute, Imperial College London, London W12 0NN, UK.
| | - Susanne Sattler
- National Heart and Lung Institute, Imperial College London, London W12 0NN, UK.
| |
Collapse
|
17
|
Wang WD, Sun R, Chen YX. PPARγ agonist rosiglitazone alters the temporal and spatial distribution of inflammation during abdominal aortic aneurysm formation. Mol Med Rep 2018; 18:3421-3428. [PMID: 30066924 DOI: 10.3892/mmr.2018.9311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 06/19/2018] [Indexed: 11/06/2022] Open
Abstract
Research into inflammation during abdominal aortic aneurysm (AAA) formation remains inconclusive. The present study aimed to demonstrate the temporal and spatial distribution of inflammatory cytokines, and to confirm the effect of peroxisome proliferator‑activated receptor γ (PPARγ) on the incidence of AAA formation and the distribution of inflammation in the disease process. Male apolipoprotein E‑/‑ mice were randomly divided into eight groups: Angiotensin II (Ang‑II)‑only 7, 14, 21, 28 and 42 days groups, Ang‑II with rosiglitazone (RGZ) 28 and 42 days groups, and the saline control 42 days group. The early stage was defined as between 7 and 21 days, and the late stage as between 28 and 42 days. Incidences of early rupture and late rupture, aneurysm formation and the maximum diameters of the aorta were recorded. Suprarenal abdominal aortic tissues were collected for histological analysis, and western blotting was performed to reveal the distribution of inflammation. Treatment with Ang‑II caused a significant dilation of the aorta in the late stage; however, this was not observed in the early stage. RGZ reduced the maximum diameters in the late stage. With the pathological process alterations, the inflammatory type shifted. Regarding temporal distribution, the tumor necrosis factor (TNF)‑α expression level was increased over time, and the interleukin (IL)‑10 expression level significantly decreased. When considering the spatial distribution, TNF‑α was expressed dominantly in the aneurysmal body and IL‑10 was dominant in the aneurysmal neck in the late stage. The PPARγ agonist RGZ may reduce the expression of TNF‑α in the late stage and increase the expression level of IL‑10, maintaining the TNF‑α or IL‑10 expression levels at the same levels as in the early stage. Aortic inflammation during AAA formation is dynamic. Protective anti‑inflammatory cytokines are upregulated in the early 'compensatory stage'; however, pro‑inflammatory cytokines are dominant in the late 'decompensatory stage'. PPARγ is likely to continue to upregulate the expression of anti‑inflammatory cytokines, extend the 'compensatory stage', and decelerate the process of AAA development and rupture.
Collapse
Affiliation(s)
- Wen-Da Wang
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China
| | - Rui Sun
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China
| | - Yue-Xin Chen
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China
| |
Collapse
|
18
|
Natarajan K, Abraham P, Kota R, Isaac B. NF-κB-iNOS-COX2-TNF α inflammatory signaling pathway plays an important role in methotrexate induced small intestinal injury in rats. Food Chem Toxicol 2018; 118:766-783. [DOI: 10.1016/j.fct.2018.06.040] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 06/16/2018] [Accepted: 06/19/2018] [Indexed: 12/21/2022]
|
19
|
Anti-inflammatory and antiresorptive effects of Calendula officinalis on inflammatory bone loss in rats. Clin Oral Investig 2017; 22:2175-2185. [DOI: 10.1007/s00784-017-2308-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 12/12/2017] [Indexed: 12/29/2022]
|
20
|
Therapeutic effect of bone marrow mesenchymal stem cells pretreated with acetylsalicylic acid on experimental periodontitis in rats. Int Immunopharmacol 2017; 54:320-328. [PMID: 29195233 DOI: 10.1016/j.intimp.2017.11.028] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 11/17/2017] [Accepted: 11/21/2017] [Indexed: 02/05/2023]
Abstract
Periodontitis is a local inflammatory environment with dysregulation of host responses, which results in destruction of periodontal tissues. Mesenchymal stem cells (MSCs) have been proven to play important roles in tissue regeneration by serving as progenitor cells, but its therapeutic outcomes are yet, evaluated variable and unpredictable because of the influence of local inflammation. Acetylsalicylic acid (ASA) has been reported to benefit for MSCs in terms of inflammation control and tissue regeneration. In this study, we aimed to explore the effect of bone marrow mesenchymal stem cells (BMMSCs) pretreated with ASA (ASA-BMMSCs) on periodontal bone repair in a ligature and bacteria-induced periodontitis model in rats. We show herein that, ASA-BMMSCs treatment reduced inflammatory infiltration and alveolar bone loss in periodontitis rats, reflected by immunohistochemistry staining of OPG/RANK-L and Micro-CT. Levels of TNF-α and IL-17 decreased while IL-10 increased after the treatment of ASA-BMMSCs in periodontitis rats. In addition, less osteoclasts number was detected in ASA-BMMSCs treated group. In vitro study showed that ASA facilitated BMMSCs proliferation and differentiation, which might explain the reduced bone loss in periodontitis. These results together suggest that local application of ASA-BMMSCs in periodontal lesion sites is capable of improving inflammatory microenvironment, promoting alveolar bone regeneration, thus leading to a recovery of periodontal homeostasis. Besides, this study also provides us a new idea that a combined application of ASA and BMMSCs may be a novel approach for periodontitis treatment and periodontal bone regeneration.
Collapse
|
21
|
Guerra GCB, de Menezes MSS, de Araújo AA, de Araújo Júnior RF, de Medeiros CACX. Olmesartan Prevented Intra-articular Inflammation Induced by Zymosan in Rats. Biol Pharm Bull 2017; 39:1793-1801. [PMID: 27803450 DOI: 10.1248/bpb.b16-00296] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The objective of this study was to study the effect of olmesartan medoxomil (OLM), an antihypertensive drug, on intra-articular inflammation induced by zymosan (Zy) in Wistar rats. Intra-articular inflammation was induced in the right knees of rats by 1 mg Zy dissolved in saline. The animals were divided into the following groups: saline only (oral saline and intra-articular saline); Zy only (intra-articular Zy and oral saline), and intra-articular Zy and oral OLM (5, 15, or 30 mg/kg) or diclofenac sodium (SD; 100 mg/kg). Twenty-four hours after Zy injection, synovial fluid was collected for total leukocyte counts, blood was collected for biochemical measurements, and synovial tissue was collected for histopathology, immunohistochemistry, immunofluorescence and myeloperoxidase (MPO), malonaldehyde (MDA), and non-protein sulphydryl (NPSH) assays. OLM doses of 15 and 30 mg/kg had protective effects, as evidenced by improved histopathological parameters of synovium, reduced total leukocyte counts, reduced MPO and MDA levels, and increased NPSH group levels compared with the Zy group. OLM reduced immunostaining for cyclooxygenase 2, tumour necrosis factor and interleukin 17 and increased immunostaining for superoxide dismutase and glutathione peroxidase. SD produced similar results. The drugs studied caused no change in biochemical parameters of the animals. OLM showed protective effects in this model of Zy-induced intra-articular inflammation.
Collapse
Affiliation(s)
- Gerlane Coelho Bernardo Guerra
- Post Graduation Program in Biological Sciences/Federal University of Rio Grande do Norte, Department Biophysical and Pharmacology, Federal University of Rio Grande do Norte
| | | | | | | | | |
Collapse
|
22
|
Abduljabbar T, Al-Sahaly F, Kellesarian SV, Kellesarian TV, Al-Anazi M, Al-Khathami M, Javed F, Vohra F. Comparison of peri-implant clinical and radiographic inflammatory parameters and whole salivary destructive inflammatory cytokine profile among obese and non-obese men. Cytokine 2016; 88:51-56. [DOI: 10.1016/j.cyto.2016.08.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 08/13/2016] [Accepted: 08/18/2016] [Indexed: 11/16/2022]
|
23
|
Dundar S, Eltas A, Hakki SS, Malkoc S, Uslu MO, Tuzcu M, Komorowski J, Ozercan IH, Akdemir F, Sahin K. Dietary arginine silicate inositol complex inhibits periodontal tissue loss in rats with ligature-induced periodontitis. Drug Des Devel Ther 2016; 10:3771-3778. [PMID: 27895467 PMCID: PMC5117900 DOI: 10.2147/dddt.s115088] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The purpose of this study was to induce experimental periodontitis in rats previously fed diets containing arginine silicate inositol (ASI) complex and examine the biochemical, immunological, and radiological effects. Fifty two 8-week-old female Sprague Dawley rats were equally divided into four groups. The control group included those fed a standard rat diet with no operation performed during the experiment. The periodontitis, ASI I, and ASI II groups were subjected to experimental periodontitis induction for 11 days after being fed a standard rat diet alone, a diet containing 1.81 g/kg ASI complex, or a diet containing 3.62 g/kg ASI complex, respectively, for 8 weeks. Throughout the 11-day duration of periodontitis induction, all rats were fed standard feed. The rats were euthanized on the eleventh day, and their tissue and blood samples were collected. In the periodontitis group, elevated tissue destruction parameters and reduced tissue formation parameters were found, as compared to the ASI groups. Levels of enzymes, cytokines, and mediators associated with periodontal tissue destruction were lower in rats fed a diet containing ASI complex after experimental periodontitis. These results indicate that ASI complex could be an alternative agent for host modulation.
Collapse
Affiliation(s)
- Serkan Dundar
- Department of Periodontology, Faculty of Dentistry, Firat University, Elazig
| | - Abubekir Eltas
- Department of Periodontology, Faculty of Dentistry, Inonu University, Malatya
| | - Sema S Hakki
- Department of Periodontology, Faculty of Dentistry, Selcuk University, Konya
| | - Sıddık Malkoc
- Department of Orthodontics, Faculty of Dentistry, Inonu University, Malatya
| | - M Ozay Uslu
- Department of Periodontology, Faculty of Dentistry, Inonu University, Malatya
| | - Mehmet Tuzcu
- Department of Biology, Faculty of Science, Firat University, Elazig, Turkey
| | | | | | - Fatih Akdemir
- Department of Animal Nutrition, Faculty of Fisheries, Inonu University, Malatya
| | - Kazim Sahin
- Department of Animal Nutrition, Faculty of Veterinary Medicine, Firat University, Elazig, Turkey
| |
Collapse
|
24
|
Angeloni E. Azilsartan medoxomil in the management of hypertension: an evidence-based review of its place in therapy. CORE EVIDENCE 2016; 11:1-10. [PMID: 27103882 PMCID: PMC4829189 DOI: 10.2147/ce.s81776] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Background Azilsartan (AZI) is a relatively new angiotensin receptor blocker available for the treatment of any stage of hypertension, which was eventually given in combination with chlorthalidone (CLT). Objective To review pharmacology and clinical role of AZI monotherapy and AZI/CLT or AZI/amlodipine combination therapies for hypertension management. Methods PubMed, Embase, and Cochrane Library were searched using search terms “ azilsartan”, “chlorthalidone,” “pharmacology,” “pharmacokinetics,” “pharmacodynamics,” “pharmacoeconomics,” and “cost-effectiveness.” To obtain other relevant information, US Food and Drug Association as well as manufacturer prescribing information were also reviewed. Results Randomized controlled trials demonstrated AZI to be superior to other sartans, such as valsartan, olmesartan, and candesartan, in terms of 24-hour ambulatory blood pressure monitoring (ABPM) reduction with respect. That beneficial effect of azilsartan was also associated with similar safety profiles. When compared to other antihypertensive drugs, azilsartan was found to be superior to any angiotensin-converting enzyme inhibitor, including ramipril, in terms of ABPM results, and noninferior to amlodipine in terms of sleep-BP control. The association of AZI and CLT was then found to be superior to other sartans + thiazide combination therapies in terms of both BP lowering and goal achievement. The combination of AZI and amlodipine has also been tested in clinical trials, but compared only with placebo, demonstrating its superiority in terms of efficacy and similarity in terms of safety. Conclusion Azilsartan is a safe and effective treatment option for every stage of hypertension, both alone or in fixed-dose combination tablets with chlorthalidone or amlodipine. Beneficial effects of AZI were also noted in patients with any degree of renal impairment. In addition, safety profiles of AZI were similar to that of the placebo.
Collapse
Affiliation(s)
- Emiliano Angeloni
- Cardiovascular Pathophysiology and Imaging, Sapienza Università di Roma, Rome, Italy
| |
Collapse
|
25
|
Alfakry H, Malle E, Koyani CN, Pussinen PJ, Sorsa T. Neutrophil proteolytic activation cascades: a possible mechanistic link between chronic periodontitis and coronary heart disease. Innate Immun 2016; 22:85-99. [PMID: 26608308 DOI: 10.1177/1753425915617521] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 10/13/2015] [Indexed: 12/30/2022] Open
Abstract
Cardiovascular diseases are chronic inflammatory diseases that affect a large segment of society. Coronary heart disease (CHD), the most common cardiovascular disease, progresses over several years and affects millions of people worldwide. Chronic infections may contribute to the systemic inflammation and enhance the risk for CHD. Periodontitis is one of the most common chronic infections that affects up to 50% of the adult population. Under inflammatory conditions the activation of endogenous degradation pathways mediated by immune responses leads to the release of destructive cellular molecules from both resident and immigrant cells. Matrix metalloproteinases (MMPs) and their regulators can activate each other and play an important role in immune response via degrading extracellular matrix components and modulating cytokines and chemokines. The action of MMPs is required for immigrant cell recruitment at the site of inflammation. Stimulated neutrophils represent the major pathogen-fighting immune cells that upregulate expression of several proteinases and oxidative enzymes, which can degrade extracellular matrix components (e.g. MMP-8, MMP-9 and neutrophil elastase). The activity of MMPs is regulated by endogenous inhibitors and/or candidate MMPs (e.g. MMP-7). The balance between MMPs and their inhibitors is thought to mirror the proteolytic burden. Thus, neutrophil-derived biomarkers, including myeloperoxidase, may activate proteolytic destructive cascades that are involved in subsequent immune-pathological events associated with both periodontitis and CHD. Here, we review the existing studies on the contribution of MMPs and their regulators to the infection-related pathology. Also, we discuss the possible proteolytic involvement and role of neutrophil-derived enzymes as an etiological link between chronic periodontitis and CHD.
Collapse
Affiliation(s)
- Hatem Alfakry
- Department of Oral and Maxillofacial Diseases, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Ernst Malle
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Chintan N Koyani
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Pirkko J Pussinen
- Department of Oral and Maxillofacial Diseases, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Timo Sorsa
- Department of Oral and Maxillofacial Diseases, University of Helsinki and Helsinki University Hospital, Helsinki, Finland Division of Periodontology, Department of Dental Medicine, Karolinska Institutet, Huddinge, Sweden
| |
Collapse
|
26
|
de Araújo AA, Varela H, de Medeiros CACX, de Castro Brito GA, de Lima KC, de Moura LM, de Araújo RF. Azilsartan reduced TNF-α and IL-1β levels, increased IL-10 levels and upregulated VEGF, FGF, KGF, and TGF-α in an oral mucositis model. PLoS One 2015; 10:e0116799. [PMID: 25689279 PMCID: PMC4331549 DOI: 10.1371/journal.pone.0116799] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 12/14/2014] [Indexed: 12/31/2022] Open
Abstract
Oral mucositis (OM) is a common complication of treatments for head and neck cancer, particularly radiotherapy with or without chemotherapy. OM is characterised by oral erythema, ulceration, and pain. The aim of this study was to evaluate the effect of azilsartan (AZT), an angiotensin II receptor antagonist, on 5-fluorouracil (5-FU)-induced oral mucositis (OM) in Syrian hamsters. OM was induced by the intraperitoneal administration of 5-FU on experimental days 1 (60 mg/Kg) and 2 (40 mg/Kg). Animals were pretreated with oral AZT (1, 5, or 10 mg/kg) or vehicle 30 min before 5-FU injection and daily until day 10. Experimental treatment protocols were approved by the Animal Ethics Committee Use/CEUA (Number 28/2012) of the UFRN. Macroscopic analysis and cheek pouch samples were removed for histopathologic analysis. Myeloperoxidase (MPO), Malonyldialdehyde (MDA), interleukin-1 beta (IL-1β), interleukin-10 (IL-10), and tumour necrosis factor-alpha (TNF-α) were analysed by Enzyme Linked Immuno Sorbent Assay (ELISA). Vascular endothelial growth factor (VEGF), fibroblast growth factor (FGF), keratinocyte growth factor (KGF), and transforming growth factor (TGF)-α were measured by immunohistochemistry. Analysis of variance followed by Bonferroni's test was used to calculate the means of intergroup differences (p ≤ 0.05). Treatment with 1 mg/kg AZT reduced levels MPO (p<0.01), MDA (p<0.5) and histological inflammatory cell infiltration, and increased the presence of granulation tissue. AZT treatment at 1 mg/kg reduced the TNF-α (p<0.05) and IL-1β (p<0.05) levels, increased the cheek pouch levels of IL-10 (p<0.01), and upregulated VEGF, FGF, KGF, and TGF-α. Administration of AZT at higher doses (5 and 10 mg/kg) did not significantly reverse the OM. AZT at a dose of 1 mg/kg prevented the mucosal damage and inflammation associated with 5-FU-induced OM, increasing granulation and tissue repair.
Collapse
Affiliation(s)
- Aurigena Antunes de Araújo
- Postgraduate Programs in Public Health and Pharmaceutical Science, Department of Biophysics and Pharmacology, Federal University of Rio Grande Norte (UFRN), Natal, RN, Brazil
- * E-mail:
| | - Hugo Varela
- Postgraduate Program in Public Health, UFRN, Natal, RN, Brazil
| | | | - Gerly Anne de Castro Brito
- Postgraduate Program in Pharmacology and Morphology, Department of Morphology, Federal University of Ceará (UFC), Fortaleza, CE, Brazil
| | - Kênio Costa de Lima
- Postgraduate Program in Public Health and Health Science, Department of Dentistry, UFRN, Natal, RN, Brazil
| | - Ligia Moreno de Moura
- Postgraduate Program in Public Health, UFRN; and University Potiguar (UnP), Natal, RN, Brazil
| | - Raimundo Fernandes de Araújo
- Postgraduate Program in Functional & Structural Biology and Health Science, Department of Morphology, UFRN, Natal, RN, Brazil
| |
Collapse
|
27
|
|